
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

STRUCTURAL-ENTROPY-BASED SAMPLE SELECTION
FOR EFFICIENT AND EFFECTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sample selection improves the efficiency and effectiveness of machine learning
models by providing informative and representative samples. Typically, samples
can be modeled as a sample graph, where nodes are samples and edges represent
their similarities. Most existing methods are based on local information, such as
the training difficulty of samples, thereby overlooking global information, such as
connectivity patterns. This oversight can result in suboptimal selection because
global information is crucial for ensuring that the selected samples well represent
the structural properties of the graph. To address this issue, we employ structural
entropy to quantify global information and losslessly decompose it from the whole
graph to individual nodes using the Shapley value. Based on the decomposition, we
present Structural-Entropy-based sample Selection (SES), a method that integrates
both global and local information to select informative and representative samples.
SES begins by constructing a kNN-graph among samples based on their similarities.
It then measures sample importance by combining structural entropy (global metric)
with training difficulty (local metric). Finally, SES applies importance-biased blue
noise sampling to select a set of diverse and representative samples. Comprehensive
experiments in three learning scenarios — supervised learning, active learning, and
continual learning — clearly demonstrate the effectiveness of our method.

1 INTRODUCTION

Data budgets that limit sample sizes are pervasive in machine learning applications. For example,
researchers and practitioners often face limited annotation and computational resources, necessitating
the use of fewer samples to enhance efficiency. Similarly, in continual learning scenarios (Hou
et al., 2019), the memory constraint requires fewer samples from previous tasks to effectively retain
knowledge. Consequently, effective sample selection becomes crucial to improving efficiency and
effectiveness in machine learning. It aims to select informative and representative samples from
large datasets to accelerate training and enhance the training performance. Informative samples are
those that significantly reduce model uncertainty and are crucial for improving the accuracy and
robustness of the training process, while representative samples are those that preserve the diversity
and overall distribution of the dataset (Huang et al., 2014). During selection, samples can be modeled
as a sample graph, where nodes are samples and edges represent their similarities. Existing sample
selection methods primarily focus on local information, such as the training difficulty and the node
degree (Maharana et al., 2024). Although these methods demonstrate promising performance on many
datasets, they overlook the global information inherent in the graph structure. This global information,
such as connectivity patterns, captures the structural properties of the whole graph (Leskovec &
Faloutsos, 2006) and has been shown to be effective in improving the representativeness of selected
samples (Zhang et al., 2023; Yuan et al., 2021; Zhao et al., 2021). Therefore, we aim to incorporate
global information into the sample selection process to improve the quality of the selected samples.

The key to incorporating global information is to identify which specific metric(s) can accurately
capture the global structure of the sample graph. Entropy is a class of metrics well-suited for this
purpose, as it quantifies both informativeness and representativeness (Pan et al., 2005; Li & Guo,
2013). In particular, Li & Pan (2016) propose structural entropy to evaluate the amount of information
required to describe a given graph structure. The main feature of this metric is that it is robust and
sensitive. First, it remains stable against minor changes like the addition or removal of a few edges.
This ensures that the structural entropy reliably reflects the global structure of the graph despite

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

potential noise. Second, it is sensitive to topological changes, especially those affecting connectivity
patterns. This is essential for capturing the global structure in response to even small topological
changes. These two properties make structural entropy an effective metric for quantifying the global
structure and therefore valuable in sample selection. However, existing methods only provide a
single value for the whole graph. This presents a challenge in decomposing this metric to the level of
individual nodes, limiting its utility for fine-grained, node-level selection.

To address this challenge, we use the Shapley value (Shapley, 1951), a method that fairly decomposes
a metric among contributors based on their individual contributions. Specifically, it is calculated
by evaluating a node’s marginal contribution to structural entropy when adding this node to each
subgraph of the sample graph. This decomposition process is highly time-consuming as it requires
exponential-time computation to enumerate possible subgraphs. To accelerate this, we reformulate the
Shapley value for structural entropy, enabling linear-time calculation with respect to the edge number.
Based on this reformulation, we propose a node-level structural entropy metric that effectively
measures the importance of nodes in preserving the global structure. Building on the decomposition,
we present a Structural-Entropy-based sample Selection (SES) method that integrates both global and
local metrics to select informative and representative samples. This method begins by constructing
a kNN-graph among samples to describe their similarity relationships. Then, it measures sample
importance by combining node-level structural entropy (global metric) with training difficulty (local
metric). Finally, the importance-biased blue noise sampling method is employed to iteratively select
a set of diverse and representative samples.

We validate the effectiveness of our method through comprehensive experiments on three important
learning scenarios: supervised learning, active learning, and continual learning. The evaluation
covers many tasks, including image classification, text classification, object detection, and visual
question answering. The results clearly show that our method consistently improves state-of-the-art
methods across all scenarios and tasks. This indicates that our method of integrating global and local
information outperforms existing methods in selecting more informative and representative samples.

The main contributions of this work are threefold:

• We propose a node-level structural entropy metric that quantifies the importance of nodes in
preserving the global structure, and it can be calculated in linear time.

• We develop a structural-entropy-based sample selection method that integrates both global and
local metrics to select informative and representative samples1.

• We conduct experiments in supervised learning, active learning, and continual learning that
demonstrate the effectiveness of our method.

2 RELATED WORK

Existing sample selection methods primarily utilize local information. They can be classified into two
categories based on the information utilized: attribute-based methods and connection-based methods.

Attribute-based methods rely on the attributes of individual samples. A commonly used attribute is the
training difficulty, which is typically assessed from two perspectives: confidence and error. Metrics
that measure model confidence include the entropy of the prediction vector (Coleman et al., 2020) and
the variance of the predicted probabilities across training epochs (Swayamdipta et al., 2020). Metrics
that measure model error include EL2N (Paul et al., 2021), which calculates the L2 norm of the error
vector, and the Forgetting score (Toneva et al., 2019), which tracks the frequency of misclassifications
after initial correct classifications. AUM (Pleiss et al., 2020) combines both perspectives by measuring
the confidence for correct classifications and the error for misclassifications. Based on these metrics,
several sample selection methods have been developed. One simple yet effective method is selecting
the most difficult samples, as they have a larger impact on the model performance (Paul et al., 2021).
However, this method overlooks easy samples, which are crucial for model training when data
budgets are limited (Sorscher et al., 2022). To address this issue, CCS (Zheng et al., 2022) divides
the dataset into strata based on training difficulty and performs random sampling within each stratum.
InfoBatch (Qin et al., 2023) retains some easy samples and enhances their influence by upscaling
their gradient. Another line of work uses the gradient as the attribute and aims to match the average

1The implementation is available at https://anonymous.4open.science/r/SE-based sample selection-575B/.

2

https://anonymous.4open.science/r/SE-based_sample_selection-575B/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

gradient of the selected samples with that of all samples (Mirzasoleiman et al., 2019; Killamsetty
et al., 2021). However, these gradients depend on the model’s current state during training, limiting
the applicability of the selected samples to other models.

Connection-based methods utilize local connections within the sample graph to optimize sample
diversity and coverage. GraphCut (Iyer et al., 2021) selects samples with weak connections among
them to promote diversity while maintaining strong connections to unselected samples for better
coverage. Moderate coreset (Xia et al., 2023) selects samples based on their distances from the
class centers. To enhance the generalizability across different scenarios, samples near the median
distance are selected. D2 Pruning (Maharana et al., 2024) aims to select difficult and diverse samples.
It employs forward message passing to integrate training difficulty and node degree, followed by
backward message passing to ensure diversity.

While these methods demonstrate promising performance on many datasets, they often overlook the
global information, which is crucial for increasing the representativeness of selected samples (Yuan
et al., 2021). Overlooking this global information can lead to suboptimal learning performance. To
address this gap, we propose a structural-entropy-based sample selection method that integrates both
global and local metrics to select informative and representative samples. The experimental results
presented in Sec. 5 show that our method achieves consistent improvement over existing methods.

3 BACKGROUND: STRUCTURAL ENTROPY OF GRAPH

Structural entropy evaluates how the nodes and edges in a graph are hierarchically organized to form
communities at different levels (Li & Pan, 2016). Thus, it is effective in globally quantifying the
community structure of the graph regarding its overall connectivity patterns. The calculation of
structural entropy is based on an encoding tree that represents the graph’s hierarchical community
structure. In this tree, each node represents a community, and each leaf node corresponds to a
graph node that forms a single-node community. With this encoding tree, the entropy is aggregated
across communities of different levels, which provides insights into the hierarchical community
structure of the graph. Fig. 1 shows an undirected, weighted graph G and its encoding tree T .
The entropy is calculated for each non-root node α, which considers both intra-community and
inter-community connections to reflect the connectivity patterns of its community in the graph. Lower
entropy indicates denser intra-community connections and sparser inter-community connections. The
intra-community connection, vol(α), is quantified by the total weighted degrees of the nodes, while
the inter-community connection, g(α), is quantified by the total weight of the edges with exactly one
endpoint in the community (outer edges). Given an encoding tree T , the structural entropy of G is
the aggregation of the entropy values from all its non-root nodes:

H(G, T) = −
∑
α∈T

g(α)

vol(V)
log

vol(α)

vol(α−)
, (1)

where α is a non-root node, α− is its parent node, g(α) is the total weight of its outer edges, and
vol(V), vol(α), vol(α−) represent the total weighted degrees of the nodes in V , α, and α−.

In real-world applications, the encoding tree T may be unknown. To best capture the hierarchical
community structure in such cases, the encoding tree T is constructed by minimizing the structural
entropy. Obtaining an exact solution for the minimization is challenging, so greedy methods similar
to the Huffman tree construction have been developed (Li & Pan, 2016; Zhu et al., 2023). We
demonstrate in Appendix A that the choice of the construction method has a negligible effect on the
sample selection results. Therefore, we use the most recent method proposed by Zhu et al. (2023).

Graph G

0.6

0.8
0.7 0.9

0.5

 community ’s

Encoding tree

vol()= (0.5+0.7+0.8)+(0.8+0.9)+(0.6+0.7+0.9)

g()= 0.5+0.6

0.6

0.5

Figure 1: The structural entropy calculation for an undirected, weighted graph.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

4 STRUCTURAL-ENTROPY-BASED SAMPLE SELECTION

Our sample selection method integrates global and local metrics to select informative and
representative samples. Given a large set of samples, an undirected, weighted sample graph G
is initially constructed to model their similarity relationships. Each sample, represented by its
embedding extracted by a deep neural network, corresponds uniquely to a node in the graph. To
avoid excessive edge connections, each sample is connected to its k nearest neighboring samples.
The edge weight between any two samples, u and v, is their cosine similarity normalized to [0, 1].
Based on this graph, we first propose a node-level structural entropy metric to globally measure
the importance of each sample. Then, it is combined with a local metric, training difficulty, to assign
an importance score to each sample. Using this score, we develop an importance-biased blue noise
sampling method to select a set of informative and representative samples.

4.1 NODE-LEVEL STRUCTURAL ENTROPY

The core of our scoring method is to define the metric at the node level. While local metrics are
well studied, global metrics have received little attention. An ideal global metric for fine-grained,
node-level selection should measure the connectivity patterns of a graph at the individual node level.
Previous research shows that the graph-level structural entropy effectively quantifies the global
connectivity patterns (Li & Pan, 2016), making it a valuable metric for sample selection. However,
it only provides a single value for the whole graph, thus failing to offer detailed insights at the node
level. Consequently, the key is to decompose the graph-level structural entropy to the node level.

Chen & Teng (2017) have shown that the Shapley value (Shapley, 1951) is an effective method to
decompose a value from the graph level to the node level. The key feature of this method is its
lossless and fair decomposition of the value, ensuring that the aggregate node-level value equals the
graph-level value. Inspired by this, we employ the Shapley value to derive the node-level structural
entropy. Specifically, the Shapley value of a node u reflects the average increase in structural entropy
when it is added to all possible subgraphs of G. As a result, this value captures the node’s contribution
to the global connectivity patterns.

To derive the Shapley value for each node, we first calculate the structural entropy for each possible
subgraph of G. Then, we calculate the node’s contribution to these subgraphs. Formally, let VS

denote a subset of the node set V , the Shapley value of node u is:

ϕ(u) =
1

|V |
∑

Vs⊆V \{u}

(
|V | − 1

|VS |

)−1(
H(G[VS ∪ {u}], T)−H(G[VS], T)

)
, (2)

where G[VS] is the subgraph of G that consists of nodes in VS and the edges between them, and(|V |−1
|VS |

)
is the binomial coefficient.

Directly calculating Eq. (2) requires an enumeration of all possible subgraphs of G, which becomes
intractable for a graph with a large number of nodes. To address this, we reformulate the Shapley
value by considering the contribution of edges.
Proposition 1. Let G=(V,E,W) be an undirected, weighted graph. The Shapley value of node u is

ϕ(u) =
1

vol(V)

(∑
⟨u,v⟩∈E

wu,v log vol(αu∨v)− d(u) log d(u)

)
, (3)

where wu,v is the weight of edge ⟨u, v⟩, αu∨v is the least common ancestor of node u and v in the
encoding tree T , and d(u) is the weighted degree of node u.

