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Abstract

Quantifying uncertainty in networks is an impor-
tant step in modelling relationships and interac-
tions between entities. We consider the challenge
of bootstrapping an inhomogeneous random graph
when only a single observation of the network is
made and the underlying data generating function
is unknown. We address this problem by consider-
ing embeddings of the observed and bootstrapped
network that are statistically indistinguishable. We
utilise an exchangeable network test that can empir-
ically validate bootstrap samples generated by any
method. Existing methods fail this test, so we pro-
pose a principled, distribution-free network boot-
strap using k-nearest neighbour smoothing, that
can pass this exchangeable network test in many
synthetic and real-data scenarios. We demonstrate
the utility of this work in combination with the
popular data visualisation method t-SNE, where
uncertainty estimates from bootstrapping are used
to explain whether visible structures represent real
statistically sound structures.

1 INTRODUCTION

Networks are ubiquitous across many applications including
cyber-security [Bowman and Huang| [2021] |He et al., [2022]
Bilot et al.| [2023]], biology [[Rosenthal et al., 2018, |Jumper
et al.| 2021], natural language [Mikolov et al., 2013}, and
recommendation algorithms [Wu et al., [2022]. Despite the
influence of this field, uncertainty quantification for net-
works remains a challenge.

The bootstrap method introduced by Efron|[[1979] provides
an estimator for the mean and can be adapted to estimate
variance, order statistics, or any other functional of the data
for i.i.d. samples [Efron and Tibshirani, [1994]. With ap-
propriate quantile corrections, these estimates are provably

correct. Handling dependency requires care [Kreiss and
Paparoditis, [2011]] and so networks, for which edges are
far from independent, require special treatment. Many net-
works can be described as following a limiting distribution
[Lovasz and Szegedy, 2006, |Borgs et al., 2008|], where edges
are independent given the node cluster labels. |Green and
Shalizi| [2022] apply this to bootstrapping networks using a
graphon-based ‘histogram bootstrap’. This approach is fur-
ther developed by Zu and Qin| [[2024] for valid local network
statistics.

More generally, a Random Dot Product Graph (RDPG)
places nodes in a latent vector space and edges become
independent conditional on location, which generates prov-
ably correct bootstraps [Levin and Levina, 2019]]. Adjacency
Spectral Embedding (ASE) [Hoff et al., 2002, |Sussman et al.}
2012] provides strong theoretical asymptotic guarantees
[Cape et al.l 2019]. These can be generalised to multipartite
networks [Rubin-Delanchy et al.,|2022]. However, inference
for these methods relies on ASE, which empirically has
lower power relative to other available embedding methods
[[Qin and Rohe, [2013}|Grover and Leskovec, [2016]. Nearest-
neighbour methods [Stone, |1977]] also provide asymptotic
convergence to a latent position [Lian, [2011] and can be
applied to nonlinear embeddings such as Node2Vec [Grover|
and Leskovec, |2016] and ProNE [Zhang et al.|[2019].

Further, we care about finite-sample properties. To address
this, we apply developments in ‘Unfolding’ [De Lathauwer|
et al.} 2000, |Gallagher et al.,|2021] to construct a Bootstrap
Exchangeability Test (Section[2.3)) for whether the embed-
dings of a bootstrapped network and the observed network
are exchangeable, in a finite dataset. This reveals that the
nonlinear models outperform linear ones and are needed for
practical usage.

Previous work uses count statistics and U-statistics to
summarise the performance of network bootstraps [Bhat{
tacharyya and Bickel| 2015, Epskamp et al., 2018 Levin and
Levinal 2019]. These approaches test that the distribution of
local features of networks are conserved under bootstrap, e.g.
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the counts of triangles. Counting triangles is appropriate for
some applications [Prat-Pérez et al.,|[2014} (Gao et al.,[2022],
but these structures can be averaged-out in embeddings.
Complete U-statistics can be impossible to represent in low
dimensions [Seshadhri et al., [2020], but fortunately they are
not required for downstream tasks such as network visuali-
sation [[Mclnnes et al., 2018, |Van der Maaten and Hinton,
2008]], anomaly detection [Akoglu et al., 2015]], and graph
similarity comparisons [Koutra et al.l 2013]], which are the
focus of this paper. For such tasks, even ‘useful’ bootstrap
procedures are often dismissed, with no readily available
replacements. We therefore introduce a suitable notion of
validity for embeddings, which insists that the observed
and bootstrapped network have statistically indistinguish-
able embedding distributions. This can be formalised into a
test for whether network bootstraps are exchangeable with
the observed network in a joint embedding. The joint em-
bedding is chosen to have the stability property, i.e. nodes
that have the same connectivity distribution but belong to
different networks still receive the same embedding. Gener-
ating bootstraps that remain valid in an embedding space is
crucial for many downstream tasks and is the focus of our
contributions.

Figure[T]explains our contributions. (a) The Adjacency ma-
trix A is modelled as A;; % Bernoulli (P;;), fori,j €
{1,...,n}. (b) We then compute an embedding X of the
network which (c) we utilise to form a broad range of esti-
mators for P; we add k-Nearest Neighbours on nonlinear
embeddings to the options. (d) Unfolding the observed and
bootstrapped adjacency matrices, A and A, respectively,
allows them to be (e) embedded into a shared space, from
which downstream tasks of uncertainty quantification can
be performed. These include our Bootstrap Exchangeabil-
ity Test and (f) visualising uncertainty in t-SNE [Van der|
Maaten and Hinton, [2008]] embeddings.

2 THEORETICAL BACKGROUND

Our proposed bootstrapping procedure requires a method
for embedding a single network. For our proposed method
to validate the bootstrap, we need a method for embedding
multiple networks. We introduce both types of embedding
in this section, as well as the concept of exchangeability,
which are core concepts in our main contributions.

2.1 EMBEDDING SINGLE NETWORKS

An undirected n node network is represented using a binary
and symmetric adjacency matrix A € {0,1}"*", where
A;; = 1if an edge exists between nodes ¢ and j and
A;; = 0 otherwise for each ¢, j € {1,...,n}. This paper
considers networks which can be modelled using a binary

inhomogeneous random graph (BIRG) [Soderberg, [2002]],
A;j Y Bernoulli( P} ),

where P;; denotes the probability of an edge between nodes
¢ and j. For the remainder of this paper, unless otherwise
stated, we assume that each A is drawn from a BIRG.

It is often useful to consider the graph using a low-
dimensional representation X ¢ R™*d_referred to as em-
bedding. The embedding dimension d is often chosen such
that d < n. While our contributions are not limited to a
single embedding method, we will focus on ASE due to
its simplicity. For ASE, it is common practice to observe
a scree plot of the singular values and find the ‘elbow’ to
decide the value of d [Zhu and Ghodsil, 2006, Nguyen and
Holmes|, 2019]].

