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Dexterous Contact-Rich Manipulation via
the Contact Trust Region
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Abstract—What is a good local description of contact dynamics
for contact-rich manipulation, and where can we trust this
local description? While many approaches often rely on the
Taylor approximation of dynamics with an ellipsoidal trust
region, we argue that such approaches are fundamentally in-
consistent with the unilateral nature of contact. As a remedy,
we present the Contact Trust Region (CTR), which captures
the unilateral nature of contact while remaining efficient for
computation. With CTR, we first develop a Model-Predictive
Control (MPC) algorithm capable of synthesizing local contact-
rich plans. Then, we extend this capability to plan globally
by stitching together local MPC plans, enabling efficient and
dexterous contact-rich manipulation. To verify the performance
of our method, we perform comprehensive evaluations, both in
high-fidelity simulation and on hardware, on two contact-rich
systems: a planar IiwaBimanual system and a 3D AllegroHand
system. On both systems, our method offers a significantly
lower-compute alternative to existing RL-based approaches to
contact-rich manipulation. In particular, our Allegro in-hand
manipulation policy, in the form of a roadmap, takes fewer than
10 minutes to build offline on a standard laptop using just its
CPU, with online inference taking just a few seconds. Experiment
data, video and the full version of this paper are available at
ctr.theaiinstitute.com.

I. INTRODUCTION

ROBOTS today rarely leverage their embodiment to the
fullest due to the limitations of our computational algo-

rithms: robot arms only establish contact with the end-effectors
and only perform collision-free motion planning, and robot
hands often only establish contact with the fingertips instead
of leveraging the entire surface of the hand. This stands in
stark contrast to humans, as we are able to utilize every
part of our body to strategically establish contact with the
environment. In order to address this gap, dexterous contact-
rich manipulation, where a robot must autonomously decide
where to establish contact without restricting possible contacts,
remains an important problem for us to solve.

At the heart of many iterative algorithms for manipulation
lies the question: what is a good local description of contact
mechanics for contact-rich manipulation that (i) faithfully cap-
tures local behavior, and (ii) is sufficiently simple for efficient
and scalable computation? Classical treatments express how
friction-cone–bounded contact forces perturb the object via
the contact Jacobian [1]–[3]. This Jacobian view has powered
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Fig. 1: Hardware experiments illustrating the utility of our proposed
method in contact-rich manipulation. Left: Dexterous in-hand ma-
nipulation with the Allegro hand moving a cube. Right: Whole-body
manipulation with bimanual iiwas moving a bucket.

much of the subsequent planning and control literature; for
example, standard grasp-synthesis tools rely on local wrench-
space arguments [4], [5]. Yet these analyses assume sticking
contacts at fixed points—formalized as contact modes—and
therefore struggle with dexterous tasks that involve rapid mode
switching. In order to handle rapid mode switching, contact-
implicit trajectory optimization (CITO) encodes contact modes
with complementarity constraints that couple normal forces
and separations [6]–[9]. Linearizing these constraints inside
an iterative optimization loop exposes the familiar contact
Jacobians of classical mechanics.

At first glance this explicit, complementarity-based treat-
ment might seem unrelated to the growing family of planners
that build first-order Taylor models from differentiable simu-
lators [10]–[16]. In those methods, the linearization process
absorbs friction cones, non-penetration, and complementarity,
so the planner sees only linear state-space equations. Several
recent works have exploited this locally linear view for trajec-
tory optimization and control [12], [17]–[21].

The apparent discrepancy between these two approaches
raises the question of how they are related. In fact, analytically
deriving the gradients from differentiable simulators shows
that the Taylor expansions they produce and the comple-
mentarity constraints ubiquitous in contact-implicit trajectory
optimization are fundamentally connected [12, Example 5].
However, the form of each approximation hides a deeper
question: where can we trust this local model? In optimization,
this region is known as the trust region [22]. Intuitively,
the trust region describes where the local model closely
approximates the original function, making it reliable for
local improvements. As the quality of Taylor approximations
typically degrades as we move further from the nominal point,
previous works have often employed an ellipsoidal trust region
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(ETR) [22]–[24].
Our first contribution (Section II-A) is to elucidate the

inconsistency between the ETR and the unilateral nature of
contact. We then address this issue by examining the structure
of modern differentiable simulators and proposing the contact
trust region (CTR). By augmenting Taylor expansions from
these simulators explicitly with feasibility constraints from
contact-implicit trajectory optimization, the CTR correctly
characterizes the local region in which the Taylor expansions
approximate the true contact dynamics well. Not only does the
proposed CTR consist entirely of convex constraints, it can
also be readily derived by combining standard components of
existing differentiable simulators.