The proof of Proposition 1 is provided in Appendix B. It indicates that the Shapley value can be
calculated in linear time with respect to the edge number. Thus, this reformulation enables an efficient
and exact calculation. Eq. (3) consists of two terms. The first decomposes the structural entropy from
the encoding tree to the node, and the second reflects local connectivity through node degree. Due to
the below theoretical and empirical advantages, we only use the first term to define the node-level
structural entropy (Se):

Se(u) =
1

vol(V)

∑
⟨u,v⟩∈E

wu,v log vol(αu∨v). (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

uv
u

u v’

u v˅’

v’

u v˅

uv
vol()u v˅ vol()u v˅’

u v’

(a) (b)
Figure 2: Edges connecting: (a) nodes u and v across different communities; (b) nodes u and v′

within the same community.

As this definition is related to sample coverage, the first theoretical advantage lies in its ability to
enhance model performance. Following previous work (Zheng et al., 2022), we assume that samples
are drawn from a distribution Pµ with probability measure µ, and quantify the sample coverage
as P (u, r) =

∫
B(u,r)

dµ(x), where B(u, r) is a r-radius ball centered at u. We prove that Se(u)

provides a lower bound for sample coverage:
1

nk2R
exp

(
1

kR
E[Se(u)]

)
≤ E[P (u, r)], (5)

where n is the number of samples, k is the parameter in kNN-graph construction, and R is the upper
bound of edge weights. This result indicates that maximizing Se(u) during selection inherently
improves sample coverage. Given the strong correlation between coverage ability and the empirical
loss of a learning algorithm (Zheng et al., 2022), selecting samples with high node-level structural
entropy effectively enhances model performance. The detailed proof is provided in Appendix C.

The second theoretical advantage is its ability in maintaining the overall graph structure. A higher
vol(αu∨v) indicates that the edge ⟨u, v⟩ connects nodes that are more distantly located in T . For
example, in Fig. 2, the edge ⟨u, v′⟩ stays within the same community while the edge ⟨u, v⟩ spans
different communities, resulting in a higher vol(αu∨v). Thus, vol(αu∨v) effectively quantifies
the extent to which an edge bridges different communities. Since Se(u) is the weighted sum of
vol(αu∨v), nodes with high structural entropy serve as boundaries between communities. Selecting
these nodes is crucial for maintaining the overall structure of the graph.

The empirical advantage of this definition is demonstrated through an ablation study, as detailed in
Appendix G. The results show that only using the first term slightly improves performance.

4.2 IMPORTANCE-BIASED BLUE NOISE SAMPLING

To select a set of high-quality samples, the developed global metric, node-level structural entropy,
needs to be combined with an appropriate local metric. Previous research has shown that training
difficulty (St) is an effective local metric in quantifying the sample’s impact on model performance,
as difficult samples are typically more informative for improving the decision boundary (Paul et al.,
2021; Sorscher et al., 2022). Therefore, we employ it as the local metric. Accordingly, the overall
importance score (S) is a combination of node-level structural entropy and training difficulty:

S(u) = Se(u) · St(u). (6)

Given the importance scores, a straightforward solution is to select the samples with the highest
scores. However, this significantly reduces the diversity of the selected samples, as the important
samples tend to cluster in several narrow regions (Zheng et al., 2022). An alternative is the message
passing mechanism employed by D2 Pruning: once a sample is selected, this method sends weighted
messages to decrease the importance scores of its neighbors in the graph. However, the message
weights are sensitive to a hyperparameter and can lead to suboptimal results if not carefully tuned.
Previous research has shown that blue noise sampling achieves a good balance between randomness
and uniformity by excluding overly similar samples (Xiang et al., 2019; Liu et al., 2018). This
method increases sampling in low-density regions, which enhances the diversity of the selected
samples. Consequently, we develop an importance-biased blue noise sampling method to select a set
of informative and representative samples.

Our sampling process contains two steps: 1) identifying the candidate sample with the highest
importance score, 2) rejecting the sample if its similarity with any selected neighboring samples
exceeds a threshold θ; otherwise, accepting it as a selected sample. These two steps are performed
iteratively until no more samples can be selected. To determine the threshold θ for a given sampling
rate, we perform a binary search on θ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

5 EXPERIMENTS

In this section, we first demonstrate the effectiveness of our method in three learning scenarios:
supervised learning, active learning, and continual learning. We then conduct ablation studies to
provide insights into our method. Finally, we conduct a qualitative analysis of the selection results.

5.1 SUPERVISED LEARNING

In supervised learning tasks, including image classification, text classification, object detection, and
visual question answering, we aim to reduce computational costs by selecting a subset of informative
and representative samples for training.

5.1.1 EXPERIMENTAL SETUP

Datasets and models. For image classification, we use the widely used datasets, CIFAR10, CI-
FAR100 (Krizhevsky, 2009), and ImageNet-1K (Deng et al., 2009). Following Maharana et al. (2024),
ResNet-18 (He et al., 2015) is used for CIFAR10 and CIFAR100, while ResNet-34 (He et al., 2015)
is used for ImageNet-1K. The models are trained from scratch on the selected subsets of the training
set, and we report the model accuracy.

For text classification, we use the ANLI dataset (Nie et al., 2020), which focuses on natural language
inference, and the IMDB Review dataset (Maas et al., 2011), which focuses on sentiment analysis.
Following Maharana et al. (2024), we fine-tune the RoBERTa model (Liu et al., 2019) and report the
accuracy on the test set for both datasets.

For object detection, we use the PASCAL VOC dataset (Everingham et al., 2010), which contains
bounding box annotations of objects and animals. Following Choi et al. (2021), we train SSD (Liu
et al., 2016) with VGG-16 (Simonyan & Zisserman, 2015) backbone from scratch and report the
mAP on the test set.

For visual question answering, we use the CC SBU Align dataset (Zhu et al., 2024), which con-
tains high-quality, aligned image-text pairs. Following Wei et al. (2023), we fine-tune MiniGPT-
4 (Zhu et al., 2024) on this dataset, and report the average accuracy of the model on five datasets:
OKVQA (Schwenk et al., 2022), IconVQA (Lu et al., 2021), DocVQA (Mathew et al., 2021),
GQA (Hudson & Manning, 2019), and ScienceQA (Saikh et al., 2022).

Please refer to Appendix D for more details on the dataset statistics and training hyperparameters.

Baselines. We compare our method with the state-of-the-art sample selection methods, which are
either applicable to all tasks or designed for a specific task. Baselines that are applicable to all tasks
include: 1) Random selection of samples, 2) Moderate coreset (Xia et al., 2023), 3) CCS (Zheng
et al., 2022), 4) D2 Pruning (Maharana et al., 2024), and 5) GraphCut (Iyer et al., 2021). For
image classification and text classification, the task-specific baselines include selecting the most
difficult samples based on: 1) Entropy (Coleman et al., 2020), 2) Forgetting score (Toneva et al.,
2019), 3) EL2N (Paul et al., 2021), 4) AUM (Pleiss et al., 2020), and 5) Variance (Swayamdipta
et al., 2020). We also include two widely used baselines that prioritize diversity in sample selection,
including k-means (Xu et al., 2003), which selects the samples closest to k-means clustering centers,
and k-DPP (Kulesza & Taskar, 2011), which employs a determinantal point process to encourage
diversity. For object detection, we include selection based on the AL-MDN uncertainty (Choi et al.,
2021), which captures the detector’s overall uncertainty for an image. For visual question answering,
we include selection based on the Instruction score (Wei et al., 2023), which evaluates an image-text
pair based on image-text matching degree and text length.

Implementation. For all tasks, we extract image embeddings using CLIP (Radford et al., 2021)
and text embeddings using Sentence-BERT (Reimers & Gurevych, 2019) due to their demonstrated
performance in capturing the semantic similarities across various domains. For visual question
answering, we concatenate the image and text embeddings for each sample. To measure training
difficulty, we use AUM for image classification, Variance for text classification, AL-MDN uncertainty
for object detection, and Instruction score for visual question answering. We ablate the different
training difficulty metrics in Sec. 5.4 and observe that there is no significant performance difference
among them. We also perform a grid search on the hyperparameters, such as k in the kNN-graph
construction (see Appendix E for details).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Results for supervised learning on: (a) ImageNet-1K; (b) ANLI; (c) PASCAL VOC; (d) CC
SBU Align. The best one is bold, and the runner-up is underlined.

(a) ImageNet-1K

Dataset ImageNet-1K (100%:73.63)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 71.63 69.26 58.90 47.10 34.04 16.56 5.50
Moderate 71.33 68.72 55.23 40.97 25.75 11.33 4.52
CCS 70.74 69.23 60.04 50.41 36.92 19.92 9.43
D2 Pruning 71.29 70.32 58.91 50.81 37.12 18.97 11.23
GraphCut 68.91 68.72 55.28 44.79 33.54 20.07 11.49
Entropy 70.93 69.21 54.76 38.46 22.78 7.01 1.95
Forgetting 70.57 70.46 60.77 48.73 33.86 15.13 5.66
EL2N 71.68 65.98 31.90 12.57 6.50 3.25 1.90
AUM 69.94 65.36 21.91 10.50 6.42 3.58 2.24
Variance 70.12 66.09 35.15 13.85 7.13 4.72 1.81
k-means 70.33 69.47 59.23 48.12 35.51 18.67 9.65
k-DPP 70.84 69.85 59.92 46.10 34.41 16.33 7.49

SES (Ours) 72.80 71.05 63.24 53.59 41.88 25.59 13.43

(b) ANLI

Dataset ANLI (100%:49.25)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 47.08 45.20 42.13 39.52 38.82 37.50 35.96
Moderate 46.84 45.11 41.95 40.16 38.99 35.83 33.91
CCS 46.56 45.92 41.67 41.63 40.33 37.41 36.82
D2 Pruning 48.56 47.49 42.77 41.43 40.34 37.92 36.29
GraphCut 46.14 44.53 42.12 39.86 38.15 35.44 34.02
Entropy 46.32 45.53 41.45 39.67 38.54 36.69 36.40
Forgetting 48.73 42.29 39.82 38.37 35.95 35.78 35.03
EL2N 48.70 47.85 43.14 39.63 37.52 34.33 34.27
AUM 47.86 47.58 43.57 40.02 34.66 34.16 33.62
Variance 47.97 47.87 40.70 38.75 33.52 33.50 33.17
k-means 46.48 46.52 42.42 40.57 39.89 36.74 36.11
k-DPP 47.74 47.02 43.44 40.98 40.12 37.44 36.66

SES (Ours) 49.00 48.22 45.94 43.63 41.82 39.88 38.16

(c) PASCAL VOC

Dataset PASCAL VOC (100%:76.29)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 74.02 72.10 65.45 57.56 43.47 18.78 9.24
Moderate 73.42 72.03 65.12 54.71 40.20 15.97 5.13
CCS 74.64 72.27 65.72 57.35 39.01 17.26 8.49
D2 Pruning 74.46 72.55 65.59 55.73 44.04 19.16 10.75
GraphCut 67.45 64.15 53.12 38.29 26.81 8.56 8.16
AL-MDN 74.51 70.36 65.26 54.51 30.85 12.33 8.97
k-means 74.22 72.35 65.52 57.01 43.35 16.96 5.16
k-DPP 74.19 71.99 65.39 56.80 43.92 18.20 10.50

SES (Ours) 75.20 73.33 66.52 59.52 45.92 23.39 16.15

(d) CC SBU Align

Dataset CC SBU Align (100%:30.40)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 29.66 29.62 29.21 29.01 28.20 25.51 25.11
Moderate 29.96 29.67 29.53 29.11 27.30 24.85 26.54
CCS 29.93 29.90 29.94 29.91 27.71 25.31 25.59
D2 Pruning 30.09 29.97 29.44 29.30 26.44 25.03 26.29
GraphCut 29.86 29.73 29.53 29.11 27.30 24.85 26.54
Instruction 30.12 29.93 29.82 29.01 26.76 23.72 24.60
k-means 29.78 29.61 29.54 29.20 27.72 25.47 25.60
k-DPP 29.33 29.55 29.48 29.27 28.16 25.93 26.13

SES (Ours) 30.25 30.20 30.21 30.10 28.23 27.19 27.61

5.1.2 RESULTS

To cover a wide range of sampling rates, we select subsets that contain 1%, 2%, 5%, 10%, 20%, 50%,
and 70% of the entire training set. All the results are averaged over 5 random seeds. Table 1 shows
the results on four datasets that cover all the four tasks. The full results are provided in Appendix F.

Baselines that select the most difficult samples, such as AUM and Forgetting, perform well in high-
sampling-rate settings. However, these methods fall behind in low-sampling-rate settings. This is due
to their limited coverage of easy samples, which are crucial for model training when fewer samples are
selected (Sorscher et al., 2022). Methods that prioritize sample coverage, such as CCS and D2 Pruning,
address this issue and perform well in low-sampling-rate settings. However, in high-sampling-rate
settings, they cannot accurately determine the most important samples that preserve global structure.
This results in a lack of representativeness in the selected samples and suboptimal performance.
Methods that prioritize diversity are competitive in low-sampling-rate settings because they ensure the
coverage of the dataset. However, in high-sampling-rate settings, they face challenges in balancing
diversity with sample importance, leading to suboptimal performance. In contrast, our method
integrates both global and local metrics to better identify important samples and employs importance-
biased blue noise sampling to ensure representativeness. Therefore, our method consistently performs
better than baselines across all sampling rates and datasets.

