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Summary
Exploration remains an open problem in reinforcement learning. Ideally, a useful explo-

ration method should efficiently explore sparse reward environments, scale to large environ-
ments, and be simple to implement. Most agents use random-based methods like ϵ-greedy due
to their simplicity and low computational cost. However, these methods struggle in sparse re-
ward settings and take a long time to converge. Count-based methods encourage exploration
in less-visited areas but do not scale well to large environments. Extensions to count-based
methods to work with function approximation improve performance in complex environments
like Montezuma’s Revenge but are rarely used due to their computational and implementation
complexity. We propose a new method that achieves all three desiderata simultaneously. Our
exploration method handles large environments by maintaining counts within multiple over-
lapping partitions of states to derive exploration bonuses. We evaluate our algorithms on three
continuous observation environments where count-based methods cannot be applied including
MiniGrid DoorKey with image-based observations.

Contribution(s)
1. We introduce a novel, yet simple, method for exploration that uses overlapping partitions

of the state space in order to maintain counts, and then derives an exploration bonus from
aggregating these counts to encourage exploration to less-visited states.
Context: Prior work has explored extending count-based exploration methods to large
environments, most notably pseudo-counts (Bellemare et al., 2016), though these methods
are rarely used due to their complexity. In comparison, our method involves obtaining a
discrete representation of the environment, maintaining a count for each cell, and computing
the intrinsic reward at each timestep. In this paper, we use tile-coding and VQ-VAE to obtain
discrete representations of the environment, but other methods could also be used, such as
the representations learned in DreamerV2 (Hafner et al., 2020) or fuzzy tiling activation on
the last layer of a neural network (Pan et al., 2019).

2. We show that the new method can explore in sparse reward settings and scale to large en-
vironments that use complex function approximators. We use continuous river-swim as a
known hard exploration environment and the MiniGrid DoorKey environment as an exam-
ple image-based domain that uses complex function approximation.
Context: We build on top of PPO (Schulman et al., 2017) by adding in our exploration
bonuses into the optimized return. We compare to the most common approaches to explo-
ration in PPO: random exploration such as epsilon-greedy and entropy regularization on the
policy gradient loss. We do not compare to pseudo-count methods as the computational and
implementation overhead of these methods make them already very rarely used (Wurman
et al., 2022; Bellemare et al., 2020; Berner et al., 2019).
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Abstract

Exploration remains an open problem in reinforcement learning. Ideally, a useful1
exploration method should efficiently explore sparse reward environments, scale to2
large environments, and be simple to implement. Most agents use random-based3
methods like ϵ-greedy due to their simplicity and low computational cost. How-4
ever, these methods struggle in sparse reward settings and take a long time to con-5
verge. Count-based methods encourage exploration in less-visited areas but do not6
scale well to large environments. Extensions to count-based methods to work with7
function approximation improve performance in complex environments like Mon-8
tezuma’s Revenge but are rarely used due to their computational and implementation9
complexity. We propose a new method that achieves all three desiderata simultane-10
ously. Our exploration method handles large environments by maintaining counts11
within multiple overlapping partitions of states to derive exploration bonuses. We12
evaluate our algorithms on three continuous observation environments where count-13
based methods cannot be applied including MiniGrid DoorKey with image-based14
observations.15

1 Introduction16

Exploration is a fundamental challenge in reinforcement learning. What experience is gathered17
is often as important as the process of learning from it or generalization to new experience. One18
primitive approach is to use random exploration, e.g., a random action is selected with probability ϵ19
at every timestep, or an entropy regularization term is included in the training loss to encourage the20
policy to remain sufficiently random. These approaches often perform extremely poorly in so-called21
hard exploration settings, most often characterized by sparse rewards. In such settings, the agent22
relies entirely on this action randomization to stumble on informative rewards before any of the rest23
of the learning apparatus can make progress.24

