
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LAMDA: A LONGITUDINAL ANDROID MALWARE
BENCHMARK FOR CONCEPT DRIFT ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning (ML)-based malware detection systems often fail to account for
the dynamic nature of real-world training and test data distributions. In practice,
these distributions evolve due to frequent changes in the Android ecosystem, ad-
versarial development of new malware families, and the continuous emergence
of both benign and malicious applications. Prior studies have shown that such
concept drift—distributional shifts in benign and malicious samples, leads to sig-
nificant degradation in detection performance over time. Despite the practical im-
portance of this issue, existing datasets are often outdated and limited in temporal
scope, diversity of malware families, and sample scale, making them insufficient
for the systematic evaluation of concept drift in malware detection.
To address this gap, we present LAMDA, the largest and most temporally diverse
Android malware benchmark to date, designed specifically for concept drift anal-
ysis. LAMDA spans 12 years (2013–2025, excluding 2015), includes over 1 mil-
lion samples (approximately 37% labeled as malware), and covers 1,380 malware
families and 150,000 singleton samples, reflecting the natural distribution and evo-
lution of real-world Android applications. We empirically demonstrate LAMDA’s
utility by quantifying performance degradation of standard ML models over time
and analyzing feature stability across years. As the most comprehensive Android
malware dataset to date, LAMDA enables in-depth research into temporal drift,
generalization, explainability, and evolving detection challenges. The dataset and
code are available at: https://anonymous.4open.science/r/LAMDA-D763/.

1 INTRODUCTION

Android malware poses a growing threat to user privacy and security, with over 33 million attacks
blocked in 2024 alone (Kaspersky, 2024; AV-TEST, 2025). Static feature based ML methods, which
analyze features extracted from Android application packages (APKs), have emerged as a promising
defense mechanism (Arp et al., 2014; Mariconti et al., 2017). However, these detectors often suffer
performance degradation over time due to concept drift — gradual shifts in the feature distribution
caused by the evolving nature of both malicious and benign software (Yang et al., 2021d).

Concept drift can result from several factors, including changes in developer practices, updates
to Android APIs, and, most significantly, the evolving and adaptive strategies of malware au-
thors (Greenberg, 2020). To evade detection, adversaries frequently obfuscate or modify their code
by injecting alternative API calls, altering manifest components, or exploiting newly introduced ser-
vices (News, 2024). For example, the Android trojan SoumniBot obfuscates its manifest file to evade
analysis and detection (News, 2024). These tactics lead to observable shifts in static features over
time, undermining the robustness of ML-based detection systems (Yang et al., 2021d). Prior studies
have shown that malware families (i.e., clusters of samples exhibiting similar behavioral traits) play
a central role in driving such drifts (Chow et al., 2023; Barbero et al., 2022b).

Although concept drift plays a central role in Android malware evolution, most existing datasets
are not designed to support drift analysis. Datasets such as Drebin (Arp et al., 2014), TESSER-
ACT (Pendlebury et al., 2019), and APIGraph (Zhang et al., 2020) are limited in temporal coverage,
family diversity, or structural organization for studying drift. Similarly, Windows-based datasets like
EMBER (Anderson & Roth, 2018b), SOREL-20M (Harang & Rudd, 2020), and BODMAS (Yang
et al., 2021c) are constrained by short collection periods or target different ecosystems. While EM-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

BERSim (Corlatescu et al., 2023), MalNet (Freitas et al., 2020), and AnoShift (Dragoi et al., 2022)
offer task-specific contributions, they do not support longitudinal drift analysis in Android malware
classification. To address these gaps, we introduce LAMDA, a novel Android malware benchmark
dataset curated for temporal drift analysis with family evolution. LAMDA spans over 12 years (i.e.,
2013–2025, excluding 2015 due to the unavailability of hashes in the AndroZoo repository (Al-
lix et al., 2016)), covering 1,008,381 APK samples across 1,380 unique malware families and over
150,000 Singleton samples (i..e, samples without av class labels) from AndroZoo repository (Alecci
et al., 2024). Each sample is labeled using VirusTotal’s vt detection count (VirusTotal, 2025)
reported in AndroZoo database (Alecci et al., 2024). The samples are decompiled to extract fine-
grained static features following the Drebin (Arp et al., 2014) feature definitions.

We validate LAMDA through a series of comprehensive evaluations, including longitudinal degra-
dation analysis of the supervised binary classification under concept drift (AnoShift-style (Dragoi
et al., 2022)), temporally disjoint training (testing), and family-wise feature stability assessments.
LAMDA enables explanation-guided analysis of concept drift and combines long-term structural
modeling with SHAP-based attributions (Lundberg & Lee, 2017), allowing researchers to trace how
feature relevance shifts over time and better understand the underlying causes of model degradation.

In summary, the contributions of this paper are as follows:

• We present LAMDA, a large-scale Android malware benchmark comprising over 1 million
APKs across 1,380 unique families spanning for 12 years (2013 to 2025, excluding 2015),
built on static features based on Drebin (Arp et al., 2014) features.

• We perform a detail concept drift detection using structured temporal splits (Dragoi et al.,
2022) to show that LAMDA exhibits pronounced distributional shift than prior benchmark.

• We conduct comprehensive drift analysis, including per-feature distribution shifts, fea-
ture stability analysis across malware families (Zhang et al., 2020), temporal label flipping
analysis, and SHAP-based explanation (Lundberg & Lee, 2017) drift that reveal temporal
changes in feature importance.

• We show that existing drift adaptation methods, though effective on prior bench-
mark (Zhang et al., 2020), fail to generalize on LAMDA due to its more realistic and
pronounced concept drift.

2 RELATED WORK

In this section, we discuss prior work and their limitations that motivate the creation of LAMDA.

Evolution of Malware Datasets and Benchmarks. Early malware datasets such as Drebin (Arp
et al., 2014) (Android) and EMBER (Anderson & Roth, 2018b) (Windows) have played a pivotal role
to study concept drift in malware analysis. More recent efforts—including SOREL-20M (Harang
& Rudd, 2020) and BODMAS (Yang et al., 2021c) for Windows, and TESSERACT (Pendlebury
et al., 2019), APIGraph (Zhang et al., 2020), and Chen et al. (2023) for Android attempt to address
limitations in scale and recency. Nonetheless, these datasets suffer from one or more major limita-
tions — they are often outdated, contain either relatively few malware samples or families, or lack
long-term temporal coverage necessary for studying the evolution of malware. For example, Drebin
spans only 2010–2012 with 5,560 samples from 179 families; TESSERACT covers 2014–2016 with
12,735 samples; API Graph spans 2012–2018 with 32,089 samples from 1,120 families; and Chen
et al. (2023) includes 10,200 samples across 254 families from 2019–2021. Despite their temporal
spread, these datasets are not explicitly structured to support longitudinal drift analysis or capture
evolutionary patterns in malware behavior.

Explainability and Semantic Features. Explainability is critical for understanding how feature
importance shifts under concept drift. While Drebin (Arp et al., 2014) and BODMAS (Yang et al.,
2021b) introduced interpretable features and temporal structure, few studies have systematically
used them to analyze drift. TRANSCENDENT (Barbero et al., 2022a) incorporates semantic reason-
ing for selective prediction, but longitudinal robustness of explanations remains underexplored due
to limited dataset support. LAMDA fills this gap by providing a temporally structured benchmark
with interpretable features and SHapley Additive exPlanations (SHAP)-based explanations (Lund-
berg & Lee, 2017), enabling fine-grained, longitudinal analysis of model behavior and drift.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 LAMDA CREATION

In this section, we describe the construction process of the LAMDA. We have downloaded APKs
from AndrooZoo repository (Allix et al., 2016) and decompiled APKs to extract static Drebin (Arp
et al., 2014) features and then transformed the features into binary vectors for downstream analysis.

Label Assignment and Collection Strategy. To construct a large-scale, temporally diverse
dataset, we use metadata from AndroZoo (Allix et al., 2016), including APK hashes, VirusTotal
(VT) results, and submission dates. For each year from 2013 to 2025 (excluding 2015, which lacks
valid entries), we collect APKs and assign binary labels using the vt detection field. Following
prior heuristics (Arp et al., 2014; Pendlebury et al., 2019), we define: (i) Benign for vt detection
= 0, (ii) Malware for vt detection ≥ 4, and (iii) discard Uncertain samples with scores in 1, 3.
The ≥ 4 threshold mitigates label noise by requiring stronger AV consensus (Chen et al., 2016).

To reduce sampling bias in learning systems, we collected 50,000 malware and 50,000 benign sam-
ples per year, while preserving month-wise temporal distributions across both categories. Although
prior work such as TESSERACT (Pendlebury et al., 2019; Chen et al., 2023) adopts a 90:10 benign-
to-malware ratio, we attempt to maintain a balanced 50:50 ratio (Anderson & Roth, 2018b). This
choice is motivated by the need to mitigate the risk of skewed learned representations (such as over-
fitting (Shwartz-Ziv et al., 2023), disparity in learning (Zhou et al., 2023)) that can arise from class
imbalance. A balanced dataset helps ensure that the model learns meaningful distinctions between
classes, captures a wider range of malware families, and is exposed to a broader spectrum of behav-
iors and evasive techniques. Such diversity not only enables longitudinal generalization studies but
also increases the difficulty of the detection task, particularly for learning systems that must contend
with rare, novel, or semantically similar malware families (Anderson & Roth, 2018b). Nonetheless,
due to limited availability of malware samples in certain years such as 2017, 2023, 2024, and 2025,
LAMDA still exhibits class imbalance, with each of these years showing different imbalance ratios.

Another practical challenge during data collection involved download and decompilation failures,
requiring us to over-fetch APKs to meet target counts. To mitigate this, we included a 20% overhead
in the number of APK hashes per year. All APKs are retrieved via authenticated academic access
to the AndroZoo repository 1 and stored in a consistent directory structure ([year]/malware/,
[year]/benign/) to facilitate temporal slicing and cross-year analysis. Corrupted or undecom-
pilable samples are excluded and logged for transparency. The final dataset comprises over one
million APKs. A detailed year-wise breakdown is provided in Appendix A.

Family Label Acquisition. To enable finer-grained analysis of how malware behavior evolves
over time, we assign family-level labels to all malware samples using AVClass2 (Sebastián et al.,
2016), which standardizes noisy antivirus vendor labels into consistent malware family names. This
is critical for developing detection systems that generalize to emerging threats. The labeling pro-
cess involves retrieving VirusTotal (2025) reports, converting them to the required format, running
AVClass2, and post-processing the output to retain SHA256 mappings. Figures 1(a) and 1(b) show
the yearly distribution of recurring versus newly observed families and the count of singleton fam-
ilies—those that appear only once—respectively. Family labels enable research into more complex
tasks such as multi-class classification and the study of temporal trends across malware families.

Decompilation and Static Feature Extraction. Each APK is statically decompiled using
apktool (Brut, 2025), producing a disassembled smali representation and the original
AndroidManifest.xml. We parse these artifacts to extract a diverse set of static fea-
tures commonly used in Android malware detection (Arp et al., 2014). Specifically, the
AndroidManifest.xml file is analyzed to obtain the list of requested permissions (e.g.,
ACCESS FINE LOCATION), declared activities and services, broadcast receivers, required hard-
ware components, and intent filters (Arp et al., 2014). Meanwhile, the disassembled smali code
is scanned to identify invocations of restricted APIs (e.g., NotificationManager.notify),
suspicious API usages (e.g., getSystemService), and embedded hardcoded IPs/URLs (e.g.,
e.crashlytics.com). The extracted Drebin feature sets comprises several static categories de-
rived from Android APKs (Arp et al., 2014). A detailed list of features is provided in Appendix B.

1https://androzoo.uni.lu/access

3

https://androzoo.uni.lu/access

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

F
a
m

il
y
 C

o
u

n
t

(a)

(b)

3064430020

0

0 0

F
a
m

il
y
 C

o
u

n
t

0

651

Figure 1: Temporal trends in mal-
ware family evolution.

(a) LAMDA. (b) APIGraph.

Figure 2: F1-score over time across different temporal splits.

Vectorization and Temporal Feature Alignment. After decompiling each APK, we extract static
features into a .data file. Each year’s data is split into 80% training and 20% testing sets using
stratified sampling to preserve class balance. From the training set, we construct a global vocabu-
lary by taking the union of unique tokens across all samples, yielding 9,690,482 (≈ 9.69 million)
raw features (Yang et al., 2021d). Each APK is then represented as a high-dimensional binary vec-
tor using a bag-of-tokens model, where each token corresponds to a binary feature indicating its
presence or absence in the sample (Arp et al., 2014). To reduce dimensionality and ensure com-
putational feasibility, we apply VarianceThreshold from scikit-learn to eliminate low-
variance features. For all experiments, we use the Baseline variant, which applies a threshold of
0.001 (Rahman et al., 2025), resulting in 4, 561 final features. This compact and consistent repre-
sentation supports a range of downstream tasks, including supervised learning, drift analysis, and
continual learning. More details are in Appendix B. The dataset is initially created in a sparse matrix
format, storing binary feature vectors and metadata as compressed .npz files to optimize for storage
and computational efficiency. These .npz files are organized by year and stratified into training and
test splits. A detailed breakdown of feature dimensions under varying VarianceThreshold set-
tings is provided in Appendix B. For scalability of LAMDA, we have also published global features,
variance threshold objects and selected features after applying VarianceThreshold.

