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ABSTRACT

Large-scale visual-language pre-training like CLIP has demonstrated great suc-
cess in open-set visual concept learning that enables zero-shot transfer to down-
stream tasks through prompting. To automate prompt engineering, prompt learn-
ing is proposed to automatically learn the optimal task-relevant prompts. In this
paper, we make some surprising observations that contradict common beliefs
about prompts. We observe that even random prompts can achieve pretty good
performance for zero-shot recognition. We also find that prompt learning gives
comparable or worse performance than directly fine-tuning of the linear classifier.
Moreover, prompt learning is no more than parameter-efficient learning, and is a
trade-off between optimality and generalization. Our results highlight the need
for the rethinking of existing prompt learning, more careful baseline evaluations
in future research on prompt learning methods in vision-language models.

1 INTRODUCTION

Building a state-of-the-art visual recognition system is one of the core tasks in the field of computer
vision. Current state-of-the-art visual recognition systems are almost all based on Deep Neural
Networks (DNNs), which can be roughly divided into two parts: a non-linear feature extractor
and a linear classifier. For traditional visual recognition, where the class number are fixed and the
labels are discretized, the standard practice is to assign each category with a weight vector, which
is optimized to maximize the classification accuracy. Take the ResNet for ImageNet classification
as an example, the weight vectors for 1000 classes form the weight matrix W ∈ R1000×4096 of
the linear classifier (the last fully-connected layer of ResNet), where 4096 is the dimension of the
features from the feature extractor. This learning paradigm can only learn closed-set visual concepts
related to the pre-defined categories, and can not generalize to new classes beyond these closed-set
categories.

In contrast to supervised learning with fixed labels of a closed-set categories, visual concept learn-
ing with the supervision of text has shown great potential. The main inspiration is that language
is a high level abstraction of human understanding the world, thus it contains rich information and
can naturally generalize well. One of the representative works is the CLIP (Contrastive Language-
Image Pretraining) (Radford et al., 2021), which learns joint representations of vision and language
using contrastive learning on large-scale image and text data. Thanks to the rich information and the
generality of natural language, the CLIP model can learn diverse and task-agnostic visual-textual
representations, which can be generalized to many downstream tasks even under the zero-shot set-
ting. This is done by using the names of all classes of a downstream task as the text for textual
feature extraction, and conducting classification based on the alignment score of the visual features
and the textual features for each class. However, using the class names as the text is deficient due to
the lack of context. To this end, the authors of Radford et al. (2021) resort to the technique of prompt
tuning (Liu et al., 2021a). Here the “prompt” is a cloze templates which specifies the context about
the task at hand. They find that the template “a photo of a {CLASS}.” is a good prompt for
image classification. By using elaborate prompt engineering and ensemble, much higher zero-shot
performance can be achieved.

Prompt engineering has shown greater transferability than the contextless baseline of using class
names. The drawback is that the handcrafted prompt tuning requires prior knowledge about the
downstream task. Moreover, as pointed out in Zhou et al. (2022b), the performance is very sensitive
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to a slight change in the wording of the prompt template. Thus prompt tuning is a non-trivial task.
To solve this problem, the authors of Zhou et al. (2022b) bring the concept of prompt learning
from natural language processing (NLP) and propose Context Optimization (CoOp) to automate the
prompt engineering in vision-language models. More recent works including (Ju et al., 2021; Yao
et al., 2021; Zhou et al., 2022a) are continually developed. The core idea of these prompt learning
approaches is to treat the embeddings of the words in a prompt as a set of learnable vectors, which
are learned through back-propagation w.r.t. the downstream task loss.

Prompts can encode context information expressed in natural language about the target tasks, thus
they can generalize well and show promising results even in zero-shot. Prompt learning, which au-
tomatically optimize the prompts in the same word embedding space of natural language, is believed
to have two advantages. First, it is believed that prompt learning converge faster and requires fewer
training examples than fine-tuning. This is because only the context vectors are updated while the
pre-trained parameters of both text encoder and image encoder are fixed. Moreover, during the gradi-
ents calculation, the pre-trained knowledge encoded in the text encoder can also be back-propagated
through the network to the context vectors. Therefore, prompt learning is commonly believed to be
superior to linear probe, partial fine-tuning or even full fine-tuning. Second, it is believed that the
learned prompts have strong robustness and generalization ability, as the optimization is conducted
in the NLP embedding space, thus the learned prompts are expected to provide high generalization
ability in the same way as natural language.