An early improvement to random exploration has been count-based approaches. These are often25
motivated under the principle of optimism under uncertainty, where state-action counts can be used26
to construct exploration bonuses that act to create upper confidence bounds on value estimates (e.g.,27
Strehl & Littman, 2008). These count-based methods, though, are not directly applicable in very28
large or continuous state and action spaces, where an agent may never revisit a state during typical29
lengths of trials. In such cases, alternative methods that are friendlier to function approximation30
have been proposed. For example, Density-based pseudo-counts (Bellemare et al., 2016) construct31
an exploration bonus from a density model learned alongside a value function. Random network dis-32
tillation (Burda et al., 2018) creates a bonus based on the error of predicting the output of randomly33
initialized fixed network of the state input — the prediction improves with observations, decay-34
ing the bonus like counts. It would seem we have an ideal answer that is function approximation35
friendly.36
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However, celebrated results such as GT-Sophy (Wurman et al., 2022) outperforming professional37
Gran Turismo drivers or navigation of stratospheric balloons (Bellemare et al., 2020) use simplis-38
tic random exploration (entropy regularization and random-walk policies, respectively). Further-39
more, Dreamer v3 (Hafner et al., 2023), a general-purpose algorithm achieving state-of-the-art40
results across many tasks, also eschews directed exploration for simple random exploration from41
entropy regularization. We propose that another consideration is the simplicity of the exploration42
method. Pseudo-counts and random-network distillation require significant computational overhead43
with training a wholly separate network (or two) in addition training of a value or policy network.44
They also are complicated to implement and correspondingly complicated to make work. Dabney45
et al. (2020) argues that the complexity of many exploration methods may even limit their generality,46
suggesting that is the reason ϵ-greedy remains so common.47

In summary, there are three desiderata for exploration: effective directed exploration especially48
in sparse reward settings, function approximation friendliness, and simplicity in implementation,49
computation, and applicability. In this work we propose a directed exploration approach nearly50
as simple as count-based methods for tabular function approximation while remaining friendly to51
common large-scale function approximation schemes, achieving all three desiderate.52

Our approach exploits two things. First, many modern function approximation schemes are observ-53
ing considerable benefit in constructing discrete, but combinatorial, representations. For example,54
Dreamer (Hafner et al., 2020; 2023) builds discrete states for its world model made up of 32 variables55
each able to take on 32 discrete values. Each of these easily countable. VQ-VAE (Van Den Oord56
et al., 2017) gives down-scaled discrete representations of an image, where each latent pixel takes57
on finite discrete index values; again, easily countable. Fuzzy tiling activations (Pan et al., 2019)58
provide a discretized final layer representation, aimed at making learning more stable to covariate59
shift, but, also easily countable. These discrete combinatorial representations, can be thought of as60
providing multiple overlapping partitions of the state space: each variable partitions the states by61
the values it can take. These will be what we count. Second, we aggregate the counts associated62
with each variable to build a single associated count for a state and then use this as a traditional63
exploration bonus.64

We evaluate this approach on simple but challenging toy exploration problems with continuous state65
spaces and finally on a MiniGrid (Chevalier-Boisvert et al., 2024) sparse reward task using image-66
based observations. We show that our simple count-based method is both function approximation67
friendly and effective at directing exploration in sparse reward settings.68

2 Background69

We begin by introducing the reinforcement learning (RL) problem setting and discuss two popular70
solution methods, Q-learning (Watkins & Dayan, 1992) and Proximal Policy Optimization (PPO;71
Schulman et al., 2017), which we use alongside our exploration method. We then present the com-72
mon exploration strategies associated with these methods, specifically ϵ-greedy for Q-learning and73
entropy regularization for PPO. We also describe two discretized state representation techniques,74
tile-coding and VQ-VAE, which are used in Section 4 to obtain overlapping partitions for our explo-75
ration method.76

Consider a Markov Decision Process (MDP), defined as a tuple ⟨S,A, R, P, γ⟩ where S represents77
the state space, A represents the action space, R(s, a) is the reward function giving the expected78
reward for taking action a from state s, P (s′|s, a) is the transition function giving the probability79
of transitioning from state s to state s′ given action a, and γ is the discount factor. In this paper we80
focus on model-free RL where the transition function P is unknown and is not learned by the agent.81
The environment can be finite and discrete, where |S| = dS and |A| = dA, or it can be continuous,82
where S ⊆ RdS and A ⊆ RdA . When we define counts on state-action pairs, we focus on the case83
where the state and action space is finite and discrete. When we introduce our new approach we84
will allow the state space to either be continuous or discrete (and large), but the action space for85
simplicity will remain discrete.86
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The goal of an RL agent is to take actions to maximize the discounted sum of rewards,
∑∞

t=1 γ
t−1rt,87

it receives over time where γ ∈ [0, 1) (Sutton, 2018). We can represent the agent’s choice of88
action with a policy π(s) giving a probability distribution over A for state s. To quantify the the89
performance of policy π, we define its state-action value or Q-value as:90