4 CONCEPT DRIFT DETECTION

In this section, we examine performance degradation of supervised models across temporally distant
splits (Dragoi et al., 2022) (Section 4.1) to detect concept drift, followed by distributional shifts using
Jeffreys divergence and t-SNE visualizations (Sections 4.1 and 4.2).

4.1 CONCEPT DRIFT DETECTION WITH SUPERVISED LEARNING

Experimental Setting. To evaluate the robustness of malware detectors under temporal distribu-
tion shifts, we perform supervised learning experiments using four widely adapted detector models
from the malware research — Linear SVM, LightGBM, MLP, XGBoost, detectBERT, and ViT (Arp
et al., 2014; Anderson & Roth, 2018b). Detailed model configurations are provided in Appendix D.

Following the AnoShift benchmark (Dragoi et al., 2022), we divide LAMDA into three temporally
separated regions: TRAIN (i.e., initial training set), IID, NEAR, and FAR. TRAIN+IID includes
samples from 2013–2014, with the last month of each year held out for IID evaluation. Models are
trained on all other months, and the held-out portion serves as an in-distribution test set to measure
baseline performance on temporally adjacent, unseen data. To assess generalization under drift,
we define two evaluation regions: NEAR (2016–2017) and FAR (2018–2025), allowing systematic
analysis of performance degradation as the temporal gap from training increases. For comparison,
we evaluate the same models on the APIGraph dataset (Zhang et al., 2020) using a similar split:
training on 2012, IID on 2013, NEAR on 2014, and FAR on 2015–2018. All experiments are
repeated five times with different random seeds. For each split, we report results in Table 1 as
mean±std, averaged across all runs and years within each split. Figure 2 shows yearly results
averaged over runs. This experiment uses the LAMDA-baseline with a VarianceThreshold of
0.001. To study the impact of feature space on drift, we also test thresholds of 0.01 and 0.0001, with
results provided in Appendix D.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Comparison of performances on LAMDA and API Graph across three temporal splits.

Split Model LAMDA API Graph
F1 ROC-AUC PR-AUC FNR FPR F1 ROC-AUC PR-AUC FNR FPR

IID

LightGBM 97.49±0.17 99.55±0.03 99.50±0.11 1.74±0.34 2.69±0.48 85.95±0.00 98.91±0.00 95.20±0.00 22.39±0.00 0.33±0.00

MLP 97.21±0.12 99.48±0.04 99.38±0.20 2.50±0.06 2.58±0.85 85.79±0.00 96.37±0.00 88.49±0.00 20.31±0.00 0.67±0.00

SVM 94.98±1.07 98.89±0.28 98.75±0.46 4.82±0.76 4.09±0.55 82.00±0.00 97.33±0.00 90.94±0.00 26.74±0.00 0.60±0.00

XGBoost 97.05±0.14 99.15±0.16 97.68±1.16 2.20±0.43 2.96±0.01 80.33±0.00 96.05±0.00 89.74±0.00 28.35±0.00 0.75±0.00

DetectBERT 95.27±0.86 98.92±0.27 98.61±0.79 3.96±0.13 4.48±0.59 83.05±0.00 98.82±0.00 94.19±0.00 25.60±0.00 0.48±0.00

ViT 94.97±1.59 98.91±0.37 98.61±0.85 4.63±0.81 4.17±0.73 86.64±0.00 98.65±0.00 93.73±0.00 17.82±0.00 0.81±0.00

NEAR

LightGBM 59.48±28.20 74.05±23.76 70.18±27.10 50.51±30.82 1.85±0.95 66.77±0.00 95.94±0.00 83.01±0.00 47.68±0.00 0.48±0.00

MLP 56.57±28.41 82.71±11.19 67.94±24.59 51.95±30.42 3.98±1.19 68.72±0.00 86.79±0.00 68.31±0.00 38.80±0.00 1.87±0.00

SVM 52.91±28.40 75.18±17.98 62.53±29.82 55.62±28.88 4.71±0.97 63.06±0.00 89.25±0.00 70.15±0.00 45.48±0.00 2.03±0.00

XGBoost 55.84±29.73 77.75±16.85 68.14±26.55 53.84±30.94 2.14±0.86 51.47±0.00 86.90±0.00 65.69±0.00 60.41±0.00 1.57±0.00

DetectBERT 59.11±34.70 73.86±29.73 66.95±37.60 49.92±37.55 4.05±0.84 69.08±0.01 94.33±0.45 82.54±1.20 43.13±0.71 0.59±0.15

ViT 58.77±35.48 71.47±32.31 63.97±40.01 48.68±39.01 5.63±1.28 72.15±0.00 93.08±0.00 78.26±0.00 31.23±0.00 2.41±0.00

FAR

LightGBM 47.24±27.33 78.04±20.83 63.45±35.80 64.10±22.97 1.30±0.95 68.20±4.63 95.68±0.81 81.69±1.59 45.04±5.72 0.61±0.07

MLP 47.59±25.30 84.04±11.23 66.16±34.34 64.40±20.63 1.14±0.71 63.92±5.39 87.10±1.95 64.22±4.19 46.45±6.10 1.40±0.15

SVM 41.86±22.55 79.07±15.06 62.27±34.09 69.93±16.85 1.27±0.76 66.18±6.21 93.44±0.52 75.46±2.58 44.26±8.35 1.23±0.14

XGBoost 42.75±25.86 76.85±16.49 60.33±35.88 68.11±20.43 1.69±0.57 54.88±9.26 83.44±4.79 65.03±6.67 56.68±8.92 1.41±0.35

DetectBERT 45.01±26.84 76.37±23.07 60.56±36.63 64.57±20.54 3.15±1.09 73.23±3.68 96.74±0.17 83.15±1.44 35.67±5.55 0.99±0.15

ViT 47.03±29.55 78.53±20.17 58.77±37.82 60.23±22.66 4.77±1.20 68.47±3.94 95.28±0.19 73.69±3.83 27.71±6.81 3.81±0.14

Results. Table 1 summarizes the performance of malware detectors on both LAMDA and API-
Graph under the IID, NEAR, and FAR evaluation splits. All detectors perform strongly under
IID conditions, but their effectiveness declines sharply as the temporal gap from training increases.
For instance, LightGBM’s F1-score on LAMDA drops from 97.49% (IID) to 59.48% (NEAR) and
47.24% (FAR), alongside a significant rise in the false negative rate, from 1.47% to 50.51% and
64.10%, respectively,—demonstrating increased difficulty. In contrast, the false positive rate (FPR)
remains low and stable, likely due to the more consistent behavior of benign apps over time. Fig-
ure 2(a) further visualizes this trend, showing how F1-scores decline over time. Notably, we observe
a sharp drop in performance between 2016 and 2017, indicating a significant distributional shift. A
similar decline is evident from 2023 to 2024. In contrast, F1-scores increase from 2018 to the 2019–
2022 period, suggesting that these intermediate years exhibit less drift relative to 2017 and 2018.

In APIGraph, LightGBM’s F1-score drops from 85.95% (IID) to 66.77% (NEAR), but stabilizes at
68.20% on FAR. The F1-scores over the years in Figure 2(b) indicate a smaller degree of temporal
drift, with only modest changes between years. Compared to the APIGraph, LAMDA shows a higher
standard deviation in both NEAR and FAR, suggesting more pronounced and variable distributional
shifts. Complex transformer-based models like DetectBERT and ViT also degrade with increasing
drift severity. This supports our claim that LAMDA introduces stronger concept drift, making it a
more challenging and realistic benchmark for evaluating long-term malware detection.

4.2 VISUAL ANALYSIS OF CONCEPT DRIFT

Setting. To track how malware and benign class distributions evolve over time, we use two com-
plementary visualization techniques: Jeffreys divergence heatmaps and t-SNE projections. Jef-
freys divergence (Jeffreys, 1946), a symmetric information-theoretic measure, quantifies distribu-
tional shifts in individual static features across years. We compute pairwise divergences for all
yearly combinations in LAMDA (2013–2025) and APIGraph (2012–2018). In parallel, we apply
t-SNE (Van der Maaten & Hinton, 2008) to project high-dimensional feature vectors into 2D space.
For direct comparison, we focus on four years shared by both datasets (2013, 2014, 2016, 2017),
following common practice in prior malware drift studies (Pendlebury et al., 2019). Full year-wise
t-SNE visualizations are provided in Appendix B.

Analysis. Figure 3 shows Jeffreys divergence heatmaps for both datasets. In both LAMDA and
APIGraph, divergence increases as the temporal gap widens, confirming non-trivial concept drift.
LAMDA exhibits a broader divergence range, particularly from 2022–2025, reflecting substantial
feature distribution changes likely driven by evolving APIs, shifting development practices, and
emerging malware behaviors. In contrast, APIGraph remains relatively stable, with limited diver-
gence in its later years. Figure 4 provides t-SNE projections for the selected years. In LAMDA,
samples become more dispersed by 2016–2017, suggesting increasing structural sparsity in feature
space. Since t-SNE distorts global distances, we corroborate these patterns with Jeffreys diver-
gence, which confirms genuine distributional shifts. APIGraph, by comparison, maintains tight and
relatively static clusters, indicating limited structural evolution. Together, these trends underscore
LAMDA’s value as a temporally rich benchmark for studying real-world concept drift.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) LAMDA (b) APIGraph

Figure 3: Jeffreys divergence heatmaps across
years for LAMDA and APIGraph.

Figure 4: t-SNE projections showing feature
space evolution for LAMDA and APIGraph.

S
ta

bi
lit

y
sc

or
e

1.0

0.8

0.6

0.4

0.2

0.0
1. dowgin, 2. kuguo, 3. airpush, 4. smsreg, 5. dnotua, 6. gappusin, 7. revmob, 8. leadbolt, 9. adwo, 10. youmi, 11. inmobi, 12. plankton, 13. zdtad, 14. domob, 15. hiddad, 16. ewind, 17. frmy, 18. baiduprotect
19. droidkungfu, 20. utchi, 21. admogo, 22. autoins, 23. wooboo, 24. smspay, 25. umpay, 26. kyview, 27. fakeapp, 28. igexin, 29. ginmaster, 30. feiwo, 31. skymobi, 32. anydown, 33. smssend, 34. fakeinst, 35. tapcore
36. datacollector, 37. viser, 38. mobwin, 39. apptrack, 40. triada, 41. wapron, 42. swizzor, 43. mobidash, 44. frla, 45. fakeflash, 46. shedun, 47. wkload, 48. frupi, 49. systemmonitor, 50. utilcode, 51. ganlet, 52. minimob
53. pushad, 54. scamapp, 55. nandrobox, 56. dianjin, 57. gumen, 58. hypay, 59. presenoker, 60. basebridge, 61. opfake, 62. cimsci, 63. appsgeyser, 64. dasu, 65. gexin, 66. torjok, 67. notifyer, 68. syringe, 69. blacklister
70. hamad, 71. dianle, 72. fictus, 73. remotecode, 74. shixot, 75. uapush, 76. smsspy, 77. autoinst, 78. styricka, 79. joker, 80. cnzz, 81. droiddreamlight, 82. fakeangry, 83. geinimi, 84. toofan, 85. appoffer, 86. boogr
87. boqx, 88. smforw, 89. golddream, 90. ramnit, 91. marsdaemon, 92. pjapps, 93. andreed, 94. virtualapp, 95. ksapp, 96. wroba, 97. hqwar, 98. cauly, 99. mecor, 100. wiyun

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Figure 5: The distribution of feature stability scores for top 100 malware families. 58 families are
common in both LAMDA (green) and APIGraph (blue) datasets, and families marked as red labels
along x-axis available in LAMDA with minimum family size criteria.

5 COMPREHENSIVE DRIFT ANALYSIS

In this section, we present a more in-depth analysis of different types of drift, including feature
stability (Section 5.1), temporal drift (Section 5.2), SHAP-based explainability (Section 5.3), and
label drift (Section 5.4)

5.1 FEATURE SPACE STABILITY ANALYSIS ON TOP MALWARE FAMILIES

Analysis Setting. We evaluate the temporal consistency of malware families using two comple-
mentary metrics: stability scores and Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis
& Fusi, 2020), following prior work (Zhang et al., 2020; Civitarese et al., 2022). The analysis is
conducted in the original feature space and focuses on the 100 malware families with the largest
sample sizes. Within each family, samples are temporally ordered from 2013 to 2025, though not all
families contain data for every year. Following (Zhang et al., 2020), we partition each family’s sam-
ples into ten equal subsets, each representing 10% of the family’s total. For APIGraph, we identify
58 families with at least 10 samples between 2013 and 2018, meeting this subdivision requirement.
Stability scores are then computed using Jaccard similarity across the ten subsets for both LAMDA
and APIGraph.

