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Abstract

In this work we explore a new framework for approximate Bayesian inference in large
datasets based on stochastic control. We advocate stochastic control as a finite time al-
ternative to popular steady-state methods such as stochastic gradient Langevin dynamics
(SGLD). Furthermore, we discuss and adapt the existing theoretical guarantees of this
framework and establish connections to already existing VI routines in SDE-based mod-
els.1

1. Introduction

Steering a stochastic flow from one distribution to another across the space of probability
measures is a well-studied problem initially proposed in Schrödinger (1932). There has been
recent interest in the machine learning community in these methods for generative mod-
elling, sampling, dataset imputation and optimal transport (Wang et al., 2021; De Bortoli
et al., 2021; Huang et al., 2021; Bernton et al., 2019; Vargas et al., 2021; Chizat et al., 2020;
Cuturi, 2013; Maoutsa and Opper, 2021; Reich, 2019).

We consider a particular instance of the Schrödinger bridge problem (SBP), known as
the Schrödinger-Föllmer process (SFP). In machine learning, this process has been proposed
for sampling and generative modelling (Huang et al., 2021; Tzen and Raginsky, 2019b) and
in molecular dynamics for rare event simulation and importance sampling (Hartmann and
Schütte, 2012; Hartmann et al., 2017); here we apply it to Bayesian inference. We show that
a control-based formulation of the SFP has deep-rooted connections to variational inference
and is particularly well suited to Bayesian inference in high dimensions. This capability
arises from the SFP’s characterisation as an optimisation problem and its parametrisa-
tion through neural networks (Tzen and Raginsky, 2019b). Finally, due to the variational
characterisation that these methods possess, we believe that many low-variance estimators
(Richter et al., 2020; Nüsken and Richter, 2021; Roeder et al., 2017) are applicable to the
SFP formulation we consider.

We reformulate the Bayesian inference problem by constructing a stochastic process Θt

which at a fixed time t = 1 will generate samples from a pre-specified posterior p(θ|X) with
dataset X = {xi}Ni=1 (i.e. LawΘ1 = p(θ|X)), where the model is given by:

xi|θ ∼ p(xi|θ), θ ∼ p(θ), (1)
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and the prior p(θ) and the likelihood p(xi|θ) are user-specified. Our target is π1(θ) =
p(X|θ)p(θ)

Z , where Z =
∫
p(xi|θ)p(θ)dθ. This formulation is reminiscent of the setup pro-

posed by Welling and Teh (2011) and covers many Bayesian machine-learning models, but
our formulation has an important difference. SLGD relies on a diffusion that reaches the
posterior as time approaches infinity. In contrast, our dynamics are controlled and the
posterior is reached in finite time.

We note that recently submitted concurrent work (Anonymous, 2022) proposes an al-
gorithm akin to ours based on Dai Pra (1991); Tzen and Raginsky (2019b), however their
focus and experiments are on estimating the normalising constant of unormalised densities,
while our focus is on Bayesian ML tasks such as Bayesian regression, classification and
LVMs, thus our work leads to different insights and algorithmic motivations.

1.1. Schrödinger-Föllmer Processes

Let Qγ
0 be the distribution for the solutions to the stochastic differential equation (SDE):

dΘt = u0
t (Θt)dt+

√
γdBt, Θ0 ∼ π

Qγ0
0 . (2)

Definition 1 (Schrödinger-Bridge Process) The Schrödinger bridge path measure is given
by

Q∗ = inf
Q∈D(π0,π1)

DKL

(
Q
∣∣∣∣Qγ

0

)
, (3)

where D(π0, π1) = {Q : (Θ0)#Q = π0, (Θ1)#Q = π1} is the set of path measures with fixed
initial and final time-marginals (π0 at t = 0 and π1 at t = 1). Here, Qγ

0 acts as a “prior”
and DKL(·|·) represents the Kullback Leibler (KL) divergence. It is known (Léonard, 2013),
that Q∗ is induced by an SDE with modified drift,

dΘt = u∗t (Θt)dt+
√
γdBt, Θ0 ∼ π0, (4)

the solution of which is called the Schrödinger-Bridge Process (SBP).

Definition 2 (Schrödinger-Föllmer Process) The SFP is an SBP where π0 = δ0 and Qγ
0 =

Wγ is the Wiener measure associated to the process described by dΘt =
√
γdBt, Θ0 ∼ δ0.

The SFP differs to the general SBP in that, rather than constraining the initial value
to δ0, the SBP considers any initial distribution π0. The SBP also considers more general
Itô SDEs associated with Qγ

0 as the dynamical prior, compared to the SFP which considers
only a Wiener process as a prior.

