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ABSTRACT

Best-of-N (BoN ) is a popular and effective algorithm for aligning language models
to human preferences. The algorithm works as follows: at inference time, N sam-
ples are drawn from the language model, and the sample with the highest reward,
as judged by a reward model, is returned as the output. Despite its effectiveness,
BoN is computationally expensive; it reduces sampling throughput by a factor of
N . To make BoN more efficient at inference time, one strategy is to fine-tune the
language model to mimic what BoN does during inference. To achieve this, we
derive the distribution induced by the BoN algorithm. We then propose to fine-tune
the language model to minimize backward KL divergence to the BoN distribution.
Our approach is analogous to mean-field variational inference and, thus, we term it
variational BoN (vBoN ). To the extent this fine-tuning is successful and we end
up with a good approximation, we have reduced the inference cost by a factor of
N . Our experiments on controlled generation and summarization tasks show that
BoN is the most effective alignment method, and our variational approximation to
BoN achieves the closest performance to BoN and surpasses models fine-tuned
using the standard KL-constrained RL objective. In the controlled generation task,
vBoN appears more frequently on the Pareto frontier of reward and KL divergence
compared to other alignment methods. In the summarization task, vBoN achieves
high reward values across various sampling temperatures.

1 INTRODUCTION

Language models are pre-trained on large corpora to model a distribution over natural language
text.1 Beyond their initial pre-training, they are often additionally fine-tuned on domain-specific data
through a process called supervised fine-tuning (SFT). The goal of SFT is to enable the model to
better perform various downstream tasks of interest. While the fine-tuned model, called the reference
model in our paper, is indeed typically much better at performing the downstream task of interest,
e.g., dialogue generation or summarization, it may still generate undesirable content, e.g., harmful
or offensive text. To mitigate this issue, aligning the reference model to human preferences has
become a fundamental step in the development of modern large language models (Touvron et al.,
2023; OpenAI et al., 2023; Gemini et al., 2024).

The degree to which text is aligned with human preferences is typically operationalized using a
real-valued reward function. Rather than constructing a reward function by hand, it is typically
estimated from a dataset of human preferences.2 And, after estimation, we expect the reward function
to return higher values for text that is more likely to be preferred by humans, and lower values for
text that is more likely to be dispreferred. Then, given an estimated reward function, an alignment
algorithm further alters the reference models in a manner such that it places the highest probability on
that text that is high reward under the reward model and high probability under the reference model.

Alignment algorithms can be taxonomized into two groups: (i) alignment via fine-tuning, where
we change the language model’s parameters to achieve alignment (Christiano et al., 2017; Rafailov
et al., 2023), and (ii) alignment via inference (Nakano et al., 2022; Mudgal et al., 2024). A common
alignment-via-fine-tuning method is reinforcement learning from human feedback (RLHF; Chris-
tiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022). RLHF typically consists of further

1Many language models are also used to model text in non-natural languages, e.g., programming languages.
2In some cases, the reward model is not estimated from human preference data. It is either known, e.g.,

code-based execution scores, or given by a classifier, e.g., toxicity or sentiment classifiers.
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Figure 1: Best-of-N (on the left) is an effective alignment-via-inference method: it draws N samples
from the language model, ranks them according to a reward model, and outputs the best sample.
Variational Best-of-N (on the right) approximates this process via fine-tuning. The goal is to ensure
that sampling a single string from the fine-tuned model produces a result equivalent to applying
Best-of-N . This approach allows us to achieve similar performance while increasing the throughput
by a factor of N .

fine-tuning the language model under a KL-constrained RL objective, which is made up of two terms:
a term that encourages the model to maximize the reward, and a term that discourages high KL diver-
gence between the language model and the reference model. This objective is often maximized with an
RL algorithm, e.g., proximal policy optimization (PPO; Schulman et al., 2017). A common alignment-
via-inference method is the Best-of-N (BoN ; Stiennon et al., 2020) algorithm. As such, it does
not require any fine-tuning of the language model. The algorithm is straightforward: One draws N
samples from the reference model and returns the text that achieves the highest reward among those N
samples. The BoN algorithm has also been effectively applied in controlled decoding (Yang & Klein,
2021; Mudgal et al., 2024) and to generate a dataset for supervised fine-tuning (Touvron et al., 2023).

Despite its simplicity, BoN has proven incredibly practical in generating high-reward text that still
has a high probability under the reference model. Theoretically, Yang et al. (2024) prove that under
some simplifying assumptions, the BoN distribution is asymptotically equivalent to the optimal
distribution under the KL-constrained RL objective. Empirically, it has been repeatedly shown (Gao
et al., 2023; Rafailov et al., 2023; Mudgal et al., 2024) that BoN often appears on the frontier of
reward and KL curves, surpassing the performance of models fine-tuned with RLHF. However, the
main factor preventing BoN from replacing fine-tuning methods for alignment is its significant
computational overhead during inference. Even when sampling is done in parallel, BoN decreases
the text generation throughput by a factor of N . This drawback limits its practicality for generating
text from large language models.

To speed up BoN , we devise a scheme to convert it into an alignment-via-fine-tuning algorithm
rather than an alignment-via-inference algorithm. To this end, we first formally derive the probability
distribution induced by the BoN algorithm. Then we approximate this distribution by minimizing
the reverse KL divergence between the language model and the BoN distribution. This leads to
an optimization objective that we refer to as the vBoN objective. By analyzing a lower bound of this
objective, we find that it behaves similarly to the KL-regularization objective in the limit, i.e., N → 1
or N → ∞. Importantly, the vBoN objective has a unique and useful property: it is insensitive to
applying any monotonically increasing function to the reward values. This distinctive feature, along
with the empirical success of the BoN algorithm, suggests that the vBoN objective is a promising
and interesting objective to explore. Finally, we fine-tune the language model using PPO to optimize
the vBoN objective. Our scheme, depicted in Fig. 1, allows us to achieve performance close to that
of the BoN algorithm while increasing the inference throughput by a factor of N .