In this paper, we test these two beliefs by evaluating the prompt tuning/learning performance of CLIP
on various downstream tasks. We start from examining the influence of text encoder on the prompts
through handcrafted prompts and random prompts and show that the text encoder can indeed provide
some regularization on the prompts. To our surprise, we find that even random prompts can still
achieve pretty good performance for zero-shot recognition. Then, we compare prompt learning
and fine-tuning for closed-set recognition, and observe that prompt learning gives comparable or
worse performance than directly fine-tuning the weights of the linear classifier. Last, we examine
the generalization ability of the learned prompts, and reveal that prompt learning is no more than
parameter-efficient learning, and is a trade-off between optimality and generalization.

2 RELATED WORKS

Prompt learning is originally proposed to transfer knowledge from pre-trained language models to
downstream tasks, which has demonstrated great performance in NLP domain Devlin et al. (2018);
Brown et al. (2020). A typical example of prompt learning is “fillin-the-blank” cloze templates
Petroni et al. (2019), which transforms the down-stream task to a format familiar to the pre-trained
model. Instead of manually designing prompt templates, later studies focus on automated prompt
learning which can be categorized into discrete prompts and continuous prompts Liu et al. (2021a).
Researchers discover the discrete prompts in a discrete space, e.g. natural language phrases, and
most works generate discrete prompts by either gradient-based search Wallace et al. (2019), or
prompt mining Jiang et al. (2020), or prompt generation Gao et al. (2020), etc. Instead of limiting
the prompt to human-interpretable natural language domain, continuous prompts in the embedding
space of the model are proposed. Several representative methods on continuous prompts learning
include prefix tuning Li & Liang (2021), tuning initialized with discrete prompts Zhong et al. (2021),
and hard-soft prompt hybrid tuning Liu et al. (2021b).

Motivated by the well performance of prompt learning on NLP, recently researchers begin to apply
it into the vision-language models. CLIP Radford et al. (2021) uses a manually designed prompt
on the text encoder, which enables the zero-shot image classification of vision-language model. To
avoid human efforts on prompt design, CoOp Zhou et al. (2022b) proposes a continuous prompts
learning method and two implementations that can be applied on different recognition tasks. Yet
CoOp Zhou et al. (2022b) seems over-fitting the base classes in the training, resulting in inferior
performance on unseen classes even within the same dataset. To cure this problem, CoCoOp Zhou
et al. (2022a) propose to generate an input-conditional vector for each image by a lightweight neural
network, which boosts the classifier performance on new classes. Although CoOp and CoCoOp
achieve promising improvements, they requires supervised data from the target datasets which may
restrict the model scalability. In the contrary, Huang et al. Huang et al. (2022) propose the unsuper-
vised prompt learning (UPL) method which improves transfer performance of CLIP-like VL models
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without labeled data. Different from above prompt learning methods which apply the prompts on
the text encoder of VL model, VPT Jia et al. (2022) uses prompts learning on the image encoder.
Specifically, they prepend a small amount (less than 1% of model parameters) of trainable parame-
ters into the input sequence of transformer layers, and keep the model backbone frozen. Besides the
prompt learning for the classification task, there are some studies about transferring knowledge from
VL models to other downstream tasks, such video understanding Ju et al. (2021), object detection
Du et al. (2022), and visual grounding Yao et al. (2021).

3 PROMPT LEARNING BASED ON CLIP

The analysis throughout this paper is based on CLIP model (Radford et al., 2021), which consists
of an image encoder f(·) and a text encoder g(·). The image encoder is usually a ResNet or a ViT,
while the text encoder is a Transformer. Through contrastive learning, the two encoders are trained
to transform input images and texts into the same feature space.

The aligned visual-textual feature space makes CLIP to be capable of zero-shot image recognition.
Specifically, the input image x is feed into the image encoder to obtain the visual representation
f . Similarly, for each category, the class name (e.g., “dog”) wrapped in the prompt template (e.g.,
“a photo of a {CLASS}.”) is feed into the text encoder to obtain the textual representation
{wi}Ki=1, where K is the class number. Then the prediction probability is as follows:

p(y = i|x) = exp(cos(f ,wi)/T )∑K
j=1 exp(cos(wj ,wjx)/T )

, (1)

where T is the Softmax temperature and cos(·, ·) denotes cosine similarity.