In text classification and visual question answering, we observe that decreasing the sampling rate
does not significantly affect performance. This is because we are fine-tuning pretrained models,
which provide sufficient knowledge for these tasks. By providing high-quality samples, our method
significantly accelerates fine-tuning with negligible performance loss. For example, as shown in
Table 1(d), we achieve a 10x speedup by using only 10% of the dataset to fine-tune MiniGPT-4, with
only a 0.3% drop in accuracy compared to using the entire dataset. Specifically, our method reduces
the fine-tuning time on a single Nvidia Tesla V100 GPU from approximately 30 minutes to 3 minutes,
adding only a negligible selection overhead of 2 seconds.

5.2 ACTIVE LEARNING

Active learning (Settles, 2009) aims to reduce annotation effort by selecting a set of informative and
representative samples from an unlabeled pool. These samples are then labeled to train models. The
key difference between active learning and supervised learning lies in the absence of labels during
sample selection, which makes the selection process more challenging.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Results for active learning. The best one is bold, and the runner-up is underlined.

Dataset ImageNet-1K (100%:73.63)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 71.12 69.43 58.77 47.36 33.41 16.41 5.41
Moderate 71.48 68.68 56.35 42.29 26.77 11.37 4.22
CCS 71.46 69.50 58.85 45.06 28.02 9.03 2.33
GraphCut 71.50 69.16 56.08 40.99 24.30 7.90 2.46
D2 Pruning 71.62 69.02 59.65 45.97 28.08 14.24 4.79
Prototypicality 70.12 66.00 49.20 35.27 24.14 13.88 4.95

SES (Ours) 72.11 70.15 60.22 48.10 34.82 17.97 6.69

5.2.1 EXPERIMENTAL SETUP

Datasets and models. To evaluate the effectiveness of the selection methods in an active learning
task, we perform image classification on ImageNet-1K. To simulate an unlabeled pool, we remove the
labels from all samples during selection. After selection, we use the ground-truth labels to simulate
human annotations. We train ResNet-34 from scratch on these labeled images and report the accuracy
on the ImageNet-1K validation set.

Baselines. We include the baselines from Sec. 5.1 that are applicable to unlabeled datasets: 1) Ran-
dom, 2) CCS, 3) D2 Pruning, and 4) GraphCut. Additionally, we include Prototypicality (Sorscher
et al., 2022) designed for unlabeled datasets. This method selects the most difficult samples based on
the prototypicality score, which is defined as the distance between samples and their corresponding
k-means cluster center. Difficult samples are those far from the center, as they tend to be more
ambiguous than the samples closer to the center.

Implementation. In the active learning scenario, using a pretrained supervised model like CLIP
for feature extraction is not suitable, because the domain of the unlabeled data may not be covered
by its pretraining data. Therefore, we extract the image embeddings with a self-supervised model,
SwAV (Caron et al., 2020). In the baselines and our method, the prototypicality score is utilized to
measure training difficulty.

5.2.2 RESULTS

We select unlabeled samples with rates of 1%, 2%, 5%, 10%, 20%, 50%, and 70% and report the
results averaged over 5 random seeds in Table 2. In low-sampling-rate settings, other baselines
perform worse than random selection due to the absence of labels, indicating their reliance on labeled
data to achieve optimal performance. In contrast, our method consistently performs better than
random selection and other baseline methods. This is because structural entropy compensates for
missing labels by capturing the community structure in the datasets.

5.3 CONTINUAL LEARNING

Continual learning (Kirkpatrick et al., 2017) aims to alleviate the catastrophic forgetting of previously
learned tasks when learning new tasks over time. We focus on the replay-based method (Hou et al.,
2019), which selects a small set of informative and representative samples from previous tasks and
replays them during the training of new tasks.

5.3.1 EXPERIMENTAL SETUP

Datasets and models. We use the datasets commonly used in continual learning, including Permuted
MNIST, Split MNIST, Split CIFAR10, Split CIFAR100, and Split Tiny-ImageNet. Permuted MNIST
splits MNIST (LeCun et al., 1998) into 10 segments, where a fixed permutation of the pixel order
is applied to all images in each segment to simulate different distributions. Thus, it contains 10
classification tasks with samples from different distributions. The other four datasets split the image
classes in MNIST, CIFAR10, CIFAR100, and Tiny-ImageNet (Le & Yang, 2015) into 5, 5, 20, and 20
segments, respectively, and each segment corresponds to a different classification task. In alignment
with prior studies (Borsos et al., 2020; Hao et al., 2024), we use increasingly complex models as
dataset complexity grows: a two-layer MLP for Permuted MNIST, a four-layer CNN for Split MNIST,
ResNet-18 for Split CIFAR10, and ResNet-18 with multi-head output (Zenke et al., 2017) for Split
CIFAR100 and Split Tiny-ImageNet. Following the class-incremental setting (Wang et al., 2024),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 3: Results for continual learning. The best one is bold, and the runner-up is underlined.

Dataset Permuted
MNIST

Split
MNIST

Split
CIFAR10

Split
CIFAR100

Split
Tiny-ImageNet

Memory size 100 200 100 200 100 200 100 200 100 200

D2 Pruning 78.25 79.94 96.79 97.69 64.54 66.08 51.86 54.50 19.08 19.50
GraphCut 76.98 78.61 91.34 94.25 61.02 61.66 53.35 54.66 19.76 20.53
k-center 78.17 79.75 94.39 96.61 61.47 62.74 51.16 53.10 18.87 18.90
Gradient Matching 77.30 79.27 95.39 97.54 61.65 62.65 54.13 56.29 19.19 19.00
FRCL 77.33 79.21 94.48 97.10 61.67 62.93 51.40 54.28 18.86 19.01
iCaRL 78.94 80.65 89.50 97.59 62.33 64.08 54.62 56.11 19.58 19.85
Greedy Coreset 78.71 80.13 96.07 97.76 63.18 62.98 56.17 57.72 19.24 19.98
BCSR 77.74 79.51 94.77 96.98 63.23 64.59 50.21 51.49 18.75 18.74

SES (Ours) 79.92 81.18 96.94 98.28 68.26 69.32 57.60 59.69 20.80 21.20

the models are trained sequentially for each task while maintaining a fixed-size replay memory that
contains an equal number of samples for each previous task. During training, samples from both the
replay memory and the current task are used, with the replay samples weighted by a hyperparameter
that controls their influence on the current task. After completing each task, a subset of samples
is selected from the current task to replace a portion of the replay memory. We report the average
accuracy on all tasks, with the model unaware of a sample’s task during testing.

Baselines. We include baselines from Sec. 5.1 to select samples that update the replay memory.
Additionally, we include six widely used selection methods for continual learning: 1) k-center (Sener
& Savarese, 2018), 2) Gradient Matching (Campbell & Broderick, 2019), 3) FRCL (Titsias et al.,
2020), 4) iCaRL (Rebuffi et al., 2017), 5) Greedy Coreset (Borsos et al., 2020), and 6) BCSR (Hao
et al., 2024). Detailed introduction of these methods is provided in Appendix F.

Implementation. Consistent with the implementation in Sec. 5.1, we extract the image embeddings
with CLIP and measure training difficulty with AUM. For all baselines and our method, we perform
a grid search on the weight of replay samples during training to determine its optimal value (see
Appendix D for details).

5.3.2 RESULTS

We test replay memory sizes of 50, 100, 200, and 400 and report the results averaged over 5 random
seeds. Due to space limitations, Table 3 shows the results for replay memory sizes of 100 and
200, excluding baselines from Sec. 5.1 that are neither the best nor the runner-up in any dataset or
memory size. The full results are provided in Appendix F. Our method consistently achieves better
performance than baselines across all memory sizes and datasets. This is because the combination of
node-level structural entropy and training difficulty captures both the global structure of samples and
the model training dynamics in retaining knowledge.

5.4 ABLATION STUDY

We conduct ablation studies on supervised learning using CIFAR10 to evaluate the impact and
behavior of each module in our method. This section presents results on the effect of modules and k
in the kNN-graph construction. Additional ablation studies are provided in Appendix G.

Effect of modules. We ablate the two key modules in our method, node-level structural entropy (SE)
and importance-biased blue noise sampling (BNS), by replacing them with alternatives. Without SE,
we score samples based solely on training difficulty (TD). Without BNS, we either select samples
with the highest scores (HS) or use the message passing (MP) method from D2 pruning. The

Table 4: Ablation of modules. The best one is bold, and the runner-up is underlined.

Module Sampling rate
Avg.

Scoring Sampling 70% 50% 20% 10% 5% 2% 1%
TD HS 94.85 93.90 70.88 60.68 47.36 38.30 32.41 62.63
TD MP 94.86 94.28 87.88 77.68 65.30 49.69 41.41 73.01
TD BNS 94.88 94.05 88.06 79.55 68.05 53.37 43.07 74.43

SE+TD HS 94.92 94.39 82.03 70.42 57.63 40.64 33.68 67.67
SE+TD MP 95.08 94.67 88.54 80.14 69.34 54.26 44.51 75.22
SE+TD BNS 95.01 94.50 88.31 80.24 69.82 54.78 45.25 75.42

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

hyperparameter controlling message weights in MP is determined through grid search as in the
original paper (Maharana et al., 2024). Table 4 shows the results. Using TD and HS yields the lowest
performance. Incorporating either SE, BNS, or MP largely improves performance, demonstrating their
individual effectiveness. Combining SE with either BNS or MP further improves the performance,
indicating that SE complements both methods in selecting informative and representative samples.
Notably, BNS achieves comparable performance to MP without the need for the time-consuming grid
search on the additional hyperparameter, demonstrating its effectiveness.

Figure 3: Ablation of k in the
kNN-graph construction.

Effect of k in the kNN-graph construction. We test the effect of
k in the kNN-graph construction. Fig. 3 shows the results when
selecting 10% of the samples from CIFAR10. As k increases, the
performance first increases and then remains relatively stable within
a narrow range. This indicates that the first few nearest neighbors
effectively capture the global structure of the samples, which aligns
with prior research (Jaffe et al., 2020). Based on the grid search
results across datasets, we empirically determine log2 n to be an
appropriate value for k, where n is the number of samples.

5.5 QUALITATIVE ANALYSIS

We visualize the selection results of different methods when selecting 2% of the samples from
CIFAR10 by projecting them onto a two-dimensional plane using t-SNE (van der Maaten & Hinton,
2008). Fig. 4 shows the results of AUM, D2 Pruning, and our method. Each point is a selected
sample, and the colored contours indicate the high-density regions for each class. The full results are
provided in Appendix H. Methods that select the most difficult samples, such as AUM, oversample
near several class boundaries and undersample in several classes that are easier to classify (Fig. 4(a)).
Methods that prioritize sample coverage, such as D2 Pruning, achieve a better sample coverage but
still miss critical samples near class boundaries (Fig. 4(b)). This gap indicates that these methods
may not effectively preserve the global structure of the samples. Our method well covers the data
distribution, providing a set of informative and representative samples for model training (Fig. 4(c)).

Oversample near
these boundaries

Well cover the
data distribution�

Undersample in
these classes

Undersample near
these boundaries

(a) (b) (c)

Figure 4: Visualizations of results when selecting 2% of the samples from CIFAR10 using: (a) AUM;
(b) D2 Pruning; (c) our structural-entropy-based sample selection method.

6 CONCLUSION

In this paper, we present a structural-entropy-based sample selection method for efficient and effective
learning. The key idea behind our method is to decompose graph-level structural entropy to a node-
level global metric using the Shapley value. This global metric is combined with a local metric,
training difficulty, for selecting informative and representative samples. The effectiveness of our
method is validated by comprehensive experiments in three learning scenarios. Although our method
has proven effective, future work on the following aspects is still promising. First, automating the
hyperparameter selection based on data characteristics can reduce the computational costs of the grid
search. Second, improving the support for multimodal data could strengthen its performance across
a wider range of tasks, such as infographics VQA (Mathew et al., 2022) and building foundation
models (Yang et al., 2024). Third, applying techniques such as hyper-class representation (Zhang
et al., 2022) to enhance the image and text embeddings can improve the quality of selected samples.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In
Proceedings of the International Conference on Machine Learning, pp. 17–24, 2006.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. In Proceedings of Advances in Neural Information Processing Systems,
pp. 14879–14890, 2020.

Trevor Campbell and Tamara Broderick. Automated scalable bayesian inference via hilbert coresets.
Journal of Machine Learning Research, 20(15):1–38, 2019.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In Proceedings of
Advances in Neural Information Processing Systems, pp. 9912–9924, 2020.

Wei Chen and Shang-Hua Teng. Interplay between social influence and network centrality: A
comparative study on shapley centrality and single-node-influence centrality. In Proceedings of the
international conference on world wide web, pp. 967–976, 2017.

Jiwoong Choi, Ismail Elezi, Hyuk-Jae Lee, Clement Farabet, and Jose M. Alvarez. Active learning for
deep object detection via probabilistic modeling. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 10264–10273, 2021.

Cody A. Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter D. Bailis,
Percy Liang, Jure Leskovec, and Matei A. Zaharia. Selection via proxy: Efficient data selection for
deep learning. In Proceedings of the International Conference on Learning Representations, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 248–255, 2009.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):
303–338, 2010.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, pp. 3558–3565, 2019.

Bernd Fritzke. A growing neural gas network learns topologies. In Proceedings of Advances in
Neural Information Processing Systems, pp. 625–632, 1995.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the
next generation of multimodal datasets. Proceedings of Advances in Neural Information Processing
Systems, 36, 2024.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset
selection in deep learning. In Proceedings of International Conference on Database and Expert
Systems Applications, pp. 181–195, 2022.