Stability Scores Analysis. Figure 5 shows the distribution of consecutive pairwise stability scores
across ten groups for each of the top 100 malware families. The number of samples per family
varies considerably, ranging from 186 to 32,475, with a mean of 1,984 and a median of 535. The
green box plots correspond to LAMDA, while the blue box plots represent APIGraph. Both datasets
capture the temporal evolution of malware families, as reflected in the spread and median of stability
scores. Broader spreads and lower medians in both datasets indicate greater behavioral variability
over time. Notably, LAMDA includes more families and reflects broader evolutionary patterns than
APIGraph. These differences suggest that detection models trained on LAMDA may offer improved
insight into concept drift, benefiting from greater sample diversity and family coverage.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: This table shows label drift for Android malware samples, highlighting shifts in detection
over time. TS: Total # of Malware Samples, BC : Currently Labeled as Benign, %BC : Percentage of
Total Malware Samples Currently Labeled as Benign. DImproved: Improved Detection, DWeakened:
Weakened Detection, DUnchanged: Unchanged Detection, DSDrop: Significant Drop of Detection
Count, DSImprove: Detection Count Significantly Increased.

Year TS BC %BC DImproved DWeakened DUnchanged DSDrop DSIncrease

2013 44383 24 0.05 40436 439 3484 85 34481
2014 45756 345 0.75 37108 1554 6749 863 27239
2016 45134 177 0.39 26963 7485 10509 1160 13581
2017 21359 1108 5.19 7765 10289 2197 5061 3362
2018 39350 1242 3.16 17561 15346 5201 7304 7600
2019 41585 22 0.05 22905 9294 9364 467 7518
2020 46355 25 0.05 20755 3931 21644 294 8001
2021 35627 23 0.06 10385 4482 20737 176 2531
2022 41648 4 0.01 10445 3629 27570 121 2719
2023 7892 15 0.19 1763 1979 4135 592 416
2024 794 0 0.00 74 319 401 79 19
2025 23 0 0.00 6 2 15 0 2

Train (2013) - Test (2014-2024) samples

S
ta

b
ili

ty
 s

co
re

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

2013

2014

2014

2016

2016

2017

2017

2018

2018

2019

2019

2020

2020

2021

2021

2022

2022

2023

2023

2024

airpush
dianjin

ewind
dnotua

fakeapp
plankton
smsagent
smspay
smsreg
umpay

(a) Stability scores.

D
is

t.
 t

o
n
ea

re
st

 c
en

tr
oi

d

0.8

Common malware families

Airp
us

h

Pla
nk

to
n

Fa
ke

ap
p

Smsre
g

Umpa
y

Ew
ind

Smsp
ay

Smsa
ge

nt

Dian
jin

Dno
tu

a

0.6

0.5

0.4

0.3

0.2

0.1

Non-drift
Drift

0.0

0.7

364
11293

6
1238

3
1338

8
1216

30
2007

33
1310

2
149

8
426

310
13632

16
10152

(b) Distribution dis-
tances.

Figure 6: Stability and distribution analysis on
malware families.

(a) LAMDA. (b) APIGraph.

Figure 7: SHAP-based explanation drift on
LAMDA and APIGraph datasets.

5.2 TEMPORAL DRIFT ANALYSIS ON COMMON MALWARE FAMILIES

Analysis Setting. We assess the drifting behavior over the years for the common families present
from 2013 to 2025. We observe that only 10 families appear consistently each year, except for
2025. Subsequently, we compute the year-wise stability score for the original feature set within
each of these 10 common families. Additionally, we measure the distribution distances based on
the CADE (Yang et al., 2021a) latent features in the test set. This experiment uses 2013 dataset for
training and 2014 to 2024 samples serve as test sets.

Feature-Based Stability Evaluation. Figure 6a shows Jaccard similarity–based stability scores
across consecutive yearly sample sets for 10 common malware families. Flatter curves indicate
stronger temporal consistency, while sharp variations reflect feature drift. Most families such as
airpush, dianjin, and smsreg exhibit relatively stable trends, suggesting consistent feature
distributions over time. In contrast, families like umpay, fakeapp, and dnotua display pro-
nounced fluctuations, with a notable spike around 2017–2018. The especially large peak for umpay
signals substantial temporal drift, likely tied to evolving malware behaviors during that period. Over-
all, these results show that while many families retain stable characteristics, others undergo signifi-
cant shifts, underscoring the importance of dynamic adaptation in detection models.

Latent Space Drift Detection via Distance Metrics. Figure 6b shows the distribution of distances
from test samples (2014–2024) to their nearest class centroids across 10 common families, computed
in the contrastive latent space (Yang et al., 2021d). Each test sample is encoded using the trained
contrastive autoencoder, and Euclidean distances to class centroids are calculated. These distances
are then normalized within each class using the Median Absolute Deviation (MAD). A sample is
classified as drifted if its normalized MAD score A(k) exceeds the empirical threshold TMAD = 3.5;
otherwise, it is considered non-drifted. This criterion identifies samples that deviate significantly
from learned class distributions as potential drift instances. The resulting boxplots reveal a clear

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison of concept drift adaptation methods on LAMDA and APIGraph under different
labeling budgets. Results are reported as mean±std.

Budget Method APIGraph LAMDA
F1 (%) FNR (%) FPR (%) F1 (%) FNR (%) FPR (%)

50
Chen et al. (2023) 89.26±0.31 15.13±0.31 0.51±0.03 37.43±2.43 3.54±0.32 93.79±2.71

CADE Yang et al. (2021d) 83.92±1.75 19.79±2.09 1.07±0.15 34.20±1.80 44.00±2.50 56.80±2.20

TRANSCENDENT Barbero et al. (2022b) 38.42±1.52 69.47±1.83 1.65±0.27 32.00±1.50 37.80±2.10 63.70±1.80

100
Chen et al. (2023) 90.70±0.15 13.18±0.26 0.45±0.00 38.50±2.20 3.30±0.30 93.50±2.60

CADE Yang et al. (2021d) 87.08±0.54 14.39±1.08 1.10±0.16 37.30±1.60 37.20±2.10 45.20±2.00

TRANSCENDENT Barbero et al. (2022b) 40.17±1.49 68.03±1.67 1.42±0.25 35.80±1.30 28.40±1.90 70.10±1.60

200
Chen et al. (2023) 91.70±0.38 11.43±0.61 0.44±0.01 41.00±1.80 2.85±0.28 91.20±2.30

CADE Yang et al. (2021d) 88.87±0.24 14.05±0.35 0.74±0.01 38.50±1.30 31.80±1.80 38.50±1.60

TRANSCENDENT Barbero et al. (2022b) 42.38±1.36 66.48±1.54 1.15±0.21 39.00±1.20 21.30±1.50 76.30±1.40

400
Chen et al. (2023) 92.39±0.29 10.18±0.52 0.45±0.02 43.00±1.60 2.50±0.25 89.80±2.10

CADE Yang et al. (2021d) 89.16±0.53 13.23±0.56 0.80±0.15 45.40±1.10 59.20±1.50 10.10±1.20

TRANSCENDENT Barbero et al. (2022b) 43.97±1.21 65.41±1.42 0.98±0.17 40.60±1.10 15.60±1.30 82.80±1.20

separation between non-drifted (green) and drifted (red) samples across families. Drifted samples
consistently exhibit higher distances, with pronounced separation for families such as plankton,
umpay, dianjin, and dnotua. In contrast, non-drifted samples cluster tightly around their cen-
troids, indicating intra-family stability. Additional analyses are provided in Appendix C.

5.3 TEMPORAL ANALYSIS OF SHAP-BASED EXPLANATION DRIFT

Analysis Setting. Explanation drift happens when the features a malware detector relies on for
decisions change over time, even if its accuracy looks stable. To study this in the LAMDA and API-
Graph (Zhang et al., 2020) datasets, we measure two types of change using SHAP (Lundberg & Lee,
2017) feature attributions: Jaccard distance, which checks how much the set of important features
overlaps across time, and Kendall distance, which checks how consistent their rankings remain.
Small distances mean the model reasons consistently, while large Jaccard or low Kendall values
indicate shifts in reasoning. We compute SHAP values using KernelExplainer (Lundberg &
Lee, 2017) with 100 background and 100 test samples per month. We calculate distances over the
top-1000 features. To make figures easier to read, the x-axis in Figure 7a is labeled every three
months, covering June 2013–January 2025 (shown from September 2013–December 2024). For
APIGraph, the period is January 2013–December 2018 with the same labeling scheme (Figure 7b).

Jaccard and Kendall Distance Analysis. Figure 7a shows that LAMDA exhibits consistently
high Jaccard distances (around 0.9), indicating substantial variability in the features the model relies
on over time. A sharp dip around September 2017 marks a rare period of stability or possibly
an anomaly. The Kendall distances reveal a moderate but steady pattern, reinforcing that both the
set and the order of important features fluctuate significantly across time. In contrast, APIGraph
(Figure 7b) shows a gradual downward trend in both measures, suggesting that its feature importance
remains relatively stable. Overall, SHAP-based analysis highlights LAMDA’s volatility compared
to APIGraph’s stability, underscoring LAMDA’s value for studying concept drift, continual learning,
and model robustness in dynamic malware detection scenarios (Zhang et al., 2020).

5.4 LABEL DRIFT ANALYSIS ACROSS YEARS

Analysis Setting. We study how malware sample labels change over time, focusing on cases where
a sample initially classified as malicious based on VirusTotal (VT) consensus is later reclassified as
benign in a subsequent year, and vice versa. To analyze label drift, we use metadata from both
AndroZoo (AZ) and VirusTotal (VT). AndroZoo provides metadata indicating how many VT en-
gines flagged an application as malware at a given point. We first collected this metadata for a year.
Then, for the same set of samples, we retrieved updated reports directly from VT in a later year. By
comparing the two reports, we track how many samples changed their labels over time.

Results. Table 2 summarizes how labels change over time according to VT and AZ. The table
reports yearly statistics from 2013 to 2025, including the total number of malware samples (TS)
contained in LAMDA for each year. Among these, we report: the number of samples whose labels

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

have changed to benign (BC); the samples where more VT engines now flag them as malware
(DImproved); the samples where fewer VT engines now flag them as malware (DWeakened); and the
samples where the total number of VT detections remains unchanged (DUnchanged). For example,
in 2013, among 44,383 malware samples that were initially detected as malicious, 24 are no longer
flagged by any VT engine. Of the remaining 40,436 samples, 439 are now flagged by fewer engines,
3,484 show no change, and the rest are flagged by more engines. In addition, some samples show
a significant drop (DSDropped) or increase (DSIncrease) in detection count, with these columns
specifically highlighting drastic change (greater than 50%) in detection count.

6 CONCEPT DRIFT ADAPTATION

In this section, we evaluate concept drift adaptation (CDA) using three state-of-the-art (SOTA) tech-
niques: Chen et al. (2023), CADE (Yang et al., 2021d), and TRANSCENDENT (Barbero et al.,
2022b), on the LAMDA dataset to highlight the unique adaptation challenges it poses compared
to APIGraph. We adopt the Chen et al. (2023) active learning framework, which operates on a
monthly cycle with labeling budgets of 50, 100, 200, and 400 samples. In each cycle, a subset of
test samples is selected for labeling by human analysts, after which the model is retrained to mitigate
performance degradation.

Results. Table 3 summarizes the performance of the evaluated methods. Across most labeling
budgets, Chen-AL delivers the strongest results, except at the budget of 400 on LAMDA. Compared
to APIGraph, LAMDA introduces substantially more challenging adaptation scenarios. While Chen
et al. (2023) consistently outperforms CADE and TRANSCENDENT, all methods fail to generalize
effectively on LAMDA. For instance, with a labeling budget of 400, Chen et al. (2023) achieves an
F1-score of about 92% on APIGraph, but drops sharply to 43% on LAMDA. Similarly, CADE and
TRANSCENDENT achieve only 45% and 40% F1-score, respectively. These findings empirically
demonstrate that existing SOTA CDA techniques are insufficient when faced with longitudinal and
complex distributional shifts such as those captured by LAMDA, highlighting the need for more
advanced CDA approaches capable of adapting to long-term drift.

7 DISCUSSION AND LIMITATION

LAMDA’s temporal structure facilitates evaluation of generalization under distributional shift, while
its family diversity allows for studying malware evolution and model adaptation with limited data,
including transfer and few-shot learning. Beyond these uses, LAMDA is also designed to facilitate
continual learning research for both Domain and Class incremental learning (Rahman et al., 2022;
Park et al., 2025), with detailed experimental results provided in Appendix I.

Limitations. While LAMDA provides a solid foundation for studying concept drift in malware
analysis, we acknowledge a few limitations. First, it relies exclusively on DREBIN (Arp et al., 2014)
features. Other static features such as control flow graphs and clustered API calls are out of scope
of this work. Furthermore, we do not perform feature extraction on dynamic behaviors of the APKs
which are observable only at runtime. Second, while previous work suggests a 10:90 malware-to-
benign ratio, LAMDA attempts to maintain a 50:50 ratio, which may be viewed as downplaying
the role of benign software distributions. However, this design emphasizes family diversity and
balanced classes to create a challenging benchmark.