To ease the prompt engineering process, the concept of prompt learning is proposed. Context Op-
timization (CoOp) (Zhou et al., 2022b) is one of the earliest works that introduce prompt learning
to adapt pre-trained vision-language models to downstream tasks. The key idea of prompt learning
is to automatically learn the prompt template instead of using a handcrafted template. Specifically,
CoCop introduces a set of learnable prompt vectors with the following format,

t = [v]1[v]2 · · · [v]M [v]CLASS, (2)

where {[v]m,m = 1, · · · ,M} are the set of the learnable word embeddings of the prompt template,
which are shared for all classes, M is the number of context tokens of the prompt, and [v]CLASS
is the embedding of the class name. For each class i ∈ 1, · · · ,K, we can obtain the prompt ti
according to Eq. (2). Then the prediction probability is as follows:

p(y = i|x) = exp(cos(f , g(ti))/T )∑K
j=1 exp(cos(f , g(tj))/T )

, (3)

With the prediction probability of Eq. (3) and the classification loss of the downstream task, we
can optimize the learnable prompt vectors {[v]m,m = 1, · · · ,M} while frozening the pre-trained
weights of the CLIP. Specifically, the gradients w.r.t. the learnable prompt vectors can be back-
propagated all the way through the text encoder g(·), at which time, the pre-trained knowledge
encoded in the text encoder of CLIP can be distilled to the learnable prompt vectors. In this way, the
learned prompts can encode some useful information about the downstream task.

4 TEXT ENCODER AS A REGULARIZATION

In section 3, we show that different prompts would result in different weights for classification, i.e.,
wi = g(ti), for i = 1, · · · ,K. In this section, we examine how different prompts would affect the
performance of classification across a wide range of datasets.

4.1 HANDCRAFTED PROMPTS

We start from handcrafted prompts. Previous works have shown that a good handcrafted prompt
could greatly improve zero-shot classification accuracy Radford et al. (2021). In this section, we
evaluate the performance of zero-shot classification with various handcrafted prompt templates.
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Table 1: Various handcrafted prompts.

Prompt Type Prompt Template
ClassName “{CLASS}”
Basic “a photo of a {CLASS}.”
Revised “this is a photo of a {CLASS}.”
Negative “this is not a photo of a {CLASS}.”

Table 2: Results of zero-shot classification with various handcrafted prompts and random prompts
across the 11 datasets.

Dataset ClassName Basic Revised Negative RandToken RandEmbed
ImageNet 55.3 58.2 59.2 58.0 50.0±2.7 47.0±2.8

Caltech101 80.9 85.9 87.0 84.6 75.3±3.4 74.7±5.4

OxfordPets 78.8 83.7 84.7 81.0 73.2±3.8 72.3±3.4

StanfordCars 54.4 55.6 55.6 49.0 52.6±0.9 46.5±2.5

Flowers102 57.3 60.9 62.8 62.7 51.4±2.6 46.7±7.6

Food101 73.9 75.3 77.2 75.5 72.8±3.1 69.0±2.8

FGVCAircraft 15.3 15.7 15.8 15.0 12.2±2.5 10.2±2.1

SUN397 54.9 58.5 57.7 58.5 47.6±3.3 45.0±2.4

DTD 41.1 40.0 41.1 42.3 34.1±5.6 28.6±3.4

EuroSAT 28.4 24.2 28.0 36.7 22.4±3.9 24.2±4.5

UCF101 56.4 58.3 57.9 57.7 52.5±2.4 47.9±2.2

First, we want to evaluate the prompts used by current prompt-based methods. The simplest base-
line is to directly use the class name as the input of the text encoder (ClassName). To improve
performance, the authors of CLIP Radford et al. (2021) propose a basic prompt template for image
recognition (Basic). The authors of Ju et al. (2021) further revise the prompts by adding a “this is”
prefix (Revised). Second, we want to examine what will happen if we use the “negative prompt” for
the classification task, i.e., by adding a “not” in the prompt template (Negative). For clearness, we
summarize the handcrafted templates studied in this section in Table 1.

Following (Zhou et al., 2022b), we conduct experiments on the 11 image classification datasets
used in CLIP which are publicly available, i.e., ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei,
2004), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback
& Zisserman, 2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), SUN397
(Xiao et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019) and UCF101 (Soomro
et al., 2012). The results are summarized in Table 2.

As expected, the results in Table 2 show that the ClassName prompt template achieves the worst
performance. On only one dataset (EuroSAT), the ClassName could outperforms the Basic and the
Revised prompt. There is a large accuracy improvement using the Basic prompt template introduced
in Radford et al. (2021). The accuracy can be further improved when using the Revised template (Ju
et al., 2021), which achieves the best accuracy for 8 out of the 11 datasets.