Qπ(s, a) ≡ Eπ

[ ∞∑
t=0

γtrt+1

∣∣∣∣∣s0 = s, a0 = a

]
, (1)

where Eπ denotes the expected value over all possible trajectories following π. A common goal for91
RL is to learn an optimal policy π∗ = argmaxπ Q

π(s, a).92

2.1 Q-learning93

One common approach to RL is to estimate a value function. The Q-value, can be calculated using94
the recursive Bellman equation95

Qπ(s, a) = R(s, a) + γ
∑
s′,a′

P (s′|s, a)π(a′|s′)Qπ(s′, a′), (2)

which is the basis for many learning algorithms, including Q-learning. Q-learning is a temporal96
difference (TD) control algorithm where Q is updated by computing the TD error, the difference in97
the Bellman equation given a sample of the next state s′ and assuming a′ is being selected greedily98
with respect to the current Q estimate. Using α as a step size, the Q estimate is updated at time t by,99

Q(st, at)← Q(st, at) + αt[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)]. (3)

Here, we assume we have a finite action and state space, and the Q estimates are stored as a table.100
In order to guarantee convergence to the optimal policy, all states and actions need to be visited in-101
finitely often, i.e., we need an effective exploration method. This is often achieved through selecting102
actions ϵ-greedy with respect to the current Q estimates.103

2.2 Proximal Policy Optimization (PPO)104

Another common approach is to represent and learn a policy directly. Let πθ(a|s) be a parameter-105
ized representation of the policy with parameters θ, e.g., using a neural network. The goal becomes106
to directly update θ to take actions that accumulate more reward, typically through gradient up-107
dates. One such approach is PPO (Schulman et al., 2017), which also learns a value function used108
to reduce variance in the policy updates. PPO collects experience through interactions with the en-109
vironment and optimizes an objective function using minibatch updates from multiple trajectories.110
PPO’s objective to maximize can be written as:111

Jt(θ) = Et

[
JCLIP
t (θ)− c1L

VF
t (θ) + c2H[πθ]

]
, (4)

where c1, c2 are coefficients, JCLIP
t is the policy improvement objective (clipped to prevent the policy112

from changing too drastically on each update, i.e., keep it “proximal"), LVF
t is the value function113

error and H[πθ] is an entropy regularizer. Our main focus is the entropy regularizer, which serves as114
PPO’s main exploration mechanism.115

2.3 Exploration Bonuses116

An influential approach to exploration is the principle of Optimism in the Face of Uncertainty (OFU).117
Instead of greedily choosing actions based solely on estimated rewards (with or without undirected118
randomness), the agent assumes that less visited states and actions may have a higher value than119
estimated. This is typically done with some form of exploration bonus added to the environment re-120
ward to drive a greedy policy to seek less visited states and actions. As the agent explores and visits121
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more states and actions, it reduces its uncertainty and the associated exploration bonus. The Upper122
Confidence Bound (UCB; Auer, 2002) algorithm belongs to the OFU family. It was introduced in123
the multi-armed bandit setting, but has also been used extensively in the MDP setting (e.g., ?Belle-124
mare et al., 2016). The agent operates as if the observed reward is rt = R(st, at) + βR+(st, at)125
where R+(st, at) denotes the exploration bonus, and β is the coefficient balancing exploration and126
exploitation. UCB suggests the following count-based exploration bonus:127

R+(s, a) =

√
2 logN(s)