As our second contribution, we present a highly efficient,
contact-implicit Model Predictive Control (MPC) method [25],
[26] in Section II-B. Specialized for contact-rich manipulation,
it can be viewed as a natural extension of iterative LQR [27]:
we leverage Taylor expansions from differentiable contact
dynamics as linear dynamics constraints, and we include the
convex CTR constraints to capture local contact dynamics.
Convexity of the CTR ensures that each iteration of the
proposed MPC remains a convex optimization problem. We
show the efficacy of the proposed CTR and MPC method
on two representative contact-rich manipulation problems in
Figure 1: (i) whole-body manipulation on the bimanual iiwa
and cylinder system, and (ii) in-hand reorientation on the
Allegro hand and cube system. Through 2000 trajectory runs
in simulation and 100 runs on hardware, our results delve into
the efficacy and the limitations of our approach, as well as
the benefits of CTR over the ellipsoidal one in the context of
planning and control.

As our final contribution (Section II-C), we address global
planning by chaining local trajectories discovered by MPC.
To do this, we follow a roadmap [28] approach where we
seed each node with a stable object configuration, and then
connect the nodes using MPC. Compared to single-query
algorithms [12], [29]–[31], most of the computation time for
our algorithm happens offline in the roadmap-building stage,
enabling fast online inference. Moreover, the offline roadmap
construction only takes minutes on a standard laptop, which is
orders-of-magnitude less than approaches based on deep RL
[32]–[34].

II. METHOD

In this work, we develop CTR based on the quasidynamic
differentiable simulator proposed in [12], called the Convex
Quasidynamic Differentiable Contact (CQDC) contact model.
The approach could be extended to other contact dynamics
models.

Due to the quasi-dynamic assumption, we assume the state
consists of configurations, which we denote by q ∈ Rnq , and
omit velocities. These configurations are divided into actuated
configurations qa ∈ Rnqa that belong to the robot, and object
configurations qo ∈ Rnqo which are unactuated. Furthermore,
the actions are represented as a position command u ∈ Rnqa to
a stiffness-controlled robot. We denote the contact dynamics
and its smoothed variant by q+ = f(q, u) and q+ = fκ(q, u),

respectively, where q+ is the next state and κ the dynamics
smoothing parameter.

The CQDC model is very representative of approaches
taken by modern differentiable simulators through contact
[12], [13], [35], [36]. It treats simulation of contact as a convex
optimization problem whose primal solution becomes the next
state, dual solution becomes contact forces, and gives gradients
of both primal and dual solutions by performing sensitivity
analysis in convex optimization.

A. Contact Trust Region

Definition 1 (Contact Trust Region). We define the Contact
Trust Region (CTR) at the nominal configuration (q̄, ū) as the
set of all allowable perturbations that do not result in violation
of the primal (1d) and dual (1e) feasibility constraints under
a linear model,

SΣ,κ(q̄, ū) := {(δq, δu)|δz⊤Σδz ≤ 1, δz = (δq, δu), (1a)
q̂+ = Aκδq +Bκδu+ fκ(q̄, ū), (1b)

λ̂+,i = Cκ,iδq +Dκ,iδu+ λκ,i(q̄, ū), (1c)

Ĵi(q̂+ − q) + [ϕi, 0, 0]
⊤ ∈ Ki, (1d)

λ̂+,i ∈ K⋆
i }. (1e)

Here (1a) is the ETR with Σ ∈ Rnz×nz being the ellipsoid
radius. (1b) is the linearized state dynamics, which describes
how the next state q̂+ changes due to perturbations to the
nominal state δq and action δu. Similarly, (1c) describes how
the contact force at contact i, denoted by λ̂+, respond to
perturbations under a linear model. The gradients A, B, C
and D are obtained from the smoothed differentiable CQDC
dynamics. Constraint (1e) requires the linearized contact force
to stay inside the friction cone K⋆

i . Lastly, constraint (1d) is
a generalization of the non-penetration constraint at contact i,
where Ki is the dual cone of K⋆

i , Ĵi is the contact Jacobian
and ϕi the signed distance at contact i.