An important finding we want to point out is that the relative performance for these three hand-
crafted prompts are somewhat consistent across various dataset. Specifically, the Basic template
outperforms the ClassName prompt for 9 out of the 11 datasets, and the Revised template outper-
forms the Basic template for other 9 out of the 11 datasets. This finding indicates that the handcrafted
prompts expressed in natural language can generalize well across various datasets. In other word, a
prompt template works on one dataset has a high probability to also work on another dataset.

Another surprising observation is that the negative prompt can also achieve very good performance.
On most of the datasets, the Negative prompt shows quit large improvement over the ClassName
template. By comparing with the other handcrafted prompts, it even get the best accuracy on 3 out
of the 11 datasets.
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4.2 RANDOM PROMPTS

Then we evaluate what would happen if random prompts are used. Here we consider two kinds of
random prompts, namely the random token template and the random embedding template:

• Random Token Template prepends some random word IDs which are selected from the
49,152 vocabulary of CLIP.

• Random Embedding Template prepends some random embedding vectors after trans-
forming token IDs into word embedding.

Similarly, we evaluate the performance across 11 image classification datasets. Note that the selec-
tion of the random seed would make a large difference in performance. So we run the experiments
for 10 times with different random seeds and report the average performance. The results are shown
in the last columns of Table 2. To our surprise, the results show that even random prompts can still
achieve pretty good performance for zero-shot recognition. It seems that the text encoder can indeed
provide some regularization at the encoding process of the input text with prompts.

4.3 SUMMARY

By now, we have evaluated the performance of different handcrafted prompts and random prompts.
In the following list, we summarize our findings, some of which are quit surprising.

1. Handcrafted prompts expressed in natural language show great power and generalization
ability, and the relative performance for different prompt templates are somewhat consistent
across a wide range of datasets.

2. The negative prompts, which provide wrong context information for the downstream tasks,
can also achieve very good performance.

3. Even random prompts can still achieve pretty good performance for zero-shot recognition.

5 PROMPT LEARNING V.S. CLASSIFIER FINE-TUNING

In this section, we evaluate the effect of prompt learning for closed-set image classification task,
where the training set and testing set are from the same categories. For closed-set classification, it
is widely believed that prompt learning converge faster and requires fewer training examples than
fine-tuning. The reasons are two-fold. First, in prompt learning, only the prompt vectors are learned
while the pre-trained CLIP model is fixed. Second, as shown in Eq. 3, to optimize the prompt
vectors {[v]m,m = 1, · · · ,M}, the gradients need to be back-propagated all the way through the
text encoder g(·). This process allows the knowledge learned by the CLIP model to be distilled from
the weights to the prompts (Zhou et al., 2022b).

In this paper, we challenge this common belief. By comparing Eq. 1 and Eq. 3, it is easy to see
that wi = g(ti) for i = 1, · · · ,K, which can be viewed as the weights of the last classifier. At
inference time, we first need to feed each ti into the text encoder to obtain wi, then the generated
weights {wi, i = 1, · · · ,K} are used for classification. Our key question is that if we could directly
optimize wi, why should we optimize the latent vector ti? To this end, we conduct comprehensive
experiments on the 11 image classification datasets to see if prompt learning (optimize ti) is superior
to classifier fine-tuning (optimize wi).

5.1 TRAINING DETAILS

For prompt learning, we utilize the Context Optimization (CoOp) method proposed in Zhou et al.
(2022b), which is one of the earliest works that introduce prompt learning to adapt pre-trained
vision-language models to downstream tasks. We use the CLIP pre-trained model with ResNet-50
as the image encoder. The number of learnable prompt vectors M is set to 16 and are shared across
call categories, which is the default setting for in the original paper of Zhou et al. (2022b). During
the experiments, we find that the results for prompt learning on downstream tasks are very sensitive
to the choice of hyper-parameters. For fair comparison, we use the grid search over the training
epochs and learning-rate and report the best accuracy for all experiments. Specifically, the number
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Figure 1: Comparison between prompt learning (CLIP + Prompt Learning) and classifier fine-tuning
(CLIP + Classifier FT) of few-shot learning on the 11 datasets. The results for zero-shot CLIP (stars)
and linear probe (dashed lines) are also given.

of training epoch is set to {50, 100, 200}. The starting learning-rate is set to {2e−2, 2e−3, 2e−4}
and {2e−1, 2e−2, 2e−3} for prompt learning and classifier fine-tuning, which are the best choices
for both cases. Other hyper-parameters are the same as in Zhou et al. (2022b).