N(s, a)
(5)

where N(s, a) is the state-action pair visitation count and N(s) =
∑

a N(s, a). Maintaining counts128
for every state-action pair is not applicable in large or continuous environments. Not only is it in-129
tractable to store such counts, but an agent may never revisit a state during typical lengths of trials,130
and so will not effectively direct exploration. Density-based pseudo-counts (Bellemare et al., 2016)131
and random network distillation (Burda et al., 2018) are attempts to devise count-like alternatives132
for Equation 5 that are function approximation friendly. However, these are complex in both imple-133
mentation and computation, and so do not meet the stated desiderata.134

2.4 State Discretization135

Our approach makes use of a growing trend in RL: learned discretized state representations. In136
order to have high expressivity, these representations are typically combinatoric, i.e., the state is137
represented as the composition of a set of discrete variables. Each discrete variable of a state, vi(s) ∈138
[n] ≡ {1, . . . , ni}, can be thought of as partitioning states into a finite number of cells indexed by139
positive integers. And the overall representation ϕ(s) = v1(s)× . . .×vn(s) is the Cartesian product140
of these multiple overlapping discrete partitions. Such a combinatoric representation is not new:141
CMACs (Albus, 1975) and tile-coding (Sutton, 1995) are examples of such representations. In tile-142
coding, a grid or tiling is defined on top of a vector representation of the state so as to partition the143
states into tiles. By offsetting the tiling by different amounts, multiple overlapping partitions can144
be created, where the state is represented by the set of discrete tiles that contains it in each tiling.145
Large tiles then give a sense of generalization, as states that are distant will share some tiles in the146
representation, while a large number of tilings gives expressivity as nearby states can still be in147
different tiles for some tiling.148

The recent trend is to learn such discrete representations. Dreamer (Hafner et al., 2020; 2023) is one149
such example where a state’s learned latent representation is a binary matrix with 32 rows of one-hot150
encoded vectors of length 32. Each row, like tile-coding, partitions the state-space into 32 cells, with151
the one-hot encoding identifying the cell. Expressivity comes from combinatorics of representing152
the state with 32 such discrete partitions. Vector Quantized Variational Auto Encoders (VQ-VAE;153
Van Den Oord et al., 2017) is another example, and one we will use in our experiments. A VQ-VAE154
consists of an encoder, a quantization step, and a decoder, aimed at finding a latent representation of155
images that ideally respects an image’s compositionality. By passing the image input to the encoder156
we can learn a representation of the input ze(x) ∈ Rn×m, which gives n vectors of length m. These157
vectors are compared to a dictionary of embedding vectors e ∈ Rk×m. For vector i, let vi ∈ [k] be158
the row index of the chosen vector of e. These chosen vectors, zq ∈ Rn×m, are passed through a159
decoder to reconstruct the given input. The encoder, decoder, and dictionary of embedding vectors160
are all learned in VQ-VAE. Notice that the Cartesian product v1(s) × . . . × vn(s) gives multiple161
overlapping partitions of its input, just as with tile-coding. Locally sensitive hashing (Indyk &162
Motwani, 1998; Bellemare et al., 2013) and fuzzy tiling activations (Pan et al., 2019) are two other163
examples of fixed and learned discrete representations, respectively.164

3 Method165

Consider the Continuous Riverswim (Pan et al., 2018) environment (see Figure 15), which expands166
the discrete 6-state classic environment, to the [0, 1] interval. The environment has two actions:167
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Figure 1: Continuous Riverswim illustration. The red and green regions indicate low- and high-
reward areas, respectively. The black dot represents the agent within three overlapping tilings.

LEFT and RIGHT. LEFT moves the agent 0.1 units to the left , while RIGHT moves the agent 0.1168
units right (with 30% probability), 0.1 units left (with 10% probability), or keeps it in place (with169
70% probability). After moving, the agent’s position is perturbed by a sample from a zero-mean170
Gaussian with standard deviation 0.01. If the agent takes RIGHT from a state ≥ 0.95 it receives a171
reward of 10, 000; LEFT from a state ≤ 0.05 a reward of 5, otherwise 0; γ = 0.99. The optimal172
policy is to always choose RIGHT, however it is difficult and unlikely to observe the large reward173
doing so, while the small reward for LEFT is easily found. While count-based methods efficiently174
explore in the discrete version of Riverswim, it cannot be applied in Continuous Riverswim.175