We experiment with our method on controlled generation and summarization tasks. We compare
vBoN against models fine-tuned with the KL-constrained RL objective. In the controlled generation
task, our results suggest that models fine-tuned with the vBoN objective are most likely to appear on
the Pareto frontier of reward vs. KL curves compared to other alignment-via-finetuning methods,
suggesting a better trade-off between attaining high rewards and not diverging too far from the
reference model. Moreover, in the summarization task, we observe fine-tuning with vBoN leads to
higher reward values and win rates on average compared to models fine-tuned with KL-constrained
RL objective.
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2 BACKGROUND: REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Let Σ be an alphabet, a finite, non-empty set of symbols.3 The elements of Σ may be characters,
tokens, or words; the choice lies with the modeler. A string is a finite sequence of symbols drawn
from Σ. A language model is a distribution over strings y ∈ Σ∗, where Σ∗ is the set of all strings
over the alphabet Σ. In this paper, we consider language models, e.g., those based on neural networks,
that are parameterized by a real vector θ ∈ Θ, denoted as πθ. Furthermore, we restrict ourselves
to language models that are differentiable functions of θ. In conditional generation tasks, e.g.,
summarization or dialogue generation, it is desirable to prompt the language model with a string
x ∈ Σ∗. Consequently, we consider prompted language models, i.e., those that give a conditional
distribution over response strings y, given a prompt string x, as πθ(y | x). However, for notational
convenience, we will drop the explicit conditioning on the prompt x and simply write πθ(y).

Algorithms for RLHF fine-tune the language model to increase the expected reward of the strings
sampled from it while not diverging too far from the reference model. RLHF consists of three steps.
First, the language model is fine-tuned on a task-specific dataset using the maximum-likelihood
objective. Recall we term the language model after this step the reference model and show that with
πref. Next, a reward model r : Σ∗ → R is trained to capture human preferences; the reward of a
string is high if it is preferred by humans.4 Finally, the reference model is fine-tuned to maximize the
KL-constrained RL objective,

J RL(θ) = E
y∼πθ

[
r(y)

]
− β DKL

(
πθ ∥πref

)
, (1)

where DKL(·) is the KL divergence between two distribution, modulated by a hyperparameter β. This
objective encourages the model to put more probability mass on strings that have high rewards under
the reward model while penalizing it not to deviate too far from the reference model. Levine (2018)
show that the optimal probability distribution that maximizes this objective is

π⋆
θ(y) =

1

Z
πref(y) exp

( 1

β
r(y)

)
, Z =

∑
y∈Σ∗

πref(y) exp
( 1

β
r(y)

)
. (2)

π⋆
θ is simply the reference model reweighted by the exponent of reward values and normalized by

the partition function Z. Notably, we can not directly sample from π⋆
θ because the partition function

Z may be difficult to compute—it involves an infinite sum after all. However, a heuristic approach
to sampling from π⋆

θ would be to sample many strings from πref and only keep those that have high
rewards. Indeed, this heuristic is the motivation behind the BoN algorithm.

3 DERIVING THE BEST-OF-N OBJECTIVE

Best-of-N algorithm is a simple alignment-via-inference algorithm. The algorithm works as follows.
Let YN = {y(n)}Nn=1 be the multi-set containing N i.i.d samples from πref. Then, BoN algorithm
returns y⋆, where5

y⋆ = argmax
y(n)∈YN

r(y(n)). (3)

We show the probability distribution induced from BoN sampling algorithm with πbon. Importantly,
πbon is not the optimal distribution under Eq. (1), the KL-constrained RL objective.6 Nevertheless,
the BoN algorithm often performs well—even compared to RLHF-based methods. This raises the
question: under what optimization objective is πbon the optimal distribution? To derive such an
objective, we begin by computing the probability of strings under πbon.

3Please refer to Tab. 3 for a summary of notations used throughout the paper.
4For example, in a summarization task, a preference dataset consists of a document, two candidate summaries

for that document, and a label indicating which summary is preferred by humans. The reward model is trained
on this dataset to maximize the likelihood of correctly predicting human preference.

5We assume that the argmax is unique, or ties are broken in a well-defined manner.
6Note that only under some simplifying assumptions, πbon is asymptotically (in sequence length) equal to π⋆

θ

(Yang et al., 2024).
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Proposition 1. Suppose r : Σ∗ → R is a one-to-one mapping. Then, the probability that a string
y ∼ πbon is given by

πbon(y) =

N∑
i=1

(
N

i

)
F
(
r(y)

)N−i
πref(y)

i, F
(
r(y)

) def
= P

y′∼πref
(r(y′) < r(y)) . (4)

Proof. See App. B. ■

F can be understood as the strict cumulative density function of reward values under πref. In other
words, F

(
r(y)

)
represents the probability that a random sample drawn from πref has a reward value

less than r(y). We now describe how to fine-tune the language model to approximate πbon. Similar
to mean-filed variational inference, we minimize the reverse KL divergence between πθ and πbon.
Concretely,

J VBON(θ) = −DKL

(
πθ || πbon

)
= E

y∼πθ

[
log πbon(y)− log πθ(y)

]
= E

y∼πθ

[
log πbon(y)

]
+H

(
πθ

)
= E

y∼πθ

[
log

N∑
i=1

(
N

i

)
F
(
r(y)

)N−i
πref(y)

i
]
+H

(
πθ

)
, (5)

where H(·) is the entropy of a distribution. Eq. (5) is an entropy-regularized objective, where we use
the probability of the string under the BoN distribution as the reward and discourage the model from
having low entropy.

Monotonically invariant. An important property of the variational BoN objective is that it is
invariant to applying any strictly monotonically increasing function to rewards. This is because the
vBoN objective relies on reward values solely through F, which, as defined in Eq. (4), only depends
on the ranking between the reward values and not their exact magnitude. This implies that the vBoN
objective is insensitive to the outliers and the scale of rewards. This property is especially important
as RL algorithms are notoriously sensitive to the scale of reward values (Henderson et al., 2018;
Schaul et al., 2021).

Approximating log F(·). Maximizing Eq. (5) requires us to compute log F(·) for any r(y). This,
however, is computationally expensive, as we have to sum over the probabilities of all strings that
have rewards less than r(y). Fortunately, we can instead maximize a lower bound of Eq. (5) using a
Monte Carlo estimator of F(·). Concretely, we can write F(·) as an expectation,

F
(
r(y)

)
= E

y′∼πref

[
1{r(y′) < r(y)}

]
. (6)

We approximate F
(
r(y)

)
using M i.i.d. samples from πref, termed y′(1), . . . ,y′(M) i.i.d.∼ πref, and

F̂
(
r(y)

) def
= 1

M

∑M
m=1 1{r(y′(m)) < r(y)}. We then take log of this Monte Carlo estimator as a

biased, but consistent estimator of log F(·) in Eq. (5).7 In §5.1 we empirically assess the number
of samples we need so that log F̂ converges to log F.