The advantage of considering this more limited version of the SBP is that it admits
a closed-form characterisation of the solution to the Schrödinger system (Léonard, 2013;
Wang et al., 2021; Pavon et al., 2018), which allows for an unconstrained formulation of the
problem. For accessible introductions to the SBP we suggest (Pavon et al., 2018; Vargas
et al., 2021). Now we will consider instances of the SBP and the SFP where π1 = p(θ|X).
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1.1.1. Analytic Solutions and the Heat Semigroup

Prior work (Pavon, 1989; Dai Pra, 1991; Tzen and Raginsky, 2019b; Huang et al., 2021) has
explored the properties of SFPs via a closed form formulation of the Föllmer drift expressed
in terms of expectations of Gaussian random variables known as the heat semigroup. The
seminal works (Pavon, 1989; Dai Pra, 1991; Tzen and Raginsky, 2019b) highlight how
this formulation of the Föllmer drift characterises an exact sampling scheme for a target
distribution and how it could potentially be used in practice. The recent work by Huang
et al. (2021) builds on Tzen and Raginsky (2019b) and explores estimating the optimal
drift in practice via the heat semigroup formulation using a Monte Carlo approximation.
Our work aims to take the next step and scale the estimation of the Föllmer drift to high
dimensional cases (Graves, 2011; Hoffman et al., 2013). In order to do this we must move
away from the heat semigroup and instead consider the dual formulation of the Föllmer
drift as a stochastic control problem (Tzen and Raginsky, 2019b).

Definition 3 The Euclidean heat semigroup Qγt , t ≥ 0 acts on bounded measurable func-
tions f : Rd → R as Qtf(x) =

∫
Rd f

(
x+
√
tz
)
N (z|0, γI)dz = Ez∼N (0,γI)

[
f
(
x+
√
tz
)]
.

In the setting where π0 = δ0 we can express the optimal SBP drift as follows:

u∗t (x) = ∇x lnE
[

dπ1
dN(0, γI)

(Θ1)
∣∣∣Θt = x

]
, (5)

where Θt is the SBP prior Qγ
0 . In the SFP case where Qγ

0 = Wγ , the optimal drift can

be written in terms of the heat semigroup, u∗t (x) = ∇x lnQγ1−t

[
dπ1

dN(0,γI)(x)
]
. Note that

an SDE with the above drift, dΘu∗
t = ∇x lnQγ1−t

[
dπ1

dN(0,γI)(Θ
u∗
t )
]
dt +

√
γdBt, satisfies

LawΘu∗
1 = π1, that is at t = 1 these processes are distributed according to our target

distribution of interest π1.
Huang et al. (2021) carried out preliminary work on empirically exploring the suc-

cess of using the heat semigroup formulation of SFPs in combination with the Euler-
Mayurama (EM) discretisation to sample from target distributions in a method they call
Schrödinger-Föllmer samplers (SFS). We build on their work by considering a formulation
of the Schrödinger-Föllmer process that is suitable for the high dimensional settings arising
in Bayesian ML. Our work will focus on a dual formulation of the optimal drift that is closer
to variational inference and admits the scalable and flexible parametrisations used in ML.

2. Stochastic Control Formulation

In this section, we introduce a particular formulation of the Schrödinger-Föllmer process in
the context of the Bayesian inference problem in Equation 1. In its most general setting
of sampling from a target distribution, this formulation was known to Dai Pra (1991).
Tzen and Raginsky (2019b) study the theoretical properties of this approach in the context
of generative models (Kingma et al., 2021; Goodfellow et al., 2014), finally Opper (2019)
applies this formulation to time series modelling. In contrast our focus is on the estimation
of a Bayesian posterior for a broader class of models than Tzen and Raginsky explore.
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Corollary 4 The minimiser (where U is the space of admissible controls)

u∗=arg min
u∈U

E
[

1

2γ

∫ 1

0
||u(t,Θu

t )||2dt−ln

(
p(X|Θu

1 )p(Θu
1 )

N (Θu
1 |0, γId)

)]
(6)

satisfies LawΘu∗
1 = p(X|θ)p(θ)

Z , where dΘu
t = ut(Θ

u
t )dt+

√
γdBt, Θu

0 ∼ δ0.

The objective in Equation 6 can be estimated using an SDE discretisation, such as the
EM method. Since the drift u∗t is Markov, it can be parametrised by a flexible function
estimator such as a neural network, as done in Tzen and Raginsky (2019a,b). In this work
we will refer to the above formulation of the SFP as the Neural Schrödinger-Föllmer sampler
(NSFS) when we parametrise the drift with a neural network and we implement unbiased
mini-batched estimator for this objective detailed in Appendix C.This formulation of SFPs
has been previously studied in the context of generative modelling/marginal likelihood
estimation (Tzen and Raginsky, 2019b), while we focus on Bayesian inference.

2.1. Theoretical Guarantees for Neural SFS

While the focus in Tzen and Raginsky (2019b) is in providing guarantees in generative
models of the form x ∼ qφ(x|Z1) , dZt = uφ(Zt, t)dt+

√
γdBt, Z0 =0, their results extend

to our setting as they explore approximating the Föllmer drift for a generic target π1.
Theorem 4 in Tzen and Raginsky (restated as Theorem 9 in Appendix A.2) motivates

using neural networks to parametrise the drift in Equation 6 as it provides a guarantee
regarding the expressivity of a network parametrised drift via providing an upper bound on
the target distribution error in terms of the size of the network.

We will now proceed to highlight how this error is affected by the EM discretisation:

Corollary 5 Given the network v from Theorem 9 it follows that the Euler-Mayurama
discretisation Θ̂v

t of Θv
t has a KL-divergence to the target distribution π1 of:

DKL(π1||π̂v1 ) ≤
(
ε1/2 +O(

√
∆t)

)2
(7)

This result provides us a bound of the error in terms of the depth ∆t−1 of the stochastic
flow and the size of the network that we parametrise the drift with.