Now consider applying tile-coding to the Continuous Riverswim state space, where each partition176
is just a one-dimensional tiling (see the tiling illustration in Figure 1), and each subsequent tiling177
is offset to create different boundaries between cells in each partition. A single state can then be178
represented by the cells from each partition that contains that state. It is these cells, i.e., tiles, that179
our approach will count, so each state visited leads to incrementing the count of all n cells containing180
the state. To construct an exploration bonus from the n counts, we use an aggregation function to181
turn a set of counts into a single count and then apply Equation 5 to the aggregate count. Possibilities182
for the aggregation function include average, max, and min. The choice of min for the aggregation183
is suggestive of the count-min-sketch (Cormode & Muthukrishnan, 2005) for estimating element184
counts with sublinear memory, which also counts cells of multiple overlapping partitions but uses185
perfect pairwise-independent hash functions as the partitions. The choice of average is suggestive186
of tile-coding itself, where a value function is represented by the average value of each cell.187

Formally, imagine a set of overlapping partitions {Pi}i=1...n where each partition Pi : S → [k] maps188
to k possible cells. We can represent the set of all cells with C = {(i, j) | i ∈ [n], j ∈ [k]}. We189
keep counts on every cell action pair, N(c ∈ C, a ∈ A). Given an aggregation function A : Nn → R190
we construct a state action count as N(s, a) ≡ A({N(Pi(s), a)}i=1...n), which then gets used to191
create a UCB exploration bonus with Equation 5.192

Tile-coding becomes impractical in high-dimensional spaces because the number of required tilings193
increases exponentially with the number of dimensions to maintain a fixed resolution. Furthermore,194
as a fixed representation it does not adapt its expressivity to relevant differences in states. Hence,195
it would not be practical, for example, for image-based state representations. However, the general196
process can be applied to any discrete representation with multiple overlapping partitions, including197
the recent trends of learned discrete representations, such as those discussed in Section 2.4. In198
particular, we will experiment with exploring using counts on the discrete latent spaces produced by199
VQ-VAE.200
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4 Results201

We evaluate our method across three distinct environments with different characteristics to analyze202
its effectiveness in various reinforcement learning settings. First, we use the Continuous River-203
Swim (Pan et al., 2018) environment, a small continuous environment with a distractor reward that204
makes it a challenging exploration problem for Q-learning. Second, we evaluate on the Mountain205
Car (Moore, 1990) environment, a classic control task with sparse rewards, using PPO. Lastly, we206
evaluate our method on the MiniGrid DoorKey (Chevalier-Boisvert et al., 2024) environment, where207
the agent receives image-based observations using VQ-VAE representations. We conducted exper-208
iments on both the standard DoorKey setting and a modified version with shorter episodes to make209
the exploration problem harder. Unless otherwise noted, all results are averages over 50 runs and210
shaded regions show 95% confidence intervals. The exact details of all of the environments as well211
as the hyperparameters for the experiments are all reported in the supplementary material.212

4.1 Continuous Riverswim213

Figure 2: Continuous RiverSwim show-
ing total undiscounted return over
100,000 timesteps for Q-learning with
different exploration methods. “Tile-
coding(X)” denotes our proposed ap-
proach with different aggregation func-
tions. State Aggregation denotes using
counts with a single partition of the state
space.

Continuous Riverswim is a challenging exploration task214
that requires a directed exploration strategy. The diffi-215
culty of a random walk to reach the large reward and216
the presence of the small distractor reward increases the217
difficulty of exploration, as the agent prematurely may218
seek the suboptimal reward. We trained agents using219
Q-learning with different exploration methods: ϵ-greedy,220
state aggregation (discrete representation with no over-221
lapping partitions), and multiple overlapping partitions222
using tile-coding with two different aggregation func-223
tions: average and min. The same discrete representation224
was used for both learning and exploration bonuses, with225
the number of tilings and tiles not optimized for either226
exploration or learning. Figure 2 shows the total undis-227
counted return over 100,000 steps of learning. We see that228
using overlapping discrete representations with either of229
the aggregation functions yields a higher return than state230
aggregation and ϵ-greedy, as it more reliably found the231
action leading to the large reward. Amongst the two ag-232
gregation functions we see that min is a slower to begin233
exploiting than average but more reliably exploits the large reward. Note that despite tuning ϵ in ϵ-234
greedy, testing values ϵ ∈ {0.1, 0.2, 0.5}, none of the runs discovered the large reward, consistently235
exploiting the suboptimal reward.236

4.2 Mountain Car237

Figure 3: Mountain Car showing
episodic return over 500k timesteps
for PPO using tile-coding counts and
vanilla PPO with entropy regulariza-
tion.