Jie Hao, Kaiyi Ji, and Mingrui Liu. Bilevel coreset selection in continual learning: A new formulation
and algorithm. In Proceedings of Advances in Neural Information Processing Systems, pp. 51026–
51049, 2024.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2015.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 831–839, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying informative and
representative examples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(10):
1936–1949, 2014.

Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6693–6702, 2019.

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
information measures with applications in machine learning. In Proceedings of the International
Conference on Algorithmic Learning Theory, pp. 722–754, 2021.

Ariel Jaffe, Yuval Kluger, George C. Linderman, Gal Mishne, and Stefan Steinerberger. Randomized
near-neighbor graphs, giant components and applications in data science. Journal of applied
probability, 57 2:458–476, 2020.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Abir De, and Rishabh K.
Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model training.
In Proceedings of the International Conference on Machine Learning, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report TR-2009,
University of Toronto, 2009.

Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes. In Proceedings of
the International Conference on Machine Learning, pp. 1193–1200, 2011.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 631–636, 2006.

Angsheng Li and Yicheng Pan. Structural information and dynamical complexity of networks. IEEE
Transactions on Information Theory, 62(6):3290–3339, 2016.

Xin Li and Yuhong Guo. Adaptive active learning for image classification. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 859–866, 2013.

Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, and Shixia Liu. Analyzing the training processes of
deep generative models. IEEE transactions on visualization and computer graphics, 24(1):77–87,
2018.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In Proceedings of European Conference on
Computer Vision, pp. 21–37, 2016.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. CoRR, abs/1907.11692, 2019.

Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang,
and Song-Chun Zhu. Iconqa: A new benchmark for abstract diagram understanding and visual
language reasoning. In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, 2021.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pp. 142–150, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Adyasha Maharana, Prateek Yadav, and Mohit Bansal. D2 pruning: Message passing for balancing
diversity and difficulty in data pruning. In Proceedings of the International Conference on Learning
Representations, 2024.

Minesh Mathew, Dimosthenis Karatzas, and C.V. Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 2200–2209, January 2021.

Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
Infographicvqa. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 1697–1706, 2022.

Baharan Mirzasoleiman, Jeff A. Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In Proceedings of the International conference on machine learning,
2019.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adversarial
nli: A new benchmark for natural language understanding. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics, pp. 4885–4901, 2020.

Feng Pan, Wei Wang, Anthony KH Tung, and Jiong Yang. Finding representative set from massive
data. In IEEE International Conference on Data Mining, 2005.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. In Proceedings of Advances in Neural Information Processing
Systems, pp. 20596–20607, 2021.

Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled data
using the area under the margin ranking. In Proceedings of Advances in Neural Information
Processing Systems, pp. 17044–17056, 2020.

Ziheng Qin, K. Wang, Zangwei Zheng, Jianyang Gu, Xiang Peng, Daquan Zhou, and Yang You.
Infobatch: Lossless training speed up by unbiased dynamic data pruning. In Proceedings of the
International Conference on Learning Representations, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Proceedings of the
International Conference on Machine Learning, pp. 8748–8763, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, Christoph H Lampert, et al. Incre-
mental classifier and representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5533–5542, 2017.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp.
3980–3990, 2019.

Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Scienceqa:
a novel resource for question answering on scholarly articles. International Journal on Digital
Libraries, 23(3):289–301, 2022.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
A-okvqa: A benchmark for visual question answering using world knowledge. In Proceedings of
European Conference on Computer Vision, pp. 146–162, 2022.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In Proceedings of the International Conference on Learning Representations, 2018.

Burr Settles. Active learning literature survey. Technical Report 1648, University of Wisconsin–
Madison, 2009.

Lloyd S. Shapley. Notes on the n-person game—ii: The value of an n-person game. Technical Report
RM-670, RAND Corporation, 1951.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of the International Conference on Learning Representations, 2015.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. In Proceedings of Advances in Neural
Information Processing Systems, pp. 19523–19536, 2022.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A
Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training dy-
namics. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
pp. 9275–9293, 2020.

Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan Pascanu, and Yee Whye
Teh. Functional regularisation for continual learning with gaussian processes. In International
Conference on Learning Representations, 2020.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
In Proceedings of the International Conference on Learning Representations, 2019.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(8):5362–5383, 2024.

Lai Wei, Zihao Jiang, Weiran Huang, and Lichao Sun. InstructionGPT-4: A 200-instruction paradigm
for fine-tuning miniGPT-4. CoRR, abs/2308.12067, 2023.

Eyal Winter. Chapter 53 The shapley value, pp. 2025–2054. Elsevier, 2002.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A univer-
sal method of data selection for real-world data-efficient deep learning. In Proceedings of the
International Conference on Learning Representations, 2023.

Shouxing Xiang, Xi Ye, Jiazhi Xia, Jing Wu, Yang Chen, and Shixia Liu. Interactive correction of
mislabeled training data. In Proceedings of IEEE Conference on Visual Analytics Science and
Technology, pp. 57–68, 2019.

Zhao Xu, Kai Yu, Volker Tresp, Xiaowei Xu, and Jizhi Wang. Representative sampling for text
classification using support vector machines. In Proceedings of Advances in Information Retrieval,
pp. 393–407, 2003.

Weikai Yang, Mengchen Liu, Zheng Wang, and Shixia Liu. Foundation models meet visualizations:
Challenges and opportunities. Computational Visual Media, 10(3):399–424, 2024.

Jun Yuan, Shouxing Xiang, Jiazhi Xia, Lingyun Yu, and Shixia Liu. Evaluation of sampling methods
for scatterplots. IEEE Transactions on Visualization and Computer Graphics, 27(2):1720–1730,
2021.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Proceedings of the International Conference on Machine Learning, pp. 3987–3995, 2017.

Jianpeng Zhang, Hongchang Chen, Dingjiu Yu, Yulong Pei, and Yingjun Deng. Cluster-preserving
sampling algorithm for large-scale graphs. Science China Information Sciences, 66(1):112103,
2023.

Shichao Zhang, Jiaye Li, Wenzhen Zhang, and Yongsong Qin. Hyper-class representation of data.
Neurocomputing, 503:200–218, 2022.

Y. Zhao, H. Jiang, Q. Chen, Y. Qin, H. Xie, Y. Wu, S. Liu, Z. Zhou, J. Xia, and F. Zhou. Preserving
minority structures in graph sampling. IEEE Transactions on Visualization and Computer Graphics,
27(2):1698–1708, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coreset selection for high
pruning rates. In Proceedings of the International Conference on Learning Representations, 2022.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
classification, and embedding. In Proceedings of Advances in Neural Information Processing
Systems, volume 19, 2006.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. In Proceedings of the
International Conference on Learning Representations, 2024.

He Zhu, Chong Zhang, Junjie Huang, Junran Wu, and Ke Xu. Hitin: Hierarchy-aware tree isomor-
phism network for hierarchical text classification. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pp. 7809–7821, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A COMPARISON OF ENCODING TREE CONSTRUCTION METHODS

The construction of the encoding tree is an important step in our method. To the best of our knowledge,
there are two methods for constructing the encoding tree: the one proposed by Li & Pan (2016) and
the one proposed by Zhu et al. (2023). Both methods adopt the variations of the Huffman tree to
construct the encoding tree. The key difference is that Zhu et al. (2023) further compresses the tree
to a certain height to improve efficiency in subsequent processing. We assessed the two methods
by calculating the Pearson correlation of the resulting node-level structural entropy. As shown in
Table 5, the correlations on CIFAR10, CIFAR100, and ImageNet-1K exceed 0.99. Therefore, the
choice of the construction method has a negligible effect on the sample selection results. In this paper,
we employ the more recent method proposed by Zhu et al. (2023).

Table 5: Pearson correlation of the node-level structural entropy obtained from the two methods on
CIFAR10, CIFAR100, and ImageNet-1K.

CIAFR10 CIFAR100 ImageNet-1K

Correlation 0.996 0.999 0.992

B PROOF OF PROPOSITION 1

We first present two lemmas essential for the proof of Proposition 1.

Lemma 1. Let G = (V,E,W) be an undirected, weighted graph and T be its encoding tree. Then
the structural entropy H(G, T) can be written as:

H(G, T) =
1

vol(V)

(
2
∑

⟨u,v⟩∈E

wu,v log vol(u ∨ v)−
∑
u∈V

d(u) log d(u)

)
,

where wu,v is the weight of edge ⟨u, v⟩, u ∨ v is the least common ancestor of node u and v in T ,
and d(u) is the weighted degree of node u.

Proof of Lemma 1. According to Eq. (1), we can derive that:

H(G, T) = −
∑
α∈T

g(α)

vol(V)
log

vol(α)

vol(α−)

= − 1

vol(V)

∑
α∈T

g(α) log
vol(α)

vol(α−)

=
1

vol(V)

∑
α∈T

(g(α) log vol(α−)− g(α) log vol(α)).

(7)

For a node α with k children, the contribution of each child βi to the summation is g(βi) log vol(α)−
g(βi) log vol(βi). The term g(βi) log vol(α) can be combined into −g(α) log vol(α) due to the
shared log vol(α) factor. By combining the terms with shared log vol(·) factors, Eq. (7) can be
rewritten as:

H(G, T) =
1

vol(V)

(∑
α is non-leaf

((∑
β∈children(α)

g(β)
)
−g(α)

)
log vol(α)−

∑
α is leaf

g(α) log vol(α))

)
.

(8)

Note that
∑

β∈children(α) g(β)−g(α) represents the difference between the total weight of outer edges
of α’s children and the total weight of outer edges of α. This difference is precisely twice the total
weights of edges between the communities represented by α’s children. Furthermore, each edge

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

⟨u, v⟩ in the graph contributes only to the node α = u ∨ v. Therefore, we can transform the first term
into a sum over edges in the graph, yielding:

H(G, T) =
1

vol(V)

(
2
∑

⟨u,v⟩∈E

wu,v log vol(u ∨ v)−
∑

α is leaf

g(α) log vol(α)

)
. (9)

The set of leaf nodes in the encoding tree corresponds to the set of nodes in the graph. Additionally,
for a leaf node α and its correpsonding graph node u, we have g(α) = vol(α) = d(u). We can
conclude that:

H(G, T) =
1

vol(V)

(
2
∑

⟨u,v⟩∈E

wu,v log vol(u ∨ v)−
∑
u∈V

d(u) log d(u)

)
, (10)

which proves the lemma.

Lemma 2 (Winter, 2002). Eq. (2) is equivalent to:

ϕ(u) =
1

|V |!
∑
π∈Π

(
H(G[Vπ,u ∪ {u}], T)−H(G[Vπ,u], T)

)
, (11)

where Π is the set of all permutations of nodes in V , and Vπ,u denotes the set of nodes preceding u
in permutation π.

Based on the two lemmas, we develop a proof of Proposition 1.

Proof of Proposition 1. For brevity, we denote the subgraph G[Vπ,u∪{u}] by G+
π,u = (V +

π,u, E
+
π,u,W)

and G[Vπ,u] by Gπ,u = (Vπ,u, Eπ,u,W). Lemma 1 gives:

H(G+
π,u, T) =

1

vol(V)
(2

∑
⟨x,y⟩∈E+

π,u

wx,y log vol(x ∨ y)−
∑

x∈V +
π,u

d(x) log d(x)) (12)

and

H(Gπ,u, T) =
1

vol(V)
(2

∑
⟨x,y⟩∈Eπ,u

wx,y log vol(x ∨ y)−
∑

x∈Vπ,u

d(x) log d(x)). (13)

Then

H(G+
π,u, T)−H(Gπ,u, T)

=
1

vol(V)

(
2(

∑
⟨x,y⟩∈E+

π,u

wx,y log vol(x ∨ y)−
∑

⟨x,y⟩∈Eπ,u

wx,y log vol(x ∨ y))

− (
∑

x∈V +
π,u

d(x) log(x)−
∑

x∈Vπ,u

d(x) log d(x))

)
.

(14)

Note that V +
π,u = Vπ,u ∪ {u} and E+

π,u = Eπ,u ∪ {⟨u, v⟩ : v ∈ N (u) ∩ Vπ,u}, where N (u) is the
set of neighbors of u in G. Therefore,

H(G+
π,u, T)−H(Gπ,u, T) =

1

vol(V)

(
2

∑
v∈N (u)∩Vπ,u

wu,v log vol(u∨ v)−d(u) log d(u)

)
. (15)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

We can rewrite
∑

v∈N (u)∩Vπ,u
log vol(u ∨ v) as

∑
v∈N (u) I[v ∈ Vπ,u] log vol(u ∨ v), where I is the

indicator function. Then, the Shapley value in Eq. (11) can be rewritten as:

ϕ(u) =
1

|V |!
∑
π∈Π

(
H(G[Vπ,u ∪ {u}], T)−H(G[Vπ,u], T)

)
=

1

|V |!
∑
π∈Π

(
1

vol(V)

(
2
∑

v∈N (u)

I[v ∈ Vπ,u]wu,v log vol(u ∨ v)− d(u) log d(u)

))

=
2

vol(V)|V |!
∑
π∈Π

∑
v∈N (u)

I[v ∈ Vπ,u]wu,v log vol(u ∨ v)− 1

vol(V)
d(u) log d(u)

=
2

vol(V)|V |!
∑

v∈N (u)

wu,v log vol(u ∨ v)
∑
π∈Π

I[v ∈ Vπ,u]−
1

vol(V)
d(u) log d(u).