2.2. Structured SVI in Models with Local and Global Variables

We consider the general setting where our model has global and local variables {θi},Φ
satisfying θi ⊥⊥ θj |Φ (Hoffman et al., 2013). This case is particularly challenging as the
local variables scale with the size of the dataset and so will the state space. This is a
fundamental setting as many hierachical latent variable models in machine learning admit
such dependancy structure, such as Topic models (Pritchard et al., 2000; Blei et al., 2003);
Bayesian factor analysis (Amari et al., 1996; Bishop, 1999; Klami et al., 2013; Daxberger and
Hernández-Lobato, 2019); Variational GP Regression (Hensman et al., 2013); and others.

Remark 6 The heat semigroup does not preserve conditional independence structure in
the drift, i.e. the optimal drift does not decouple and thus depends on the full state-space.
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Figure 1: Visual comparison on step function data. We can see how the N-SFS based fits
have the best generalisation while SGD and SGLD interpolate the noise.

Remark 6 tells us that the drift is not structured in a way that admits scalable sampling
approaches such as stochastic variational inference (SVI) (Hoffman et al., 2013). Addition-
ally this also highlights that the method by Huang et al. (2021) does not scale to models
like this as the dimension of the state space will be linear in the size of the dataset.

In a similar fashion to Hoffman and Blei (2015), who focussed on structured SVI, we
suggest parametrising the drift via [ut]θi = uθi(t,θi,Φ,xi); this way the dimension of the
drift depends only on their respective local variables and the global variable Φ. While
the Föllmer drift does not admit this particular decoupling we can show that this drift
is flexible enough to represent general distributions, thus it has the capacity to reach the
target distribution. When parametrised in this form we can carry out sampling in the same
fashion as SVI whilst maintaining unbiased gradient estimates.

Remark 7 An SDE parametrised with a decoupled drift [ut]θi = uθi(t,θi,Φ,xi) can reach
transition densities which do not factor.

3. Connections to Variational Inference in Latent Diffusion Models

In this section, we highlight the connection between the objective in Equation 6 to varia-
tional inference in models where the latent object is given by an SDE, as studied in Tzen
and Raginsky (2019a). Taking inspiration from the recursive nature of Bayesian updates
(Khan and Rue, 2021) we develop the following observation.

Lemma 8 The SBP infQ∈D(δ0, p(θ|X))DKL

(
Q
∣∣∣∣Qγ

0

)
with reference process Qγ

0 :

dΘt=∇ lnQγ1−t

[
p(Θt)

N (Θt|0, γId)

]
+
√
γdBt, Θ0 ∼ δ0, (8)

corresponds to maximising the ELBO of the model:

xi ∼ p(xi|Θ1), dΘt=∇ lnQγ1−t

[
p(Θt)

N (Θt|0, γId)

]
+
√
γdBt, Θ0 ∼ δ0.

In short we can view a variant of the objective in Equation 6 as an instance of variational
Bayesian inference with an SDE prior. Note that this provides a succinct connection between
variational inference and maximum entropy in path space (Léonard, 2012).
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Table 1: a9a dataset.
Method Accuracy ECE Log Likelihood

N-SFS 0.8498± 0.0002 0.0099± 0.001 −0.3407± 0.0004
SGLD 0.8515± 0.001 0.001± 0.002 −0.3247± 0.0002

Table 2: Aug-MNIST (Ferianc et al., 2021).
Method Accuracy ECE Log Likelihood

N-SFS 0.9479± 0.0043 0.0077± 0.0012 −0.3890± 0.0374
SGLD 0.9247± 0.0035 0.0141± 0.0018 −0.2439± 0.0118
SGD 0.9404± 0.0031 0.0284± 0.0021 -

Table 3: Step function dataset.

Method MSE Log Likelihood

N-SFS 0.0028± 0.00097 −63.048± 8.2760
SGLD 0.1774± 0.128 −1389.581± 834.968

Table 4: MEG dataset.

Method Log Likelihood

N-SFS −5.110972± 0.128856
SGLD −4.936021± 0.042283

4. Experimental Results

We ran experiments on Bayesian NN regression, classification, logistic regression and ICA
(Amari et al., 1996), reporting accuracies, log joints (Welling and Teh, 2011; Izmailov
et al., 2021) and expected calibration error (ECE) (Guo et al., 2017). For details on exact
experimental setups please see Appendix F. Across experiments we compare to SGLD as
it has been shown to be a competitive baseline in Bayesian deep learning (Izmailov et al.,
2021). In the Bayesian NN tasks the likelihood is parametrised via p(yi|xi,θ) = p(yi|fθ(xi))
where fθ is a neural network and the prior on θ is Gaussian.

Step Function: We fit a 2-hidden-layer neural network with a total of 14876 parameters
on a toy step function dataset (see Figure 1). We can see in Figure how both the SGD and
SGLD fits interpolate the noise, whilst N-SFS has straight lines and thus achieves a better
test error, whilst having well calibrated error bars. We believe it is a great milestone to see
how an overparametrised neural network is able to achieve such well calibrated predictions.