7Using Jensen’s inequality, we show biasedness. Concretely, note the following lower bound

log F
(
r(y)

)
= log E

y′(1),...,y′(M)

[
1

M

M∑
m=1

1{r(y′(m)) < r(y)}

]
(7a)

≥ E
y′(1),...,y′(M)

[
log

(
1

M

M∑
m=1

1{r(y′(m)) < r(y)}

)]
, (7b)

where Jensen’s inequality is applicable because log is concave. Consistency can be shown with an application of
the delta method (§5.5.4; Casella & Berger, 2001).
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(a) 4% of points on Pareto front belong to BoNBoN,
4% to PPO, 42% to DPO, and 50% to vBoN .
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10% DPO, 33% PPO, and 50% vBoN .

Figure 2: Steering generated movie reviews towards positive sentiment. Points that are not on the
Pareto front of each method have lower opacity. BoN is the most effective approach in achieving
high win rates and high rewards while not diverging too far from the reference model. Our variational
approximation to BoN gets closest to the performance of BoN compared to other fine-tuning methods,
as reflected in the percentage of times it appears on the Pareto front.

4 COMPARING BON AND RL OBJECTIVES

To explore the connection between the vBoN objective and the KL-regularized RL objective, we
derive a lower bound for J VBON. Through this lower bound, we can get more insights on how the
reward function is used in the variational BoN objective, and why this objective discourages high KL
divergence from the reference model.

To derive such a lower bound, we substitute the BoN distribution in Eq. (4) into the vBoN objective
in Eq. (5). We then simplify this objective to arrive at the following theorem.

Theorem 2. We have J VBON(θ) ≥ L(θ), where

L(θ)
def
= (N − 1) E

y∼πθ

[
log F

(
r(y)

)]
−DKL

(
πθ ∥πref

)
. (8)

Proof. See App. D. ■

Empirically, we observe that models that are fine-tuned to maximize L(θ) perform competitively to
the ones that are fine-tuned to maximize the vBoN objective; see App. G for experimental results.
Interestingly, if we compare Eq. (8) to the KL-constrained RL objective, Eq. (1), we see they have a
very similar structure. We observe that N (in the vBoN objective) acts as a regularization parameter.
As N → 1, the optimal distribution gets closer to πref, which has the same effect as β → ∞ in Eq. (1).
Furthermore, as N → ∞, the optimal distribution only generates the string with the maximum
rewards, which is equivalent to β → 0 in Eq. (1). Importantly, in both limits, the optimal distribution
under the KL-regularized RL objective and the vBoN objective are equivalent.

The main difference between the KL-constrained RL objective Eq. (1) and the derived vBoN lower
bound Eq. (8) is in the reward function. With the KL-constrained RL objective, we aim to maximize
the expected reward values. In contrast, with vBoN , we maximize the cumulative probability that
strings sampled from the aligned model, πθ, achieve higher rewards compared to those sampled
from πref.
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5 SENTIMENT CONTROL

We now employ the variational BoN objective, Eq. (5), to fine-tune language models. We perform an
open-ended text generation task where the goal is to generate movie reviews with positive sentiment.

The reference model, πref, is GPT-IMDB8, a GPT-2 (Radford et al., 2019) model fine-tuned on IMDB
corpus (Maas et al., 2011). We use a binary sentiment classifier,9 denoted as p, with two classes
{POS, NEG} as the reward model, and define r(y) def

= p(POS | y). Following Rafailov et al. (2023), we
sample 5000 movie reviews from the training set of IMDB dataset and for each sample, we randomly
choose a prefix length between 2 − 8 and take that prefix as the prompt. We further generate 512
prompts in the same way from the test set of IMDB that we use to evaluate our models.

We fine-tune the reference model with PPO using the vBoN objective Eq. (5). Then, we compare
the performance of the fine-tuned model (vBoN ) to the exact BoN (BoN ), i.e., applying BoN at
inference time.

We implement and compare the following existing methods for language model alignment:

• BoN -SFT: Perhaps the most straightforward way to approximate BoN distribution is to fine-tune
the model to maximize the likelihood of the samples taken with BoN algorithm. Unfortunately, we
find that SFT is incapable of achieving a good trade-off between achieving high rewards and low
KL divergence, see App. H (Fig. 7) for the experimental results.

• PPO: We use PPO to optimize the KL-constrained objective in Eq. (1). We use the default
hyperparameters in trlx library (Havrilla et al., 2023) for fine-tuning with PPO.

• DPO. Direct preference optimization (DPO; Rafailov et al., 2023) is a popular alternative to RLHF
that does not require training a reward model. Following DPO’s experimental setup, we generate 6
reviews per prompt and use the resulting 12 pairwise comparisons per prompt to construct DPO’s
contrastive loss.10

• BoNBoN: Concurrent work (Gui et al., 2024) explores another approach to approximate BoN
distribution. Assuming that the reference model distribution πref is continuous, Gui et al. (Theorem
3; 2024) prove that the expected difference between the relative likelihood, i.e., πbon(·)

πref(·) , of the
Best-of-N response and the Worst-of-N response is 1

2β = 1
(N−1)

∑N−1
k=1 1/k

. They use this property
to construct a loss function similar to that of IPO (Azar et al., 2023). Furthermore, they add another
term to the loss function, which simply maximizes the likelihood of the Best-of-N response. The
final loss function is a convex combination of the IPO-like loss and the negative log-likelihood loss,
regulated by a hyperparameter α.11

We fine-tune models by varying the degree of regularization. For BoN approaches, that is achieved
by varying N , and for DPO and PPO, we vary β.12 Conveniently, N in vBoN is a hyperparameter,
meaning that we do not need to generate more samples from πref when we increase N . However,
with BoN and BoNBoN methods, we need to increase the number of samples from the reference
model as we increase N .

We generate movie reviews based on prompts from our test set using fine-tuned models and then
measure three metrics: (i) KL divergence between the fine-tuned model and the reference model; (ii)
win rate, defined as the percentage of times the fine-tuned model’s generations receive higher rewards
compared to the reference model’s generations; and (iii) average rewards obtained by the fine-tuned
model’s sampled strings.

For the BoN method, we report the empirical upper bound of logN − N−1
N for KL divergence

(Beirami et al., 2024; Mroueh, 2024) in our plots. Furthermore, the win rate of BoN over the
reference model can be computed analytically and is equal to N

N+1 .

8Specifically, we use https://huggingface.co/lvwerra/gpt2-imdb.
9Specifically, we use https://huggingface.co/lvwerra/distilbert-imdb.