(16)

Note that
∑

π∈Π I[v ∈ Vπ,u] is |V |!
2 since there are |V |!

2 permutations where v precedes u. Thus, we
have:

ϕ(u) =
1

vol(V)

∑
v∈N (u)

wu,v log vol(u ∨ v)− 1

vol(V)
d(u) log d(u)

=
1

vol(V)

(∑
v∈N (u)

wu,v log vol(αu∨v)− d(u) log d(u)

)

=
1

vol(V)

(∑
⟨u,v⟩∈E

wu,v log vol(αu∨v)− d(u) log d(u)

)
,

(17)

which proves the proposition.

C THEORETICAL ANALYSIS OF NODE-LEVEL STRUCTURAL ENTROPY

C.1 NODE-LEVEL STRUCTURAL ENTROPY AND SAMPLE COVERAGE

In this section, we prove that node-level structural entropy serves as a lower bound for the sample
coverage. Following previous work (Zheng et al., 2022), we assume that the dataset S = {xi, yi}
contains n i.i.d. samples drawn from an underlying distribution Pµ with probability measure µ. We
discuss a certain sample u’s ability to cover the entire distribution, i.e., how well the sample can cover
the entire distribution. The sample coverage of a sample u can be quantified by the coverage of the
entire distribution by a ball B(u, r) centered at u with radius r (Zheng et al., 2022):

P (u, r) =

∫
B(u,r)

dµ(x).

When r is fixed, the larger P (u, r) is, the better sample covers the distribution. Directly calculating
P (u, r) is difficult because we do not know the underlying distribution Pµ. We next prove that
node-level structural entropy serves as a lower bound for the sample coverage.

We assume that the edge weights are in the range [L,R], where R > L > 0. Consider a node
u connected to k other nodes {v1, v2, . . . , vk} with edge weights {w1, w2, . . . , wk}. In the BFS
tree rooted at u, let the total vol of the subtrees of v1, v2 . . . , vk be vol1, vol2, . . . , volk. From the
perspective of u, the calculation of Se(u) is as follows: vol(u) is initially set to 0; For each node vi
connected to u, add voli of vi to vol(u), and then add wivol(u) to Se(u). If the nodes are connected
in the oreder {π1, π2, . . . , πk}, the results is:

Se(u) =

k∑
i=1

wπi
log(volπ1

+ volπ2
+ ...volπk

).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

In practice, the nodes are connected in a specific order to minimize Se(u). Consequently, Se(u)
is less than or equal to values obtained in any other order. Consider the order in which nodes are
connected from the smallest wi to the largest wi. We derive that:

Se(u) ≤
k∑

i=1

wπi
log(volπ1

+ volπ2
+ ...volπk

)

≤

(
k∑

i=1

wi

)
log

k∑
i=1

(
wπk∑k
i=1 wi

(volπ1
+ ...+ volπk

)

)
(Jensen’s Inequality)

=

(
k∑

i=1

wi

)
log

k∑
i=1

(volπk
(wπ1

+ wπ2
+ ...wπk

)/

k∑
i=1

wi)

≤ kR log

k∑
i=1

(volπk
(wπ1 + wπ2 + ...wπk

)/

k∑
i=1

wi)

≤ kR log

k∑
i=1

(kvolπk
wπk

/

k∑
i=1

wi)

(18)

Because volπk
∈ [kLnπk

, kRnπk
], where nπk

is the number of nodes in the subtree of vπk
. So we

have:

Se(u) ≤ kR log(k2R

k∑
i=1

nπiwπi/

k∑
i=1

wi)

Assume that all nodes in the subtree of vi are in B(vi, r
∗). Then we have:

E[nik] = n

∫
B(vi,r∗)

dµ = nP (vi, r
∗)

which can then lead to:

E[Se(u)] ≤ E[kR log
(
k2R(

k∑
i=1

nπiwπi/

k∑
i=1

wi)
)
]

≤ kR logE
[
k2R

(
k∑

i=1

nπi
wπi

/

k∑
i=1

wi

)]
(Jensen’s Inequality)

= kR logE
[
nk2R

(∑
P (vπi , r

∗)wπi/

k∑
i=1

wi

)]
(19)

Since
k∑

i=1

P (vπi
, r∗)wπi

/

k∑
i=1

wi = P̂ (u, r)

is actually the Nadaraya–Watson estimator of P (u, r∗), we have:

E[Se(u)] ≤ KR logE
[
nK2RP̂ (u, r)

]
Thus, the following theorem is obtained:

Theorem 1. For r > r∗, Se(u) ensures an lower-bound of the Nadaraya–Watson estimator P̂ (u, r∗)
of P (u, r∗) with inequality:

1

nK2R
exp

(
1

KR
E[Se(u)]

)
≤ E[P̂ (u, r)] ≈ E[P (u, r)]

where r∗ is a constant related to the distribution Pµ and the location of u in the metric space.

Theorem 1 shows the correlation between Se(u) and P (u, r). For a certain sample u, a larger Se(u)
guarantees a stronger sample coverage.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

C.2 SAMPLE COVERAGE AND MODEL PERFORMANCE

Previous work (Zheng et al., 2022) has demonstrated that a better distribution coverage brings a lower
empirical loss, as depicted by the following theorem:

Theorem 2. Zheng et al. (2022) Given n i.i.d. samples drawn from Pµ as S = {xi, yi}i∈[n] where
xi ∈ X = Rd is the feature representation of example i and yi ∈ [C] is the class label for example
i, a coreset S′ which is a p-partial r-cover for Pµ on the feature space X , and an ϵ > 1− p, if the
loss function l(·, y, w) is λl -Lipschitz continuous for all y, w and bounded by L, the class-specific
regression function ηc(x) = p(y = c|x) is λη-Lipschitz for all c, and l(x, y;hS′) = 0, ∀(x, y) ∈ S′,
then with probability at least 1− ϵ:∣∣∣∣∣∣ 1n

∑
x,y∈S

l(x, y;hS′)

∣∣∣∣∣∣ ≤ r(λl + ληLC) + L

√
log p

p+ϵ−1

2n
(20)

Theorem 2 suggests that better sample coverage results in a tighter bound on the empirical loss for
the entire set. Given the relationship between Se(u) and sample coverage, selecting samples with
high node-level structural entropy effectively enhances model performance.

D DATASET STATISTICS AND DETAILED EXPERIMENTAL SETTING

D.1 SUPERVISED LEARNING

Image classification. The CIFAR10 and CIFAR100 datasets each consist of 50, 000 images of 32×32
pixels for the training set, with an additional 10, 000 images for testing. CIFAR10 includes 10 distinct
classes, while CIFAR100 includes 100 classes. The ImageNet-1K dataset includes 1, 281, 167 images
across 1, 000 real-world classes for training, along with 50, 000 images for validation. Following
common practice (Maharana et al., 2024), we trained ResNet-18 for 200 epochs on CIFAR10 and
CIFAR100, and ResNet-34 for 60 epochs on ImageNet-1K. The batch size is set to 64. We use an
SGD optimizer with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 0.0002.
We use a cosine annealing learning rate scheduler with a minimum learning rate of 0.0001.

Text classification. The ANLI dataset is a natural language inference dataset created through
multiple rounds of iterative human-and-model-in-the-loop adversarial procedures. We utilize the data
from the final round, which consists of 100, 459 training samples and 1, 200 test samples. Following
previous work (Maharana et al., 2024), we fine-tune the RoBERTa model for 10, 000 iterations with a
batch size of 16. We use the SGD optimizer with an initial learning rate of 0.1, momentum of 0.9, and
weight decay of 0.0005. We use a cosine annealing scheduler with a minimum learning rate of 0.0001.

The IMDB Review dataset contains 25, 000 movie reviews each in the training and test splits, with
each review labeled by sentiment (positive/negative). Following previous work (Maharana et al.,
2024), we randomly select 2, 000 samples from the original training set due to the excessive samples
in it, and use the original test set for evaluation. We fine-tune the RoBERTa model for 500 iterations
with a batch size of 16. The optimizer and scheduler settings are the same as that for the ANLI dataset.

Object detection. We train the model using the combined trainval sets of PASCAL VOC 2007 and
2012, which include 16, 551 images and 40, 058 objects across 20 categories. The model is evaluated
on the PASCAL VOC 2007 test set, which comprises 4, 952 images and 12, 032 objects. We train
SSD (Liu et al., 2016) with VGG-16 (Simonyan & Zisserman, 2015) backbone from scratch for 80
epochs with a batch size of 64. We use an SGD optimizer with a learning rate of 0.001, momentum
of 0.9, and weight decay of 0.0005. The learning rate follows a linear warm-up strategy for the first 8
epochs and is then reduced by a factor of 10 at epochs 50 and 70.

Visual question answering. The CC SBU Align dataset contains 3, 439 high-quality, aligned image-
text pairs for the fine-tuning stage (stage 2) of Mini-GPT4 (Zhu et al., 2024). The visual question
answering datasets used for validation test the model’s abilities in various aspects, including logical
reasoning, visual reasoning, knowledge retention, and abstract understanding. We use the same
setting as the second-stage fine-tuning for Mini-GPT4 (Zhu et al., 2024). We fine-tune MiniGPT-4

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

for 400 iterations with a batch size of 12. We use an SGD optimizer with an initial learning rate of
0.00003, momentum of 0.9, and weight decay of 0.05. We use a cosine annealing scheduler with a
minimum learning rate of 0.00001.

D.2 ACTIVE LEARNING

We use the same setting as training on ImageNet-1K in Appendix D.1.

D.3 CONTINUAL LEARNING

For continual learning, we follow Borsos et al. (2020) for experiments on Permuted MNIST, Split
MNIST, and Split CIFAR10, and follow Hao et al. (2024) for experiments on Split CIFAR100 and
Split Tiny-ImageNet. We use increasingly complex models as dataset complexity grows: a two-layer
MLP for Permuted MNIST, a four-layer CNN for Split MNIST, ResNet-18 for Split CIFAR10, and
ResNet-18 with multi-head output (Zenke et al., 2017) for Split CIFAR100 and Split Tiny-ImageNet.
For each task, we first randomly select M samples from all available samples. Then, we train the
model on these samples for E epochs with a batch size of B. During each training iteration, all
replay samples are used with a weight of λ. The initial learning rate is set to lrt for the first task and
decays by a factor of η for each task. All hyperparameters, except λ, are fixed for all baselines and
our method. The value of λ is determined through a grid search over {0.01, 0.1, 1, 10, 100, 1000}.
Table 6 shows the fixed hyperparameters for different datasets. Table 7 shows the optimal λ for all
baselines and our method.

Table 6: Training hyperparameters for continual learning.

Hyperparameters Permuted
MNIST

Split
MNIST

Split
CIFAR10

Split
CIFAR100

Split
Tiny-ImageNet

M 1000 1000 1000 2500 5000
Optimizer Adam Adam Adam SGD SGD

E 400 400 400 1 1
B 256 256 256 10 20
lrt 0.0005 0.0005 0.0005 0.15 0.20
η 1 1 1 0.875 0.875

Table 7: Optimal replay sample weight λ in continual learning.

Dataset Permuted
MNIST

Split
MNIST

Split
CIFAR10

Split
CIFAR100

Split
Tiny-ImageNet

Memory size 100 200 100 200 100 200 100 200 100 200

Random 0.01 0.01 100 100 0.01 0.01 0.01 0.01 0.01 0.01
Moderate 0.01 0.01 100 100 0.1 0.1 0.01 0.01 0.01 0.01
CCS 0.01 0.01 1000 100 0.01 0.01 0.01 0.01 0.01 0.01
D2 Pruning 0.01 0.01 10 100 0.1 0.01 0.01 0.01 0.01 0.01
GraphCut 0.01 0.01 100 1 0.01 0.1 0.01 0.1 1 0.1
Entropy 0.01 0.01 1000 100 0.01 0.01 0.01 0.01 0.01 0.01
Forgetting 0.01 0.01 100 10 0.1 0.1 0.01 0.01 0.01 0.1
EL2N 0.01 0.01 100 100 0.01 0.1 0.01 0.01 0.01 0.01
AUM 0.01 0.01 100 100 10 1 0.01 0.01 0.01 0.01
Variance 0.01 0.01 1000 1000 0.01 0.01 0.01 0.01 0.01 0.01
iCaRL 0.01 0.1 100 100 1 1 0.01 0.01 0.1 0.1
Greedy Coreset 0.01 0.01 100 10 0.01 0.01 0.01 0.1 0.01 0.01
BCSR 0.01 0.01 100 10 0.01 0.01 0.01 0.01 0.01 0.01
SES (Ours) 0.01 0.1 100 100 1 1 0.01 0.1 0.01 0.1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

E SELECTION HYPERPARAMETER SETTINGS

E.1 SELECTION HYPERPARAMETERS

We conducted a grid search to optimize three hyperparameters: the number of neighbors k for
constructing the kNN graph, the cutoff ratio β to remove the most difficult samples, and the imbalance
factor γ to maintain the balance between different classes.