The constraints (1b)-(1e) are convex, yet they remain locally
equivalent to the full complementarity conditions commonly
used in CITO formulations. As the complementarity con-
straints violate standard constraint qualification violations and
often destabilize nonlinear solvers [23], the convex structure
of the CTR sidesteps those pathologies and is markedly easier
to optimize.

B. CTR-based MPC

We first recap the standard iterative-LQR (iLQR) trajectory
optimization scheme [27]. In iLQR, we start with an initial
guess of the nominal input ū0:T−1, then roll it out under
the dynamics q+ = f(q, u) to get the nominal configu-
ration trajectory q̄0:T . Utilizing gradients from a differen-
tiable simulator (e.g. (1b)), we obtain a local linearization
around this nominal trajectory (q̄0:T , ū0:T−1), under which we
search for optimal perturbations (δq0:T , δu0:T−1) by solving
a convex optimization program with quadratic cost and linear
constraints. After updating the nominal trajectory using the
optimal perturbations, we repeat these steps until convergence
or reaching iteration limit.
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We argue that the state linearization alone (1b) is insuf-
ficient for capturing, even locally, the unilateral nature of
contact dynamics. Therefore, we augment the linearized state
dynamics used in standard iLQR with the full set of CTR
constraints (1). As (1) is a convex set, each inner iteration
of the modified “iLQR” algorithm remains a convex program,
preserving iLQR’s efficiency while enforcing non-penetration
and friction-cone feasibility. Embedding this CTR-augmented
iLQR in a receding-horizon loop naturally yields a contact-rich
MPC controller.

C. Global Planning

We present a simple recipe for global search, in which we
chain local plans together to efficiently reach global goals
which are challenging for local MPC. Our method, inspired by
the Probabilistic Roadmap (PRM) [37], consists of an offline
phase in which the roadmap is constructed, and an online
phase where we reach arbitrary goals using the roadmap.

In the offline phase, we build a roadmap in which the
vertices are grasping configurations and the edges are local
plans connecting those configurations. The edges are generated
using the MPC controller in Section II-B.

Online, we can synthesize plans connecting any starting
configuration q0 to any goal object configuration qogoal. To do
this, we first connect q0 and qogoal to their respective nearest
vertices in the roadmap, which can be done using the same
MPC inSection II-B. Then, the problem reduces to finding the
shortest path between two vertices on a graph, which can be
solved with standard methods.

III. LOCAL MPC EXPERIMENTS

In this section, we evaluate the performance of the CTR-
based MPC in Section II-B. We are particularly interested in
(i) comparing the proposed CTR against the standard ETR,
and (ii) finding out if the proposed method successfully reach
a diverse set of goals on complex systems.

To answer these questions and demonstrate the scalability
of our method, we conduct statistical analysis on two contact-
rich robotic systems:

• the planar IiwaBimanual system, which comprises of 3
unactauted DOFs, 6 actuated DOFs and 29 collision
geometries. The whole system is constrained to the xy
plane, with gravity pointing along the negative z direc-
tion. The bucket measures 0.28m in diameter. The task is
to rotate the object, a cylindrical bucket, to target SE(2)
poses.

• the 3D AllegroHand system, which comprises 6 unac-
tauted DOFs, 16 actuated DOFs and 39 collision ge-
ometries. The object, a 6cm cube, is unconstrained. The
hand’s wrist is welded to the world frame. The task is to
reorient the cube to target SE(3) poses.

A. Experiment Setup

1) Goal Generation : When evaluating the proposed MPC
statistically, the success rate depends on which goals are
commanded from which initial configurations. For local opti-
mization, selecting these pairs is nontrivial: goals that are too

easy are uninformative, while those requiring highly non-local
movements are beyond the scope of local stabilization.

For both the IiwaBimanual and AllegroHand systems, we
generate about 1000 pairs of initial conditions and goals which
are locally reachable yet far enough to be challenging for
MPC. Details about the goal generation scheme can be found
in the full paper.