Mountain Car is a classic control environment with con-238
tinuous state and sparse reward (rewards are −1 except at239
episode termination). In this environment, we use PPO240
for learning as it is known to struggle in Mountain Car,241
while using tile-coding to obtain discrete state represen-242
tations for exploration bonuses. Similar to Continuous243
Riverswim (Section 4.1) we do not tune the number of244
tilings or tiles. For PPO’s policy and value networks,245
we use an MLP with position and velocity as input and246
two hidden layers, each containing 64 units, with tanh as247
the activation function. Figure 3 presents the results for248
entropy regularization and our count-based method using249
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average as the aggregation function. As shown in Figure 3, PPO with our count-based exploration250
learns approximately twice as fast as PPO with entropy regularization. Count-based exploration251
also demonstrates lower variance in the episodic return, as indicated by the shaded confidence inter-252
vals. This is likely due to PPO with entropy regularization failing to reliably learn a policy to reach253
the goal within the training duration on some trials, which demonstrates the weakness of relying on254
strictly random exploration rather than directed exploration to reduce uncertainty as with exploration255
bonuses.256

4.3 MiniGrid Doorkey257

Finally, we test our approach in the MiniGrid DoorKey environment (Chevalier-Boisvert et al.,258
2024). MiniGrid DoorKey at its hear is a gridworld consisting of two separate rooms divided by259
a wall and a locked door. The agent’s goal is to pick up the key from one room, unlock the door, and260
reach the green tile in the second room. However, the agent receives an image of the environment as261
its state observation. The available actions include turning right, turning left, moving forward, pick-262
ing up an object, and using an object (e.g. using the key to unlock the door). The agent receives a263
reward of 0 on each timestep, and a reward of 1−0.9 t

T upon reaching the goal, where t is the current264
timestep and T is the maximum number of timesteps in an episode. The environment is stochas-265
tic: each time the agent selects an action, there is a 10% probability that a different random action266
will be executed instead. Figure 4a depicts the 8×8 MiniGrid DoorKey environment used in our267
experiments, illustrating the agent’s starting position, goal location, and the key’s location. Finally,268
an episode terminates after 1,000 timesteps if the goal has not been reached. We observed that this269
makes for an easy exploration policy as a 1,000 step random-walk has a significant chance of reach270
the goal, which is under 20 steps from anywhere in the environment. We also experimented with271
a more challenging variant, where episodes were terminated after 100 timesteps, making directed272
exploration more important.273

To encode the environment into multiple overlapping partitions, we train a VQ-VAE model. These274
representations are later used to train a PPO agent and maintain state visitation counts. We follow275
the model-free experimental settings of Meyer et al. (2023). A VQ-VAE model is pre-trained with276
500k steps of data gathered from a random walk in the environment. The discrete representation277
was then used as both the input state for PPO’s policy and value function, as well as the basis for278
defining exploration bonuses from the cell counts.279

(a) DoorKey Environment (b) 1000 steps per episode (c) 100 steps per episode

Figure 4: Minigrid DoorKey showing the environment (a); episodic return with 1,000 step episodes
(b) and 100 step episodes (c). Results averaged over 30 runs. Training shown starting after 500k
steps of pre-training the VQ-VAE representation.