Augmented MNIST:We train the standard LeNet5 (LeCun et al., 1998) architecture
(with 44426 parameters) on the MNIST dataset (LeCun and Cortes, 2010). At test time
we evaluate the methods on the MNIST test set augmented by random rotations of up
to 30◦(Ferianc et al., 2021). Table 2 shows how N-SFS has the highest accuracy whilst
obtaining the lowest calibration error among the considered methods, highlighting that our
approach has the most well calibrated and accurate predictions when considering a slightly
perturbed test set. We highlight how LeNet5 falls into an interesting regime as the number
of parameters is considerably less than the size of the training set, and thus we can argue it
is not in the overparametrised regime. This regime (Belkin et al., 2019) has been shown to
be challenging in achieving good generalisation errors, thus we believe the predictive and
calibrated accuracy achieved by N-SFS is a strong milestone.

a9a/MEG Datasets: Following Welling and Teh (2011) we explore a logistic regression
model on the a9a dataset and a Bayesian variant of ICA on the MEG-Dataset (Vigario,
1997). We can observe (Tables 4, 1) that N-SFFS achieves results comparable to SGLD.

5. Discussion and Future Directions

We are competitive to SGLD and obtain better calibrated predictions in high-dimensional
(Bayesian DL) settings. We would like to highlight that these results were achieved without
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any tuning and simple NN architectures. We believe that our results illustrate how stochas-
tic control objectives constitute a promising and exciting avenue for approximate Bayesian
inference. We are currently exploring the decoupled drift parametrisations (Section 2.2) for
models such as LDA as well as bench-marking the performance of different estimators such
as STL (Xu et al., 2021) and VarGrad (Nüsken and Richter, 2021). Additionally we notice
that the architecture used in the drift network can influence results thus we will explore
modern architectures for diffusions such as the score networks in De Bortoli et al. (2021).
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Appendix A. Main Results

A.1. Posterior Drift

Corollary 4 The minimiser

u∗=arg min
u∈U

E
[

1

2γ

∫ 1

0
||u(t,Θt)||2dt−ln

(
p(X|Θ1)p(Θ1)

N (Θ1|0, γId)

)]
(9)

satisfies LawΘu∗
1 = p(X|θ)p(θ)

Z , where

dΘt =
√
γdBt, Θ0 ∼ δ0, (10)

and
dΘu∗

t = u∗(t,Θt)dt+
√
γdBt, Θu∗

0 ∼ δ0. (11)
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Proof This follows directly after substituting the Radon-Nikodym derivative between the
Gaussian distribution and the posterior into Theorem 1 in Tzen and Raginsky (2019b) or
Theorem 3.1 in Dai Pra (1991).

A.2. EM-Discretisation Result

First we would like to introduce the following auxiliary theorem from Tzen and Raginsky
(2019b):

Theorem 9 (Tzen and Raginsky, 2019b) Given the standard regularity assumptions pre-
sented for f = dπ1

dN (0,γI) in Tzen and Raginsky (2019b), let L = max{Lip(f),Lip(∇f)} and

assume that there exists a constant c ∈ (0, 1] such that f ≥ c. Then for any 0 < ε < 16L
2

c2

there exists a neural net v : Rd× [0, 1]→ Rd with size polynomial in 1/ε, d, L, c, 1/c, γ, such
that the activation function of each neuron follows the regularity assumptions in Tzen and
Raginsky (2019b) (e.g. ReLU,Sigmoid, Softplus) and

DKL(π1||πv1 ) ≤ ε, (12)

where πv1 = Law(Θv
1 ) is the terminal distribution of the the diffusion process

dΘv
t = v(Θv

t ,
√

1− t)dt+
√
γdBt, t ∈ [0, 1]. (13)

We can now proceed to prove the direct corollary of the above theorem when using the EM
scheme for simulation.

Corollary 5 Given the network v from Theorem 9 it follows that the Euler-Mayurama
discretisation X̂v

t of Xv
t has a KL-divergence to the target distribution π1 of:

DKL(π1||π̂v1 ) ≤
(
ε1/2 +O(

√
∆t)

)2
(14)

Proof Consider the path-wise KL between the exact Schrödinger-Föllmer process and its
EM-discretised neural approximation:

DKL(Pu
∗||Pv̂)= 1

2γ

∫ 1

0
E||u∗(Θu∗

t ,t)−v̂(Θu∗
t ,
√

1−t)||2dt. (15)

Defining d(x,y) :=
√

1
2γ

∫ 1
0 E||x(Θu∗

t ,t)−ŷ(Θu∗
t ,t)||2dt, it is clear that d(x,y) satisfies the

triangle inequality as it is the L2(Qu∗) metric between drifts, thus applying the triangle
inequality at the drift level we have that (for simplicitly let γ = 1):

d(u∗, v̂)≤
(∫ 1

0
E
[
||u∗t − v√1−t||

2
]
dt

)1/2

+

(∫ 1

0
E
∣∣∣|v√1−t − v̂√1−t||2] dt)1/2

From Tzen and Raginsky (2019b) we can bound the first term resulting in:

d(u∗, v̂)≤ε1/2 +

(∫ 1

0
E
[
||v√1−t − v̂√1−t||

2
]
dt

)1/2

11
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Now remembering that the EM drift is given by v̂√1−t(Θt) = v(Θ̂t,
√