8 CONCLUSION

In this paper, we present LAMDA, a large-scale, temporally structured Android malware dataset
spanning over a decade. It enables analysis of how detection performance evolves with shifts in
malware behavior and feature distributions. Our evaluations on supervised learning, feature stabil-
ity, and explanation analysis demonstrate the impact of these temporal shifts. With broad coverage,
diverse families, and static features, LAMDA offers a reproducible benchmark for advancing re-
silient and adaptive malware detection systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects or personally identifiable information. All Android ap-
plications were collected from the publicly available AndroZoo repository and contain no user data.
To avoid misuse, we provide only extracted feature representations and associated metadata. As we
didn’t share live malware, the dataset can be made openly available to the research community. We
believe the release of LAMDA fully complies with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We provide comprehensive documentation and scripts to facilitate reproducibility. The dataset is
publicly available on Zenodo in both Parquet and NPZ formats, accompanied by detailed metadata,
allowing researchers to select the format most suitable for their needs. All code and experimental
pipelines used in this work are released through an anonymous GitHub repository, which includes
clear execution scripts and step-by-step guidelines to reproduce the reported results. Importantly,
our source code is designed to be flexible, enabling researchers to incorporate new samples into the
dataset with minimal effort.

In addition, we include detailed documentation of the dataset construction process, metadata, pre-
processing steps, and experimental configurations. Together, these resources ensure that the findings
of this paper can be independently verified, reproduced, and extended by the research community.

REFERENCES

Marco Alecci, Pedro Jesús Ruiz Jiménez, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein.
AndroZoo: A Retrospective with a Glimpse into the Future. In International Conference on
Mining Software Repositories (MSR), 2024.

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. AndroZoo: Collecting
Millions of Android Apps for the Research Community. In International Conference on Mining
Software Repositories (MSR), 2016.

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Hyrum S Anderson and Phil Roth. Ember: An open dataset for training static pe malware ma-
chine learning models. In Proceedings of the AAAI Workshop on Artificial Intelligence for Cy-
ber Security (AICS), 2018a. URL https://github.com/elastic/ember. Available at
https://github.com/elastic/ember.

Hyrum S Anderson and Phil Roth. EMBER: An open dataset for training static PE malware machine
learning models. arXiv:1804.04637, 2018b.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT
Siemens. Drebin: Effective and explainable detection of android malware in your pocket. In
Network and Distributed System Security Symposium (NDSS), 2014.

AV-TEST. Malware statistics and trends report. https://www.av-test.org/en/
statistics/malware/, 2025.

Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. Transcending tran-
scend: Revisiting malware classification in the presence of concept drift. In IEEE Symposium on
Security and Privacy (S&P), 2022a.

Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. Transcending Tran-
scend: Revisiting malware classification in the presence of concept drift. In IEEE Symposium on
Security and Privacy (S&P), 2022b.

Brut. Apktool. https://apktool.org/, 2025. Accessed: 2025-04-26.

Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. Stormdroid: A streaminglized
machine learning-based system for detecting android malware. In ACM ASIA Conference on
Computer and Communications Security (AsiaCCS), 2016.

10

https://github.com/elastic/ember
https://github.com/elastic/ember
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://apktool.org/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785–794, 2016.

Yizheng Chen, Zhoujie Ding, and David Wagner. Continuous learning for android malware detec-
tion. In USENIX Security Symposium, 2023.

Theo Chow, Zeliang Kan, Lorenz Linhardt, Lorenzo Cavallaro, Daniel Arp, and Fabio Pierazzi.
Drift forensics of malware classifiers. In ACM Workshop on Artificial Intelligence and Security
(AISec), 2023.

Andrea Civitarese, Luca Demetrio, Fabio Pierazzi, and Lorenzo Cavallaro. Anoshift: A distribution
shift benchmark for unsupervised anomaly detection under label scarcity. In Advances in Neural
Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2022.

Dragos Georgian Corlatescu, Alexandru Dinu, Mihaela Gaman, and Paul Sumedrea. Embersim: A
large-scale databank for boosting similarity search in malware analysis. In Advances in Neural
Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2023.

Marius Dragoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin Brad. Anoshift: A
distribution shift benchmark for unsupervised anomaly detection. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. Malnet: A large-scale malware
network dataset for graph representation learning. In Advances in Neural Information Processing
Systems (NeurIPS) Datasets and Benchmarks Track, 2020.

Daniele Ghiani, Daniele Angioni, Angelo Sotgiu, Maura Pintor, and Battista Biggio. Understanding
regression in continual learning for malware detection. 2025.

Andy Greenberg. Android ransomware’s evolution is worrying researchers, 2020. URL https:
//www.wired.com/story/android-ransomware-worrying-evolution. Ac-
cessed: 2025-05-06.

Richard Harang and Ethan M. Rudd. Sorel-20m: A large scale benchmark dataset for malicious pe
detection, 2020.

Harold Jeffreys. An invariant form for the prior probability in estimation problems. Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1007):453–461,
1946.

Kaspersky. Mobile threat report 2024. https://securelist.com/
mobile-threat-report-2024/115494/, 2024. Accessed: 2025-04-18.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory G.
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems (NeurIPS), 2017.

Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon Ross,
and Gianluca Stringhini. MAMADROID: Detecting android malware by building markov chains
of behavioral models. In Network and Distributed System Security Symposium (NDSS), 2017.

The Hacker News. New android trojan ‘soumnibot’ evades detection by obfuscat-
ing manifest file, 2024. URL https://thehackernews.com/2024/04/
new-android-trojan-soumnibot-evades.html. Accessed: 2025-05-06.

11

https://www.wired.com/story/android-ransomware-worrying-evolution
https://www.wired.com/story/android-ransomware-worrying-evolution
https://securelist.com/mobile-threat-report-2024/115494/
https://securelist.com/mobile-threat-report-2024/115494/
https://thehackernews.com/2024/04/new-android-trojan-soumnibot-evades.html
https://thehackernews.com/2024/04/new-android-trojan-soumnibot-evades.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Diane Oyen, Michal Kucer, Nicolas Hengartner, and Har Simrat Singh. Robustness to label noise de-
pends on the shape of the noise distribution. Advances in Neural Information Processing Systems,
35:35645–35656, 2022.

Jimin Park, AHyun Ji, Minji Park, Mohammad Saidur Rahman, and Se Eun Oh. MalCL: Leveraging
gan-based generative replay to combat catastrophic forgetting in malware classification. In AAAI
Conference on Artificial Intelligence (AAAI), 2025.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro.
TESSERACT: Eliminating experimental bias in malware classification across space and time. In
USENIX Security Symposium, 2019.

Mohammad Saidur Rahman, Scott E. Coull, and Matthew Wright. On the limitations of continual
learning for malware classification. In First Conference on Lifelong Learning Agents (CoLLAs),
2022.

Mohammad Saidur Rahman, Scott Coull, Qi Yu, and Matthew Wright. MADAR: Efficient continual
learning for malware analysis with diversity-aware replay. arXiv preprint arXiv:2502.05760,
2025.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

Manuel Sebastián, Raul Rivera, Paraskevas Kotzias, and Juan Caballero. Avclass: A tool for massive
malware labeling. In International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2016.

Ravid Shwartz-Ziv, Micah Goldblum, Yucen Li, C Bayan Bruss, and Andrew G Wilson. Simplify-
ing neural network training under class imbalance. Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Gido M van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 2022.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research (JMLR), 2008.

VirusTotal. VirusTotal – Stats. https://www.virustotal.com/gui/stats, 2025.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas
Singh, Richard Socher, and Caiming Xiong. Nyströmformer: A nyström-based algorithm for
approximating self-attention. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), volume 35, pp. 14138–14148, 2021.

Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. Droidevolver: Self-evolving android
malware detection system. In IEEE European Symposium on Security and Privacy (EuroS&P),
2019.

Limin Yang, Yizheng Chen, and Gang Wang. Cade: Detecting and explaining concept drift samples
for security applications. In USENIX Security Symposium, 2021a.

Limin Yang, Aravind Ciptadi, Ilya Laziuk, Amin Ahmadzadeh, and Gang Wang. Bodmas: An
open dataset for learning based temporal analysis of pe malware. In IEEE Security and Privacy
Workshops (SPW), 2021b.

12

https://www.virustotal.com/gui/stats

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Limin Yang, Arridhana Ciptadi, Ihar Laziuk, Ali Ahmadzadeh, and Gang Wang. BODMAS: An
open dataset for learning based temporal analysis of PE malware. In IEEE Security and Privacy
Workshops (SPW), 2021c.

Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh, Xinyu Xing, and
Gang Wang. CADE: Detecting and explaining concept drift samples for security applications. In
USENIX Security Symposium, 2021d.

Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun Zhang, Mi Zhang,
and Min Yang. Enhancing state-of-the-art classifiers with api semantics to detect evolved android
malware. In ACM Conference on Computer and Communications Security (CCS), 2020.

Zhihan Zhou, Jiangchao Yao, Feng Hong, Ya Zhang, Bo Han, and Yanfeng Wang. Combating
representation learning disparity with geometric harmonization. Advances in Neural Information
Processing Systems (NeurIPS), 2023.

OVERVIEW OF APPENDIX

The following appendices provide further information:

1. A Dataset Statistics: Year-wise malware/benign counts and family distributions.

2. B Feature Description: Overview of all static features extracted from APKs.

3. C Additional Analysis of Concept Drift: Visual analysis of concept drift and feature
space stability analysis using OTDD

4. D Model Architectures and Detail Results: Architectures and extended evaluation on
LAMDA variants.

5. E Behind the Scenes: Practical Challenges: Technical and operational challenges during
dataset construction.

6. F Effect of Label Noise in Training Data: Impact of different VirusTotal thresholds on
labeling.

7. G More analysis on Label Drift Across Years: Year-wise analysis of evolving VirusTotal
labels.

8. H Scalability of LAMDA: Instructions for extending LAMDA with new samples using
our codebase.

9. I Continual Learning on LAMDA: Class- and domain-incremental learning benchmarks.

10. J Computational Resources: Hardware and runtime configuration for dataset generation.

A DATASET STATISTICS

LAMDA benchmark is constructed from a total of 1,008,381 Android APKs, comprising 369,906
malware samples and 638,475 benign samples. Table 4 summarizes the yearly distribution of both
malware and benign APKs. To mitigate class imbalance during training, our initial goal was to
collect approximately 50,000 malware and 50,000 benign samples per year; this target could not be
met in certain years. Specifically, we were unable to collect sufficient samples for the years 2017,
2021, 2023, 2024, and 2025 due to our labeling criterion—requiring a VirusTotal detection count of
4 or more for malware—and the limited availability of up-to-date samples in the AndroZoo repos-
itory (Allix et al., 2016; Alecci et al., 2024). Additional constraints, such as corrupted downloads
and decompilation failures, further reduced the effective sample count in those years. Despite these
limitations, LAMDA remains the largest Android malware dataset to date in terms of both total
sample count and temporal coverage.

Beyond binary labels, LAMDA also includes family-level annotations for malware samples. As
shown in Table 5, the dataset spans 1,380 distinct malware families, offering rich diversity for fu-
ture analysis. Additionally, 150,604 samples are singletons, belonging to families that appear only
once in the dataset, representing rare or unique variants. Moreover, 2,985 samples are marked as

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Year-wise distribution of total, malware, and benign samples.

Year Total Samples Malware Samples Benign Samples
2013 86,431 44,383 42,048
2014 101,183 45,756 55,427
2016 109,193 45,134 64,059
2017 99,144 21,359 77,785
2018 104,292 39,350 64,942
2019 91,050 41,585 49,465
2020 102,073 46,355 55,718
2021 81,155 35,627 45,528
2022 86,416 41,648 44,768
2023 54,354 7,892 46,462
2024 48,427 794 47,633
2025 44,663 23 44,640

Total 1,008,381 369,906 638,475

Table 5: Year-wise breakdown of malware family distributions in LAMDA.

Year New Existing Valid Family #of Singleton #of Unknown
2013 213 0 213 1550 24
2014 91 140 231 2482 345
2016 179 196 375 5861 177
2017 88 119 207 9063 1108
2018 153 220 373 20579 1242
2019 259 376 635 18916 22
2020 141 447 588 30644 25
2021 43 252 295 30020 23
2022 161 490 651 24927 4
2023 37 187 224 5922 15
2024 14 50 64 626 0
2025 1 7 8 14 0

Total 1,380 150,604 2,985

Table 6: Distribution of unknown malware samples by VirusTotal detection count.

VT Detection 4 5 6 7 8 9 10 11 12 13 14 15 18 19 Total

of Unknown Sample 1643 664 226 153 133 65 68 15 3 4 5 4 1 1 2,985

“unknown”, where AVClass2 is unable to confidently assign a family label. Table 6 reports the
VirusTotal (VirusTotal, 2025) detection counts for these unknown-labeled samples, offering insight
into their potential threat level even in the absence of a family tag.

This comprehensive summary, encompassing both class labels and family-level information, sup-
ports a wide range of research directions, including supervised detection, rare variant modeling,
family classification, and concept drift analysis across diverse malware behaviors.

B FEATURE DESCRIPTION

Built upon static analysis of Android APKs, LAMDA incorporates a broad spectrum of execution-
free features based on the features of Drebin (Arp et al., 2014). Table 7 summarizes the key cat-
egories of static features used in LAMDA (Arp et al., 2014). These include declared components
(e.g., services, activities), permissions (requested and used), intent filters, restricted or suspicious
API calls, and embedded network indicators such as hardcoded IPs and URLs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Static Features and Their Descriptions.

Feature Description
Requested permissions Permissions declared in the manifest (e.g., CAMERA, BLUETOOTH)

indicating intended access to sensitive resources.
Declared activities and
services

Registered components of the application, providing insight into its
structural and behavioral composition.