Definition 1 (Adjacency spectral embedding) The d-
dimensional adjacency spectral embedding of a network
A is given by
X = UalSal'2,

where 34 € R4 is a diagonal matrix containing the d
largest eigenvalues of A arranged with decreasing magni-
tude, and ﬁA € R™*4 js a matrix containing, as columns,
the corresponding eigenvectors. Here, the i-th row of the em-
bedding matrix X e R"* s the transposed d-dimensional
vector representation of the i-th row of A. For single-
network embeddings, we use the notation X.

2.2 EMBEDDING MULTIPLE NETWORKS

To validate a proposed bootstrap, we embed both the ob-
served network and its bootstrap into the same space.
For this task, we require a multiple-network embedding.
Specifically, we denote the multi-network embedding by
Y = (Y, ;Y(M)) ¢ RM7xd which is a row-wise
concatenation of the embeddings of M networks. Here,
each Y (") ¢ Rnxd represents the embedding of the m-th
network A("™) obtained from the multi-network embedding.

One method for multi-network embedding is unfolded ad-
jacency spectral embedding (UASE), which embeds a col-
lection of networks into a single embedding space, allowing
for comparisons to be made across the networks [Jones and
Rubin-Delanchy}, [2020)].

Definition 2 (Unfolded adjacency spectral embedding)
Let A = (A(l), e A(M)) € {0,1}"*Mn (column con-
catenation) be the unfolding of a collection of M n-node
networks. The d-dimensional unfolded adjacency spectral
embedding of this collection is given by

Y = Vs,
where IAIAﬁ AV} is the rank-d truncated singular value
decomposition of A, that is, 34 € R?*? is a diagonal
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Figure 1: An overview of the proposed graph bootstrap framework. (a): Observe an n node network as an adjacency matrix

A € {0,1}"*", where it is assumed that A;; Y Bernoulli(P;

;)- (b): Embed the network into d < n dimensions, e.g. via

ASE, to obtain a low-dimension representation of the network X e R”Xd. (c): Find the k-nearest neighbours for each node
and use these as in Algorithmto estimate the probability matrix as P € [0, 1]"*". (d): Generate B bootstrap resamples of

the observed network by sampling Ag’) Y Bernoulli(P;;) for b = 1, ..., B. (e): Use the bootstrap resamples for downstream
tasks, such as estimating nodewise variance, as shown. (f): We can link nodes by whether their distributions overlap in an

visualisation, here t-SNE.

matrix containing the d largest singular values of A ar-
ranged in decreasing order, and U 4, V4 contain the corre-
sponding left and right singular vectors, respectively. Here,

Y = (Y, .., Y(M)) ¢ RMnxd where the i-th row of
Y (™) contains the transposed d-dimensional vector repre-

sentation of the i-th row of A(™ foreachm € {1,..., M}.

2.3 ACROSS-NETWORK EXCHANGEABILITY

UASE is far from the only method available for embed-
ding multiple networks, e.g.|Levin et al.| [2017]],|Chen et al.
[2020], Scheinerman and Tucker|[2010], [Lin et al.| [2008]].
However, we utilise UASE as unfolding allows for across-
network exchangeability [Gallagher et al.,2021]], which we
leverage for our main contributions.

Definition 3 (Across-network exchangeability) Let P; de-
note the i-th row of a probability matrix P € [0, 1]™*". Let
Y(l), . ,Y(T) € R™*? be a d-dimensional multi-network
embedding of a collection of BIRGs with probability ma-
trices P, ..., P(M) | respectively. This embedding has
the property of across-network exchangeability if when

P — Pi(u), we have that

3

K2 K3

P (Y(m) =1, Yi(u) = UQ) =P (Y(m) = vg,f’i(u) = v1> ,

forany m,u € {1,..., M} andany i € {1,...,n} [Davis
et al., 2023]]. In words, this condition states that embeddings
Y, and V") are exchangeable.

Alternative embedding methods can be used and have across-
network exchangeability by utilising Dilated Unfolded Em-
bedding [Davis et al.||2023|]. For simplicity, we mainly focus
on using UASE in this work. See Appendix [A-T]for details.

3 CONTRIBUTIONS

Our main contributions are firstly, a novel method to validate
bootstraps based on their exchangeability with the observed
network, and secondly, two bootstrapping methods. One has
theoretical guarantees in the asymptotic regime, and another
improved empirical performance in the finite regime.

3.1 BOOTSTRAP VALIDATION PROCEDURE

In the unrealistic case where we know the true probability
matrix P from which an observed network A was drawn,



then we could draw a true resample of that network as
ﬁij x Bernoulli(P;;) for each 4,5 € {1,...,n}. This
case represents the best possible bootstrap for our given
model assumptions and the entries of A and A will be
exchangeable. Consequently, a good bootstrap must produce
an A with exchangeable entries to that of A, based on the
finite sample evidence. We therefore propose a method of
testing for exchangeability between networks.

Directly comparing adjacency matrices entrywise as n
grows is both computationally expensive and conceptually
problematic without access to the true P, as any errors in es-
timation can lead to bootstrap resamples which are not valid.
To solve this problem, we opt to compare lower-dimensional
embeddings of the networks, which can be estimated.

Our procedure for bootstrap validation considers an ob-
served n node network A and one bootstrap A. We first
compute a d-dimensional across-network exchangeable em-
bedding Y = (Y ). Y) € R?"*4, where Y (™) is the
embedding of the observed network A and Y is the embed-
ding of its bootstrap A in the shared space.

Due to across-network exchangeability, Y () and Y will
be exchangeable if A and A are drawn from the same dis-
tribution. Next, we apply the paired displacement test from
Davis et al.|[2023]] (a permutation test for a pair of networks),
whose null hypothesis is that the two adjacency matrices are
exchangeable, and therefore Yi((’bs) and f’l have the same
latent position, for all ¢ € {1,...,n}. The hypotheses are
thus

Hoy : Y and Y follow the same distribution,

Hy : Y©%) and Y do not follow the same distribution.

We exploit this property for the ‘Bootstrap Exchangeability
Test’, which tests the validity of a single bootstrap sam-
ple. Let 71, ...,mr be R permutations of Y, where each

permutation swaps rows ¢ and ¢ + n with probability % for
i =1,...,n. This gives R permuted versions of Y denoted
by m1(Y), ..., m-(Y"). For each permutation, we calculate

a test statistic t(7,.(Y")) capturing the displacement of the
second network from the first, as:

N 2N
Trgy =t (Y)) = ZWT(Y)i - Z T (Y);

i=1 i=N—+1 2

ey
From these R test statistics we calculate a p-value:
1 R+1

p= —— T, > tops - 2
p R+1 7; { = obs} ( )

If the p-value provides insufficient evidence for the alternate
hypothesis, then the bootstrap is deemed exchangeable with
the observed, based on the finite sample evidence, and hence
the bootstrap is valid.