10One could argue that DPO has a slight advantage over other methods in this setup since it has seen 6 unique
generations per prompt during training, while the others only have seen one (or 2 with BoNBoN). Nevertheless,
we observe that vBoN is more effective than DPO.

11Following the authors’ recommendation, we set α so that both terms contribute equally to the final loss.
12See App. F for more details regarding the regularization hyperparameters.
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We visualize the win rate vs. KL curves in Fig. 2a, and Fig. 2b the average rewards of generations
under πθ vs. the KL divergence. As expected, BoN is the most effective approach; however, this
comes at an extra inference cost that grows with N . We observe that among the fine-tuning methods,
our variational approximation to BoN gets closest to the performance of BoN , as it appears more
often on the Pareto front of the two curves compared to other methods. Notably, we observe that
DPO performs better than PPO in terms of win rates but worse in terms of average rewards; this could
be attributed to the contrastive nature of DPO’s loss function.

5.1 ERROR IN ESTIMATING log F(·)

We empirically quantify the error when estimating log F(·) with a finite number of i.i.d samples from
πref. To get a better intuition on the error of our estimators, in Fig. 3, we visualize the estimators for 3
different prompts: one adversarial prompt (left plot), where the prompt itself has a negative sentiment,
one neutral prompt (middle plot), and one prompt with a positive sentiment (right plot). We vary the
number of Monte Carlo samples from 10 to 600. We observe that for all the 3 prompts, the estimated
CDF hardly changes after 200 samples. When using the adversarial prompt, the reward distribution
is negatively peaked, and the estimated CDF does not change after taking only 100 samples.

We then quantify the change in the estimator by performing a two-sample Kolmogorov–Smirnov test
(Hodges, 1958). This test measures the closeness of two empirical cumulative distribution functions.
Concretely, the test statistic is

sup
y∈Σ∗

∣∣∣F̂M1

(
r(y)

)
− F̂M2

(
r(y)

)∣∣∣ , (9)

where F̂M1
, F̂M2

are estimated CDFs from M1 and M2 samples respectively. The statistics show the
magnitude of the difference between the two empirical distributions of samples. The null hypothesis
is that the two distributions are identical.

Table 1: Measuring the estimation error with
increasing the sample size. After 250 sam-
ples, the estimated CDF is unchanged for all
the prompts.

M Rejection rate Test statistics p-value

5 6.14% 0.63 0.02
20 4.02% 0.33 0.03
100 1.14% 0.17 0.02
200 0.06% 0.12 0.02
250 0 - -

In Tab. 1, for each sample size M , we compare the esti-
mated CDF with M samples to the estimated CDF with 600
samples. If the two distributions are identical according
to the test, we can reliably use the M sample to estimate
the CDF. We report the number of prompts (out of 5000
prompts) for which we reject the null hypothesis, mean-
ing that the distributions are not identical. Furthermore,
for those prompts, we report the average test statistics and
p-values. In general, for very few prompts, the null hypoth-
esis is rejected. Moreover, with 250 samples, the estimated
CDFs are identical to the estimated CDF with 600 samples
for all prompts.

5.2 EFFICIENCY ANALYSIS

We break down the efficiency analysis into 3 main parts: (i) the inference cost, (ii) the preference
optimization cost, (iii) and the preprocessing cost.

Inference Cost. As discussed earlier, vBoN is an alignment-via-finetuning method, and along with
other alignment-via-finetuning methods, it is N times more efficient at inference compared to BoN .

Optimization Cost. We compare vBoN ’s preference optimization cost to its closest alignment-
via-finetuning counterpart, PPO. In the optimization loop, the main difference between PPO and
vBoN is that vBoN requires computing the strict CDF function, F, using M samples. Crucially,
N in vBoN serves as a regularization hyperparameter, and increasing N does not incur additional
computation costs. To implement vBoN efficiently, we precompute the F function before starting the
optimization loop. This means the computational overhead is incurred only once, regardless of the
number of optimization runs.13 Since the F values are precomputed, we empirically observe that the

13This is particularly advantageous since practitioners often perform the optimization multiple times to test
various hyperparameter settings.
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r(y) r(y) r(y)

log
̂

F
(y) MM M

prompt: I thoroughly enjoyed this 
movie because there …

prompt: Horrible. I see many user 
comments …

prompt: Billy Wilder is …

Figure 3: Estimates of log F(·) with increasing the number of Monte Carlo samples. We test an
adversarial prompt (left plot), a neutral prompt (middle plot), and a prompt with a positive sentiment
(right plot). Overall, we hardly see any difference between the estimates after taking 200 samples.
For the adversarial prompt, the distribution of rewards is peaked, and we do not see any changes in
our estimator after taking only 100 samples.

time needed to run the vBoN optimization loop is the same as running the PPO optimization loop,
and the cost of evaluating F is negligible. Therefore, the main computational overhead in vBoN
comes from precomputing log F(·).
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Figure 4: The average reward and win rate
of the aligned models improve as we increase
the sample size M used for approximating
the vBoN loss function.

Preprocessing Cost. Estimating log F(·) requires
only forward passes through the LLM and reward
model, without the need to compute and store gradi-
ents. This makes the process highly parallelizable.
In our experiments, we utilize a memory-efficient li-
brary for LLM inference, (VLLM; Kwon et al., 2023),
which allows us to perform these approximations ef-
ficiently.

We examine the impact of increasing the computa-
tional cost of vBoN by varying M , which directly
affects the total elapsed time and downstream per-
formance. For this analysis, we fix N = 10 and
fine-tune the model using three random seeds. We
report the average and standard deviation of reward
values and win rates in Fig. 4 on a single A100-40GB
GPU. Our results show that increasing M generally
improves the aligned model’s rewards and win rates.
Notably, even with M = 32 samples (taking only 10
minutes), the performance remains competitive with
higher values of M . We hypothesize that the data efficiency of the simple Monte Carlo estimator
can be greatly improved by taking into account the similarity between different prompts to learn an
approximation to log F function, which we plan as future work.

6 SUMMARIZATION

We further employ variational BoN in a summarization task, where the goal is to generate summaries
that align with human preferences. The reference model, πref, is a pythia-2.8B model fine-tuned
on human-written summaries of Reddit posts Stiennon et al. (2020).14 We use SFT to refer to this
model in the plots. We use two separate reward models for training and evaluation: a pythia-2.8B15

reward model for fine-tuning and a larger pythia-6.9B16 model exclusively for evaluation.