1−∆tdt/∆te), we
can use that v is L’-Lipschitz in both arguments thus:

d(u∗, v̂)≤ε1/2 +

(
L′2
∫ 1

0

(
E
[
(||Θu∗

t − Θ̂u∗
t ||+ ∆t)2

])
dt

) 1
2

≤ ε1/2 +

(
2L′2

(
E
[∫ 1

0
||Θu∗

t − Θ̂u∗
t ||2dt

]
+ ∆t2

)) 1
2

≤ ε1/2 +

(
2L′2

(
E
[

max
0≤t≤1

||Θu∗
t − Θ̂u∗

t ||2
]

+ ∆t2
)) 1

2

which using the strong convergence of the EM approximation (Gyöngy and Krylov, 1996)
implies:

E
[

max
0≤t≤1

||Θv∗
t − Θ̂v∗

t ||2
]
≤ CL′∆t, (16)

thus:

d(u∗, v̂)≤ε1/2 + L′
√

2
(√

CL′∆t+ ∆t
)
,

squaring both sides and applying the data processing inequality completes the proof.

Appendix B. Connections to VI

We first start by making the connection in a simpler case – when the prior of our Bayesian
model is given by a Gaussian distribution with variance γ, that is p(θ) = N (θ|0, γId).

Observation 1 When p(θ) = N (θ|0, γId), it follows that the N-SFP objective in Equation
6 corresponds to the negative ELBO of the model:

dΘt =
√
γdBt, Θ0 ∼ δ0,

xi ∼ p(xi|Θ1). (17)

Proof Substituting p(θ) into Equation 6 yields

u∗ = arg min
u∈U

E
[

1

2γ

∫ 1

0
||ut||2dt− ln p(X|Θ1)

]
. (18)

Then, from (Boué and Dupuis, 1998; Tzen and Raginsky, 2019a,b) we know that the term

E
[∫ 1

0 ||ut||
2dt− ln p(X|Θ1)

]
is the negative ELBO of the model specified in Equation 17.

While the above observation highlights a specific connection between N-SFP and VI, it is
limited to Bayesian models that are specified with Gaussian priors. To extend the result,
we take inspiration from the recursive nature of Bayesian updates in the following result.

12
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Lemma 8 The SBP
inf

Q∈D(δ0, p(θ|X))
DKL

(
Q
∣∣∣∣Qγ

0

)
, (19)

with reference process Qγ
0 :

dΘt=∇ lnQγ1−t

[
p(Θt)

N (Θt|0, γId)

]
+
√
γdBt, Θ0 ∼ δ0, (20)

corresponds to maximising the ELBO of the model:

dΘt=∇ lnQγ1−t

[
p(Θt)

N (Θt|0, γId)

]
+
√
γdBt, Θ0 ∼ δ0,

xi ∼ p(xi|Θ1). (21)

Proof For brevity let u0
t (θ) = ∇ lnQγ1−t

[
p(θ)

N (θ|0,γId)

]
. First notice that the time-one

marginals of Qγ
0 are given by the Bayesian prior:

(Θ1)#Qγ
0 = p(θ)

Now from Léonard (2012); Pavon et al. (2018) we know that the Schrödinger system is given
by:

φ0(θ0)

∫
p(θ0, 0, y,θ1)φ̂1(θ1)dθ1 = δ0(θ), (22)

φ̂1(θ1)

∫
p(θ0, 0,θ1, 1)φ0(θ0)dθ0 = p(θ1|X), (23)

where Equation 22 can be given a rigorous meaning in weak form (that is, by integrating
against suitable test functions). Notice φ0 = δ0 and thus it follows that:

φ̂1(θ) =
p(θ|X)

p(0, 0,θ, 1)
=
p(θ|X)

p(θ)
=
p(X|θ)

Z
, (24)

then by Pavon (1989); Dai Pra (1991); Pavon et al. (2018) the optimal drift is given by:

u∗t (θ) = γ∇ lnE[p(X|Θ1)|Θt = θ], (25)

where the expectation is taken with respect to the reference process Qγ
0 . Now if we let

v(θ, t) = − lnE[p(X|Θ1)|Θt = θ] be our value function then via the linearisation of
the Hamilton-Bellman-Jacobi Equation through Fleming’s logarithmic transform (Kappen,
2005; Thijssen and Kappen, 2015; Tzen and Raginsky, 2019b) it follows that said value
function satisfies:

v(θ, t) = min
u∈U

E
[

1

2γ

∫ 1

t
||ut − u0

t ||2dt− ln p(X|Θ1)
∣∣∣Θt = θ

]
(26)

and thus u∗t (θ) = γ∇ lnE[p(X|Θ1)|Θt = θ] is a minimiser to:

u∗ = arg min
u∈U

E
[

1

2γ

∫ 1

0
||ut − u0

t ||2dt− ln p(X|Θ1)

]
. (27)

Note Lemma 8 induces a new method in which we first estimate a prior reference pro-
cess’s as in Equation 8 and then we optimise the ELBO for the model in 9, this raises the
question on what effect the dynamical prior can have within SBP based frameworks.