A summary of this procedure is displayed in Algorithm
[Il which for real data scenarios is applied to an observed
matrix with each of its B bootstrap replicates individually,
giving B p-values.

In simulated data scenarios we know the true probability ma-
trix P, which allows a more robust verification of bootstrap
validity by conditioning on P rather than A. We therefore
take M adjacency matrices draws A ..., A from the
known probability matrix P. For each matrix, we draw one
bootstrap resample given by A1) ... A respectively,
and apply Algorithm|[I]to each pair.
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Figure 2: Example QQ-plots. (a): An invalid resample has
too many small p-values and occurs if the resampled data are
centred too far from the true latent position, when compared
with the embedding of the observed data, which would lead
to overestimation of the variance. (b): A valid resample
has uniformly distributed p-values and the bootstrap resam-
ples are exchangeable with the observed - we cannot tell
which data come from which network. (c): A conservative
resample has too many large p-values and occurs when the
bootstrap resamples are too similar to the observed, which
would lead to underestimation of the variance.

Now that we have introduced our bootstrap validation pro-
cedure, we state our main theorem.

Theorem 1. Let A ... A be a collection of BIRGs
with probability matrices P(Y), ..., P9 respectively. Let
AWM AM) pe a collection of truly resampled net-
works, that is, AVET-”) g Bernoulli(PZ-(jm)) for each i,j €
{1,...,n}andm € {1,..., M}. Then, the distribution of
the M p-values computed by the bootstrap exchangeability
test (Algorithm on each pair (A™), A(™)) is uniform on
[0,1].

For proof see Appendix[A.2] In words, this theorem states
that in the case where a bootstrap is truly exchangeable
with the observed, our bootstrap validation procedure will
provably deem the bootstrap valid. Theorem 1 provides a
framework for verifying whether a proposed bootstrapping
procedure generates exchangeable networks, offering a ro-



bust tool for validating the effectiveness of the bootstrapping
procedure.

When applying Theorem 1, we obtain M p-values, call
these p1, ..., pas. We can sort these p-values such that py, <
... < pasrr. Under the null hypothesis, the p-values follow a
Uniform[0,1] distribution, thus we can associate the m-th
sorted p-value p,,,» with the m-th quantile given by ¢,y =
1\;3;1 form € {1,..., M} . By plotting each sorted p-value
with its associated quantile we build a quantile-quantile
(QQ)-plot. We construct a ‘Bootstrap Validity Score’

LM
S:MZ‘ﬁm’_Qm’lv 3)

m/=1
where the closer the score is to 0, the closer to uniform the
p-values are. A small Bootstrap Validity Score implies the
bootstrap procedure used creates exchangeable bootstraps.

Figure [2)illustrates the possible outcomes of the testing pro-
cedure for the sorted p-values. A valid bootstrap procedure
has a QQ-plot close to the diagonal and S ~ 0. If A is far
from A, then this curve appears super-uniform; we deem
such a bootstrap to be invalid. Invalid bootstraps may be
overdispersed (i.e. the bootstrap embeddings of the node
would imply a variance larger than the true variance) or
mean-biased (the bootstrapped mean is not centred on the
true latent position). On the other hand, if A is too similar to
A, then the curve appears sub-uniform; in this case, the hy-
pothesis testing literature would deem the test conservative.
The embeddings being underdispersed can give a conser-
vative test result. Both invalid and conservative bootstraps
are distinguishable from the observed data and node vari-
ances would be misestimated. Therefore, we recommend
that only valid bootstraps be trusted for such downstream
applications.

3.2 NAIVE BOOTSTRAP

Here, we consider a natural naive bootstrap method. For the
moment, let us consider a different network model, a Ran-
dom Dot Product Graph (RDPG) [Young and Scheinerman,
2007}, INickell 2006[]. An RDPG is a latent position model,
meaning it models each node as having a true position in
R? latent space, and provides a model-based rationale for
spectral embedding. The RDPG assumes that P = X X T,
where X € R™*4 contains, as rows, the d-dimensional la-
tent position vectors for each node. It is therefore reasonable
to consider the ASE estimator P = X X7 as in Lemma

Lemma 1. Let X € R™*? be an ASE of an observed
adjacency matrix A € R™*" and let P € [0,1]"*™ be
the corresponding rank-d probability matrix. Assuming that

O(| Xil), O(|1 X)) = O(polylog(n)) for all i

lim || XXT - P|| =o0.
n—oo

Algorithm 1 Bootstrap Exchangeability Test

1: Input:
Observed network A € {0, 1}"*"
Bootstrap network A € {0, 1}7%"
Embedding dimension d < n
Number of permutations R
Test statistic 7,11 from Eq.
Compute: _
Compute the d-dimensional UASE of Aand A,
Y = (Y(obs); Y) c R2nxd
9: Compute observed test statistic _
Ty = tops = t(Y) = t(Y (09 Y)
10: for r = 1to R do
11: fori =1tondo
12: Swap rows 7 and 7 + n of Y with probability
1 to obtain T, (Y)
13: end for

14: Compute permuted test statistic 7;.1 =
t(m(Y))
15: end for

16: Compute p-value using Eq.[2]
17: Output: p

For proof see Appendix However, the estimator P =
XXTis problematic. Firstly, in the finite-sample case, the
entries of P = X X7 can lie outside of the range [0, 1].
If this occurs, we set any values less than 0 to 0 and any
values greater than 1 to 1. Secondly, the assumptions are
strong; for example, if d needs to grow with n then || X;||
grows as well. In practice|Levin and Levinal[2019] show this
estimator performs badly in U-statistic bootstrap tests, as it
is not asymptotically consistent. We will use it as a baseline
to show that our test is capable of identifying problematic
bootstraps.

3.3 FINITE-SAMPLE KNN BOOTSTRAP

We now propose a new procedure for creating network boot-
straps, by estimating the behaviour of each node based on
its local k-nearest neighbours (kNN). Using ASE, high-
numbers of dimensions can be needed to correctly esti-
mate neighbourhoods, which can make estimation hard.
Since kNN relies solely on a locally linear structure that
preserves nearest-neighbourhood relationships, alternative
embeddings that reduce dimensionality can also be applied.

Specifically, we apply kNN to a single network embedding
X to generate a k-length neighbourhood \; € {1,...,n}*
foreachi € {1,...,n}, where i € N; forall i € {1,...,n}.
For the examples in this paper, Euclidean distance is used
as the distance measure. The ¢-th row of the estimated prob-
ability matrix P € R™*™ is given by the mean of the rows



of A indexed by the neighbours of node i,
- 1
Po=1 2 4
JEN;

foreach i € {1,...,n}. Networks are then sampled from a
BIRG with a probability matrix P.