14We use https://huggingface.co/cleanrl/EleutherAI pythia-2.8b-deduped sft tldr.
15We use https://huggingface.co/cleanrl/EleutherAI pythia-2.8b-deduped reward tldr.
16We use https://huggingface.co/cleanrl/EleutherAI pythia-6.9b-deduped reward tldr.
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(a) Comparing the win rates of alignment meth-
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achieves closer results to BoN compared to
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(b) Comparing the average rewards obtained from the evalu-
ator reward model. BoN outperforms other alignment meth-
ods, and vBoN achieves closer results to BoN compared to
other alignment-via-finetuning methods.

Figure 5: Performance of different alignment methods on the summarization task. Solid traces
show the performance on in-distribution Reddit posts, while dashed lines demonstrate the out-of-
distribution performance. Overall, BoN is the most effective approach in achieving high win rates and
average rewards across all sampling temperatures. Our variational approximation to BoN (vBoN )
gets closest to the performance of BoN , while being significantly cheaper at inference time.

Dataset. To evaluate the generalization ability of the aligned models on out-of-distribution data, we
fine-tune the models using only posts from the relationship and relationship advice subreddits
of the Reddit TL;DR (Stiennon et al., 2020) dataset. We then assess the models’ performance on the
two types of data by dividing the the test set into two equally-sized groups: in-distribution Reddit
posts from the relationship and relationship advice subreddits, and out-of-distribution posts
from the rest of the subreddits. We visualize the performance of methods on in-distribution data with
a solid trace and on out-of-distribution data with a dashed trace.

Experimental setup. We fine-tune the model with both the KL-constrained RL objective and vBoN
objective for 10000 episodes. Similar to the previous experiment, we use 200 samples to estimate
log F(·) values. To create a smooth and continuous reward function, we further fit an exponential
curve17 to the estimates. We set N = 100 for BoN and vBoN methods and the equivalent value
of β = 0.05 for the KL-constrained RL objective. We closely follow Huang et al. (2024) for
setting the hyperparameters of the PPO algorithm; please refer to App. F for more experimental
details. After fine-tuning, we sample from the aligned models with different sampling temperatures
t ∈ [0.25, 0.5, 0.75, 1.], each with 3 different random seeds.

Win rates. In Fig. 5a we visualize the average and standard deviation of win rates compared against
the samples from the SFT model. Notably, BoN achieves the highest win rates, which is consistent
with findings from previous studies (Rafailov et al., 2023). We do not observe any significant
differences between BoN performance on in-distribution (solid trace) and out-of-distribution data,18

which is expected as BoN is an alignment-via-inference method. Similarly, we mostly do not observe
significant differences between in- and out-of-distribution performance of , indicating that these
methods can generalize effectively in this experimental setup. DPO and BoNBoN only manage to
perform competitively to other methods at lower temperatures (0.25, 0.5) and their performance drops

17We fit an exponential function of the form f(x) = −a exp(−bx) to the data using non-linear least squares
method.

18The difference between the two data distributions becomes more apparent at temperature 1, potentially due
to increased sample diversity in this setting.
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Table 2: An example of summaries sampled at temperature 0.5 and their corresponding reward obtained from
the evaluator reward model.

Content Reward

SUBREDDIT: r/relationship advice
TITLE: Stuck in a rut and in need of advice/inspiration!
POST: My boyfriend and I have been together for 3 years, and living together for 2. I’m
quite the homebody, and when we first met, he was very outgoing and loved partying
and socialising (although he was a student at the time). We’re both working now, and
most nights we find ourselves doing the same things: watching series (luckily we enjoy
the same shows), playing Minecraft or playing various board games. We’re tired after
work, and can’t bring ourselves to leave the house. The weekend is much the same – lots
of sleep, or sitting around staring at one screen or another. We do party occasionally
(we’ll head to a pub once every few months) and there are a few mutual friends we enjoy
spending time with, but I worry that we’ve become stuck in our boring ways. I really
enjoy our lifestyle, and would be quite happy to never leave the house again, but I’m
starting to feel guilty for turning him into a 50 year-old when he’s only 24. Any ideas for
shaking things up a little? Bear in mind that we live in a small town in South Africa, and
neither of us has a car.

-

SFT: I’m stuck in a rut, and need to shake things up to see if it’ll work out. Any advice?
3.08

PPO: In need of inspiration to break out of rut and live life fully! Any ideas welcome!
4.59

vBoN : Been happily living together for 2yr+, feeling bored after work regularly, looking
for ideas to spice things up!

6.79

BoN : My boyfriend and I have been together for 3 years, and are both working full time.
We spend most of our time in the house, and have become boring. What can we do to
shake things up?

9.18

significantly at higher temperatures (0.75, 1). Importantly, while PPO and vBoN perform comparably
at higher temperatures, vBoN significantly outperforms PPO at lower temperatures (0.25 and 0.5).

Average rewards. In Fig. 5b, we measure the average rewards across different temperatures. As
the temperature increases, the average reward decreases consistently across all methods. This trend
is also evident in the qualitative analysis in App. I, where we show sampled summaries at different
temperatures. DPO and BoNBoN suffer more from increasing the temperature, as the average rewards
get close to (or even worse than) the SFT average rewards. Generally, the average reward results align
with the win-rate trends, and we observe that vBoN achieves significantly higher rewards compared
to PPO at lower temperatures. In Tab. 2 we show an example of summaries generated from the
fine-tuned models with their associated reward values.

7 CONCLUSION

Motivated by the effectiveness of the BoN algorithm, we formally derive a variational approximation
to the distribution induced by BoN algorithm via fine-tuning language models. Our analysis highlights
the similarities and distinctions between the variational BoN objective and the KL-constrained RL
objectives. Our empirical findings reveal that models fine-tuned using the variational approximation
to BoN not only attain high reward values but also maintain proximity to the reference models.
Crucially, inference on the fine-tuned models with the vBoN objective remains as cost-effective as
inference on the original reference model.
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Symbol Type Explanation

Σ alphabet Σ is a set of symbols
y, y′ ∈ Σ∗ strings in Σ∗

x ∈ Σ∗ prompt string in Σ∗

θ ∈ Θ A real vector representing the parameters of a language model
πθ language model A language model parameterized by θ
πref language model A supervised-fine-tuned language model
r Σ∗ → R A reward model
β R Regularization parameter for the KL divergence term
F R → R A strict cumulative density function of reward values under πref
N Z+ Number of samples used in BoN algorithm
M Z+ Number of samples used in the MC estimator

Table 3: A summary of the notation used in the paper

A RELATED WORK

Best-of-N . BoN is a straightforward alignment-via-inference algorithm to optimize the output
of the language model using a trained reward model (Charniak & Johnson, 2005; Stiennon et al.,
2020). Despite its simplicity, BoN performs comparably or even better than other alignment methods,
such as RLHF and direct preference optimization (Nakano et al., 2022; Gao et al., 2023; Rafailov
et al., 2023). However, as noted by Stiennon et al. (2020), BoN is an inefficient algorithm due to the
reduced throughput at inference time.