Figure 4b presents our results on the standard MiniGrid DoorKey environment, where the maximum280
number of timesteps per episode is 1,000. Agents were trained for 200k steps, which we show281
starting from 500k to account for the VQ-VAE pre-training. We compare a PPO agent using entropy282
regularization for exploration with two PPO agents employing count-based exploration, each with283
different exploration coefficients β. Our approach with β = 0.001 and entropy regularization exhibit284
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similar performance and converge to an optimal policy within 100K from the start of PPO training.285
However, β = 0.01 is still learning after 200k steps, which we believe is due to excessive exploration286
caused by the large exploration bonus coefficient. We believe the agent must spend significantly287
more time visiting states throughout the environment to sufficiently collapse its uncertainty before288
the environment reward dominates. State distribution plots in Supplementary Materials S1 confirm289
this behavior: even after solving the task, the agent with β = 0.01 continues to explore other regions,290
reducing overall efficiency. These results show the importance of balancing between exploring291
enough to identify the optimal policy and not over-exploring, which can delay exploiting with one’s292
learned policy.293

What about the harder challenge of shorter episodes, increasing the need to efficiently explore before294
restarting in the initial state. Figure 4c shows the average episodic return for the same agents. PPO295
with entropy regularization regularly failed to reach the goal even once in 200k steps, exhibiting no296
learning at all, as it relied only on a random walk to observe non-zero return. Our approach showed297
that it could reliably learn good policies in this hard exploration task, with the larger exploration298
bonus (β = 0.01) proving to learn slightly faster, again emphasizing the need to balance exploration299
with the difficulty of the task. This improved exploration was achieved by simple counts on discrete300
quantities, requiring almost no additional computation and or complexity of implementation.301

5 Conclusion302

We introduced a simple count-based method for exploration that exploits discrete representations303
consisting of multiple overlapping partitions of the state space. We show that the method can do304
efficient exploration in hard exploration problems, such as Continuous Riverswim, as well as being305
function approximation friendly while using VQ-VAE representations of image-based observations.306
This method addresses the three desiderata of simple, effective and function approximation friendly.307
There are a number of future directions that would be valuable to explore. First, a thorough inves-308
tigation of aggregation functions is needed. Can some theory of count-min-sketch be extended to309
this setting where representations are not pairwise-independent hashes? Are there situations where310
min or average perform better? Might soft-min give additional control over the manner of explo-311
ration? Furthermore, how does this approach fair when the discrete representation is being learned312
simultaneously? Ultimately, we see this approach as sufficiently simple and effective to replace the313
surprising resilience of ϵ-greedy.314
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Supplementary Materials371

The following content was not necessarily subject to peer review.372
373

S1 State distribution374

In this section, we present the state distribution of three PPO agents using count-based exploration375
with β ∈ {0.01, 0.001} and PPO with entropy regularization on MiniGrid DoorKey in two vari-376
ations: the standard version (1,000 maximum steps per episode) and a modified version with a377
different step limit (1,000 maximum steps per episode). For both environments, we plot the state378
distribution to visualize how agents explore the state space over time, analyzing visitation frequency379
and coverage. Additionally, we remove the environmental reward to isolate the effect of intrinsic380
exploration, allowing us to examine how agents navigate without external incentives.381

S2 Hyperparameters382

For Continuous Riverswim we swept over β ∈ {1, 10, 100, 1000, 10000}, ϵ ∈383
{01., 0.2, 0.3, 0.4, 0.5}, and α ∈ {0.001, 0.1, 1, 10} for all three methods (ϵ-greedy, state ag-384
gregation and tile-coding). Before running the main experiment we tuned our hyperparameters and385
selected parameters that yielded highest average reward.386

In the Mountain Car we sweep over α ∈ {2.5×10−3, 2.5×10−4, 2.5×10−5}, the hyperparameters387
were chosen as standard parameters in classic control problem. The hyperparameters for PPO are388
shown in Table 1.389

Table 1: Hyperparameters for Mountain Car

Hyperparameter Value

PPO mini batch size 128
PPO iterations 4
PPO clipping factor (ϵ) 0.2
PPO value coefficient (c1) 0.5
PPO entropy coefficient (c2) 0.001

We use the same hyperparameters as those in Meyer et al. (2023) for PPO and VQ-VAE. We perform390
a grid search over the step size, α ∈ {3 × 10−3, 3 × 10−4, 3 × 10−5} , and β coefficient for391
the count-based exploration algorithms, β ∈ {0.01, 0.001, 0.0001}, keeping all other parameters392
unchanged. For count-based exploration, the min function was chosen as the aggregate function,393
and the best step size for each coefficient was selected. For every coefficient in both variations of394
the environment α = 3 × 10−5 had the highest performance except β = 0.001 in the standard395
version where α = 3× 10−4 was chosen.396