Selecting an appropriate value of k is crucial as it can significantly affect the quality of the sample
graph and thus affect the selection result. If k is too small, the graph becomes too sparse, making
the selection sensitive to noise and outliers. If k is too large, the graph will be too dense and contain
many edges connecting irrelevant neighbors, making it hard to identify the most important samples in
the dataset. Thus, the choice of k must strike a balance to preserve meaningful structures without
introducing noise or irrelevant information.

Inspired by Zheng et al. (2022), we also search the hard cutoff ratio β that removes β of the most
difficult samples because they are usually outliers and contain noisy samples in the dataset. In
addition, we also allow negative β during the grid search, which indicates that we will remove |β| of
the easiest samples to focus on difficult samples, which has been adopted by Sorscher et al. (2022).

Maintaining a balanced distribution of samples from different classes is also beneficial for model
training. A common strategy is to enforce strict class balance (Guo et al., 2022) by selecting an
equal number of samples from each class. However, this overlooks the difference between classes,
where some may be more easily confused with others and require more samples to distinguish. To
address this, we introduce an imbalance factor γ > 1, which allows for the selection of up to nγ̇
samples per class, rather than a strict count of n. This adjustment provides flexibility in addressing
class-specific complexities. In the active learning scenario, we treat the k-means clusters as the
classes for balancing.

E.2 PRELIMINARY EXPERIMENTS ON K

As k decides the sample graph and the range of possible k is large, we conduct preliminary experi-
ments on CIFAR10, CIFAR100, and ImageNet-1k to determine a candidate range where the structure
of the sample graph is effectively preserved by the kNN-graph.

Spectral clustering is an effective method for revealing the underlying structural features of a graph.
Therefore, we use the spectral clustering results to evaluate the choice of k in the preliminary
experiments. First, we perform spectral clustering on the kNN-graph. Based on the spectral clustering
results, we measure the structure preservation of the kNN-graph using both external and internal
metrics. The external metrics measure the consistency of the clustering results with the ground truth
labels of samples. We use the accuracy, the Rand Index, and the mutual information as the external
metrics. The internal metrics assess the quality of clustering by evaluating the compactness and
separation of clusters. We use the Silhouette Score and the Davis-Bouldin Index as the internal
metrics.

Directly applying spectral clustering to large-scale datasets is unsuitable due to its high complexity
of O(n3), where n is the number of samples in the dataset. To address this, we use growing neural
gas (Fritzke, 1995) to generate a reduced graph with fewer nodes. The key feature of this method
is the preservation of the topology of the kNN-graph. Specifically, this method generates neurons
representing the sample distribution of the kNN-graph. Then, it integrates the edges in the kNN-graph
into the neuron connections, resulting in a sparse, topology-preserving graph. We apply spectral
clustering to this reduced graph to accelerate the evaluation of the choice of k.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

(a) CIFAR10 (b) CIFAR100 (c) ImageNet-1K

Figure 5: Results for the preliminary experiments on: (a) CIFAR10; (b) CIFAR100; (c) ImageNet-1K.
An increase in the accuracy, the Rand Index, the mutual information, and the Silhouette Score, as
well as a decrease in the Davis-Bouldin Index, indicates better structure preservation.

In the preliminary experiments, we test k in {1, 2, . . . , 100} on CIFAR10, CIFAR100, and ImageNet-
1K. Fig. 5 presents the results. As the value of k increases, the performance metrics initially
improve, then stabilize, and may eventually decline. This suggests that the first few nearest neighbors
effectively capture the structure of the original graph, while including too many neighbors may lead
to underfitting due to edges connecting vastly different nodes. We discover that the metrics begin to
stabilize around log2 n, where n is the number of samples in the dataset. Thus, we focus our grid
search for k values near log2 n.

E.3 GRID SEARCH RESULTS

For all experiments, we search β in {−1,−0.95, . . . ,−0.05, 0, 0.05, . . . , 0.95, 1} and γ in
{1, 1.05, . . . , 1.5}. For CIFAR10 and CIFAR100, we search k in {10, 11, . . . , 30}. For ImageNet-1K,
we search it only in {20, 25} due to computational costs. To save computational costs, we set k to
around log2 n for experiments on other datasets. With this choice, the kNN graph has O(n log2 n)
edges, resulting in a Shapley value calculation time complexity of O(n log2 n). This complexity is
comparable to sorting and is lower than or equal to that of typical sample selection methods, which is
at least O(n log2 n) when sorting is required and O(n2) when an enumeration of all pairs of samples
is required. For extremely large datasets (e.g. DataComp (Gadre et al., 2024) with billions of samples)
where this complexity becomes impractical, a potential solution is to split the dataset into bins
before selection. Determining an optimal splitting method remains an open question and a promising
direction for future research. We evaluate every possible combination of the hyperparameters. Table 8
presents the optimal hyperparameters for supervised learning and active learning. Table 9 presents
the optimal hyperparameters for continual learning.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 8: Optimal hyperparameters of our method in supervised learning and active learning. The
three numbers in each tuple refer to the number of neighbors k, the cutoff ratio β, and the imbalance
factor γ, respectively.

Sampling rate CIFAR10 CIFAR100 ImageNet-1K ANLI IMDB Review PASCAL VOC VQA ImageNet-1K
(active learning)

1% (17,0.75,1.05) (14,0.85,1.2) (20,0.9,1.3) (15,0.35,1.05) (10,0.7,1.2) (15,0.7,/) (10,0.15,/) (25,0.25,1.05)
2% (14,0.7,1.1) (10,0.85,1.15) (25,0.75,1.2) (15,0.3,1.05) (10,0.85,1.1) (15,0.7,/) (10,0.1,/) (25,0.2,1.45)
5% (19,0.6,1.05) (21,0.8,1.2) (25,0.65,1.2) (15,0.25,1.05) (10,0.5,1.0) (15,0.5,/) (10,0.1,/) (25,0.4,1.35)

10% (11,0.35,1.1) (19,0.6,1.1) (25,0.4,1.15) (15,0.3,1.15) (10,0.4,1.05) (15,0.35,/) (10,0.15,/) (25,0.45,1.05)
20% (13,0.2,1.0) (15,0.45,1.15) (25,0.3,1.1) (15,0.0,1.05) (10,0.3,1.1) (15,0.1,/) (10,0.15,/) (25,0.35,1.15)
50% (15,-0.15,1.0) (15,0.15,1.0) (20,0.05,1.05) (15,0.0,1.1) (10,0.05,1.05) (15,0.15,/) (10,0.1,/) (25,0.0,1.1)
70% (24,0.0,1.0) (18,0.1,1.0) (20,0.0,1.0) (15,0.0,1.2) (10,0.05,1.0) (15,0.05,/) (10,0.0,/) (25,0.0,1.15)

Table 9: Optimal hyperparameters of our method in continual learning. The three numbers in each
tuple refer to the number of neighbors k, the cutoff ratio β, and the imbalance factor γ, respectively.

Memory size Permuted
MNIST

Split
MNIST

Split
CIFAR10

Split
CIFAR100

Split
Tiny-ImageNet

100 (15,-0.15,1.25) (15,0.7,1.5) (15,-0.35,1.0) (15,-0.95,1.0) (15,-0.15,1.0)
200 (15,-0.45,1.5) (15,0.75,1.1) (15,-0.7,1.1) (15,-0.85,1.0) (15,-0.9,1.0)

F DETAILED EXPERIMENTAL RESULTS

F.1 SUPERIVISED LEARNING

We present detailed experimental results for supervised learning from Table 10 to 16. Our method
consistently performs better than baselines across all tasks and sampling rates. Meanwhile, several
factors prevent us from achieving more significant improvements over the baselines in certain settings:

• In high-sampling-rate settings for simple datasets, such as the 70% setting for CIFAR10, all
methods perform closely to using the entire training set, leaving little room for improvement.

• In low-sampling-rate settings for challenging datasets, such as the 1% setting for ImageNet-
1K, the performance of all methods is limited due to the insufficient number of samples per
class.

• In scenarios where models are fine-tuned from pretrained weights, the knowledge within
these models anchors the performance at a certain level, leading to similar performance
across all methods.

Despite these factors, our method achieves significant improvement in many settings. For example, it
achieves a 5.52% increase in accuracy when selecting 2% of the samples from ImageNet-1K.

Table 10: Results on image classification (CIFAR10). The best one is bold, and the runner-up is
underlined.

Dataset CIFAR10 (100%:95.49)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 94.29± 0.08 92.33± 0.15 84.17± 0.62 71.95± 1.50 59.88± 2.45 45.51± 1.68 35.44± 1.49
Moderate 94.04± 0.26 92.36± 0.17 80.96± 2.56 63.91± 1.56 49.94± 0.70 32.00± 2.11 26.18± 1.94
CCS 94.23± 0.35 93.83± 0.15 83.85± 1.10 75.56± 2.39 65.89± 1.04 49.02± 1.35 40.24± 0.96
D2 Pruning 93.17± 0.11 93.70± 0.20 86.83± 0.48 76.56± 1.14 65.12± 0.88 45.44± 1.75 39.03± 1.69
GraphCut 94.38± 0.20 92.43± 0.23 81.98± 0.48 69.29± 0.57 59.36± 2.43 46.93± 2.21 39.68± 1.15
Entropy 94.13± 0.30 92.39± 0.40 75.34± 4.32 60.66± 6.23 46.17± 5.96 35.85± 4.33 29.28± 4.29
Forgetting 94.76± 0.38 94.34± 0.17 57.72± 1.17 35.21± 0.87 30.87± 0.57 27.22± 0.49 23.62± 0.74
EL2N 94.75± 0.32 94.10± 0.45 46.41± 4.84 22.40± 0.62 15.66± 0.18 13.05± 0.20 12.75± 0.56
AUM 94.90± 0.17 94.38± 0.20 51.98± 1.32 30.56± 0.42 22.92± 0.38 18.10± 0.47 14.50± 1.35
Variance 90.45± 0.09 85.81± 0.39 64.90± 0.53 53.64± 1.02 44.45± 0.77 36.61± 0.70 31.46± 0.92
k-means 93.87± 0.33 93.19± 0.36 83.68± 0.94 72.46± 0.51 62.68± 1.12 48.35± 2.29 38.73± 0.87
k-DPP 93.84± 0.10 92.72± 0.18 84.09± 1.21 74.62± 0.40 61.95± 4.87 46.58± 1.76 35.16± 2.92

SES (Ours) 95.01± 0.08 94.50± 0.05 88.31± 0.13 80.24± 0.72 69.82± 0.84 54.78± 1.36 45.25± 0.81

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Table 11: Results on image classification (CIFAR100). The best one is bold, and the runner-up is
underlined.

Dataset CIFAR100 (100%:77.90)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 74.72± 0.16 70.51± 0.43 52.29± 2.32 37.38± 0.80 23.03± 0.48 13.38± 0.36 8.57± 0.65
Moderate 74.61± 0.10 69.95± 0.32 49.37± 0.58 30.53± 1.44 17.68± 0.50 9.28± 0.34 5.97± 0.35
CCS 76.10± 0.29 73.12± 0.21 58.39± 1.04 44.92± 1.81 28.68± 0.99 15.93± 0.62 10.28± 0.54
D2 Pruning 76.00± 0.56 74.45± 0.36 59.08± 0.53 44.78± 0.78 26.68± 0.85 13.90± 0.66 9.61± 0.44
GraphCut 76.64± 0.13 68.79± 0.35 25.08± 1.10 16.46± 0.35 10.78± 0.52 7.84± 0.35 5.94± 0.16
Entropy 76.81± 0.12 62.52± 0.26 33.28± 7.01 21.85± 7.11 13.90± 4.75 8.31± 2.69 5.30± 1.71
Forgetting 76.64± 0.13 68.75± 0.34 25.17± 1.12 16.45± 0.37 10.70± 0.49 7.82± 0.37 5.90± 0.09
EL2N 76.15± 0.50 66.19± 0.48 14.85± 0.43 7.50± 0.27 5.28± 0.12 3.83± 0.07 3.17± 0.14
AUM 76.84± 0.40 67.81± 0.59 16.66± 0.90 8.54± 0.10 5.60± 0.18 4.35± 0.17 3.56± 0.10
Variance 73.69± 0.14 68.42± 0.16 49.60± 0.28 34.63± 0.42 22.70± 0.35 13.71± 0.38 9.18± 0.52
k-means 74.93± 0.12 72.86± 0.17 56.86± 0.88 42.69± 0.52 26.39± 0.73 14.92± 0.75 8.90± 0.31
k-DPP 75.34± 0.45 73.16± 0.45 56.88± 1.01 42.09± 0.41 26.55± 0.9 14.31± 0.33 8.23± 0.27

SES (Ours) 77.23± 0.10 74.63± 0.17 61.52± 0.76 48.02± 0.98 33.39± 0.27 19.68± 0.51 14.16± 0.48

Table 12: Results on image classification (ImageNet-1K). The best one is bold, and the runner-up is
underlined.