Algorithm 2 ASE-kNN
1: Input:
Observed network A € {0, 1}"*"
Embedding dimension d < n
Number of nearest neighbours k& > 1
Number of bootstrapped graphs B
Distance measure for the data and embedding method,
e.g. Euclidean

AN AN

7: Compute: .
8: Compute the d-dimensional ASE X of A
9: fori=1,...,ndo

10: Find the £ nearest neighbours of node 7 in X , de-
noted by the set \; € {1,...,n}* (including node 1),
using specified distance measure

1: SetP=1 Y A

JEN;

12: end for

13: forb=1,...,Bdo

14: Sample AVZ(-?) £ Bernoulli(P;;)

15: foreachi,j € {1,...,n}

16: end for _

17: Output: AW .. AB)

For spectral embedding, an alternative form of X, given in
Appendix [A.4] can be used, which is less sensitive to the
choice of d.

When choosing k there is a trade-off. If & is too small we
may be ignoring neighbours with similar behaviour, result-
ing in a bootstrap that is too similar to the observation.
However, if k is too large the model will use nodes embed-
ded far away from the node of interest to estimate the latent
position of the node of interest (see Figure [2). Appendix
[A5.T]|explores the sensitivity of this procedure to the choice
of k. We check the appropriateness of the choice of k by
considering the Bootstrap Validity Score S.

4 SYNTHETIC DATA EXAMPLE

In this section we empirically evaluate our proposed network
procedures alongside other bootstrapping procedures using
the Bootstrap Exchangeability Test given in Section [3.1]
We use synthetic data generated from a Mixed Membership
Stochastic Block Model (MMSBM) [Airoldi et al., [2008]].
MMSBMs are an extension of the stochastic block model
(SBM) [Holland et al., |1983]] that allow nodes to have partial
membership to multiple communities. In an MMSBM, each

node is associated with a distribution over communities,
rather than being assigned to a single community. A vector
oc Rg controls the mixed-membership allowed per node.
Foreachnode i € {1, ...,n} there is a C-dimensional mixed

. ind . .
membership vector 7r; ~ Dirichlet(cx).

An indicator vector z;_,; denotes the specific block mem-
bership of node ¢ when it connects to node j and z;_,;
denotes the specific block membership of node ;7 when it is
connected from node . For each pair of nodes (i, j), a mem-

bership indicator for the initiator, z;_, ; n Multinomial(r;),
is drawn, and a membership indicator for the receiver,
Zjsi w Multinomial(7r;), is drawn. A block probability
matrix B € [0, 1]9*¢ defines the probability of interactions
between the C' communities, where By, is the probability
of there being a connection from a node in community g to
a node in community h, for g, h € {1,...,C'}. By defining
B to be symmetric, By, = By, forall g,h € {1,...,C},
we have that P(A;;) = P(Aj;) for all i, € {1,...,n},
however this does not guarantee that A;; = A;;. To ensure
sampled matrices are symmetric, whenever i > j, we set
A;; = Aj;. The value of the interaction from node ¢ to
node j is sampled as

A;; ™ Bernoulli(z;_,; Bz;_,;), 4)

forall i,j € {1, ...,n}. In this example, there are n = 300
nodes and C' = 3 communities. We define o« = 1, that is,
each node is equally likely to belong to each community.
We define the block probability matrix B as:

0.3 02 0.2
B=102 06 02]. (5)
0.2 02 09

Here we demonstrate the method is applicable to non clus-
tered data; see Appendix [A.5] for a synthetic example on
clustered data']

As introduced in Section 3.1} we can use Algorithm [I]
M € N times to verify if a procedure for generating boot-
strapped networks creates exchangeable networks. For this
example we take M = 300 random samples from the
model specified by Equations 4] and [5 to create the adja-
cency matrices A(M | ..., AM) "and choose d = 3 for ASE
since rank(B) = 3. For each matrix one bootstrap resam-
ple is generated as in Algorithm 2] with k& = 5, given by
AWM A respectively. To each pair [A(™) A(™)],
form =1, ..., M, we apply Algorithm[I] and use the M p-
values to give a QQ-plot and a Bootstrap Validity Score. We
repeat the kKNN-based bootstrap with different values of &k
to demonstrate the effect of k in the model. Other bootstrap

'We provide all data and implementation code for
the synthetic and real-data experiments described in
this paper at: |https://github.com/Oemerald/
ValidBootstrapsForNetworkEmbeddings


https://github.com/0emerald/ValidBootstrapsForNetworkEmbeddings
https://github.com/0emerald/ValidBootstrapsForNetworkEmbeddings

ASE-kNN (d=3) ProNE-kNN (d=2)

ProNE-kNN (d=3) Other Methods (d=3)

1.0 ASE-KNN k=5, 5=0.014 1.0 { — ProNEKNN k=5, S=0.112 1.0 ProNE-kNN k =5, S=0104 P 1.0{ — aserr”, s=0186 7
ASE-KNN k=25, 5=0.017 ProNE-kNN k =25, §=0.077 ProNE-kNN k =25, 5=0.187 /' ASE-ESWR, §=05 ,'///
—— ASE-KNN k=55, §=0011 —— PrONE-kNN k =55, §=0.031 ¢ —— ProNE-kNN k =55, §=0.183 Y, s
0 08 ASEKNN k=90, 5=0.043 o 087 — pronexmn k=90, 5-0 13// o 081 — poncinni=s0 s=016 ° 08 )
2 s 7 T # B s
o« (4 s -4 4 g /
v 06 206 v 06 g 06 A
= = prari prar ’
= = = =]
S 04 84 Soa Boa ) /
: eyl
02 F 0.2 =02 = 0.2 oS
A
p //
0.0 0.0 0.0 0.04 “—
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
Figure 3: Simulated results for the 3 community MMSBM (n = 300) with different embedding and bootstrap resampling

methods applied. Each curve uses M = 300 draws from the known model, each paired with a single bootstrap from the
model. The area between the curve and the © = y line is the Bootstrap Validity Score .S.

methods are also evaluated on this data (see Appendix [A-6)),
in addition to using ProNE [Zhang et al.| [2019] to create
non-linear low-dimensional embeddings to apply bootstrap
methods to.

In this example, we use a variety of methods to estimate p
from one network observation and draw bootstraps, which
we then evaluate with the validity test (observed visually
with the QQ-plots in Figure [3) to decide which method
for estimating p gives exchangeable embeddings with the
one observation. We are then free to use any embedding
bootstraps that do pass the test for any downstream tasks.

Figure 3] shows that only our kNN methods achieve validity,
though non-linear embeddings require more tuning as they
compress information into fewer dimensions. Appendix [A7]
considers the effects of changing n in this model.