2) Evaluation Metrics: We evaluate the performance of
MPC by comparing the difference between qofinal, the final
object configuration reached by the by MPC, and qogoal, the
goal object configuration.

We split the object configuration qo into a quaternion Q
and a position p: qo := (Q, p), both expressed relative to
the world frame. We divide the error in qo into a translation
error ∥pgoal − pfinal∥, and an rotation error ∆θ(Qgoal, Qfinal),
where ∆θ(·, ·) returns the angular difference between two unit
quaternions.

3) Implementation Details: The numerical experiments are
run on a M2 Max Macbook Pro with 64GB of RAM. We
use the same open-sourced implementation of the CQDC
dyanmics as in [12]. The convex subproblems in MPC is
solved with [38].

B. Results on CQDC Dynamics

In this section, we evaluate the proposed MPC’s ability to
reach goals generated in Section III-A1, using the metrics in
Section III-A2.

As shown in Table I, MPC with CTR achieves the lowest
average error and variance on both IiwaBimanual and Allegro-
Hand. The proposed MPC is able to reach the vast majority
of generated goals with tight tolerance.

IiwaBimanual AllegroHand

Trans. [mm] Rot. [mrad] Trans. [mm] Rot. [mrad]

CTR 2.0 (11.5) 2.1 (10.1) 2.2 (5.7) 9.8 (26.9)
ETR 8.6 (23.8) 9.6 (37.9) 4.5 (53.8) 21.4 (136.4)

TABLE I: Mean translation and rotation errors for local MPC
experiments on CQDC dynamics. Each cell displays the mean (std).

On IiwaBimanual, CTR does significantly better than ETR,
suggesting ETR can be overly relaxed and does not capture
the contact dynamics constraints faithfully. In contrast, for
AllegroHand, the advantage of CTR over ETR is much more
nuanced, suggesting that AllegroHand may activate the feasi-
bility constraints less frequently than IiwaBimanual.

C. Results on Second-Order Dynamics

In Section III-B, we presented results for running MPC
on the CQDC dynamics. However, the CQDC dynamics is
different from real contact physics: not only are second-order
effects ignored, it also introduces a small gap between objects
undergoing sliding friction [11, Section IV-A2], which is an
artifact known as “hydroplaning” [39, Appendix B] shared by
contact dynamics formulations that utilize Anitescu’s convex
relaxation for contact dynamics [40] (this includes Mujoco).

In this sub-section, we would like to understand how the gap
between the CQDC and real physics affect MPC performance
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Fig. 2: A complete path generated by our roadmap-based global planner. The object configuration in each frame is highlighted at the
lower-left corner. (a) shows the starting configuration, which in this example is a vertex already in the roadmap. (b) can be reached from
(a) with a −90◦ yaw. (c) has the same object configuration as (b), but the hand has repositioned for a 90◦ pitch. (d) is system configuration
after the pitch. (e) shows the system reaching the goal configuration from (d). The path (a)-(d) is part of the roadmap and generated offline.
(d)-(e) is generated online using collision-free planning and local MPC.

IiwaBimanual AllegroHand

Trans. [m] Rot. [rad] Trans. [m] Rot. [rad]

Simulation 0.020 0.039 0.014 0.290
(0.065) (0.079) (0.009) (0.197)

Hardware 0.013 0.024 0.018 0.258
(0.016) (0.038) (0.011) (0.215)

TABLE II: Translation and rotation errors for simulation and hard-
ware experiments. Each cell displays the mean (standard deviation).

in more realistic settings. Specifically, we focus on answering
the question: can the MPC controller using the CQDC dy-
namics perform closed-loop stabilization (i) on high-fidelity
simulated second-order dynamics, and (ii) on hardware?

As shown in Table II, the performance on both simulated
and hardware experiments deteriorates when compared with
CQDC dynamics, despite our best effort to tune hyperparam-
eters and apply reasonable heuristics.

Moreover, the average errors from MPC is much smaller
on IiwaBimanual, which we attribute to the Allegro task’s
inherently difficulty. As reaching goal poses on the Allegro
often requires lifting the cube, any slip can cause the cube
to slide back to the palm, resetting progress and resulting in
large errors. In contrast, on IiwaBimanual, the bucket remains
on a tabletop, so slipping merely slows progress without
eliminating it.