Broadcast receivers Components that handle specific system or custom intents (e.g.,
BOOT COMPLETED), often linked to persistence or event-driven
behavior.

Hardware components Device capabilities required by the app (e.g., camera, Bluetooth),
implying functional intent.

Intent filters Define the types of intents components can respond to; critical for
modeling potential entry points.

Used permissions Permissions referenced in the smali code, reflecting actual permis-
sion usage.

Restricted API calls APIs that are protected by system permissions or grant access to
sensitive resources.

Suspicious API calls APIs heuristically associated with malicious or abnormal behavior.
Embedded IP addresses
and URL domains

Hardcoded network endpoints that may indicate command-and-
control (C&C) servers or tracking mechanisms.

Each APK is converted into a binary feature vector using a bag-of-tokens representation. Tokens are
derived from the presence or absence of the static properties listed in Table 7. Since each applica-
tion typically uses only a small fraction of the global feature space, the resulting vectors are sparse
and high-dimensional. To address this, we apply different VarianceThreshold feature selec-
tion (Pedregosa et al., 2011), resulting in three dataset variants with different dimensionalities and
sizes. Table 8 summarizes these variants. The Baseline variant uses a threshold of 0.001 (Rah-
man et al., 2025) and yields 4,561 binary features. Increasing the threshold to 0.01 results in a
smaller, more compressed feature space with 925 features, while lowering it to 0.0001 expands the
feature space to over 25,000 features.

B.1 LAMDA VARIANTS

For the LAMDA dataset variants, we apply different thresholds using the VarianceThreshold
(varTh) feature selector. In the baseline configuration (varTh = 0.001), we retain 4,561 features
with a total in-memory size of 222 MB. For a more relaxed threshold (varTh = 0.0001), we
preserve 25,460 features, resulting in a memory size of 554 MB. Conversely, applying a stricter
threshold (varTh = 0.01) yields 915 features with a reduced storage size of 138 MB. These
information are summarized in Table 8.

Table 8: Summary of Dataset Variants by Variance Threshold.

Variant Threshold # Metadata # Binary Features Size

Baseline 0.001 5 4561 222MB
var thresh 0.0001 0.0001 5 25460 554MB
var thresh 0.01 0.01 5 925 138MB

C ADDITIONAL ANALYSIS OF CONCEPT DRIFT

In this section, we provide in detail analysis of LAMDA visualization using t-SNE and feature space
stability analysis using Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis & Fusi, 2020).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) LAMDA. (b) API Graph.

Figure 8: t-SNE projection of LAMDA and API Graph dataset, (a) t-SNE project of LAMDA from
2013 to 2025 (excluding 2015) and (b) t-SNE projection of API Graph from 2012 to 2018.

OTDD on LAMDA Dataset

Figure 9: Optimal Transport Distance of 60 common families. Each of the plots shows the area of
nine OTDD scores of 10 groups of 10 families in LAMDA.

C.1 VISUAL ANALYSIS OF CONCEPT DRIFT

To visualize the structural differences these features capture, we present t-SNE projections compar-
ing LAMDA and API Graph (Dragoi et al., 2022) in Figure 8. LAMDA shows more scattered and
diverse malware clusters over time, suggesting richer feature representations and stronger concept
drift compared to the relatively compact structure in API Graph. This diversity, driven by the dy-
namic use of static tokens such as APIs and permissions, highlights the importance of broad and
representative feature sets for modeling evolving malware behavior. Figure 13 further validates this
hypothesis with varying number of virus total engine detection count.

C.2 FEATURE SPACE STABILITY ANALYSIS

Optimal Transport Dataset Distance (OTDD) Analysis. Figure 9 and 10 illustrates temporal
distributional shifts using Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis & Fusi,
2020), a geometric method for quantifying differences between probability distributions. To as-
sess intra-family drift, we partition each malware family in the LAMDA and APIGraph datasets into
ten chronological subsets and compute OTDD between consecutive pairs. The results are visualized
via radar plots, where each axis represents a subset transition. Compact, regular shapes indicate
temporal stability, while larger or irregular shapes signal drift. Comparing the two datasets, the
LAMDA radar plots show both regular and irregular patterns indicating temporal shifts of malware
families that causes concept drift. Similar behavior is also observed in the APIGraph dataset for the
same families.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

OTDD on APIGraph Dataset

Figure 10: Optimal Transport Distance of 60 common families. Each of the plots shows the area of
nine OTDD scores of 10 groups of 10 families in APIGraph.

D ADDITIONAL EXPERIMENTAL DETAILS

In this section, we summarize the details of the model architectures and the training setup for each
method used in our experiments. In addition, we present supplementary results.

D.1 DETAILS OF THE BASELINE METHODS

Multi-Layer Perceptron (MLP). The MLP model used for the experiments is adapted from prior
work (Rahman et al., 2022; 2025) and is composed of four fully connected layers with the following
sizes: 1024, 512, 256, and 128. Each hidden layer is followed by batch normalization, ReLU
activation, and a dropout layer with a dropout rate of 0.5. The final output layer uses a sigmoid
activation function for binary classification. The model is trained using Adam optimizer with a
learning rate of 0.001, and batch size 512, as it stabilizes by this point, avoiding unnecessary GPU
time.

LightGBM. In addition to MLP, we also use LightGBM (Ke et al., 2017), gradient-boosted de-
cision tree ensemble, for binary classification. LightGBM is trained with up to 5000 estimators
and a learning rate of 0.02, with early stopping based on Area Under the Curve (AUC) metric if
no improvement is observed for 100 rounds. Each tree is allowed up to 256 leaves to provide high
capacity for learning complex patterns. We apply 80% subsampling of both rows and features to
mitigate overfitting. We also include L1 and L2 regularization to further penalize methods com-
plexity to prevent overfitting. These hyperparameters are selected based on practices in malware
detection benchmarks such as EMBER (Anderson & Roth, 2018a) and TESSERACT (Pendlebury
et al., 2019).

XGBoost. The adapted XGBoost is configured with a tree depth of 12 and a learning rate of
0.05. We use log loss objective for binary classification (Chen & Guestrin, 2016; Anderson &
Roth, 2018b). The method is trained for up to 3000 boosting rounds and uses the gpu hist tree
construction method to accelerate training. The input data is loaded in XGBoost’s DMatrix format,
which is optimized for memory efficiency and fast training. We train the method on the full training
data without applying early stopping and evaluate using log loss.

Support Vector Machine (SVM). A linear SVM model is implemented using LinearSVC and
calibrated using CalibratedClassifierCV to enable probability outputs. This is essential for
downstream evaluation where probabilistic thresholds or ranking-based metrics are used. Following
prior work, the method is trained on the full dataset with a maximum of 10,000 iterations (Chen
et al., 2023). Post-training, model memory usage is reported using psutil to assess resource
footprint.

detectBERT. DetectBERT is a lightweight transformer-based model designed for malware classi-
fication that leverages DexBERT embeddings to learn full app-level representations. It projects the
input vector into a hidden space using a fully connected layer, then prepends a learnable [CLS]
token. The resulting sequence is processed by two stacked transformer layers utilizing Nyström-
based self-attention (Xiong et al., 2021), followed by LayerNorm and a classification head applied
to the [CLS] output. The model also supports alternative aggregation strategies such as averaging
or summation over token embeddings.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Performance of models across IID, NEAR, and FAR splits for LAMDA on Baseline
(VarianceThreshold = 0.001).

Split Model Accuracy Precision Recall F1 ROC AUC PR AUC FPR FNR

IID

LightGBM 97.74 ± 0.35 96.74 ± 0.31 98.26 ± 0.34 97.49 ± 0.17 99.55 ± 0.03 99.50 ± 0.11 2.69 ± 0.48 1.74 ± 0.34
MLP 97.50 ± 0.44 96.91 ± 0.29 97.50 ± 0.06 97.21 ± 0.12 99.48 ± 0.04 99.38 ± 0.20 2.58 ± 0.85 2.50 ± 0.06
SVM 95.61 ± 0.61 94.78 ± 1.41 95.18 ± 0.76 94.98 ± 1.07 98.89 ± 0.28 98.75 ± 0.46 4.09 ± 0.55 4.82 ± 0.76
XGBoost 97.36 ± 0.15 96.32 ± 0.70 97.80 ± 0.43 97.05 ± 0.14 99.15 ± 0.16 97.68 ± 1.16 2.96 ± 0.01 2.20 ± 0.43
detectBERT 95.83±0.15 95.04±1.12 95.51±0.60 95.27±0.86 98.93±0.27 98.62±0.79 3.96±0.14 4.49±0.60
ViT 95.57±0.80 94.14±2.42 95.83±0.73 94.97±1.59 98.91±0.37 98.61±0.85 4.63±0.81 4.17±0.73

NEAR

LightGBM 85.83 ± 3.96 90.36 ± 5.21 49.49 ± 30.82 59.48 ± 28.20 74.05 ± 23.76 70.18 ± 27.10 1.85 ± 0.95 50.51 ± 30.82
MLP 83.90 ± 3.75 78.12 ± 13.98 48.05 ± 30.42 56.57 ± 28.41 82.71 ± 11.19 67.94 ± 24.59 3.98 ± 1.19 51.95 ± 30.42
SVM 82.08 ± 3.11 72.56 ± 18.38 44.38 ± 28.88 52.91 ± 28.40 75.18 ± 17.98 62.53 ± 29.82 4.71 ± 0.97 55.62 ± 28.88
XGBoost 84.59 ± 3.75 86.18 ± 9.02 46.16 ± 30.94 55.84 ± 29.73 77.75 ± 16.85 68.14 ± 26.55 2.14 ± 0.86 53.84 ± 30.94
detectBERT 84.21±4.81 78.61±19.05 50.08±37.55 59.11±34.70 73.86±29.73 66.95±37.60 4.05±0.84 49.92±37.55
ViT 83.66 ± 5.36 73.73 ± 22.28 51.32 ± 39.01 58.77 ± 35.48 71.47 ± 32.31 63.97 ± 40.01 5.63 ± 1.28 48.68 ± 39.01

FAR

LightGBM 83.94 ± 10.61 74.65 ± 34.66 35.90 ± 22.97 47.24 ± 27.33 78.04 ± 20.83 63.45 ± 35.80 1.30 ± 0.95 64.10 ± 22.97
MLP 83.45 ± 10.74 76.12 ± 33.39 35.60 ± 20.63 47.59 ± 25.30 84.04 ± 11.23 66.16 ± 34.34 1.14 ± 0.71 64.40 ± 20.63
SVM 80.99 ± 11.98 72.89 ± 35.60 30.07 ± 16.85 41.86 ± 22.55 79.07 ± 15.06 62.27 ± 34.09 1.27 ± 0.76 69.93 ± 16.85
XGBoost 82.03 ± 11.07 70.00 ± 37.26 31.89 ± 20.43 42.75 ± 25.86 76.85 ± 16.49 60.33 ± 35.88 1.69 ± 0.57 68.11 ± 20.43
detectBERT 81.79±11.09 66.49±38.11 35.43±20.54 45.01±26.84 76.37±23.07 60.56±36.63 3.15±1.09 64.57±20.54
ViT 81.98 ± 9.44 63.56 ± 38.55 39.77 ± 22.66 47.03 ± 29.55 78.53 ± 20.17 58.77 ± 37.82 4.77 ± 1.20 60.23 ± 22.66

ViT. We utilize a ViT-based model adapts the Vision Transformer (ViT) framework to malware
classification using static feature vectors. Each input sample, represented as a flat feature vector, is
projected into a hidden-dimensional token via a linear embedding layer. A learnable [CLS] token
is optionally prepended to the sequence, and positional embeddings are added to all tokens. The
resulting token sequence is passed through a stack of seven Transformer encoder blocks, each con-
sisting of LayerNorm, multi-head self-attention, and a two-layer feed-forward network with GELU
activation and residual connections. After encoding, the final hidden state of the [CLS] token (or
the feature token if [CLS] is not used) is extracted and passed through a classifier composed of a
LayerNorm and a linear output layer. The model outputs logits over malware families and supports
fine-grained malware classification or detection.

All models are trained on three different LAMDA variants with VarianceThreshold (VarTh)
∈ {0.01, 0.001, 0.0001} where VarTh = 0.001 is the baseline. No task-specific tuning or dataset-
specific hyperparameter adjustments are performed to ensure fair comparisons across splits and
datasets.

D.2 BASELINE PERFORMANCE

We compare LAMDA baseline with API Graph (Zhang et al., 2020) dataset and provide a compre-
hensive results on four methods discussed above using AnoShift-style (Dragoi et al., 2022) splits. A
subset of Table 9 and Table 10 are explained in the main body of the paper. We present the results
with more performance metrics.

We compare the LAMDA baseline with the API Graph (Zhang et al., 2020) dataset and present
comprehensive results using four models under AnoShift-style (Dragoi et al., 2022) splits. While a
subset of results is highlighted in Table 9 and Table 10 in the main paper, we report extended metrics
here for completeness.

Across both NEAR and FAR splits, LAMDA consistently exhibits lower scores across all perfor-
mance metrics compared to API Graph, and notably higher false negative rates (FNR). These trends
clearly indicate that LAMDA captures a significantly higher degree of concept drift. Furthermore,
the standard deviation across metrics is substantially higher in LAMDA, especially for drifted years,
underscoring the dataset’s temporal instability in detection performance—validating the presence of
concept drift.