Dataset ImageNet-1K (100%:73.63)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 71.63± 0.12 69.26± 0.17 58.90± 0.12 47.10± 0.26 34.04± 0.42 16.56± 0.11 5.50± 0.28
Moderate 71.33± 0.04 68.72± 0.07 55.23± 0.27 40.97± 0.18 25.75± 0.16 11.33± 0.31 4.52± 0.24
CCS 70.74± 0.09 69.23± 0.09 60.04± 0.95 50.41± 0.11 36.92± 1.62 19.92± 1.36 9.43± 0.31
D2 Pruning 71.29± 0.07 70.32± 0.05 58.91± 0.04 50.81± 0.24 37.12± 0.09 18.97± 0.05 11.23± 0.26
GraphCut 68.91± 0.05 68.72± 0.07 55.28± 0.17 44.79± 0.06 33.54± 0.12 20.07± 0.21 11.49± 0.12
Entropy 70.93± 0.74 69.21± 0.12 54.76± 0.16 38.46± 0.34 22.78± 0.73 7.01± 0.24 1.95± 0.15
Forgetting 70.57± 0.04 70.46± 0.10 60.77± 0.02 48.73± 0.12 33.86± 0.15 15.13± 0.23 5.66± 0.30
EL2N 71.68± 0.04 65.98± 0.12 31.90± 3.64 12.57± 0.11 6.50± 0.36 3.25± 0.13 1.90± 0.09
AUM 69.94± 0.30 65.36± 0.11 21.91± 0.13 10.50± 0.19 6.42± 0.07 3.58± 0.07 2.24± 0.05
Variance 70.12± 0.09 66.09± 0.01 35.15± 0.09 13.85± 0.02 7.13± 0.05 4.72± 0.02 1.81± 0.06
k-means 70.33± 0.07 69.47± 0.11 59.23± 0.22 48.12± 0.21 35.51± 0.13 18.67± 0.08 9.65± 0.33
k-DPP 70.84± 0.09 69.85± 0.14 59.92± 0.33 46.10± 0.33 34.41± 0.07 16.33± 0.15 7.49± 0.17

SES (Ours) 72.80± 0.03 71.05± 0.09 63.24± 0.06 53.59± 0.09 41.88± 0.13 25.59± 0.17 13.43± 0.37

Table 13: Results on text classification (ANLI). The best one is bold, and the runner-up is underlined.

Dataset ANLI (100%:49.25)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 47.08± 0.26 45.20± 0.50 42.13± 0.54 39.52± 0.93 38.82± 1.06 37.50± 1.29 35.96± 1.04
Moderate 46.84± 0.31 45.11± 0.39 41.95± 0.33 40.16± 0.85 38.99± 0.45 35.83± 1.39 33.91± 0.62
CCS 46.56± 0.23 45.92± 0.70 41.67± 1.39 41.63± 0.97 40.33± 0.65 37.41± 0.05 36.82± 0.49
D2 Pruning 48.56± 1.22 47.49± 0.17 42.77± 0.36 41.43± 0.24 40.34± 0.07 37.92± 1.44 36.29± 0.59
GraphCut 46.14± 0.67 44.53± 0.55 42.12± 0.66 39.86± 0.27 38.15± 0.74 35.44± 0.80 34.02± 0.61
Entropy 46.32± 1.11 45.53± 0.44 41.45± 0.33 39.67± 0.28 38.54± 0.66 36.69± 0.53 36.40± 0.19
Forgetting 48.73± 0.35 42.29± 0.17 39.82± 0.16 38.37± 0.60 35.95± 0.33 35.78± 0.42 35.03± 0.77
EL2N 48.70± 0.65 47.85± 0.98 43.14± 1.68 39.63± 2.20 37.52± 1.05 34.33± 1.15 34.27± 0.42
AUM 47.86± 0.27 47.58± 0.37 43.57± 0.71 40.02± 1.51 34.66± 0.73 34.16± 0.12 33.62± 0.12
Variance 47.97± 0.30 47.87± 0.56 40.70± 0.16 38.75± 0.62 33.52± 0.03 33.50± 0.03 33.17± 0.12
k-means 46.48± 0.24 46.52± 1.06 42.42± 0.72 40.57± 0.65 39.89± 0.10 36.74± 0.29 36.11± 0.40
k-DPP 47.74± 0.07 47.02± 0.02 43.44± 0.59 40.98± 0.46 40.12± 0.26 37.44± 0.11 36.66± 0.23

SES (Ours) 49.00± 0.08 48.22± 0.54 45.94± 0.27 43.63± 1.00 41.82± 0.43 39.88± 0.7 38.16± 0.38

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Table 14: Results on text classification (IMDB). The best one is bold, and the runner-up is underlined.

Dataset IMDB Review(100%:95.90)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 95.25± 0.21 95.04± 0.31 93.53± 0.68 91.89± 0.17 89.60± 1.89 83.25± 4.96 73.31± 1.94
Moderate 95.39± 0.19 95.31± 0.07 94.03± 0.73 92.55± 0.47 90.34± 0.43 58.34± 4.29 50.81± 0.55
CCS 95.22± 0.18 95.35± 0.19 93.44± 0.61 91.87± 0.23 89.89± 1.47 85.73± 4.76 82.05± 4.21
D2 Pruning 95.43± 0.16 95.40± 0.20 93.75± 0.46 92.44± 0.60 90.77± 0.33 87.40± 0.78 80.06± 0.85
GraphCut 95.39± 0.15 95.21± 0.29 93.37± 0.57 91.69± 0.66 90.93± 0.31 86.85± 1.81 82.26± 0.90
Entropy 95.39± 0.31 95.17± 0.22 93.92± 0.50 92.57± 0.97 90.30± 0.63 77.16± 4.52 59.41± 4.70
Forgetting 95.41± 0.11 95.31± 0.17 93.66± 0.30 89.41± 0.58 58.78± 2.28 55.81± 4.65 52.38± 1.03
EL2N 95.29± 0.19 95.34± 0.21 91.31± 0.19 60.29± 0.09 49.88± 1.35 47.18± 3.30 43.74± 0.81
AUM 95.27± 0.66 95.23± 0.16 90.60± 0.13 55.68± 0.21 49.81± 1.50 43.13± 4.53 36.29± 1.45
Variance 95.44± 0.16 95.40± 0.20 93.75± 0.46 92.44± 0.60 90.77± 0.33 87.40± 0.78 80.06± 0.85
k-means 95.34± 0.17 95.22± 0.23 93.98± 0.54 92.49± 0.74 90.21± 0.88 86.96± 1.84 81.51± 6.72
k-DPP 95.29± 0.37 95.13± 0.21 93.76± 0.59 92.50± 0.58 89.97± 1.42 86.14± 2.53 77.07± 3.31

SES (Ours) 95.60± 0.16 95.40± 0.12 94.57± 0.09 92.96± 0.56 91.42± 0.24 88.58± 0.47 83.14± 2.05

Table 15: Results on object detection. The best one is bold, and the runner-up is underlined.

Dataset PASCAL VOC (100%:76.29)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 74.02± 0.26 72.10± 0.32 65.45± 0.45 57.56± 0.45 43.47± 0.67 18.78± 0.21 9.24± 0.96
Moderate 73.42± 0.46 72.03± 0.52 65.12± 0.57 54.71± 0.10 40.20± 0.54 15.97± 0.36 5.13± 0.49
CCS 74.64± 0.15 72.27± 0.23 65.72± 0.59 57.35± 0.63 39.01± 0.81 17.26± 0.62 8.49± 0.57
D2 Pruning 74.46± 0.52 72.55± 0.23 65.59± 0.84 55.73± 0.34 44.04± 0.41 19.16± 0.14 10.75± 0.75
GraphCut 67.45± 0.35 64.15± 0.54 53.12± 0.30 38.29± 0.12 26.81± 0.32 8.56± 0.64 8.16± 0.54
AL-MDN 74.51± 0.35 70.36± 0.17 65.26± 0.82 54.51± 0.94 30.85± 1.71 12.33± 1.44 8.97± 1.33
k-means 74.22± 0.31 72.35± 0.19 65.52± 0.98 57.01± 0.49 43.35± 0.60 16.96± 0.78 5.16± 0.69
k-DPP 74.19± 0.38 71.99± 0.27 65.39± 0.53 56.80± 0.17 43.92± 0.53 18.20± 0.44 10.50± 0.62

SES (Ours) 75.20± 0.29 73.33± 0.33 66.52± 0.41 59.52± 0.14 45.92± 0.46 23.39± 0.22 16.15± 0.62

Table 16: Results on visual question answering. The best one is bold, and the runner-up is underlined.

Dataset CC SBU Align (100%:30.40)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 29.66± 0.15 29.62± 0.05 29.21± 0.26 29.01± 0.14 28.20± 0.12 25.51± 0.46 25.11± 0.42
Moderate 29.96± 0.14 29.67± 0.13 29.53± 0.27 29.11± 0.23 27.30± 0.25 24.85± 0.36 26.54± 0.41
CCS 29.93± 0.06 29.90± 0.05 29.94± 0.16 29.91± 0.25 27.71± 0.37 25.31± 0.37 25.59± 0.41
D2 Pruning 30.09± 0.13 29.97± 0.19 29.44± 0.22 29.30± 0.27 26.44± 0.23 25.03± 0.30 26.29± 0.37
GraphCut 29.86± 0.08 29.73± 0.06 29.53± 0.23 29.11± 0.25 27.30± 0.36 24.85± 0.41 26.54± 0.29
Instruction 30.12± 0.15 29.93± 0.25 29.82± 0.27 29.01± 0.28 26.76± 0.42 23.72± 0.49 24.60± 0.46
k-means 29.78± 0.14 29.61± 0.14 29.54± 0.11 29.20± 0.20 27.72± 0.35 25.47± 0.39 25.60± 0.41
k-DPP 29.33± 0.15 29.55± 0.12 29.48± 0.08 29.27± 0.12 28.16± 0.34 25.93± 0.46 26.13± 0.34

SES (Ours) 30.25± 0.10 30.20± 0.13 30.21± 0.18 30.10± 0.11 28.23± 0.40 27.19± 0.46 27.61± 0.39

F.2 ACTIVE LEARNING

We present detailed experimental results for active learning in Table 17. Our method consistently
performs better than baselines across all sampling rates.

Table 17: Results for active learning. The best one is bold, and the runner-up is underlined.

Dataset ImageNet-1K (100%:73.63)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 71.12± 0.25 69.43± 0.04 58.77± 0.35 47.36± 0.20 33.41± 0.15 16.41± 0.40 5.41± 0.23
Moderate 71.48± 0.05 68.68± 0.06 56.35± 0.01 42.29± 0.17 26.77± 0.01 11.37± 0.22 4.22± 0.17
CCS 71.46± 0.11 69.50± 0.07 58.85± 0.16 45.06± 0.22 28.02± 0.17 9.03± 0.40 2.33± 0.18
GraphCut 71.50± 0.21 69.16± 0.09 56.08± 0.24 40.99± 0.21 24.30± 0.17 7.90± 0.13 2.46± 0.08
D2 Pruning 71.62± 0.11 69.02± 0.21 59.65± 0.11 45.97± 0.32 28.08± 0.37 14.24± 0.11 4.79± 0.31
Prototypicality 70.12± 0.04 66.00± 0.06 49.20± 0.09 35.27± 0.04 24.14± 0.15 13.88± 0.08 4.95± 0.05

SES (Ours) 72.11± 0.07 70.15± 0.17 60.22± 0.34 48.10± 0.21 34.82± 0.22 17.97± 0.35 6.69± 0.62

F.3 CONTINUAL LEARNING

In addition to baselines from Sec. 5.1, we include six widely used baseline selection methods
for continual learning: 1) k-center (Sener & Savarese, 2018), which iteratively selects samples

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

that are least similar to those already selected, 2) Gradient matching (Campbell & Broderick,
2019), which selects samples whose average gradient closely approximates the average gradient
of all samples, 3) FRCL (Titsias et al., 2020), which optimizes a subset of samples to minimize
the posterior uncertainty of the Gaussian process induced from the embedding representations,
4) iCaRL (Rebuffi et al., 2017) that selects samples whose average embedding closely approximates
the average embedding of all samples, 5) Greedy Coreset (Borsos et al., 2020) that formulates
the selection as a bilevel optimization problem and greedily selects samples such that the model
trained on them minimizes the loss across the entire dataset, and 6) BCSR (Hao et al., 2024) that
formulates the selection as a bilevel optimization problem on the probability simplex over samples
and introduces a regularizer to control the number of selected samples.

We present detailed experimental results for continual learning in Table 18 and 19. Our method
consistently performs better than baselines across all datasets and memory sizes.

Table 18: Results for continual learning on Permuted MNIST, Split MNIST, and Split CIFAR10. The
best one is bold, and the runner-up is underlined.