IV. GLOBAL PLANNING EXPERIMENTS

To demonstrate the robustness of the roadmap constructed
using the method in Section II-C, we perform on the Allegro
hand system 150 consecutive edge traversals before the hard-
ware shuts down due to overheating. An example path reaching
an arbitrary goal generated using our method is shown in
Figure 2. More roadmap planning examples can be found in
the supplementary video.

V. CONCLUSION

Have we solved the problem of planning and control through
contact dynamics? Locally—on CQDC dynamics—the pro-
posed MPC with Contact Trust Region constraints can achieve
small tracking errors for the vast majority of the goals we
sampled based on local reachability criteria. However, we do

not understand this problem nearly as well as we do the simple
pendulum: not only do we lack solid explanations for the small
but non-zero number of planner failures, but we also have yet
to fully understand the different roles played by feasibility
constraints on IiwaBimanual vs AllegroHand.

Much more remains to be understood for second-order
dynamics, both in simulation and on hardware. In particular,
keeping the robot in contact with the object, without exploiting
the artifact of CQDC dynamics, remains one of the biggest
unsolved challenges. Incorporating the CTR constraints in
MPC greatly alleviates the problem of lost contact, and the
initial guess heuristics empirically helps a bit more. However,
we occasionally still observe loss of contact, and its root cause
remains unclear.

Nevertheless, the tools presented in this paper already
enable capabilities that were previously out of reach for model-
based methods. By accounting for the unilateral nature of
contact, our contact trust region makes it possible to apply
a broad range of robotics algorithms to contact-rich manip-
ulation problems. We hope the MPC, grasp synthesis, and
roadmap-based global planning methods introduced here are
only a small sample of the many contact-rich manipulation
algorithms yet to come.



5

REFERENCES

[1] J. Craig, Introduction to robotics : mechanics & control. Reading,
Mass.: Addison-Wesley Pub. Co., 1986.

[2] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction
to Robotic Manipulation, 1st ed. USA: CRC Press, Inc., 1994.

[3] M. T. Mason and J. K. Salisbury, Robot hands and the mechanics of
manipulation. Cambridge, MA, USA: MIT Press, 1985.

[4] D. Prattichizzo and J. C. Trinkle, Grasping. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 671–700. [Online]. Available:
https://doi.org/10.1007/978-3-540-30301-5 29

[5] L. Han, J. Trinkle, and Z. Li, “Grasp analysis as linear matrix inequality
problems,” IEEE Transactions on Robotics and Automation, vol. 16,
no. 6, pp. 663–674, 2000.

[6] Y. Ding, A. Pandala, and H.-W. Park, “Real-time model predictive
control for versatile dynamic motions in quadrupedal robots,” in 2019
International Conference on Robotics and Automation (ICRA), 2019, pp.
8484–8490.

[7] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[8] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. D.
Prete, “Optimization-based control for dynamic legged robots,” IEEE
Transactions on Robotics, vol. 40, pp. 43–63, 2024.

[9] Y. Li, H. Han, S. Kang, J. Ma, and H. Yang, “On the surprising
robustness of sequential convex optimization for contact-implicit motion
planning,” arXiv preprint arXiv:2502.01055, 2025.

[10] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake, “Do
differentiable simulators give better policy gradients?” in Proceedings
of the 39th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, K. Chaudhuri, S. Jegelka,
L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol. 162.
PMLR, 17–23 Jul 2022, pp. 20 668–20 696. [Online]. Available:
https://proceedings.mlr.press/v162/suh22b.html

[11] T. Pang and R. Tedrake, “A convex quasistatic time-stepping scheme
for rigid multibody systems with contact and friction,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021,
pp. 6614–6620.

[12] T. Pang, H. J. T. Suh, L. Yang, and R. Tedrake, “Global planning for
contact-rich manipulation via local smoothing of quasi-dynamic contact
models,” IEEE Transactions on Robotics, vol. 39, no. 6, pp. 4691–4711,
2023.

[13] T. A. Howell, S. L. Cleac’h, J. Brüdigam, J. Z. Kolter, M. Schwager,
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