D.3 LAMDA VARIANTS AND DRIFT SENSITIVITY

LAMDA offers flexibility to researchers for Android malware analysis by supporting different fea-
ture selection variants. In this section, we evaluate two additional variants of LAMDA. As shown
in Table 11 and Table 12, we report detailed performance results for the four methods and config-
urations used in the primary analysis of concept drift with VarianceThreshold of 0.001. The
variant using a threshold of 0.01 exhibits a relatively higher average F1-score across NEAR and FAR

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Performance of models on across IID, NEAR, and FAR splits for API Graph.

Split Model Accuracy Precision Recall F1 ROC AUC PR AUC FPR FNR

IID

LightGBM 97.02 ± 0.00 95.78 ± 0.00 73.44 ± 0.00 83.14 ± 0.00 98.93 ± 0.00 94.92 ± 0.00 0.36 ± 0.00 26.56 ± 0.00
MLP 97.35 ± 0.20 94.84 ± 1.49 77.79 ± 2.85 85.43 ± 1.35 94.62 ± 0.92 89.33 ± 1.75 0.47 ± 0.16 22.21 ± 2.85
SVM 96.64 ± 0.00 94.12 ± 0.00 70.85 ± 0.00 80.84 ± 0.00 97.27 ± 0.00 90.90 ± 0.00 0.49 ± 0.00 29.15 ± 0.00
XGBoost 96.30 ± 0.00 91.57 ± 0.00 69.37 ± 0.00 78.94 ± 0.00 95.93 ± 0.00 89.08 ± 0.00 0.71 ± 0.00 30.63 ± 0.00
detectBERT 97.01 ± 0.00 94.59 ± 0.00 74.40 ± 0.00 83.05 ± 0.00 98.82 ± 0.00 94.19 ± 0.00 0.48 ± 0.00 25.60 ± 0.00
ViT 97.49±0.00 91.85±0.00 82.18±0.00 86.64±0.00 98.65±0.00 93.73±0.00 0.81±0.00 17.82±0.00

NEAR

LightGBM 94.84 ± 0.00 94.07 ± 0.00 51.33 ± 0.00 66.42 ± 0.00 96.28 ± 0.00 83.45 ± 0.00 0.36 ± 0.00 48.67 ± 0.00
MLP 94.66 ± 0.34 88.22 ± 3.83 53.67 ± 4.84 66.55 ± 3.19 85.97 ± 1.25 72.24 ± 2.46 0.81 ± 0.37 46.33 ± 4.84
SVM 94.01 ± 0.00 81.70 ± 0.00 51.18 ± 0.00 62.93 ± 0.00 90.29 ± 0.00 70.84 ± 0.00 1.26 ± 0.00 48.82 ± 0.00
XGBoost 92.76 ± 0.00 77.60 ± 0.00 38.11 ± 0.00 51.12 ± 0.00 92.13 ± 0.00 65.74 ± 0.00 1.21 ± 0.00 61.89 ± 0.00
detectBERT 95.24 ± 0.29 90.54 ± 1.04 56.87 ± 0.71 69.08 ± 0.00 94.33 ± 0.45 82.54 ± 1.20 0.59 ± 0.15 43.13 ± 0.71
ViT 94.73±0.00 76.15±0.00 68.77±0.00 72.15±0.00 93.08±0.00 78.26±0.00 2.41±0.00 31.23±0.00

FAR

LightGBM 95.31 ± 0.61 87.48 ± 2.48 57.41 ± 6.57 69.07 ± 4.73 96.11 ± 0.40 80.94 ± 1.17 0.84 ± 0.24 42.59 ± 6.57
MLP 94.50 ± 0.84 82.31 ± 6.28 51.14 ± 7.90 62.80 ± 6.68 90.02 ± 2.91 71.38 ± 5.89 1.12 ± 0.43 48.86 ± 7.90
SVM 94.33 ± 0.60 77.38 ± 0.33 54.34 ± 7.27 63.56 ± 5.08 92.73 ± 0.92 71.46 ± 2.43 1.60 ± 0.20 45.66 ± 7.27
XGBoost 93.70 ± 0.35 75.99 ± 2.62 46.04 ± 1.92 57.29 ± 1.45 87.78 ± 1.90 66.49 ± 4.80 1.49 ± 0.28 53.96 ± 1.92
detectBERT 95.85 ± 0.53 86.50 ± 1.92 64.33 ± 5.55 73.23 ± 3.68 96.74 ± 0.17 83.15 ± 1.44 0.99 ± 0.15 35.67 ± 5.55
ViT 94.01±0.71 65.50±1.51 72.29±6.81 68.47±3.94 95.28±0.19 73.69±3.83 3.81±0.14 27.71±6.81

(a) VarianceThreshold = 0.01 (b) VarianceThreshold = 0.0001

Figure 11: F1-scores on different models on based on AnoShift-style split on LAMDA. (a) for
VarianceThreshold 0.01 and (b) for VarianceThreshold 0.0001.

splits compared to that of the Baseline (0.001) and var thresh 0.0001 variants. Figure 11
shows this trend as well, highlighting the comparative performance of the LAMDA variants.

To further understand how these feature selection variants influence drift sensitivity, we focus on the
NEAR split with the SVM. For false positive rate (FPR), both the baseline and varTh=0.0001
maintain relatively low values (∼4.07 ± 0.18), whereas varTh=0.01 shows a sharp increase to
17.09 ± 2.87. This suggests that reducing the feature set too aggressively may misclassify benign
as malware. Conversely, the false negative rate (FNR) slightly improves under varTh=0.01,
decreasing from ∼55.62 ± 28.88 and ∼57.72 ± 28.87, baseline and varTh=0.0001, respectively,
to 46.22 ± 23.97. This indicates that even with fewer features, the model may still capture certain
generalizable malware traits, improving detection of some malicious samples.

However, for the LightGBM model, this change is accompanied by a drop in precision. While
in NEAR region both the baseline and varTh=0.0001 variants maintain high precision scores
(around 90.36 ± 5.21), the varTh=0.01 variant yields a lower precision of 75.03 ± 15.03. This
reflects a shift in the methods decision behavior under more aggressive feature selection, emphasiz-
ing the importance of balancing dimensionality reduction with predictive consistency.

In summary, while varTh=0.01 may occasionally help with generalization under drift, it also
amplifies misclassification of benign apps and reduces predictive stability. The baseline and
varTh=0.0001 offer more shift in data distribution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Performance of models across IID, NEAR, and FAR splits for LAMDA variant of
VarianceThreshold (0.01).

Split Model Accuracy Precision Recall F1 ROC AUC PR AUC FPR FNR

IID

LightGBM 97.08 ± 0.21 96.40 ± 0.22 96.95 ± 1.02 96.67 ± 0.61 99.42 ± 0.00 99.33 ± 0.13 2.94 ± 0.43 3.05 ± 1.02
MLP 96.89 ± 0.32 96.11 ± 0.37 96.84 ± 1.26 96.47 ± 0.67 99.29 ± 0.08 99.15 ± 0.18 3.18 ± 0.54 3.16 ± 1.26
SVM 94.13 ± 0.87 92.59 ± 2.43 94.10 ± 0.84 93.33 ± 1.65 97.86 ± 0.54 97.34 ± 1.15 5.83 ± 0.90 5.90 ± 0.84
XGBoost 96.65 ± 0.60 95.59 ± 1.37 96.74 ± 0.80 96.16 ± 1.09 99.01 ± 0.26 98.00 ± 0.36 3.45 ± 0.43 3.26 ± 0.80
detectBERT 94.75 ± 1.53 93.58 ± 3.04 94.34 ± 2.10 93.96 ± 2.58 98.47 ± 0.51 98.13 ± 1.02 4.98 ± 1.15 5.66 ± 2.10
ViT 96.66 ± 0.07 96.02 ± 0.37 96.42 ± 0.93 96.22 ± 0.65 99.07 ± 0.38 98.80 ± 0.82 3.24 ± 0.59 3.58 ± 0.93

NEAR

LightGBM 84.17 ± 3.77 75.03 ± 15.03 54.00 ± 27.34 61.38 ± 24.22 73.58 ± 22.25 66.97 ± 27.37 5.86 ± 0.94 46.00 ± 27.34
MLP 83.39 ± 3.52 73.64 ± 16.21 52.23 ± 26.78 59.77 ± 24.33 79.17 ± 14.79 66.60 ± 24.33 6.09 ± 1.22 47.77 ± 26.78
SVM 75.73 ± 6.47 54.52 ± 25.76 53.78 ± 23.97 54.13 ± 24.86 74.88 ± 14.32 58.72 ± 25.70 17.09 ± 2.87 46.22 ± 23.97
XGBoost 81.63 ± 3.39 68.78 ± 20.03 47.48 ± 27.52 54.98 ± 26.43 77.32 ± 14.71 62.60 ± 26.89 6.57 ± 0.68 52.52 ± 27.52
detectBERT 82.23 ± 5.19 67.95 ± 24.83 54.66 ± 34.89 59.95 ± 31.61 71.17 ± 30.38 63.83 ± 35.68 8.79 ± 0.97 45.34 ± 34.89
ViT 83.91 ± 5.34 75.41 ± 22.66 51.05 ± 37.34 59.35 ± 34.67 72.45 ± 31.57 64.86 ± 39.94 4.87 ± 0.34 48.95 ± 37.34

FAR

LightGBM 84.68 ± 9.54 71.15 ± 35.65 39.50 ± 23.10 50.13 ± 27.27 75.80 ± 21.64 61.66 ± 35.89 2.34 ± 1.72 60.50 ± 23.10
MLP 85.15 ± 9.23 76.93 ± 33.45 41.38 ± 21.41 53.00 ± 25.53 87.00 ± 10.48 68.52 ± 33.91 1.80 ± 1.61 58.62 ± 21.41
SVM 77.50 ± 10.05 55.00 ± 32.97 36.40 ± 16.42 42.16 ± 23.50 76.19 ± 12.22 52.48 ± 31.86 9.28 ± 3.56 63.60 ± 16.42
XGBoost 76.73 ± 6.52 56.84 ± 36.66 34.05 ± 17.19 40.84 ± 25.02 69.95 ± 15.23 51.85 ± 34.08 8.71 ± 3.04 65.95 ± 17.19
detectBERT 81.52 ± 9.77 60.48 ± 37.30 40.21 ± 22.98 47.06 ± 29.24 76.28 ± 21.99 57.68 ± 36.07 6.29 ± 2.14 59.79 ± 22.98
ViT 82.84 ± 10.71 67.79 ± 38.23 38.47 ± 21.47 47.74 ± 27.67 77.55 ± 24.71 61.82 ± 37.79 2.85 ± 1.43 61.53 ± 21.47

Table 12: Performance of models across IID, NEAR, and FAR splits for LAMDA variant of
VarianceThreshold (0.0001).

Split Model Accuracy Precision Recall F1 ROC AUC PR AUC FPR FNR

IID

LightGBM 97.73 ± 0.04 96.80 ± 0.33 98.11 ± 0.12 97.45 ± 0.23 99.58 ± 0.00 99.54 ± 0.09 2.61 ± 0.25 1.89 ± 0.12
MLP 97.42 ± 0.21 96.44 ± 0.35 97.80 ± 0.23 97.12 ± 0.15 99.31 ± 0.06 99.24 ± 0.17 2.92 ± 0.41 2.20 ± 0.23
SVM 96.68 ± 0.02 96.68 ± 0.08 95.77 ± 0.72 96.22 ± 0.40 99.13 ± 0.20 99.13 ± 0.29 2.69 ± 0.48 4.23 ± 0.72
XGBoost 97.39 ± 0.26 96.27 ± 0.69 97.83 ± 0.53 97.04 ± 0.61 99.35 ± 0.08 98.92 ± 0.10 3.01 ± 0.04 2.17 ± 0.53
detectBERT 96.24 ± 0.23 95.33 ± 0.90 96.15 ± 0.87 95.74 ± 0.89 98.92 ± 0.40 98.61 ± 0.93 3.76 ± 0.28 3.85 ± 0.87
ViT 95.27 ± 0.50 93.32 ± 1.29 96.08 ± 1.41 94.68 ± 1.35 98.76 ± 0.34 98.56 ± 0.69 5.49 ± 0.41 3.92 ± 1.41

NEAR

LightGBM 85.55 ± 3.91 90.24 ± 5.75 48.34 ± 30.74 58.46 ± 28.66 74.58 ± 23.25 70.47 ± 26.85 1.70 ± 0.80 51.66 ± 30.74
MLP 84.22 ± 3.38 80.23 ± 13.34 49.38 ± 27.83 58.79 ± 25.81 81.65 ± 13.28 69.02 ± 25.24 3.71 ± 0.95 50.62 ± 27.83
SVM 81.79 ± 3.36 71.61 ± 21.55 42.28 ± 28.87 51.19 ± 29.64 76.15 ± 16.45 63.54 ± 29.13 4.07 ± 0.18 57.72 ± 28.87
XGBoost 84.58 ± 3.41 86.82 ± 6.81 46.86 ± 30.72 56.40 ± 28.84 77.29 ± 18.06 69.61 ± 25.51 2.52 ± 1.41 53.14 ± 30.72
detectBERT 84.30 ± 4.99 77.92 ± 19.62 50.98 ± 37.46 59.73 ± 34.36 74.34 ± 28.90 67.51 ± 36.87 4.33 ± 0.78 49.02 ± 37.46
ViT 81.49 ± 6.49 63.97 ± 26.76 58.13 ± 36.00 60.56 ± 32.07 69.96 ± 31.48 59.47 ± 40.55 11.55 ± 0.86 41.87 ± 36.00