Applications. BoN has been applied successfully at various stages of the development of language
models. Touvron et al. (2023); Dong et al. (2023) employ iterative supervised fine-tuning on the
outputs of the BoN algorithm to clone its behavior in the model. Pace et al. (2024) leverage BoN
to enhance reward modeling by training the reward model on both the best and worst responses.
Additionally, Brown et al. (2024); Snell et al. (2024) explore the scaling laws for alignment-via-
inference methods and demonstrate how to utilize the limited inference budget to achieve the
alignment.

Best-of-N as an alignment-via-fine-tuning method. Two concurrent efforts to ours have also
attempted to convert BoN to an alignment-via-fine-tuning method. First, Gui et al. (2024) approxi-
mate the BoN by maximizing the likelihood of the Best-of-N response and adjusting the relative
likelihood of the Best-of-N and the Worst-of-N response. Second, Sessa et al. (2024) similar to
ours uses reinforcement learning to minimize the distance between the language model and the BoN
policy. Different from ours, and to reduce the fine-tuning time, the authors use a crude estimation of
logF and approximate the distance to Best-of-N by iteratively distilling the Best-of-2 model as a
moving anchor.

B PROOF OF PROP. 1

Proposition 1. Suppose r : Σ∗ → R is a one-to-one mapping. Then, the probability that a string
y ∼ πbon is given by

πbon(y) =

N∑
i=1

(
N

i

)
F
(
r(y)

)N−i
πref(y)

i, F
(
r(y)

) def
= P

y′∼πref
(r(y′) < r(y)) . (4)

Proof. The proof follows Casella & Berger (2001, Theorem 5.4.3). To compute πbon(y), we first
define two events: (i) the event that all N samples have rewards less than or equal to r(y), and (ii) the
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event that all N samples have rewards less than r(y). The probability of those events is as follows:19

p1(y)
def
= P(all N samples have rewards ≤ r(y)) =

(
F
(
r(y)

)
+ πref(y)

)N

(10a)

p2(y)
def
= P(all N samples have rewards < r(y)) = F

(
r(y)

)N
. (10b)

Note that for Eq. (13a) to hold, we need the assumption that the reward function is a one-to-one
mapping.20 Furthermore, given this assumption, πbon(y) is the probability that at least one of
the sampled strings out of N samples have the reward exactly equal to r(y) and the rest of the
samples have rewards less than or equal to r(y). Given how we defined p1 and p2, we have
πbon(y) = p1(y)− p2(y).

πbon(y) =
(
F
(
r(y)

)
+ πref(y)

)N

− F
(
r(y)

)N
=

N∑
i=1

(
N

i

)
F
(
r(y)

)N−i
πref(y)

i. (11)

■

C STRATEGIES FOR NON-INJECTIVE REWARD FUNCTIONS

If the reward function is not injective, we need a tie-breaking strategy for the BoN algorithm. We
formalize this as defining a total order ≺r on Σ∗ as follows: for any two strings y1 and y2, if
r(y1) < r(y2) then we have y1≺ry2. If r(y1) = r(y2) then y1≺ry2 only if y1 ≺ y2, where ≺ is
some arbitrary but fixed total order, e.g., lexicographic order. Therefore, we define F(y) as

F(y)
def
= P

(
y′≺ry

)
. (12)

We then need to define the two events and their probabilities, p1 and p2, given this total order on
strings, as follows:

p1(y)
def
= P(all N samples are ⪯ry) =

(
F
(
y
)
+ πref(y)

)N

(13a)

p2(y)
def
= P(all N samples are ≺ry) = F

(
y
)N

(13b)

The rest of the proof is the same as with the one-to-one reward functions.

D PROOF OF THM. 2

Theorem 2. We have J VBON(θ) ≥ L(θ), where

L(θ)
def
= (N − 1) E

y∼πθ

[
log F

(
r(y)

)]
−DKL

(
πθ ∥πref

)
. (8)

19The PMF of BoN is also derived by Beirami et al. (Lemma 1; 2024). In their notation, p1 = F and
p2 = F−1.

20If the reward function is not a one-to-one mapping, we need to devise a tie-breaking strategy. See App. C
for further discussion.
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Proof. First, we prove J VBON(θ) ≥ L(θ).

DKL

(
πθ || πbon

)
= E

y∼πθ

[
log πθ(y)− log πbon(y)

]
(14a)

= E
y∼πθ

[
log πθ(y)− log

N∑
i=1

(
N

i

)
F
(
r(y)

)N−i
πref(y)

i
]

(14b)

≤ E
y∼πθ

[
log πθ(y)− log

N=1∑
i=1

(
N

i

)
F
(
r(y)

)N−i
πref(y)

i
]

(14c)

≤ E
y∼πθ

[
log πθ(y)− logN F

(
r(y)

)N−1
πref(y)

1
]

(14d)

≤ E
y∼πθ

[
log πθ(y)− log F

(
r(y)

)N−1
πref(y)

]
(14e)

= E
y∼πθ

[
log πθ(y)− log πref(y)− (N − 1) log F

(
r(y)

)]
(14f)

= DKL

(
πθ || πref

)
− (N − 1) E

y∼πθ

[
log F

(
r(y)

)] def
= −L(θ). (14g)

The inequality in Eq. (14c) stems from the fact that we drop positive terms in the summation and
only keep the first term. Therefore, the lower bound for our objective is:

J VBON(θ) = −DKL

(
πθ || πbon

)
≥ (N − 1) E

y∼πθ

[
log F

(
r(y)

)]
−DKL

(
πθ || πref

)
. (15)

■

Another approach to deriving a lower bound is by using the Jensen’s inequality. By doing so, we
arrive at the following theorem.

Theorem 3. Let α = (N+2)(N−1)
2 , β = N(N+1)

2 , and γ = N(N−1)
2 . Then, we have J VBON(θ) ≥

L1(θ), where we further define

L1(θ)
def
= γ E

y∼πθ

[
log F

(
r(y)

)]
− αH

(
πθ

)
− βDKL

(
πθ || πref

)
. (16)
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Proof.