5.2 RESULTS

We compare the performance of prompt learning and classifier fine-tuning across all 11 datasets.
Following Zhou et al. (2022b), we report few-shot learning results with 1/2/4/8/16 shots for training
while using the original test set for testing. All the results for prompt learning and classifier fine-
tuning are the average over 3 runs with different random seeds. We also give the zero-shot results
using CLIP model as well as the linear probe results based on CLIP for comparison. The main
results are shown in Figure 1.

From Figure 1, we can see that both the prompt learning and classifier fine-tuning can dramatically
outperforms the zero-shot and the linear probe based on CLIP for most of experiments. Compared
with prompt learning, the simple classifier fine-tuning cal obtain much higher accuracy, except for
the OxfordPets dataset, on which the classifier fine-tuning is slightly inferior to prompt learning.
The average results on 11 datasets displayed in the top-left corner of Figure 1 show that classifier
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Table 3: The optimization time (in minutes) of prompt learning and classifier fine-tuning with vari-
ous backbones for 16 shots ImageNet classification.

Method ResNet-50 ResNet-101 ViT-B/32 ViT-B/16
Prompt Learning 139.5 143.3 136.3 143.1
Classifier Finetuning 13.8 15.9 13.7 14.8

Table 4: Comparison between prompt learning and classifier fine-tuning on robustness to distribution
shift using different vision backbones. Bold value indicates the best result.

Method Source Target Average
ImageNet -V2 -Sketch -A -R

ResNet-50
Zero-Shot CLIP 58.18 51.34 33.32 21.65 56.00 44.10
Linear Probe CLIP 55.87 45.97 19.07 12.74 34.86 33.70
Prompt Learning 63.00 55.27 34.03 22.40 55.90 46.12
Classifier Fine-tuning 64.73 56.03 34.13 22.10 58.30 47.06
ResNet-101
Zero-Shot CLIP 61.62 54.81 38.71 28.05 64.38 49.51
Linear Probe CLIP 59.75 50.05 26.80 19.44 47.19 40.65
Prompt Learning 66.53 58.73 40.00 29.00 64.03 51.66
Classifier Fine-tuning 67.50 58.60 40.37 28.90 64.20 51.91
ViT-B/32
Zero-Shot CLIP 62.05 54.79 40.82 29.57 65.99 50.64
Linear Probe CLIP 59.58 49.73 28.06 19.67 47.20 40.85
Prompt Learning 66.80 58.43 40.97 31.30 65.33 52.57
Classifier Fine-tuning 68.10 58.17 41.47 30.63 67.60 53.19
ViT-B/16
Zero-Shot CLIP 66.73 60.83 46.15 47.77 73.96 59.09
Linear Probe CLIP 65.85 56.26 34.77 35.68 58.43 50.20
Prompt Learning 71.97 64.40 47.97 49.97 75.03 61.86
Classifier Fine-tuning 72.97 64.47 47.97 48.50 75.70 61.92

fine-tuning is not as vulnerable as we think in the few shot setting. On the contrary, for 1 shot to 16
shots, classifier fine-tuning consistently outperforms prompt learning by 1.5% to 2.3%.

Another difference between prompt learning and classifier fine-tuning is about the optimization
time. Prompt learning need to propagate the gradients through the text encoder back to the learnable
prompt vectors, which is quit time-consuming. By contrast, the classifier fine-tuning can directly
optimize the weights of the classifier, thus it is much more efficient. Here we report the optimization
time of prompt learning and classifier fine-tuning with various network backbones for 16 shots
classification on ImageNet. The results are shown in Table 3. We can observe that classifier fine-
tuning is about 10× more efficient in speed than prompt learning.

These results have confirmed our assumption about prompt learning for closed-set classification.
Specifically, prompt learning can not achieve the goal of sample efficient training as commonly
expected. The simple baseline of classifier fine-tuning is much time efficient and achieves much
higher accuracy than prompt learning across various datasets.

5.3 ROBUSTNESS TO DISTRIBUTION SHIFTS

Previous works have shown that prompt learning has high domain generalization ability compared
with handcrafted prompts. Thus we need to compare the robustness of classifier fine-tuning and
prompt learning with respect to distribution shifts across domains. To this end and following Zhou
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et al. (2022b), we use the ImageNet as the source domain and use the ImageNetV2 (Recht et al.,
2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-
R (Hendrycks et al., 2021a) as the target domain. These datasets have the compatible class names
with ImageNet, thus the optimized prompts of prompt learning and the learned weights of classifier
fine-tuning can be transfered from ImageNet to these datasets.