FAR

LightGBM 83.96 ± 10.66 75.34 ± 34.34 35.62 ± 23.11 47.02 ± 27.47 77.98 ± 21.70 64.21 ± 35.59 1.18 ± 0.85 64.38 ± 23.11
MLP 80.88 ± 11.82 71.93 ± 36.09 29.64 ± 17.51 40.99 ± 23.11 82.52 ± 12.80 63.53 ± 35.27 1.47 ± 1.11 70.36 ± 17.51
SVM 81.23 ± 11.94 73.48 ± 34.34 32.40 ± 16.44 44.08 ± 21.95 76.94 ± 16.51 63.06 ± 32.51 1.31 ± 0.86 67.60 ± 16.44
XGBoost 83.47 ± 10.41 73.53 ± 35.83 35.43 ± 20.83 46.97 ± 25.75 77.49 ± 19.29 63.56 ± 34.89 1.32 ± 0.67 64.57 ± 20.83
detectBERT 82.54 ± 10.53 67.37 ± 38.73 37.34 ± 21.46 46.62 ± 27.85 77.47 ± 22.32 61.65 ± 37.23 2.92 ± 1.21 62.66 ± 21.46
ViT 82.03 ± 7.65 59.73 ± 37.03 45.42 ± 23.33 50.25 ± 30.10 76.63 ± 18.94 58.53 ± 36.04 8.09 ± 2.42 54.58 ± 23.33

E BEHIND THE SCENES: PRACTICAL CHALLENGES IN LAMDA CREATION

E.1 ADMINISTRATIVE CHALLENGES

Downloading large volumes of real-world malware presents significant cybersecurity risks within
any institutional environment. During our data collection process, the downloading and unpack-
ing of live malware samples triggered internal threat detection systems, as automated security tools
flagged these activities as potential breaches. To mitigate these risks, we implemented strict con-
tainment policies, such as disabling execution permissions. Additionally, we worked closely with
the university’s cybersecurity team to obtain the necessary approvals and ensure compliance with
all relevant security policies. We maintained continuous communication with them throughout the
process to ensure proper coordination and promptly address any emerging issues.

E.2 TECHNICAL CHALLENGES

We faced several technical constraints during the sample collection and processing pipeline. The
AndroZoo platform imposes strict download rate limits, allowing only 40 concurrent downloads per
user. As a result, we had to be extremely cautious to avoid violating their terms and conditions.
Unfortunately, accidental oversights on our part led to temporary request blocks which disrupted the
collection process. Similarly, the VirusTotal API has strict rate limits, which can significantly slow
down the retrieval of metadata. Additionally, a considerable number of APKs failed to decompile
successfully using Apktool. These failures were often due to obfuscation, corrupted files, or non-
standard packaging formats. So, we had to perform multiple rounds of sampling to reach our target
number of usable samples.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 13: Effect of thresholding on sample counts and relative percentage change (w.r.t. threshold
4).

Threshold Benign Samples Malware Samples % Change (Benign) % Change (Malware)
1 638,475 369,906 0.0% 0.0%
2 638,475 369,906 0.0% 0.0%
3 638,475 369,906 0.0% 0.0%
4 638,475 369,906 0.0% 0.0%
5 638,475 324,927 0.0% ↓ 12.16%
6 638,475 281,824 0.0% ↓ 23.81%
7 638,475 241,690 0.0% ↓ 34.66%
8 638,475 206,644 0.0% ↓ 44.14%
9 638,475 177,707 0.0% ↓ 51.96%

10 638,475 155,376 0.0% ↓ 58.00%
11 638,475 138,041 0.0% ↓ 62.68%
12 638,475 123,783 0.0% ↓ 66.53%
13 638,475 111,350 0.0% ↓ 69.89%

Figure 12: Sample Count Year-wise for Each VT Detection Threshold.

F EFFECT OF LABEL NOISE IN TRAINING DATA

Label noise in Android malware family classification, particularly when using the Drebin (Arp et al.,
2014) feature set can significantly impact model performance due to ambiguous and overlapping
feature representations. As demonstrated in recent work (Oyen et al., 2022), the robustness of clas-
sification models depends not only on the amount of label noise but also on its distribution within
the feature space. Specifically, feature-dependent label noise, where the probability of a label flip
is contingent on the position of a sample in feature space, can cause a substantial drop in accuracy,
even at low noise levels.

This is especially relevant for Drebin features, where different malware families may share static
features like permissions (x1 = INTERNET, x2 = SEND SMS), API calls (x3 = getDeviceId),
and hardware access (x4 = READ PHONE STATE). Samples with minimal or ambiguous patterns
(e.g., x5 = ACCESS NETWORK STATE and x6 = RECEIVE BOOT COMPLETED) are likely to fall
near decision boundaries, increasing the risk of mislabeling. Such feature-dependent noise is more
detrimental than uniform or class-dependent noise and warrants careful consideration in malware
classification tasks.

Table 13 shows the effect of increasing the VirusTotal (VT) detection (VirusTotal, 2025) threshold
on malware labeling in the LAMDA dataset. According to previous studies (Pendlebury et al.,
2019; Rahman et al., 2022; Yang et al., 2021d), a sample is considered benign if vt detection
= 0, and labeled as malware if vt detection ≥ 4. As seen from the Benign sample column
in the Table 13, the number of benign samples remains unchanged across all thresholds, since the
benign definition is fixed and independent of the malware thresholding rule. However, the number
of malware samples decreases significantly as the threshold increases from 4 to 13. For instance, at a
threshold of 10, the number of malware samples drops by 58% compared to the baseline at threshold
4. This trend continues, reaching a 69.89% reduction at threshold 13. These results demonstrate
that requiring stronger agreement among antivirus engines (i.e., a higher threshold) leads to more

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 13: t-SNE visualization of benign and malware samples at varying Virus Total (VT) detection
threshold.

conservative malware labeling, effectively excluding a substantial portion of potentially malicious
samples. While this may improve the confidence in the labeled malware, it also drastically reduces
dataset coverage. Therefore, the choice of VT threshold directly impacts the balance between label
precision and data availability, and threshold 4 provides a practical trade-off commonly adopted in
existing literature (Xu et al., 2019; Pendlebury et al., 2019; Park et al., 2025).

Figure 12 illustrates the distribution of malware sample counts across different VirusTotal (VT)
threshold (VirusTotal, 2025) values for each year from 2013 to 2025 (except 2015). The VT count,
plotted on the x-axis, represents the number of antivirus (AV) engines that flagged a sample as ma-
licious, serving as a metric for detection consensus or confidence. A consistent trend is observed
across all years — as the VT threshold increases, the number of flagged samples decreases. This sug-
gests that only a small fraction of malware samples achieve strong consensus among AV engines,
while the majority are detected by relatively few engines. The sample count is highest between
VT counts of 5 to 7, especially in earlier years such as 2013–2017, indicating a moderate level of
agreement in those periods. In contrast, from 2022 onward, the overall volume of detected samples
decreases sharply, and the detections are largely concentrated in the lower VT ranges, which may
reflect advancements in malware evasion techniques or shifts in detection criteria. These observa-
tions justify the use of a VT threshold. Using a higher threshold (e.g., ≥10) may lead to overly
conservative labeling with potential false negatives, while lower thresholds increase coverage but
may introduce noise. Thus, this temporal analysis provides critical insight into threshold selection
and highlights the evolving nature of malware detection over time.

Figure 13 shows the t-SNE projections across varying VirusTotal (VT) detection (VirusTotal, 2025)
thresholds. At lower thresholds (e.g., VT ≥ 4 to 6), there is significant overlap between the mal-
ware and benign clusters, indicating that many samples labeled as malware may exhibit similar
characteristics to benign samples. This suggests that lower thresholds capture a broader range of
potentially ambiguous or borderline malicious behaviors. As the VT detection count increases (e.g.,
VT ≥ 10), the overlap diminishes, and malware samples become more distinct and spatially sep-
arated from benign samples in the embedded space. This indicates that higher-threshold malware
samples possess more distinguishable feature representations, likely reflecting stronger and more
consistent malicious behaviors detected by a greater number of antivirus engines. Furthermore, the
density of malware samples decreases as the threshold rises, aligning with the observed reduction in
malware counts from the dataset.

To assess the impact of label noise on malware detection, we conduct a set of experiment varying
the VirusTotal (VT) labeling Threshold. We first create a set of LAMDA datasets, where in each
dataset contain all benign samples and only malware samples with a specific VT labeling count.
For example, for the first dataset, we keep all benign samples and those malware samples that were
flagged exactly by 4 antivirus engines (VT=4). In the next dataset, we include malware samples with
VT=5, and so on, up to VT=13. This resulted in creating ten separate LAMDA dataset variants, each
reflecting a different level of confidence in the AV engines.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 14: F1 scores of the baseline malware detectors with varying VT thresholds.

Split Model VT=4 VT=5 VT=6 VT=7 VT=8 VT=9 VT=10 VT=11 VT=12 VT=13

IID

LightGBM 0.8515 0.8566 0.8148 0.8397 0.8172 0.8511 0.8574 0.8364 0.6889 0.8385
MLP 0.8364 0.8173 0.8166 0.8319 0.8393 0.8232 0.8102 0.8628 0.7536 0.8623
SVM 0.7898 0.7954 0.7605 0.7543 0.8153 0.7492 0.7598 0.7353 0.6559 0.7462
XGBoost 0.8456 0.8028 0.8298 0.8255 0.8119 0.8370 0.8273 0.7844 0.7324 0.7538

NEAR

LightGBM 0.2423 0.2008 0.2308 0.1994 0.2470 0.1962 0.1956 0.2178 0.1639 0.2133
MLP 0.1971 0.1894 0.2191 0.2201 0.2223 0.2275 0.2249 0.1771 0.1867 0.2098
SVM 0.1330 0.1512 0.1569 0.1763 0.1971 0.2712 0.1386 0.1381 0.1261 0.1865
XGBoost 0.2221 0.2064 0.2703 0.2788 0.2761 0.1937 0.2788 0.2361 0.2563 0.2241

FAR

LightGBM 0.1284 0.1477 0.1559 0.1039 0.0852 0.1562 0.1551 0.0935 0.0511 0.2306
MLP 0.1284 0.2716 0.0918 0.0721 0.1362 0.1873 0.1954 0.0841 0.0912 0.0947
SVM 0.2393 0.2272 0.1503 0.0655 0.0938 0.1104 0.1322 0.0540 0.0508 0.0706
XGBoost 0.1560 0.3513 0.2926 0.2613 0.1971 0.1787 0.2133 0.1067 0.1385 0.1452

Figure 14: Combined F1 score plots for VT thresholds 4 to 13.

Next, We evaluate standard malware detectors (LightGBM, MLP, SVM, and XGBoost) on these
datasets using the AnoShift-style splits, which simulate temporal concept drift by training on IID
split and tested on NEAR and FAR splits. Each malware detector’s performance is evaluated using
F1-score metric.

Table 14 presents performance details of the baseline malware detectors using F1-scores metric with
varying VT count. We made the following observations. LightGBM with VT=4, we observe an F1-
score of 0.8515 under the IID split, however it drops significantly to 0.2423 on NEAR and to 0.1284
on FAR splits. This decline highlights the degradation of malware detector over time.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 15: Comparison of model performance across VirusTotal detection thresholds for (a) F1-
score, (b) PR-AUC, and (c) ROC-AUC.

Figure 16: Malware AV detection drift over the years Virustotal vs AndroZoo Metadata. BC :
Currently Labeled as Benign, DImproved: Improved Detection, DWeakened: Weakened Detection,
DUnchanged: Unchanged Detection.

Figure 15 illustrates the average F1, PR-AUC, and ROC-AUC scores of the baseline malware de-
tectors with varying VT labeling threshold. While Figure 15a is the summarization of Figure 14,
subplots (a), (b) and (c) illustrate how performance metrics vary when the VT threshold is set to
different values. Across all these three evaluation metrics, we observe only minor differences in
baseline malware detectors performance. This suggests that, varying the VT labeling threshold has
minimal impact on baseline accuracy. This result suggests that the primary causes of performance
degradation in our main experiments may not be the labeling noise from VT, but rather factors
such as temporal concept drift and class imbalance. The observed performance degradation is more
likely attributed to the distributional shifts over time, reinforcing the relevance of concept drift in
real-world malware detection scenarios.

G ADDITIONAL VISUALIZATION ON LABEL DRIFT ACROSS YEARS

Figure 16 illustrates the analysis through a visual quantification of label drift across years, using
Androozoo metadata and the updated VirusTotal (VT) (VirusTotal, 2025) report.