13
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Algorithm 1: Optimization of N-SFS

Data: data set X = {xi}Ni=1, initialized drift neural network uφ, parameter dimension
d, number of iterations M , batch size B, number of Euler-Maruyama
discretization steps k, diffusion coefficient γ.

∆t← 1
k

tj ← j∆t for all j = 0, . . . , k
for i = 1, . . . ,M do

Initialize Θs
0 ← 0 ∈ Rd for all s = 1, . . . , S

{Θsφ
j }kj=1 ← Euler-Maruyama(uφ,Θ

s
0,∆t) for all s = 1, . . . , S

Sample xr1 , . . . ,xrB ∼X
Compute

g← ∇φ
(

1
S

∑S
s=1

∑k
j=0

(
||uφ(Θsφ

j , tj)||2−ln

(
p(Θsφ

k )

N (Θsφ
k |0,γId)

)
+N
B

∑B
j=1 ln p(xrj |Θ

sφ
k )

))
φ← Gradient Step(φ, g)

end
return uφ

Appendix C. Stochastic Variational Inference

For a Bayesian model having the structure specified by equation 1 the objective in equation 6
can be written as follows:

E
[

1

2γ

∫ 1

0
||u(t,Θu

t )||2dt−ln

(
p(X|Θu

1 )p(Θu
1 )

N (Θu
1 |0, γId)

)]
= E

[
1

2γ

∫ 1

0
||u(t,Θu

t )||2dt−ln

(
p(Θu

1 )

N (Θu
1 |0, γId)

)]
(28)

+
N∑
i=1

E[ln p(xi|Θu
1 )] (29)

where the last term can be written as:

N∑
i=1

E[ln p(xi|Θu
1 )] =

N

B
Exki∼D

[
B∑
i=1

E [ln p(xki |Θ
u
1 )]

]
(30)

That is, it is possible to estimate the objective (and its gradients) by subsampling the data
with random batches of size B and using the scaling N

B . A version of the algorithm with
Euler-Maruyama discretization of the SDE is given in Algorithm 1.

Appendix D. Decoupled Drift Results

First let us consider the setting where the local variables are fully independent, that is,
θi ⊥⊥ θj .

Remark 10 The heat semigroup preserves fully factored (mean-field) distributions thus the
Föllmer drift is decoupled.

14
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In this setting we can parametrise the dimensions of the drift which correspond to local
variables in a decoupled manner, [ut]θi = uθi(t,θi,xi). This amortised parametrisation
(Kingma and Welling, 2013) allows us to carry out gradient estimates using a mini-batch
(Hoffman et al., 2013) rather than hold the whole state space in memory.

Remark 6 The heat semigroup does not preserve conditional independence structure in
the drift. That is, the optimal drift does not decouple and as a result depends on the full
state space.

Proof Consider the following distribution:

N (x|z, 0)N (y|z, 0)N (z|0, 1) (31)

We want to estimate:

E
[
N (X + x|Z + z, 1)N (Y + y|Z + z, 1)N (Z + z|1, 0)

N (X + x|0, 1)N (Y + y|0, 1)N (Z + z|0, 1)

]
(32)

where X,Y, Z ∼ N (0,
√

1− t)

E
[
N (X + x|Z + z, 1)N (Y + y|Z + z, 1)

N (X + x|0, 1)N (Y + y|0, 1)

]
(33)

we can easily see that the above no longer has conditional independence structure and thus
when taking its logarithmic derivative the drift does not decouple.

Remark 7 An SDE parametrised with a decoupled drift [ut]θi = u(t,θi,Φ,xi) can reach
transition densities which do not factor.

Proof Consider the linear time-homogeneous SDE:

dΘt = AΘtdt+ γdWt, Θ0 = 0, (34)

where:

[A]ij = δij + iδ1j , (35)

then this SDE admits a closed form solution:

Θt = γ

∫ t

0
exp (A(t− s)) dWs, (36)

which is a Gauss-Markov process with 0 mean and covariance matrix:

Σ(t) = γ2
∫ t

0
exp (A(t− s)) exp (A(t− s))> ds (37)

15
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We can carry out the matrix exponential through the eigendecomposition ofA, for simplicity
let us consider the 3-dimensional case:

exp (A(t− s)) = SeD(t−s)S−1 =

0 1 1
1 0 2
0 0 2

et−s 0 0
0 et−s 0

0 0 e3(t−s)

0 1 −1
1 0 −1/2
0 0 1/2


(38)

From this we see that:

exp (A(t− s)) exp (A(t− s))> = SeD(t−s)S−1(SeD(t−s)S−1)> (39)

= SeD(t−s)S−1S−>eD(t−s)S> (40)

=
1

4
SeD(t−s)

 8 2 −2
2 5 −1
−2 −1 1

 eD(t−s)S> (41)

=
1

4
S

 8e2(t−s) 2e2(t−s) −2e4(t−s)

2e2(t−s) 5e2(t−s) −e4(t−s)
−2e4(t−s) −e4(t−s) e6(t−s)

S> (42)

Integrating wrt to s yields:

∫
exp (A(t− s)) exp (A(t− s))> ds =

1

4
S

 4 1 −1
2

1 5
2 −1

4
−1

2 −1
4

1
6

S> (43)

=
1

24

13 2 −1
2 16 −2
−1 −2 4

 . (44)

The covariance matrix is dense at all times and thus the density Law(Θt) = N (µ(t),Σ(t))
does not factor (is a fully joint distribution). This example motivates that even with the
decoupled drift we can reach coupled distributions.