We summarize the results in Table 4. As we can see, despite exposure to the source dataset, both
prompt learning and classifier fine-tuning outperform the zero-shot and linear probe CLIP for the
target datasets, which demonstrates their strong robustness to distribution shift. Moreover, classifier
fine-tuning surpasses prompt learning on most models and datasets, verifying the generalization
advantage of classifier fine-tuning over prompt learning.

6 OPTIMALITY-GENERALIZATION TRADE-OFF

In this section, we examine the generalization ability of prompt learning method. It is usually be-
lieved that the learned prompts have strong robustness and generalization ability, as the optimization
is conducted in the NLP embedding space, thus the learned prompts are expected to provide high
generalization ability in the same way as natural language. However, as pointed out in Zhou et al.
(2022a), the prompt learning method used in Zhou et al. (2022b) fails to learn task-specific context
that generalizes well to unseen classes. To solve this problem, conditional prompt learning (Con-
ditional Context Optimization, CoCoOp) is proposed in Zhou et al. (2022a), in which the prompts
are the outputs of a meta network with the visual features of each image as the inputs. In this paper,
we want to ask the question, why would the prompt learning methods or the improved conditional
prompt learning methods have strong generalization ability?

Before answering this question, we would like to take one step back and to think where does the
generalization ability of a machine learning model comes from. Here we summarize three sources
of the generalization ability of machine learning models.

1. Knowledge. Human knowledge is general. As a high level abstraction of human knowl-
edge, natural language also has strong generalization power. The pre-trained language
model and prompt engineering are some examples.

2. Inductive bias. During model design, experts can add some biases into the model based on
the prior knowledge about the tasks to deal with. An example is the translation invariance
of convolutional networks.

3. Diverse training data. The most simple and widely used method to improve generalization
is to use large scale diverse data. The CLIP model is an example.

Despite that the learnable prompt vectors are optimized in the same word embedding space as NLP,
the learned vectors are not natural language. Thus the prompt learning method can not generalize
well to new categories that are not seen during training Zhou et al. (2022a). Thus conditional prompt
learning is proposed which has shown high generalization ability than prompt learning. The question
is where does the generalization power come from? Does it come from the introduced inductive
bias or from the diverse training data? The first case (inductive bias) is hard to verify. Thus we will
examine if the generalization power of conditional prompt learning comes from the optimization
process.

Our assumption is that, due to the changed architecture, the improved prompt learning method may
be actually trying to find a better optimality-generalization trade-off. If the prompt vectors are
learned on the source dataset, then they will have poor generalization power on the target dataset.
As a trade-off, the better the prompt learning fit the source dataset (optimality), the weaker general-
ization power it would have.

To verify our assumption, we conduct experiments using the original prompt learning method
(CoOp). To find a better trade-off between optimality and generalization, we use a very simple
method. Specifically, we train the CoOp model for various training epochs and compare the perfor-
mance with conditional prompt learning method (we use the CoCoOp method in this paper). We
use the same setting as in Zhou et al. (2022a) for all the experiments. The results are summarized in
Figure 2.
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Figure 2 shows that by controlling the optimality-generalization trade-off, the original prompt learn-
ing method (CoOp) can achieve higher generalization ability than conditional prompt learning
method (CoCoOp) for most of the case. It seems that the learned prompts (either learned with
or without conditional) are not related with natural languages. They are just some parameters
which make parameter-efficient fine-tuning possible. All we need is to find a better optimality-
generalization trade-off. These results highlight the need for the rethinking of existing prompt
learning, and more careful baseline evaluations metrics are needed in future research on prompt
learning methods in vision-language models.
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Figure 2: The trade-off between optimality and generalization.

7 CONCLUSION

This paper rethinks the existing prompt learning, making some surprising observations that con-
tradict common beliefs about the prompt. First, we find that random prompts without fine-grained
design or learning can also perform well in zero-shot recognition. Second, directly fine-tuning the
linear classifier exhibits better performance than prompt learning. Moreover, we reveal that prompt
learning is just a special case of parameter-efficient learning, and is a trade-off between optimality
and generalization. Our results on 11 datasets highlight the rethinking in this paper can further boost
the deployment of pre-trained vision-language models in downstream tasks.
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