DKL

(
πθ || πbon

)
= E

y∼πθ

[
log πθ(y)− log πbon(y)

]
(17a)

= E
y∼πθ

[
log πθ(y)− log

N∑
i=1

(
N

i

)
F
(
r(y)

)N−i
πref(y)

i
]

(17b)

≤ E
y∼πθ

[
log πθ(y)−

N∑
i=1

log

(
N

i

)
F
(
r(y)

)N−i
πref(y)

i
]

(17c)

= E
y∼πθ

[
log πθ(y)−

N∑
i=1

log

(
N

i

)
−

N∑
i=1

log F
(
r(y)

)N−i −
N∑
i=1

log πref(y)
i
]

(17d)

= E
y∼πθ

[
log πθ(y)−

N∑
i=1

log

(
N

i

)
− log F

(
r(y)

) N∑
i=1

(N − i)− log πref(y)

N∑
i=1

i
]

(17e)

≤ E
y∼πθ

[
log πθ(y)−

N(N − 1)

2
log F

(
r(y)

)
− N(N + 1)

2
log πref(y)

]
(17f)

= E
y∼πθ

[
log πθ(y)−

N(N + 1)

2
log πref(y)−

N(N − 1)

2
log F

(
r(y)

)]
(17g)

=
N(N + 1)

2
DKL

(
πθ || πref

)
+ E

πθ

[−(N + 2)(N − 1)

2
log πθ(y)−

N(N − 1)

2
log F

(
r(y)

)]
(17h)

=
N(N + 1)

2
DKL

(
πθ || πref

)
+

(N + 2)(N − 1)

2
H
(
πθ

)
− E

πθ

[N(N − 1)

2
log F

(
r(y)

)]
(17i)

In Eq. (17c), because − log(x) is convex for x ≥ 0, we applied Jensen’s inequality to obtain the
upper bound. Abstracting away from the three multiplicative factors, naming them γ, α and β, we
end up with the following function

J VBON(θ) = −DKL

(
πθ || πbon

)
≥ γ E

y∼πθ

log F
(
r(y)

)
− αH(πθ)− βDKL (πθ || πref) , (18)

which is a bound for some settings of γ, α and β. ■

Importantly L1 is a looser bound compared to L. We formalize this in the following theorem.

Theorem 4. For every θ ∈ Θ, we have L(θ) ≥ L1(θ).

Proof. We prove −L1(θ) ≥ −L(θ), meaning that L is a tighter lower bound. According to Eq. (17f),
we have:

−L1(θ) ≥ E
y∼πθ

[
log πθ(y)−

N∑
i=1

log F
(
r(y)

)N−i
πref(y)

i
]

(19a)

≥ E
y∼πθ

[
log πθ(y)−

N=1∑
i=1

log F
(
r(y)

)N−i
πref(y)

i
]

(19b)

= E
y∼πθ

[
log πθ(y)− log F

(
r(y)

)N−1
πref(y)

]
= −L(θ). (19c)

■
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Hypterparameter Value
Episodes 10000
Optimizer AdamW (ϵ = 1e− 5, lr= 3e− 6)
Scheduler Linear
Batch Size 32
β (Both for vBoN and KL-constrained RL objective) 0.05
γ (Discount Factor) 1
λ (for GAE) 0.95
Number of PPO Update Iteration Per Epoch 4
PPO’s Policy Clipping Coefficient 0.2
Value Clipping Coefficient 0.2
Value Function Coefficient 0.2
Value Function Loss Clipping True
Sampling Temperature 0.7

E VBON PSEUDOCODE

Algorithm 1 The vBoN algorithm
1: procedure VBON (πref, r, N , E, B) ▷ D: the prompt dataset, E: number of epochs, B batch size
2: Initialize πθ with πref
3: for E epochs :
4: for each batch in D :
5: y(1), . . . ,y(B) ∼ πθ(·) ▷ Sample 1 response for each prompt in the batch
6: Compute r(y(1)), . . . , r(y(B))

7: Compute F
(
r(y(1))

)
, . . . ,F

(
r(y(B))

)
8: Optimize πθ with Eq. (5) (or Eq. (8)) using PPO
9: return πθ

F EXPERIMENTAL DETAILS

Hyperparameter sweep in the sentiment experiment. To visualize the trade-off between the
expected rewards and KL divergence, we vary the degree of the visualization using the following
hyperparameters for each method:

• BoN -SFT: N ∈ [10, 50, 90, 130, 170, 210, 250, 290, 330, 370, 410, 450, 490, 530, 570, 600]
with 2 different seeds, resulting in 32 runs.

• PPO: β ∈ [0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1., 2., 3., 4., 5.] with 2
different seeds, resulting in 32 runs.

• DPO: β ∈ [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1., 2., 3., 4., 5.] with 3 different seeds, resulting in
33 runs.

• BoNBoN and vBoN : N ∈ [1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512] with 3 different seeds,
resulting in 33 runs.

• vBoN with L bound: β ∈ [0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 1., 2., 3., 4., 5.] with 2 different seeds, resulting in 32 runs. Note that
comparing Eq. (5) and Eq. (1), we have N = 1

β + 1.

PPO Hyperparameters. In App. F, we include the hyperparameters used with the PPO algorithm
for the summarization experiment.

G COMPARING THE VBON OBJECTIVE AND L LOWER BOUND

We compare the performance of models fine-tuned with the vBoN objective and its lower bound (L)
in Fig. 6. We observe that the performance of the models is very close to each other.
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Figure 6: Comparing models trained with the vBoN objective and its lower bound (L). We observe
that the performance of the two methods is very close to each other.
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(a) 4% of points on Pareto front belong to BoNBoN,
4% to PPO, 42% to DPO, and 50% to vBoN .
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10% DPO, 33% PPO, and 50% vBoN .

Figure 7: Steering generated movie reviews towards positive sentiment. Points that are not on the
Pareto front have lower opacity.

H ADDITIONAL EXPERIMENTS WITH BON -SFT

We further experiment with training with maximum likelihood objective on BoN generations when
varying N . The results are depicted in Fig. 7. We observe that BoN diverges too much from the
reference model compared to other fine-tuning methods for alignment.

I QUALITATIVE RESULTS
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Table 4: An example of summaries sampled at temperature 0.25 and their corresponding reward obtained from
the evaluator reward model.