Dataset Permuted
MNIST

Split
MNIST

Split
CIFAR10

Memory size 50 100 200 400 50 100 200 400 50 100 200 400
Random 75.99± 0.70 77.43± 0.41 79.69± 0.44 81.32± 0.33 92.66± 1.46 95.79± 0.30 97.16± 0.13 98.18± 0.50 62.49± 0.73 62.34± 0.89 63.69± 1.58 63.63± 0.86
Moderate 76.34± 0.59 78.29± 0.52 79.44± 0.31 78.88± 0.62 92.74± 0.59 95.34± 0.18 97.05± 0.07 97.61± 0.44 61.55± 0.61 61.51± 0.46 63.01± 0.58 65.42± 3.68
CCS 74.28± 0.75 75.48± 0.46 76.53± 0.53 81.64± 0.16 80.62± 1.01 89.50± 0.92 94.92± 0.76 98.34± 0.17 61.14± 0.92 60.56± 1.27 61.04± 1.73 59.33± 1.21
D2 Pruning 77.19± 0.46 78.25± 0.30 79.94± 0.36 80.93± 0.12 93.92± 0.22 96.79± 0.12 97.69± 6.88 98.07± 0.08 61.90± 1.41 64.54± 0.63 66.08± 1.45 65.23± 1.18
GraphCut 75.31± 0.42 76.98± 6.74 78.61± 0.36 80.39± 0.29 88.37± 0.37 91.34± 1.09 94.25± 0.71 98.44± 0.20 60.46± 1.29 61.02± 1.17 61.66± 1.67 63.51± 0.77
Entropy 76.74± 0.35 75.54± 0.35 78.18± 0.44 82.08± 0.19 94.33± 0.34 91.54± 0.73 96.16± 0.26 98.27± 0.11 61.78± 0.44 61.53± 0.72 62.72± 0.73 63.99± 1.01
Forgetting 74.38± 0.54 75.30± 0.25 77.47± 0.40 79.13± 0.70 89.00± 2.43 92.13± 0.43 96.37± 0.20 98.25± 0.18 60.81± 0.78 59.56± 0.24 61.38± 1.22 61.59± 1.07
EL2N 73.32± 0.80 75.57± 0.24 77.48± 0.20 80.34± 0.47 83.56± 1.05 88.54± 1.01 94.87± 0.48 97.45± 0.13 59.00± 0.54 57.79± 0.75 58.34± 0.68 58.58± 1.34
AUM 73.98± 0.79 75.54± 0.35 77.47± 0.33 79.90± 0.61 82.31± 2.15 90.38± 1.99 95.79± 0.34 98.07± 0.24 58.95± 0.77 58.32± 0.46 58.06± 0.86 59.01± 0.67
Variance 74.53± 0.47 75.67± 0.38 77.42± 0.32 78.70± 0.34 84.08± 3.14 91.90± 0.72 94.96± 0.88 97.49± 0.38 58.57± 0.57 58.69± 0.24 57.77± 0.34 58.50± 0.74
k-center 75.64± 0.40 78.17± 0.23 79.75± 0.17 80.94± 0.38 90.41± 1.23 94.39± 0.41 96.61± 0.64 97.80± 0.13 61.99± 1.36 61.47± 1.71 62.74± 1.31 64.45± 2.24
Gradient Matching 75.73± 0.57 77.30± 0.08 79.27± 0.38 80.71± 0.50 91.58± 1.06 95.39± 0.93 97.54± 0.23 98.39± 0.26 60.54± 0.92 61.65± 6.98 62.65± 1.11 63.26± 0.96
FRCL 75.78± 0.46 77.33± 0.26 79.21± 0.53 80.88± 0.30 88.46± 0.61 94.48± 0.93 97.10± 0.31 98.33± 0.20 61.22± 1.61 61.67± 1.02 62.93± 0.86 65.51± 1.57
iCaRL 77.01± 0.19 78.94± 0.46 80.65± 0.36 81.94± 0.14 92.92± 1.23 89.50± 0.92 97.59± 8.14 98.39± 0.05 61.95± 1.09 62.33± 0.89 64.08± 1.58 64.09± 1.15
Greedy Coreset 77.19± 0.56 78.71± 0.67 80.13± 0.11 82.17± 0.33 94.35± 0.35 96.07± 0.42 97.76± 0.85 98.18± 0.16 61.28± 1.74 63.18± 0.84 62.98± 0.91 65.02± 1.50
BCSR 75.92± 0.35 77.74± 0.39 79.51± 0.28 81.65± 0.09 93.83± 1.18 94.77± 0.56 96.98± 0.29 98.26± 0.11 61.88± 0.59 63.23± 2.60 64.59± 2.86 65.45± 0.70

SES (Ours) 78.52± 0.25 79.92± 0.36 81.18± 0.26 82.69± 0.10 94.73± 0.33 96.94± 0.34 98.28± 0.10 98.54± 0.07 67.52± 0.56 68.26± 1.24 69.32± 0.99 70.76± 1.22

Table 19: Results for continual learning on Split CIFAR100 and Split Tiny-ImageNet. The best one
is bold, and the runner-up is underlined.

Dataset Split
CIFAR100

Split
Tiny-ImageNet

Memory size 50 100 200 400 50 100 200 400
Random 46.59± 1.28 51.29± 0.77 54.22± 0.58 56.21± 0.46 18.38± 0.26 18.52± 0.23 19.22± 0.29 19.22± 0.26
Moderate 47.38± 0.39 51.91± 0.63 53.45± 8.69 55.06± 0.86 18.08± 0.30 18.63± 0.36 19.47± 6.18 19.75± 0.24
CCS 44.91± 0.35 48.70± 6.90 51.26± 0.39 52.69± 0.29 18.47± 0.41 18.30± 0.17 18.90± 0.13 18.50± 0.22
D2 Pruning 47.72± 0.61 51.86± 0.62 54.50± 0.46 57.14± 0.42 18.98± 0.10 19.08± 0.39 19.50± 0.28 19.76± 0.14
GraphCut 48.72± 0.56 53.35± 0.38 54.66± 0.28 56.74± 0.36 19.50± 0.19 19.76± 6.15 20.53± 0.12 21.57± 0.36
Entropy 45.08± 1.86 47.97± 1.34 51.51± 0.34 54.42± 0.69 18.38± 0.42 17.99± 0.28 18.62± 0.22 19.20± 0.25
Forgetting 50.60± 1.08 53.06± 0.57 54.68± 0.31 57.30± 0.30 18.92± 0.19 19.55± 0.13 19.56± 0.33 19.85± 0.30
EL2N 44.76± 1.10 46.47± 0.62 48.11± 1.01 50.59± 0.64 18.04± 0.35 17.95± 0.31 17.98± 0.32 18.37± 0.24
AUM 44.70± 0.73 46.14± 0.58 47.20± 0.40 49.24± 0.88 18.36± 0.41 18.24± 0.10 17.89± 0.17 18.16± 0.21
Variance 50.30± 0.84 52.83± 0.76 54.00± 0.85 56.91± 0.28 19.66± 0.42 19.32± 0.07 19.50± 0.33 20.19± 0.13
k-center 46.90± 1.86 51.16± 0.57 53.10± 0.17 55.77± 0.34 18.81± 0.21 18.87± 0.18 18.90± 0.30 19.13± 0.14
Gradient Matching 51.15± 0.66 54.13± 0.53 56.29± 0.26 57.24± 0.37 19.20± 0.32 19.19± 8.72 19.00± 0.16 19.46± 0.18
FRCL 46.81± 0.71 51.40± 0.44 54.28± 0.55 56.01± 0.62 18.59± 0.21 18.86± 0.15 19.01± 0.27 19.55± 0.20
iCaRL 51.67± 0.71 54.62± 0.51 56.11± 0.32 56.95± 0.26 19.05± 0.45 19.58± 0.18 19.85± 0.16 19.86± 0.58
Greedy coreset 52.58± 0.39 56.17± 0.42 57.72± 0.23 55.27± 0.66 19.61± 0.28 19.24± 0.34 19.98± 0.17 20.62± 0.36
BCSR 47.37± 1.25 50.21± 1.14 51.49± 0.62 59.45± 0.42 19.04± 0.36 18.75± 0.17 18.74± 0.26 19.42± 0.17

SES (Ours) 54.71± 0.53 57.60± 0.39 59.69± 0.31 61.06± 0.17 20.40± 0.34 20.80± 0.18 21.20± 0.12 21.82± 0.20

G ADDITIONAL ABLATION STUDY

Robustness to different training difficulty metrics. We test the effect of using different training
difficulty metrics, including Forgetting, EL2N, and AUM. We also include the identity baseline,
which assigns identical scores to all samples. Table 20 shows the results. Using identical scores leads
to inferior performance, indicating the importance of incorporating training difficulty. Meanwhile,
using AUM, Forgetting, and EL2N yields comparable performance, with average accuracies across
rates differing by no more than 0.5%. This demonstrates the robustness of our method to the choice
of the training difficulty metric.

Table 20: Ablation of training difficulty metrics. The best one is bold, and the runner-up is underlined.

Difficulty
metric

Sampling rate
Avg.

70% 50% 20% 10% 5% 2% 1%
Identity 94.58 92.66 86.67 78.50 67.68 53.21 44.43 73.96
Forgetting 94.86 93.99 88.11 79.06 70.45 53.99 46.43 75.27
EL2N 94.61 93.74 88.45 79.93 69.52 54.01 45.15 75.06
AUM 95.01 94.50 88.31 80.24 69.82 54.78 45.25 75.42

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Quantification of node-level structural entropy. In Eq. (4), we quantify the node-level structural
entropy as Se(u) =

1
vol(V)

∑
⟨u,v⟩∈E wu,v log vol(αu∨v) by removing the second term from Eq. (3).

Alternatively, the node-level structural entropy can retain the second term and be quantified as
Se(u) =

1
vol(V) (

∑
⟨u,v⟩∈E wu,v log vol(αu∨v) − d(u) log d(u)). As shown in Table 21, removing

the second term slightly increases performance across all sampling rates. This finding supports our
decision to remove the second term in the definition of node-level structural entropy.

Table 21: Ablation on the quantification of node-level structural entropy. The best one is bold, and
the runner-up is underlined.

Quantification
method

Sampling rate

70% 50% 20% 10% 5% 2% 1%
With the second term 94.51 93.39 88.01 79.73 67.75 53.88 43.02
Without the second term 95.01 94.50 88.31 80.24 69.82 54.78 45.25

Methods for combining global and local metrics. We explore possible alternative methods to
combine the global metric Se(u) and the local metric St(u) other than the proposed multiplication.
Specifically, we experimented with the sum (Se(u) + St(u)), the harmonic mean (Se(u)St(u)

Se(u)+St(u)
), and

the maximum (max(Se(u), St(u))). As shown in Table 22, multiplication achieves the best average
performance, validating our choice for combining the two metrics.

Table 22: Ablation on different combination of Se and St. The best one is bold, and the runner-up is
underlined.

Combination
method

Sampling rate
Avg.

70% 50% 20% 10% 5% 2% 1%
Se(u) + St(u) 94.77 94.43 87.17 79.64 69.08 53.24 44.53 71.35
Se(u)St(u)
Se(u)+St(u)

94.84 94.64 88.11 79.97 69.75 53.95 44.88 71.88
max(Se(u), St(u)) 94.22 93.22 87.24 78.33 68.49 53.04 43.30 70.60
Se(u) · St(u) 95.01 94.50 88.31 80.24 69.82 54.78 45.25 72.15

Replacing graphs with hypergraphs. We have conducted an experiment using hypergraphs (Zhou
et al., 2006) to capture the relationships between samples. Following Feng et al. (2019), we construct
a hypergraph by adding a hyperedge for each node that contains the node itself and its k-nearest
neighbors. Due to the lack of the structural entropy theory for hypergraphs, we apply clique
expansion (Agarwal et al., 2006), creates an edge between every pair of nodes in a hyperedge, to
convert the hypergraph into a graph. We then apply our selection method to the resulting graph.
Table 23 shows the results. This hypergraph-based method slightly degrades performance compared
to the graph-based method, but still performs better than the baseline methods in low-sampling-
rate settings. We attribute this slight decline in performance to the information loss during clique
expansion, for which a straightforward alternative is not currently available. We see significant
potential for future work in developing structural entropy theories for hypergraphs and then applying
our method to sample selection.

Table 23: Ablation study on replacing graphs with hypergraphs. The best one is bold, and the
runner-up is underlined.

Graph
Type

Sampling rate

70% 50% 20% 10% 5% 2% 1%
Hypergraph 94.81 94.37 88.12 80.05 69.30 54.50 44.72
Graph 95.01 94.50 88.31 80.24 69.82 54.78 45.25

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

H FULL QUALITATIVE RESULTS

Fig. 6 visualizes the results of different methods when selecting 2% of the samples from CIFAR10.
Methods that select the most difficult samples, such as AUM, oversample near several class boundaries
and undersample in several classes that are easier to classify. Methods that prioritize sample coverage,
such as D2 Pruning and CCS, achieve a better sample coverage but may undersample near several
class boundaries and fail to preserve the global structure. Our method well covers the data distribution,
providing a set of informative and representative samples for model training.

(a) Random (b) AUM (c) EL2N

(d) Forgetting (e) Entropy (f) Variance

(g) Moderate (h) GraphCut (i) CCS

(j) D2 Pruning (k) SES (Ours)

Figure 6: Visualizations of selection results of different methods when selecting 2% of the samples
from CIFAR10.

29

	Introduction
	Related work
	Background: Structural Entropy of Graph
	Structural-Entropy-Based Sample Selection
	Node-Level Structural Entropy
	Importance-Biased Blue Noise Sampling

	Experiments
	Supervised Learning
	Experimental Setup
	Results

	Active Learning
	Experimental Setup
	Results

	Continual Learning
	Experimental Setup
	Results

	Ablation Study
	Qualitative Analysis

	Conclusion
	Comparison of Encoding Tree Construction Methods
	Proof of Proposition 1
	Theoretical Analysis of Node-Level Structural Entropy
	Node-Level Structural Entropy and Sample Coverage
	Sample Coverage and Model Performance

	Dataset Statistics and Detailed Experimental Setting
	Supervised Learning
	Active learning
	Continual learning

	Selection Hyperparameter Settings
	Selection Hyperparameters
	Preliminary Experiments on k
	Grid Search Results

	Detailed Experimental Results
	Superivised Learning
	Active Learning
	Continual Learning

	Additional Ablation study
	Full Qualitative results