The fixed hyperparameters for PPO and VQ-VAE are listed in Table 2.397

S3 Environments398

S3.1 Continuous Riverswim399

Continuous Riverswim, introduced by (Pan et al., 2018), is a modified version of Riverswim (Strehl400
& Littman, 2008). On the leftmost side of the environment, a distractor reward encourages the401
agent to remain there unless sufficient exploration is done, posing a significant challenge. The state402
space is s ∈ [0, 1], and the actions are a ∈ {left, right}. Once the direction of movement is403
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Figure 5: State distribution for standard DoorKey (1000 steps) after 20k steps of training PPO
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Figure 6: State distribution for standard DoorKey (1000 steps) after 50k steps of training PPO
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Figure 7: State distribution for standard DoorKey (1000 steps) after 200k steps of training PPO
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Figure 8: State distribution for standard DoorKey (1000 steps) without reward after 100k steps of
training PPO
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Figure 9: State distribution for standard DoorKey (1000 steps) without reward after 100k steps of
training PPO
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Figure 10: State distribution for modified DoorKey (100 steps) after 200k steps of training PPO

Figure 11: State distribution for modified DoorKey (100 steps) after 300k steps of training PPO
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Figure 12: State distribution for modified DoorKey (100 steps) after 500k steps of training PPO

Figure 13: State distribution for modified DoorKey (100 steps) without reward after 200k steps of
training PPO
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Figure 14: State distribution for modified DoorKey (100 steps) without reward after 500k steps of
training PPO

Table 2: Hyperparameters for MiniGrid DoorKey

Hyperparameter Value

PPO mini batch size 64
PPO iterations 10
PPO clipping factor (ϵ) 0.2
PPO value coefficient (c1) 0.5
PPO entropy coefficient (c2) 0.003
Discount factor (γ) 0.99
VQ-VAE epochs 8
VQ-VAE embedding vectors (k) 256

determined, the agent moves with a step size of 0.1 in the chosen direction (-0.1 for left and +0.1 for404
right). Additionally, Gaussian noise with zero-mean and variance of 0.01 is added to the movement.405
Choosing the left action moves the agent deterministically to the left, whereas choosing the right406
action moves the agent stochastically to the right, left, or keeps it in place. The left region of the407
river is defined as s ∈ [0, 0.05], where selecting the left action yields a reward of r = 5. The right408
region of the river is defined as s ∈ [0.95, 1], where the agent receives a high reward of 10,000 if409
it chooses the right action and remains in the same region. The problem is framed as a continuing410
problem with γ = 0.99, where the optimal policy is to always choose the right action, while the411
suboptimal policy results in getting stuck on the left side to collect the distractor reward. The full412
dynamics of the environment are shown in Figure 15.413
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Figure 15: Riverswim environment. Agent starts at S1 and each tuple is (Action, probability, re-
ward).

Figure 16: Continuous Riverswim environment. The low-reward region, state ∈ [0.00, 0.05], where
the agent receives r = 5 by moving left and the high-reward region, s = [0.95, 1.00] where the agent
receives r = 10, 000 by moving right

S3.2 Mountain Car414

Mountain Car (Moore, 1990) is a classic control environment consisting of a car positioned between415
two hills. The goal is to reach the top of the right hill. To achieve this, the car must build momentum416
by oscillating between the hills. Mountain Car has a continuous state space, defined by the car’s417
position, s1 ∈ [−01.2, 0.6], and velocity, s2 ∈ [−0.07, 0.07]. The action space is a ∈ {accelerate418
left, accelerate right, don’t accelerate}. To encourage faster solutions, the agent receives a reward419
of -1 at each step. The episode terminates under one of two conditions: (1) the agent reaches the420
top of the hill (s1 ≥ 0.45), or (2) the episode length reaches 200 steps. This setup makes Mountain421
Car particularly challenging, as it is a sparse reward environment; therefore, the agent must explore422
effectively to reach the top of the hill. Additionally, the short episode length provides a limited423
window for the agent to explore efficiently.424
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