S REAL-WORLD DATA

5.1 SCHOOL SOCIAL INTERACTION NETWORK

For a concrete analysis on real data we consider a social
interaction network. The Lyon school dataset captures face-
to-face interactions between members of a French primary
school over two days in October 2009, from 08:00 to 18:00
each day [Stehlé et al., 2011} |Rossi and Ahmed, |2015]]. The
network tracks the interactions of 242 participants (10 teach-
ers and 232 students) across 5 school years, each year group
having two classes. Each person wore a Radio Frequency
Identification badge which recorded an interaction between
two people if they were in close proximity for 20 seconds.

The data is binned into hour-long time windows over the
two days to give a time series of networks. When two par-
ticipants had one or more interactions in the hour-long win-
dow, an edge is present between them in the corresponding
network. This gives a series of graphs A ... A0 ¢
{0,1}"*™, where n = 242.

To highlight the performance and a useful application
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Figure 4: Y (°b) the first 2 dimensions of the School data
for all nodes. For a student node in class 4A, we visualise
B = 20 bootstrap embeddings, with the covariance ellipse
at 1, 2, and 3 standard deviations.

of the methodology in this paper, we consider a single
from the series, 9:00-10:00 of Day 1. This is A(?), which
we shall henceforward denote as A(°**). We apply our
bootstrap method to this data as in Algorithm [2| to ob-
tain B = 500 bootstrap replicates of A(°**). We embed
the observed matrix along with the B = 500 bootstraps
into a common d = 12 dimensional space via UASE of
A= <A(Ob5), 2(1), e A(B)) , to get an embedding for the
observed matrix and the B bootstrap matrices, denoted by
y©bs) y() Yy (B) ¢ R"*4 regpectively. From these,
we are able to estimate the covariance of each node in
the embedding space. Figure [4] shows the first 2 dimen-
sions of ¥ (°*) with bootstrap embeddings and Normal-
approximation uncertainty for one node.



5.2 APPLYING DIFFERENT EMBEDDING
METHODS TO THE SCHOOL DATA

Figure [Sh shows that the empirical performance of different
estimators of P varies considerably. Despite asymptotic
guarantees, ASE-based X X7 approaches create bootstraps
which the Bootstrap Exchangeability Test do not deem ex-
changeable. Bootstraps from nonlinear methods perform
better; both KNN applied to the ASE embedding (ASE-kNN)
and kNN applied to the ProNE embedding (ProNE-kNN).

Our bootstrap procedure generates uncertainty for each
point in the embedding, which we have providing a for-
mal test to ensure validity. One important application is to
score common network embeddings in terms of whether
they represent this uncertainty. Dimension reduction tech-
niques that preserve global structure in 2-3D such as t-SNE
[Van der Maaten and Hintonl, [2008]] and UMAP [Mclnnes
et al 2018] are often applied. See Appendix for a
brief overview of t-SNE. We apply t-SNE to A (°**) to visu-
alise the adjacency matrix in 2-dimensions. Bootstrapping
A(°b) allows us to estimate the covariance of each node
in the d = 10 dimensional embedding Y (9b3) which shows
whether dimension reduction method such as t-SNE is ap-
propriate. To do this we construct a symmetric “fuzziness”
matrix F' € {0,1}"*", where

1 if node 7 is within 3 standard deviations

of node j and node j is within 3 standard
F;j = deviations of node 7,
0 otherwise.

An edge is drawn between nodes ¢ and j in the t-SNE plot if
F;; = 1, with the interpretation that these nodes have over-
lapping probability distributions. Appendix conducts
sensitivity analysis to ensure robustness to t-SNE hyperpa-
rameters and the number of bootstraps B.

To use network uncertainty to quantify the performance of
some (externally chosen) embedding, we can then provide a
score for a particular (standardised) node visualisation lay-
out V', which rewards placing nodes with overlapping distri-
butions close to one another, whilst also retaining structure
within uncertain nodes by penalising nodes that are placed
too close. For this we construct the ‘Fuzziness Score’ as the
standard deviation of the edge length

F(V) = Var(|Vi = Vjo; Fi; = 1). ©)

This penalises both misplacing nodes in the wrong cluster,
and giving uncertain nodes ‘structure’. To select a value for
the perplexity hyperparameter we minimise the ‘Fuzziness
score’. This implies an optimal perplexity hyperparameter
for t-SNE on the School data (of 125475; Figure @

Figure [5p-c shows F' as edges highlighting which nodes
probabilistically overlap. Whilst the latent positions Y; and
Y, may not be close, if F;; = 1 then it is possible that Y,
and YJ could be the same.
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Figure 5: Insights from uncertainty in the School data. (a):
QQ-plots from applying the Bootstrap Exchangeability Test
to different bootstrap methods which use different estima-
tors of P. (b): t-SNE of A(°bs) using too-low perplexity re-
sults in distant points having overlapping uncertainty, shown
as lines connecting nodes within 3 standard deviations of
one another (15 from d = 6 ProNE embedding). (c): t-SNE
of A(°*$) using higher perplexity results in fewer poorly
placed nodes.

Using kNN bootstraps, we quantify the performance of t-
SNE embeddings (Figure [Sp-c) using node-wise variance.
Annotating the fuzziness highlights across-cluster interac-
tions that t-SNE alone does not show. The low perplexity
visualisation is misleading - e.g. it places a class 2A student
(green) away from students with overlapping distributions
under bootstrap, and similarly a class 2B student (red) is
placed centrally. Conversely, the high perplexity solution
avoids this problem, whilst uncertainty highlights that the
red 2B student’s distribution overlaps with 1B.

6 DISCUSSION

Obtaining valid bootstrap resamples from a network em-
bedding requires only a single substantial assumption, that
nodes are exchangeable. This permits versatile resampling
from a single network observation, validated by a reliable
Bootstrap Exchangeability Test to confirm resample ex-
changeability with the observed network. Our approach
relies on P being a sufficient statistic for A0b) 5o extend-



ing the methodology to work for weighted networks would
require additional distributional assumptions. Experimen-
tal evaluation demonstrates the method is able to resample
networks of various structures. The bootstrap validity test
supports the flexibility to incorporate various embedding
methods, including those optimised for scalability with large
datasets, ensuring applicability to networks with increasing
complexity and size.

In the common case where only one instance of a network
is available, care must be taken not to overfit. The fuzziness
score and other metrics should be viewed as a sensitivity
analysis, and not subject to premature optimisation. The
number of neighbours k should be chosen by a prior based
on community sizes, and run with other k used to ensure a
lack of sensitivity to this parameter.

Previous studies found that using the estimate P=XXT
introduces bias in count statistics. Our findings extend this
by showing it does not provide a valid bootstrap under the
exchangeable bootstrap framework proposed in this paper.
In contrast, the ASE-KNN bootstrap we introduce generates
exchangeable embeddings, but it underestimates the vari-
ability in metrics such as average node degree and triangle
density in an SBM example.