H SCALABILITY OF LAMDA

To support long-term use and extensibility, we have designed LAMDA with scalability in mind.
In the context of LAMDA, scalability refers to the extensibility of the dataset—specifically, its
ability to be easily expanded with new samples. We have published three variants of LAMDA on

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

the HuggingFace repository, each supporting a different VarianceThreshold configuration.
The dataset creation process begins by splitting the static feature files (i.e., .data files extracted
from each APK) into stratified train and test splits. From the training split, we collect the global set
of all unique tokens (i.e., features), encode both train and test samples into binary vectors in this raw
feature space, and apply VarianceThreshold to select high-variance features from the training
data. The same selected features are then applied to the test data using the saved threshold object.

We publish the following artifacts to facilitate scalability: raw feature matrices (before thresholding),
reduced feature matrices (after thresholding), and the serialized VarianceThreshold object (in
joblib format). Using these resources and the accompanying codebase, researchers can seam-
lessly extend LAMDA by collecting newer APKs, extracting static features, encoding them, and
applying the same thresholding object to map them into LAMDA’s feature space. While it is not
feasible to add new samples to the training set—because doing so would alter the global vocabulary
and invalidate the original thresholding, researchers can add test-time samples for evaluation. This
supports drift detection on newer and future malware variants without requiring retraining. Thus,
LAMDA enables reproducible research and practical testing of detection models against evolving
threats.

I CONTINUAL LEARNING ON LAMDA

In real-world settings, a large number of new benign and malicious Android applications are intro-
duced each year. As a result, both benign (e.g., due to changes in user demands, Android APIs,
security practices) and malicious (e.g., the emergence of novel malware variants) behaviors evolve
over time, leading to concept drift. This makes it challenging for static machine learning models to
maintain reliable performance over time without retraining regularly. However, complete retraining
of past data becomes impractical due to the massive volume of Android applications released daily
and the high computational cost associated with retraining. On the other hand, training solely on
recent data often leads to catastrophic forgetting Lange et al. (2019); Rahman et al. (2022), where
previously acquired knowledge is overwritten or lost. In such a situation, continual learning (CL)
offers a compelling solution by enabling the detection models to adapt incrementally to new benign
and malware applications without the need to retrain with all past data Park et al. (2025); Rahman
et al. (2022); Ghiani et al. (2025). However, some CL techniques may require access to a small
subset of past data.

I.1 LAMDA FOR CONTINUAL LEARNING

LAMDA can be a natural choice for benchmarking CL due to several key properties of its design
and structure:

I. Temporal granularity: It spans over a decade (2013–2025, excluding 2015) with available
both monthly and yearly splits, allowing custom CL as per need.

II. Concept drift: As shown in Section 4, LAMDA exhibits significant distributional changes
over time, both in feature and label space.

III. Flexible task construction:

– Domain-IL: Using yearly data splits while maintaining a consistent malware or be-
nign labeling.

– Class-IL: Leveraging AVClass2-labeled malware families to incrementally expand
the label space.

IV. Real world relevance: LAMDA is derived from real-world Android APKs and VirusTotal
reports, introducing authentic drift and noise.

We evaluate CL on the LAMDA benchmark using two established baselines, Naive (i.e., None)
and Joint, inspired by the prior work Rahman et al. (2022); Ghiani et al. (2025). Additionally, we
include Replay (i.e., Experience Replay) Rolnick et al. (2019), a state-of-the-art memory replay
based CL method, configured with a buffer size of 200 samples per experience. The Naive baseline
trains the model sequentially on each experience or task without any access to past data, while the

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Joint baseline retrains the model from scratch using the cumulative data observed up to the current
experience or task.

These baselines are tested under two settings: Domain Incremental Learning (Domain-IL), which
involves binary malware vs benign classification across yearly tasks, and Class Incremental Learning
(Class-IL), where each task introduces new malware families to classify van de Ven et al. (2022);
Rahman et al. (2022). Due to the lack of available prior work that can assign a single behavioral
label, we didn’t consider Task Incremental Learning (Task-IL) in our experimental setups.

We define each experience or task in the Domain-IL experiment as all samples (both benign and
malicious) collected within a specific calendar year (e.g., 2013, 2014, ..., 2025). However, for the
Class-IL experiments, each experience or task consists of only the malware samples collected during
the corresponding year.

I.2 CONTINUAL LEARNING EXPERIMENTAL SETUP

Domain-IL. In this setting, each experience or task corresponds to samples collected during a
specific year (i.e., 2013, 2014, ... and so on). The model is designed to continuously learn to
distinguish between malware and benign samples as the data distribution evolves over time. We
use the Baseline variant of our published dataset, treating each year as a separate task in the
learning sequence. The objective is for the model to adapt and maintain accurate binary classification
performance despite the temporal distribution shifts.

Class-IL. In this setting, we utilize a different dataset derived from the Baseline variant of our
published dataset. We selected only those malware families that contained more than 10 samples
in the test set, resulting in a total of 154 families for our experiment. Consequently, we excluded
the year 2025 from our experiments, as no family in that split met the minimum sample threshold.
Additionally, we omit standard class incremental learning Park et al. (2025); Rahman et al. (2022),
where entirely new classes are introduced in each experience. This approach does not reflect how
malware appears in real-world scenarios, malicious samples often come from a mix of previously
seen and new families. This claim is supported by the analysis presented in Table 5. The model is
expected to learn incrementally to classify samples across all malware families encountered.

Model Architecture. We use a shared base architecture, a multi-layer perceptron (MLP) for both
Class-IL and Domain-IL settings, consisting of four hidden layers — 512, 384, 256, 128, with ReLU
activation. However, Task-specific heads are added to support each learning scenario. For Class-IL,
we add a single linear layer outputting logits for all classes and train with categorical cross-entropy
loss. For Domain-IL, we use a two-layer MLP head (100 units each, with dropout p=0.2) and a final
sigmoid output, trained with binary cross-entropy. All networks are optimized with SGD (learning-
rate 0.01, momentum 0.9, weight-decay 0.000001).

Evaluation Metrics. We evaluate classification performance using F1 score, which is the har-
monic mean of precision and recall. It provides a balanced measure of a model’s predictions, par-
ticularly important in imbalanced datasets. Following the prior work Ghiani et al. (2025), and we
compute the F1 score after training on the k-th experience using two complementary evaluation
modes:

• Backward Transfer Performance: We measures the model’s ability to retain knowledge
from previous tasks. After training on experience k, we compute the F1 scores on all
previously seen experiences (≤ k). This helps quantify the extent of catastrophic forgetting
(CF).

• Forward Transfer Performance: We measures the model’s ability to generalize to future,
unseen tasks. After training on experience n, we compute the F1 score on all future experi-
ences (> k). This indicates how well the model’s current knowledge transfers to upcoming
distributions.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 17: F1 Score in Domain-IL (Forward) Figure 18: F1 Score in Domain-IL (Backward)

Figure 19: F1 Score in Class-IL (Forward) Figure 20: F1 Score in Class-IL (Backward)

I.3 CONTINUAL LEARNING EXPERIMENTAL RESULTS

Figures 17, 18, 19, and 20 demonstrate the effectiveness of the CL methods in evaluating in realistic
scenarios using LAMDA benchmark. In the Class-IL setting, we observe strong signs of catastrophic
forgetting, especially in the Naive and Replay (Experience Replay) strategies. Backward F1 scores
drop sharply after certain years, showing that learning new classes without retaining the previous
knowledge leads to forgetting. Joint retains high performance as expected due to its exposure to all
the previous data. In the Domain-IL setting, we observe that forgetting is relatively limited due to
the fixed set of classes (malware or benign). Although the data distribution evolves over time, which
leads to all strategies experiencing a gradual decline in forward F1 scores as they fail to adapt to
new distributions. Additionally, we report the average F1 scores of LAMDA across all tasks under
the Class-IL and Domain-IL scenarios in Tables 16 and 15. In the Class-IL setting (Table 16), the
Joint strategy consistently achieves the highest performance, as expected, due to its access to the
full dataset during training. However, this advantage also implies the need for significantly higher
computational resources which makes it less practical for real-world settings. The Naive and Replay
strategies perform considerably worse, which was also expected as the continual introduction of
new classes. In contrast, the Domain-IL results (Table 15) show generally higher and more stable
F1 scores across all strategies. Since the label space remains fixed over time, both Replay and even
the Naive strategy perform reasonably well. This observation suggests that the primary challenge in
Domain-IL is not always forgetting, but rather adapting to distributional shifts in the data.

These results highlight LAMDA’s ability to capture both key challenges in continual learning: class
expansion and distributional shift. As such, LAMDA serves as a realistic and challenging benchmark
that supports future research in continual learning.

J COMPUTATIONAL RESOURCES FOR LAMDA GENERATION

All dataset processing and experiments for LAMDA were conducted on a high-performance com-
pute server with the following configuration:

• CPU: Dual-socket Intel Xeon Gold 6430with a total of 128 logical cores (64 phys-
ical cores, 2 threads per core).

• Memory: 1 TB RAM, with approximately 810 GB available during runtime.
• GPU: 4× NVIDIA H100 NVL GPUs with 95.8 GB memory per GPU. Experiments were

conducted under CUDA 12.8 and driver version 570.124.06.

This infrastructure enabled us to efficiently process over 1 million APKs, large-scale temporal
benchmarking over 12 years of Android malware data.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 15: Average F1 scores of Domain-IL across all experiences or tasks for LAMDA.

Year Strategy Average F1 Score Year Strategy Average F1 Score

2013
Naive 48.86 ± 1.15 2020 Naive 80.26 ± 0.27
Joint 46.89 ± 0.33 Joint 83.08 ± 0.13
Replay 46.56 ± 0.00 Replay 79.93 ± 0.27

2014 Naive 59.36 ± 0.99 2021 Naive 78.61 ± 0.33
Joint 57.38 ± 1.67 Joint 84.12 ± 0.18
Replay 57.13 ± 1.71 Replay 79.46 ± 0.55

2016 Naive 68.07 ± 0.82 2022 Naive 75.86 ± 0.48
Joint 69.21 ± 0.78 Joint 85.02 ± 0.03
Replay 68.75 ± 1.20 Replay 77.02 ± 0.52

2017 Naive 77.79 ± 0.31 2023 Naive 78.10 ± 1.28
Joint 77.05 ± 1.13 Joint 85.59 ± 0.23
Replay 77.93 ± 1.27 Replay 80.74 ± 0.73

2018 Naive 76.64 ± 1.06 2024 Naive 82.54 ± 0.81
Joint 76.61 ± 0.15 Joint 87.86 ± 0.11
Replay 75.94 ± 1.46 Replay 84.77 ± 0.11

2019 Naive 79.74 ± 0.16 2025 Naive 72.71 ± 0.83
Joint 82.76 ± 0.41 Joint 88.52 ± 0.46
Replay 79.72 ± 0.09 Replay 80.57 ± 0.15

Table 16: Average F1 scores of Class-IL across all experiences or tasks for LAMDA.

Year Strategy Average F1 Score Year Strategy Average F1 Score

2013
Naive 12.60 ± 0.65 2020 Naive 53.50 ± 0.18
Joint 12.89 ± 0.37 Joint 68.63 ± 0.67
Replay 12.75 ± 0.48 Replay 52.67 ± 1.34

2014 Naive 25.01 ± 0.28 2021 Naive 51.83 ± 0.87
Joint 28.64 ± 0.49 Joint 72.23 ± 0.46
Replay 24.07 ± 0.74 Replay 50.21 ± 1.51

2016 Naive 32.64 ± 0.72 2022 Naive 53.91 ± 0.42
Joint 40.14 ± 0.22 Joint 76.98 ± 0.36
Replay 32.60 ± 0.36 Replay 54.74 ± 0.43

2017 Naive 19.68 ± 1.12 2023 Naive 38.39 ± 1.84
Joint 51.14 ± 0.09 Joint 80.88 ± 0.25
Replay 16.92 ± 1.21 Replay 37.65 ± 2.46

2018 Naive 32.47 ± 2.06 2024 Naive 13.27 ± 1.33
Joint 59.66 ± 0.31 Joint 81.79 ± 0.29
Replay 23.86 ± 2.22 Replay 12.49 ± 1.76

2019 Naive 47.98 ± 1.71
Joint 65.86 ± 1.20
Replay 44.43 ± 0.26

28

	Introduction
	Related Work
	LAMDA Creation
	Concept Drift Detection
	Concept Drift Detection with Supervised Learning
	Visual Analysis of Concept Drift

	Comprehensive Drift Analysis
	Feature Space Stability Analysis on Top Malware Families
	Temporal Drift Analysis on Common Malware Families
	Temporal Analysis of SHAP-based Explanation Drift
	Label Drift Analysis Across Years

	Concept Drift Adaptation
	Discussion and Limitation
	Conclusion
	Dataset Statistics
	Feature Description
	LAMDA Variants

	Additional Analysis of Concept Drift
	Visual Analysis of Concept Drift
	Feature Space Stability Analysis

	Additional Experimental Details
	Details of the baseline methods
	Baseline Performance
	LAMDA Variants and Drift Sensitivity

	Behind the Scenes: Practical Challenges in LAMDA Creation
	Administrative Challenges
	Technical Challenges

	Effect of Label Noise in Training Data
	Additional Visualization on Label Drift Across Years
	Scalability of LAMDA
	Continual Learning on LAMDA
	LAMDA for Continual Learning
	Continual Learning Experimental Setup
	Continual Learning Experimental Results

	Computational Resources for LAMDA generation