Appendix E. Sticking the Landing and Low Variance Estimators

As with VI (Richter et al., 2020; Roeder et al., 2017), the gradient of the objective in this
study admits several low variance estimators (Nüsken and Richter, 2021; Xu et al., 2021).
In this section we formally recap what it means for an estimator to “stick the landing” and
we prove that the estimator proposed in Xu et al. satisfies said property.

The full objective being minimised in our approach is:

J(u) = E[F(u)]=E
[

1

2γ

∫ 1

0
||u(t,Θt)||2dt+

1
√
γ

∫ 1

0
u(t,Θt)

>dBt−ln

(
p(X|Θ1)p(Θ1)

N (Θ1|0, γId)

)]
, (45)

noticing that in previous formulations we have omitted the Itô integral as it has zero ex-
pectation (but the integral appears naturally through Girsanov’s theorem). We call the
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estimator calculated by taking gradients of the above objective the relative-entropy estima-
tor. The estimator proposed in Xu et al. (2021) (Sticking the landing estimator) is given
by:

JSTL(u) = E[FSTL(u)]=E
[

1

2γ

∫ 1

0
||u(t,Θt)||2dt+

1
√
γ

∫ 1

0
u⊥(t,Θt)

>dBt−ln

(
p(X|Θ1)p(Θ1)

N (Θ1|0, γId)

)]
,

(46)

where ⊥ means that the gradient is stopped/detached as in Xu et al. (2021); Roeder et al.
(2017).

We study perturbations of F around u∗ by considering u∗ + εφ, with φ arbitrary, and
ε small. More precisely, we set out to compute:

d

dε
F(u∗ + εφ)

∣∣∣
ε=0

, (47)

through which we define the definition of sticking the landing:

Definition 11 We say that an estimator sticks the landing when

d

dε
F(u∗ + εφ)

∣∣∣
ε=0

= 0, (48)

almost surely, for all smooth and bounded perturbations φ.

Notice that by construction, u∗ is a global minimiser of J , and hence all directional deriva-
tives vanish,

d

dε
J(u∗ + εφ)

∣∣∣
ε=0

=
d

dε
E[F(u∗ + εφ)]

∣∣∣
ε=0

= 0. (49)

Definition 11 additionally demands that this quantity is zero almost surely, and not just on
average. Consequently, “sticking the landing”-estimators will have zero-variance at u∗.

Remark 12 The relative-entropy stochastic control estimator does not stick the landing.

Proof See Nüsken and Richter (2021), Theorem 5.3.1, clause 3, Equation 133 clearly

indicates d
dεF(u∗ + εφ)

∣∣∣
ε=0
6= 0.

We can now go ahead and prove that the estimator proposed by Xu et al. (2021) does
indeed stick the landing.

Theorem 13 The STL estimator proposed in (Xu et al., 2021) satisfies:

d

dε
F(u∗ + εφ)

∣∣∣
ε=0

= 0, (50)

almost surely, for all smooth and bounded perturbations φ.
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Proof Let us decompose F in the following way:

F(u) = F0(u) + F1(u) (51)

where (denoting the terminal cost with g):

F0(u) =
1

2γ

∫ 1

0
||u(t,Θt)||2dt+ g(Θ1) (52)

F1(u) =
1
√
γ

∫ 1

0
u⊥(t,Θt)

>dBt (53)

From Nüsken and Richter (2021), Theorem 5.3.1, Equation 133 it follows that:

d

dε
F0(u

∗ + εφ)

∣∣∣∣∣
ε=0

= − 1
√
γ

∫ 1

0
At · (∇u∗t )(θ

u∗
t ) dBt, (54)

almost surely, where At is defined as

Aφ
t =

dΘu∗+εφ
t

dε

∣∣∣∣∣
ε=0

(55)

and satisfies:

dAφ
t = φt(Θ

u∗
t ) dt+ (∇u∗)>(Θu∗

t )Aφ
t dt, Aφ

0 = 0. (56)

Similarly via the chain rule it follows that:

d

dε
F1(u

∗ + εφ)

∣∣∣∣∣
ε=0

=
d

dε

(
1
√
γ

∫ 1

0
u∗t (Θ

u∗+εφ
t )>dBt

) ∣∣∣∣∣
ε=0

=
1
√
γ

∫ 1

0
Aφ
t · (∇u∗t )(Θ

u∗
t )dBt

(57)

almost surely, combining these results we can see that d
dεF(u∗ + εφ)

∣∣∣
ε=0

= 0 almost surely

as required.