Future work aimed at developing network bootstrapping
methods that satisfy all validity criteria could enable broader
applications in downstream tasks. By offering a novel per-
spective on evaluating bootstrap validity, we address a
range of network analysis applications that rely on low-
dimensional representations rather than entire networks.
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A APPENDIX

A.1 OTHER ACROSS-NETWORK EXCHANGEABLE EMBEDDINGS

In Section we introduced UASE, which is a multi-network embedding that has the property of across-network ex-
changeability. This property is utilised in our bootstrap exchangeability test (stated in Algorithm [I), in order to prove
Theorem 1. UASE is just one of many possible unfolded embeddings [Davis et al., 2023|2024/, which have across-network
exchangeability.

The standard unfolding, used by UASE, is defined as a column concatenation of the collection of networks A =
(AW A ¢ RMnxn However, it is possible to define a more general dilated unfolding,

7= [ A] € {0, 1D, (M

0
AT 0
LetG:{Ac{0,1}"*": A= AT} x Q — R"*? be a general function for single-network embedding of an adjacency
matrix A with a seed w € €. We require this seed due to the random nature of most network embedding methods; for
example, the specific choice of eigenvalues and eigenvectors in ASE is random. The inclusion of some random seed serves
the purpose of eliminating this randomness, allowing for comparisons to be made across multiple runs of the embedding
function. This is required for the following definition. G is a label-invariant embedding in the case where

P(G(a,w)=v)=P (g(HaHT,w) = HV) ,

for any permutation matrix IT € {0,1}"*", a € R"*" and v € R"*<.|Davis et al|[2023] proves that any label-invariant G,
applied to Z(.A), returns

X
| =G(2(A),w),
MR
where X € R"*% is a single embedding that summarises the collection of networks, and Y € RMnxdjg an across-network
exchangeable multi-network embedding. The authors show that when G is simply ASE, then the returned Y is equivalent to
UASE.

Using this more general definition of an unfolded embedding, we now have access to many other across-network exchange-
able embeddings through the choice of G. For example, we define unfolded ProNE, by setting G to be the ProNE embedding
[Zhang et al., [2019].

A.2 PROOF OF THEOREM 1

Proof. UASE is a multi-network embedding that satisfies across-network exchangeability (Definition 3) regardless of
embedding dimension (Gallagher et al.| [2021]], Davis et al.| [2023]] Theorem 5). Let (Y(m); Y(m)) € R?"*4 denote a
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d-dimensional UASE of A = (A(™ A(™)) ¢ R2"*" forall m € {1,..., M}. Both AC™ and A(™) are BIRGs drawn the
same probability matrix, P(™). Since UASE is across-network exchangeable, it is true that

P (Y(m) =y, z_(m) = v2) =P (Y(m) = Vg, z_(m) = vl) .

K2 K2

forall m € {1, ..., M'}. In words, the embedding of the observed network A is exchangeable with the embedding of the
truly resampled network A(™) foreachm € {1,..., M}.

Due to the exchangeability of each Y“”% Y (™) the permutations applied at each step r € {1, ..., R} does not alter the
distribution of t(Y(m)7 Y(’”)). Therefore, the sequence 711,75 ..., Tr41 is exchangeable, that is

P(Ty <wv1,...,Try1 S vry1) = P(Th <01y, -+ s TR11 < Vo(R41))

for any vy, € R and any permutation o on {1,..., R+ 1}.

As the sequence of test statistics is exchangeable, it follows that the p-value,

| B
P=% ; T, > tobs},
will be uniformly distributed on [0, 1]. O

A.3 PROOF OF LEMMA 1

Proof. From |Gallagher et al.|[2021]] (Proposition 2) we have that ‘there exists a sequence of orthogonal matrices @ € O(d)

such that
1%.Q - x| = o Vi) ®)
max i — il =
i=1,..., n 7/ PnT

with high probability, where it is assumed that the sparsity factor p,, satisfies p, = w (%logc(n)) for some universal

constant ¢ > 1’. This states that after applying an orthogonal transformation to an embedding X, which leaves the
structure of the embedding unchanged, the embedding will converge in the Euclidean norm to the noise-free embedding
X as the number of nodes increases. For a dense graph p, = 1. To prove the lemma, it is enough to assume that
O(| X)), O(|| X;]|) = O(polylog(n)) for all 7. Under this assumption and using Equation we obtain:

maz | X XT - X XT| < maz (X - Xl - IXT )+ 1 X - 1% - X))

=0 (bg(n)) S max (HX’LH + ||Xz||)

\/PnTt 1
_0 (M : polylog(ﬂ))
N
©)
The limit Ji@ow = 0, from which we get Jgngozgazn||X1X? — X, XT|| = 0 which implies that
lim || XXT — XXT||=0. - O

n—oQ

In general, the assumption O(|| X;||), O(]| X;||) = O(polylog(n)) only holds under certain conditions.



A4 ALTERNATIVE EMBEDDING DEFINITION WITH ASE

For an adjacency matrix A € {0,1}"*™ which represents a binary n node network, typically when this is embedded
spectrally via a truncated SVD, it is as:
A UprSAVY, (10)

where the largest d < n singular values are kept. Here, X 4 € R%*? is a diagonal matrix of the d largest singular values of A

in descending order, with U 4 € R™*? and V4 € R(Z+1)xd matrices containing, as columns, corresponding orthonormal
left and right singular vectors respectively.

The right spectral embedding is then given by Y = Valx A|% € R™*4 and the left spectral embedding by Xa =
Ua|S 4|2 € R"*4 However, we could define an alternative embedding as Y, ;; = VaX4 = Y4|Z 4|2 € R?¥9,

The values of the diagonal matrix 3 4 € R?*? are in descending order, and give information about how much variance is
explained by each dimension of the variance, as in Principle Component Analysis (PCA) [Pearson, [I901]]. Thus by using
Y, in Algorithm when using a spectral embedding to locate each node’s k-nearest neighbours, the variance captured by
each dimension is better represented, and the algorithm is less sensitive to the choice of d.

A.5 4 COMMUNITY STOCHASTIC BLOCK MODEL EXAMPLE

For simulated data, we generate a C' = 4 community symmetric Stochastic Block Model (SBM) [Holland et al.,[1983]], an
example of a BIRG, of n = 1000 nodes, where nodes are assigned to each community with equal random chance. The
communities can be stored in a community allocation vector 7 € {1, ..., C'}"™. The probability of an edge between two
nodes depends on their respective community memberships. Specifically, we sampled from an SBM defined by the block
probability matrix B € [0,1]°*¢, where B is given by:

0.7 04 02 0.5
04 06 0.3 0.2
B= 0.2 03 0.8 04| an

05 02 04 09

An adjacency matrix A € {0,1}"*" is sampled as:
A,; " Bernoulli(B, ), (12)

where 7;, 7; € {1, ..., C'} denote the communities that nodes ¢ and j belong to respectively. A block model B is specified
the same as for a MMSBM (see Section E]) By defining B to be symmetric, By, = By 4 forall g,h € {1,...,C}, we
have that P(A;;) = P(A;;) forall ¢, j € {1, ...,n}, however this does not guarantee that A;; = A;;. To ensure symmetric
samples, whenever ¢ > 7, i.e. A;; falls into the lower triangle of A, then set A;; = Aj; to ensure symmetry. In this way, we
ensure that the resulting adjacency matrix A is symmetric.