Content Reward

SUBREDDIT: r/relationship advice
TITLE: Stuck in a rut and in need of advice/inspiration!
POST: My boyfriend and I have been together for 3 years, and living together for 2. I’m
quite the homebody, and when we first met, he was very outgoing and loved partying
and socialising (although he was a student at the time). We’re both working now, and
most nights we find ourselves doing the same things: watching series (luckily we enjoy
the same shows), playing Minecraft or playing various board games. We’re tired after
work, and can’t bring ourselves to leave the house. The weekend is much the same – lots
of sleep, or sitting around staring at one screen or another. We do party occasionally
(we’ll head to a pub once every few months) and there are a few mutual friends we enjoy
spending time with, but I worry that we’ve become stuck in our boring ways. I really
enjoy our lifestyle, and would be quite happy to never leave the house again, but I’m
starting to feel guilty for turning him into a 50 year-old when he’s only 24. Any ideas for
shaking things up a little? Bear in mind that we live in a small town in South Africa, and
neither of us has a car.

-

SFT: I’m stuck in a rut with my boyfriend, and I’d like to shake things up a little. Any
ideas?

5.83

PPO: In need of inspiration for moving past boring routines and becoming active and
open minded individuals. Any ideas welcome!

4.88

vBoN : Been dating for three years and living together for two. Feeling stuck in rut after
working hard all week. Looking for ideas to shake things up!

7.39

BoN : Been together for 3 years, and living together for 2. We’re both working now,
and find ourselves doing the same things: watching series, playing games, or having sex.
We’re tired after work, and can’t bring ourselves to leave

7.14

Table 5: An example of summaries sampled at temperature 0.5 and their corresponding reward obtained from
the evaluator reward model.

Content Reward

SUBREDDIT: r/relationship advice
TITLE: Stuck in a rut and in need of advice/inspiration!
POST: My boyfriend and I have been together for 3 years, and living together for 2. I’m
quite the homebody, and when we first met, he was very outgoing and loved partying
and socialising (although he was a student at the time). We’re both working now, and
most nights we find ourselves doing the same things: watching series (luckily we enjoy
the same shows), playing Minecraft or playing various board games. We’re tired after
work, and can’t bring ourselves to leave the house. The weekend is much the same – lots
of sleep, or sitting around staring at one screen or another. We do party occasionally
(we’ll head to a pub once every few months) and there are a few mutual friends we enjoy
spending time with, but I worry that we’ve become stuck in our boring ways. I really
enjoy our lifestyle, and would be quite happy to never leave the house again, but I’m
starting to feel guilty for turning him into a 50 year-old when he’s only 24. Any ideas for
shaking things up a little? Bear in mind that we live in a small town in South Africa, and
neither of us has a car.

-

SFT: I’m stuck in a rut, and need to shake things up to see if it’ll work out. Any advice?
3.08

PPO: In need of inspiration to break out of rut and live life fully! Any ideas welcome!
4.59

vBoN : Been happily living together for 2yr+, feeling bored after work regularly, looking
for ideas to spice things up!

6.79

BoN : My boyfriend and I have been together for 3 years, and are both working full time.
We spend most of our time in the house, and have become boring. What can we do to
shake things up?

9.18
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Table 6: An example of summaries sampled at temperature 0.75 and their corresponding reward obtained from
the evaluator reward model.

Content Reward

SUBREDDIT: r/relationship advice
TITLE: Stuck in a rut and in need of advice/inspiration!
POST: My boyfriend and I have been together for 3 years, and living together for 2. I’m
quite the homebody, and when we first met, he was very outgoing and loved partying
and socialising (although he was a student at the time). We’re both working now, and
most nights we find ourselves doing the same things: watching series (luckily we enjoy
the same shows), playing Minecraft or playing various board games. We’re tired after
work, and can’t bring ourselves to leave the house. The weekend is much the same – lots
of sleep, or sitting around staring at one screen or another. We do party occasionally
(we’ll head to a pub once every few months) and there are a few mutual friends we enjoy
spending time with, but I worry that we’ve become stuck in our boring ways. I really
enjoy our lifestyle, and would be quite happy to never leave the house again, but I’m
starting to feel guilty for turning him into a 50 year-old when he’s only 24. Any ideas for
shaking things up a little? Bear in mind that we live in a small town in South Africa, and
neither of us has a car.

-

SFT: Boyfriend and I are stuck in a rut. We don’t do anything fun, and I’m starting to
feel guilty for not even trying to get away from it all.

4.41

PPO: In rutting boredom with boring life; any ideas for shaking things up a little? Any
ideas for improving relationships?

4.76

vBoN : Been happily cohabiting for three years with boyfriend of two years. Feeling
guilty for turning him into an old man! Any ideas for shaking things up?

6.02

BoN : Boyfriend and I are a little boring, and want to shake things up so we can go out
and have fun but we’re too stuck on the idea of staying in all day.

5.47

Table 7: An example of summaries sampled at temperature 1. and their corresponding reward obtained from the
evaluator reward model.

Content Reward

SUBREDDIT: r/relationship advice
TITLE: Stuck in a rut and in need of advice/inspiration!
POST: My boyfriend and I have been together for 3 years, and living together for 2. I’m
quite the homebody, and when we first met, he was very outgoing and loved partying
and socialising (although he was a student at the time). We’re both working now, and
most nights we find ourselves doing the same things: watching series (luckily we enjoy
the same shows), playing Minecraft or playing various board games. We’re tired after
work, and can’t bring ourselves to leave the house. The weekend is much the same – lots
of sleep, or sitting around staring at one screen or another. We do party occasionally
(we’ll head to a pub once every few months) and there are a few mutual friends we enjoy
spending time with, but I worry that we’ve become stuck in our boring ways. I really
enjoy our lifestyle, and would be quite happy to never leave the house again, but I’m
starting to feel guilty for turning him into a 50 year-old when he’s only 24. Any ideas for
shaking things up a little? Bear in mind that we live in a small town in South Africa, and
neither of us has a car.

-

SFT: My boyfriend and I used to party all the time and are ending up reverting to the
boring old lifestyle of a 24-year-old. How can we both break out of a rut and get some
fun back in our relationship?

5.89

PPO: Taken classic boring suburban lifestyle and turned into boring 24yo. Looking for
ideas for breaking out of rut and refreshing lifestyle. Any ideas welcome!

5.91

vBoN : boyfriend and I seem to have fallen into a rut of regularly doing mundane
activities after working together non-stop for several months! ideas to spice things up?

6.57

BoN : in a relationship that’s getting a bit stale, looking for some inspiration to make
changes on a whim in hopes of rejuvenating it!

6.74
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