Appendix F. Experimental Details and Further Results

F.1. Method Hyperparameters

In Table F.1 we show the experimental configuration of the trialled algorithms across all
datasets.
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Method Hyperparameters
Experiments

Step Function MNIST LogReg ICA

N-SFS

Optimser Adam Adam Adam Adam
Optimiser step size 10−4 10−5 10−4 10−4

Θ batch size 32 32 32 32
Data batch size 32 50 Whole train set 10
# of iterations 300 18750 300 2832
# of posterior samples 100 100 100 100
γ 0.052 0.12 0.22 0.012

EM train ∆ttrain 0.05 0.05 0.05 0.05
EM test ∆ttest 0.01 0.01 0.01 0.01

SGLD

Adaptive step schedule λ(i) = a
(i+b)γ λ(i) = a

(i+b)γ λ(i) = a
(i+b)γ λ(i) = a

(i+b)γ

a 10−3 10−4 10−4 10−4

b 10 1 1 1
γ 0.55 0.55 0.55 0.55
Posterior Samples 100 100 100 100
Data batch size 32 32 32 32
# of iterations 300 18750 300 2832

SGLD
step size 10−2 10−3 - -
Data batch size 32 32 - -
# of iterations 300 18750 - -
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F.2. Step Function Dataset

Here we describe in detail how the step function dataset was generated:

y(x) = 1x≥0 + ε, ε ∼ N (0, 0.1) (58)

Where:

• σy = 0.1

• Ntrain = 100, Ntest = 100

• xtrain ∈ (−3.5, 3.5)

• xtest ∈ (−10, 10)

F.3. Föllmer Drift Architecture

Across all experiments we used the same architecture to parametrise the Föllmer drift:

1 class SimpleForwardNetBN(torch.nn.Module):

2

3 def __init__(self , input_dim=1, width =20):

4 super(SimpleForwardNetBN , self).__init__ ()

5

6 self.input_dim = input_dim

7

8 self.nn = torch.nn.Sequential(

9 torch.nn.Linear(input_dim + 1, width),

10 torch.nn.BatchNorm1d(width , affine=False),

11 torch.nn.Softplus (),

12 torch.nn.Linear(width , width),

13 torch.nn.BatchNorm1d(width , affine=False),

14 torch.nn.Softplus (),

15 torch.nn.Linear(width , width),

16 torch.nn.BatchNorm1d(width , affine=False),

17 torch.nn.Softplus (),

18 torch.nn.Linear(width , width),

19 torch.nn.BatchNorm1d(width , affine=False),

20 torch.nn.Softplus (),

21 torch.nn.Linear(width , input_dim)

22 )

23

24 self.nn[-1]. weight.data.fill_ (0.0)

25 self.nn[-1]. bias.data.fill_ (0.0)

Listing 1: Simple architecture for drift.

Note the weights and biases of the final layer are initialised to 0 in order to start the
process at a Brownian motion matching the SBP prior.
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F.4. BNN Architectures

For the step function dataset we used the following architecture:

1 class DNN_StepFunction(torch.nn.Module):

2

3 def __init__(self , input_dim=1, output_dim =1):

4 super(DNN , self).__init__ ()

5

6 self.output_dim = output_dim

7 self.input_dim = input_dim

8

9 self.nn = torch.nn.Sequential(

10 torch.nn.Linear(input_dim , 100),

11 torch.nn.ReLU(),

12 torch.nn.Linear (100, 100),

13 torch.nn.ReLU(),

14 torch.nn.Linear (100, output_dim)

15 )

Listing 2: Architecture for step function dataset.

For LeNet5 the exact architecture used was:

1 class LeNet5(torch.nn.Module):

2

3 def __init__(self , n_classes):

4 super(LeNet5 , self).__init__ ()

5

6 self.feature_extractor = torch.nn.Sequential(

7 torch.nn.Conv2d(

8 in_channels =1, out_channels =6,

9 kernel_size =5, stride =1

10 ),

11 torch.nn.Tanh(),

12 torch.nn.AvgPool2d(kernel_size =2),

13 torch.nn.Conv2d(

14 in_channels =6, out_channels =16,

15 kernel_size =5, stride =1

16 ),

17 torch.nn.Tanh(),

18 torch.nn.AvgPool2d(kernel_size =2),

19 )

20

21 self.classifier = torch.nn.Sequential(

22 torch.nn.Linear(in_features =256, out_features =120),

23 torch.nn.Tanh(),

24 torch.nn.Linear(in_features =120, out_features =84),

25 torch.nn.Tanh(),

26 torch.nn.Linear(in_features =84, out_features=n_classes),

27 )

Listing 3: Architecture for MNIST.
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Model Hyperparameters Values

Step Function

Prior N (0, σ2θI)
Likelihood N (yi|fθ(xi), σ

2
yI)

σθ 0.3
σy 0.1

MNIST
Prior N (0, σ2θI)
Likeihood Cat(fθ(xi))
σθ 0.3

Log Reg
Prior Laplace(0, σθ, )
Likelihood Bern(Sigmoidθ)
σθ 1

ICA
Prior N (0, σ2θI)
Lieklihood

∏
i

1

4 cosh2(
θ>
i
x

2
)

σθ 1

Table 5: Specification of Bayesian models.

F.5. Likelihood and Prior Hyperparameters

In Table F.5 we describe the hyperparameters of each Bayesian model as well as their priors
and likelihood.
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