As introduced in Section we can use Algorithm[I] M € N times to verify if a procedure for generating bootstrapped
networks creates exchangeable networks. For this example we take M = 200 random samples from the model specified
in Equation [12|to create the adjacency matrices A(B’ ..., A(M) For each matrix one bootstrap replicate is created as in
Algorithm [2{with k = 5 chosen, given by A1) ..., A(M) respectively. To each pair [A(™), A™)], form = 1,..., M, we
apply Algorithm|I] and use the M p-values to create a QQ-plot. We repeat the above kNN-based bootstrap (as in Section
and change k to be k = 25 and k = 240, as well as applying other bootstrap methods (see Appendix [A.6] for more
details), with different embedding dimension d. In Figure [l we show the QQ-plots and Bootstrap Validity Scores produced

by each bootstrapping method.

In Appendix[A.5.1] we perform a sensitivity analysis to demonstrate the procedure is robust to the choice of k for ASE-kNN,
and principled in how it behaves.

A.5.1 Sensitivity of KNN-bootstrap Procedure to %

To demonstrate how the choice of k influences the performance of the kNN algorithm, we uses the M = 200 draws given
by AW ...  AM) from the n = 1000 node 4 community SBM with block probability matrix B given in Equation
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Figure 6: Simulated results for the n = 1000 node 4 community SBM. Each curve is found using M = 200 draws from the
known model, each paired with a single bootstrap from the model. The area between the curve and the x = y line is the
Bootstrap Validity Score.

introduced in Section For all values of k € {2, ..., 5 }, each of the M matrices are bootstrapped once as in Algorithm
(ASE-kNN) with d = 4, giving M pairs for each k value. To each pair [A("), g(m)], form =1, ..., M, we apply Algorithm
and use the M p-values to create a QQ-plot. The Bootstrap Validity Score is calculated for each value of k € {2,..., 3},
and gives a measure of how well the bootstrap algorithm performs with this data example for different choices of k. In Figure
[7]the choices of k are plotted against their scores. By observing the score values, we see that there is a wide range of choices
of k that the algorithm performs well for with this data. Since in this example we know that n = 1000 for 4 communities,
where all communities have equal probability of a node belonging to it (i.e. the expected size of each community is 250), we
see the algorithm begins to perform poorly when k is chosen to be larger than the size of the smallest community in an
observed network.
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Figure 7: Plot showing possible choices of £k against the ‘Bootstrap Validity Score’ (area between the curve and the x = y
line) for a 4 community SBM model of n = 1000 nodes. The smaller the score value, the better the bootstrap method
performs at producing exchangeable networks. From the plot we see that choices of £ < 200 all have reasonable score
values. Around the k¥ = 230 mark the score values increase rapidly and plateau at a Bootstrap Validity Score of 0.5. As each
of the n = 1000 nodes are equally likely to belong to each of the 4 communities, the expected size of each community is
250. The kNN-based algorithm performs poorly when k is chosen larger than the size of the smallest community, but this is
sensible, as a node is not well represented by a node outside of its own community in this SBM setting.

A.6 STATEMENT OF CONSIDERED BOOTSTRAP ALGORITHMS
A naive way to bootstrap a network is to consider the edge list E' of adjacency matrix A € {0, 1}™*", and sample | F| edges

with replacement. As we consider binary graphs, any edge sampled more than once will have its duplicates removed from
the final sample. The resulting edge list £/ will populate adjacency matrix Ac {0,1}™*™. This is given by Algorlthm



Algorithm 3 X X7 Bootstrap of an Unweighted Network

1: Input:

2:  Observed adjacency matrix A € {0, 1}"*"

3: Embedding dimension d < n

4:  Number of bootstrapped graphs B

5: Compute the d-dimensional adjacency spectral embedding Xao0f A
6: Set 13 = X AX };

7: Set any values in P < 0tobe0, and set any values in P>1ltobel
8: forb=1,...,Bdo

9 Sample

ind

~(b .
Agj) ~ Bernoulli(P;;)

10: end for _
11: Output: A . AKB)

Algorithm 4 Edge List Sample with Replacement (ESWR) Bootstrap of an Unweighted Network

—_

: Input:

Observed adjacency matrix A € {0, 1}"*™

Number of bootstrapped graphs B

: Create the edge list £ of edges in A

:forb=1,...,Bdo B
Sample with replacement |E| edges from E to give an edge list £(*)
Update E® by removing any duplicate edges
Use E® to construct a binary adjacency matrix A(®)

end for _

: Output: AV . AB)

R A A T

—_
=]

We can extend Algorithm by adding random edges to the bootstrapped AW forp = 1, ..., B outputted by Algorithm@
such that all bootstrap resamples have the same number of edges as the observed adjacency matrix A. See Algorithm [5]

Algorithm S Edge List Sample with Replacement Bootstrap + Random Edges of an Unweighted Network

1: Input:
2:  Observed adjacency matrix A € {0,1}"*"
3:  Number of bootstrapped graphs B
4: Create the edge list F of edges in A
5. forb=1,...,Bdo B
6: Sample with replacement |E| edges from E to give an edge list £(*)
7: Update E® by removing any duplicate edges
8:  Find a € Ny such that |E®)| 4 o = |E|
9: Sample without replacement a edges from (]ENUU’))c and add these to E(®)
10 Use E® to construct a binary adjacency matrix A(®)
11: end for

12: Output: AD), ... AB)

A.7 MMSBM - EFFECTS OF CHANGING N TO THE BOOTSTRAP VALIDITY SCORE WITH DIFFERENT
METHODS

We look to see how the network size n changes the Bootstrap Validity Score for different methods in Figure [§] We see
for this synthetic data example, ASE-X X7 performs worse than all other methods we tried. We apply the kNN bootstrap
procedure with ASE into d = 3 dimensions (as in Algorithm[2) and use ProNE embedding (into d = 2 dimensions as Figure
showed d = 2 performed better than d = 3 with ProNE) with kNN bootstrapping. For the same values of k, the ASE-kNN
and ProNE-kNN perform fairly similarly across all values of n, as shown by Figure[8] We see for & = 90, both methods



yield a fairly high Bootstrap Validity Score, likely that & is chosen too large. For k = 5 and £ = 25 we see fairly similar
performance, however when n > 750, it appears that £ = 25 is a better choice than k¥ = 5 for both embedding method
choices.

Bootstrap Validity Scores for different Bootstrap Methods
with M=2000 and varying n values (number of nodes)
for a 3 community MMSBM with alpha=(1,1,1)

0.200]
v 0.1751 W —e— ASE-XXT
5 X = k=5 ASE-KNN
% 0,150, —+— k=25 ASE-KNN
. —+— k=90 ASE-kNN
= =— k=5 ProNE-kNN
2 0,100 —— k=25 ProNE-kNN
£ o015 k=90 ProNE-kNN
S 0.050
1]

0.025

n (number of nodes)

Figure 8: MMSBM, C' = 3 communities, with ¢ = 1 for different values of n and different embedding methods and
bootstrap procedures applied.

A.8 OVERVIEW OF T-SNE

t-SNE (t-distributed Stochastic Neighbour Embedding) was introduced in|Van der Maaten and Hinton|[2008]] as a tool for
visualising high-dimensional data in two or three dimensions. In the original high-dimensional space, pairwise similarities
between data points are calculated using a probability distribution, which preserves local structures by assigning higher
probabilities to points that are close together. t-SNE tries to replicate the high-dimensional similarities in a low-dimension
space by optimising the Kullback-Leibler (KL) divergence [Kullback and Leibler, |1951]] between the high-dimension and
low-dimension probability distributions, using gradient descent.

t-SNE is good at clustering and separating groups with different local relationship structure. However, it does not preserve
global structures well. The algorithm can separate clusters well, but where the clusters are embedded in the low-dimensional
t-SNE space is not necessarily representative of how similar certain clusters are in behaviour, or where there are across
cluster local relationships. The perplexity hyperparameter, which controls the balance between local and global aspects of
the data, thus needs tuning carefully. It is also of note that t-SNE is non-deterministic, so results may vary across runs. A
fixed seed can be used to create reproducible t-SNE embeddings.

A9 SENSITIVITY ANALYSIS CHECKS OF EMBEDDING OF THE SCHOOL DATA EXAMPLE

To choose k& in the kNN model, we computed the Bootstrap Validity Score for each k € {2, ...,12}. We find that & being too
small or too large leads to poor bootstraps, but in between there is tolerance between k = 3 and 8 (Figure[J). So as not to
overfit, we choose the middle value k = 5, even though k = 3 or 7 are possibly better. For both ProNE and ASE, this leads
to very similar P values (Figure .

When estimating the covariance of each node in the d dimensional embedding space created via UASE, we have B bootstrap
embeddings and 1 observed embedding to compute the estimate. Here we show that the method is not sensitive to the
number of bootstraps used, by plotting the t-SNE embedding of A(°**), with the t-SNE perplexity value fixed at perplexity =
125. We set B = 25, 50, 100, 150, 200, 250, 300, 400, 500 in our sensitivity analysis. We set d = 10 as the ASE embedding
dimension and k£ = 5 for the kNN to compute P. The t-SNE embeddings are standardised to be mean 0, standard deviation
1. Figure [IT| shows that the method is robust to changing the value of B, the number of bootstraps, as the lines between
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Figure 9: Bootstrap Validity Score for the School Data averaged over 20 runs, with 90% confidence intervals, for k& €
{2,...,12}.

(a) P estimate (ProNE-kNN) (b) P estimate (ASE-kNN)
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Figure 10: P for the School Data ASE-kNN (d = 10) or ProNE-kNN (d = 6) embedding (both £ = 5). Both are very
similar, having passed the Bootstrap Exchangeability Test.
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Figure 11: Sensitivity to B shown on a shared t-SNE visualisation applied to the observed adjacency matrix with Perplexity
125, A(°%) is shown. The edges connecting nodes are from within 3 SDs of one another in the d dimensional embedding
space using ASE-KNN (k = 5, d = 10, varied B).

clusters are stable. For each value of B, the “fuzziness” matrix F' is calculated, and a line is plotted between nodes 7 and j
when F;; = 1. We have F;; = 1 when the embeddings of nodes 7 and j in the d dimensional embedding space are both
within 3 standard deviations of one another, using the B bootstrap embeddings alongside the observed network’s embedding
to estimate the covariance of each node.

The t-SNE algorithm has a parameter called perplexity, which can be interpreted as a smooth measure of the effective
number of neighbours used by the algorithm to calculate a nodes similarity to other nodes [[Van der Maaten and Hinton|
|2?_m|]. For a fixed number of bootstraps, B = 500, we calculate the covariance of each node, and thus the “fuzziness” matrix
F. A systematic scan of perplexity is shown in Figure [I2] summarised with the Fuzziness score. We then visualise the
corresponding t-SNE of A°s) for perplexity = 15,25, 35, 55, 75,95, 125, 155, 185, with edges from F', in Figure The
method is robust to perplexity choice, however when perplexity is chosen to be larger than the largest community size, the
t-SNE algorithm will certainly explore relationships outside of the cluster each node belongs to, which is valuable.

For the school data example, each class had between 22 and 26 students, with one teacher per class [[Stehl€ et al., 201T]]. The
largest cluster size is therefore 27, if we consider the largest class and their teacher. When perplexity is increased to a value
larger than 27, we see that the t-SNE algorithm does a better job at separating nodes, especially near the origin. In Figure[3]
we can see that when perplexity is increased from 15 to 125 the algorithm does a much better job at clustering the data, as it
is able to look outside of the members of the cluster to explore the global data structure, yielding a better visualisation.

Our uncertainty estimates are relatively robust to the choice of P estimate. Figure[I4] shows the inferred F' matrices using



Perplexity vs Score for the school dataset
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Figure 12: Fuzziness Score as a function of t-SNE Perplexity for the School Data ASE-KNN (d = 10) or ProNE-kNN

(d = 6) embedding (both k£ = 5). Both methods agree that ‘good’ values are around 125 with a wide tolerance of £75.

the two best bootstraps, either ProNE-kNN (d=6) or ASE-kNN (d=10). Whilst differences exist, these are within-cluster
structures and the important cross-cluster features are present similarly in both.
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Figure 13: Plots of t-SNE applied to the observed adjacency matrix A(°%*) for different perplexity values. For B = 500
bootstraps the “fuzziness” matrix F' is calculated, and a line is plotted between nodes 7 and j if F;; = 1, i.e. nodes ¢ and j
have overlapping distributions. We see the method is robust to different choices of perplexity.
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Figure 14: Visualisation of the “fuzziness” matrix F' calculated using B = 500 bootstraps, for ProNE-kNN (d = 6) and
ASE-KNN (d = 10). Where F;; = 1, nodes ¢ and j are within 3 SDs of one another, i.e. the nodes have overlapping
distributions. Both methods highlight the same within cluster and across cluster structures.
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