
Adapting Neural Link Predictors
for Data-Efficient Complex Query Answering

Erik Arakelyan∗1 Pasquale Minervini∗†2 Daniel Daza3,4,5

Michael Cochez3,5 Isabelle Augenstein1

1University of Copenhagen 2University of Edinburgh 3Vrije Universiteit Amsterdam
4University of Amsterdam 5Discovery Lab, Elsevier, The Netherlands

{erik.a,augenstein}@di.ku.dk p.minervini@ed.ac.uk {d.dazacruz,m.cochez}@vu.nl

Abstract

Answering complex queries on incomplete knowledge graphs is a challenging task
where a model needs to answer complex logical queries in the presence of missing
knowledge. Prior work in the literature has proposed to address this problem
by designing architectures trained end-to-end for the complex query answering
task with a reasoning process that is hard to interpret while requiring data and
resource-intensive training. Other lines of research have proposed re-using simple
neural link predictors to answer complex queries, reducing the amount of training
data by orders of magnitude while providing interpretable answers. The neural
link predictor used in such approaches is not explicitly optimised for the complex
query answering task, implying that its scores are not calibrated to interact together.
We propose to address these problems via CQDA, a parameter-efficient score
adaptation model optimised to re-calibrate neural link prediction scores for the
complex query answering task. While the neural link predictor is frozen, the
adaptation component – which only increases the number of model parameters by
0.03% – is trained on the downstream complex query answering task. Furthermore,
the calibration component enables us to support reasoning over queries that include
atomic negations, which was previously impossible with link predictors. In our
experiments, CQDA produces significantly more accurate results than current
state-of-the-art methods, improving from 34.4 to 35.1 Mean Reciprocal Rank
values averaged across all datasets and query types while using ≤ 30% of the
available training query types. We further show that CQDA is data-efficient,
achieving competitive results with only 1% of the complex training queries, and
robust in out-of-domain evaluations. Source code and datasets are available at
https://github.com/EdinburghNLP/adaptive-cqd.

1 Introduction

A Knowledge Graph (KG) is a knowledge base representing the relationships between entities in a
relational graph structure. The flexibility of this knowledge representation formalism allows KGs to
be widely used in various domains. Examples of KGs include general-purpose knowledge bases such
as Wikidata [Vrandečić and Krötzsch, 2014], DBpedia [Auer et al., 2007], Freebase [Bollacker et al.,
2008], and YAGO [Suchanek et al., 2007]; application-driven graphs such as the Google Knowledge
Graph, Microsoft’s Bing Knowledge Graph, and Facebook’s Social Graph [Noy et al., 2019]; and
domain-specific ones such as SNOMED CT [Bodenreider et al., 2018], MeSH [Lipscomb, 2000],
and Hetionet [Himmelstein et al., 2017] for life sciences; and WordNet [Miller, 1992] for linguistics.

*Equal contribution, alphabetical order. †Senior author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/EdinburghNLP/adaptive-cqd

Answering complex queries over Knowledge Graphs involves a logical reasoning process where a
conclusion should be inferred from the available knowledge.

Neural link predictors [Nickel et al., 2016] tackle the problem of identifying missing edges in large
KGs. However, in many domains, it is a challenge to develop techniques for answering complex
queries involving multiple and potentially unobserved edges, entities, and variables rather than just
single edges.

Figure 1: Given a complex queryQ, CQDA adapts
the neural link prediction scores for the sub-queries
to improve the interactions between them.

Prior work proposed to address this problem
using specialised neural networks trained end-
to-end for the query answering task [Hamil-
ton et al., 2018, Daza and Cochez, 2020, Ren
et al., 2020, Ren and Leskovec, 2020, Zhu et al.,
2022], which offer little interpretability and re-
quire training with large and diverse datasets
of query-answer pairs. These methods stand
in contrast with Complex Query Decomposi-
tion [CQD, Arakelyan et al., 2021, Minervini
et al., 2022], which showed that it is sufficient to
re-use a simple link prediction model to answer
complex queries, thus reducing the amount of
training data required by orders of magnitude
while allowing the possibility to explain interme-
diate answers. While effective, CQD does not
support negations, and fundamentally, it relies
on a link predictor whose scores are not necessarily calibrated for the complex query answering
task. Adapting a neural link predictor for the query answering task while maintaining the data and
parameter efficiency of CQD, as well as its interpretable nature, is the open challenge we take on in
this paper.

We propose CQDA, a lightweight adaptation model trained to calibrate link prediction scores, using
complex query answering as the optimisation objective. We define the adaptation function as an
affine transformation of the original score with a few learnable parameters. The low parameter count
and the fact that the adaptation function is independent of the query structure allow us to maintain the
efficiency properties of CQD. Besides, the calibration enables a natural extension of CQD to queries
with atomic negations.

An evaluation of CQDA on three benchmark datasets for complex query answering shows an increase
from 34.4 to 35.1 MRR over the current state-of-the-art averaged across all datasets while using
≤ 30% of the available training query types. In ablation experiments, we show that the method
is data-efficient; it achieves results comparable to the state-of-the-art while using only 1% of the
complex queries. Our experiments reveal that CQDA can generalise across unseen query types while
using only 1% of the instances from a single complex query type during training.

2 Related Work

Link Predictors in Knowledge Graphs Reasoning over KGs with missing nodes has been widely
explored throughout the last few years. One can approach the task using latent feature models, such
as neural link predictors [Bordes et al., 2013, Trouillon et al., 2016, Yang et al., 2014, Dettmers
et al., 2018, Sun et al., 2019, Balažević et al., 2019, Amin et al., 2020] which learn continuous
representations for the entities and relation types in the graph and can answer atomic queries over
incomplete KGs. Other research lines tackle the link prediction problem through graph feature
models [Xiong et al., 2017, Das et al., 2017, Hildebrandt et al., 2020, Yang et al., 2017, Sadeghian
et al., 2019], and Graph Neural Networks [GNNs, Schlichtkrull et al., 2018, Vashishth et al., 2019,
Teru et al., 2020].

Complex Query Answering Complex queries over knowledge graphs can be formalised by extend-
ing one-hop atomic queries with First Order Logic (FOL) operators, such as the existential quantifier
(∃), conjunctions (∧), disjunctions (∨) and negations (¬). These FOL constructs can be represented
as directed acyclic graphs, which are used by embedding-based methods that represent the queries

2

using geometric objects [Ren et al., 2020, Hamilton et al., 2018] or probabilistic distributions [Ren
and Leskovec, 2020, Zhang et al., 2021, Choudhary et al., 2021] and search the embedding space
for the answer set. It is also possible to enhance the properties of the embedding space using GNNs
and Fuzzy Logic [Zhu et al., 2022, Chen et al., 2022]. A recent survey [Ren et al., 2023] provides a
broad overview of different approaches. Recent work [Daza and Cochez, 2020, Hamilton et al., 2018,
Ren and Leskovec, 2020] suggests that such methods require a large dataset with millions of diverse
queries during the training, and it can be hard to explain their predictions.

Our work is closely related to CQD [Arakelyan et al., 2021, Minervini et al., 2022], which uses a
pre-trained neural link predictor along with fuzzy logical t-norms and t-conorms for complex query
answering. A core limitation of CQD is that the pre-trained neural link predictor produces scores not
calibrated to interact during the complex query-answering process. This implies that the final scores
of the model are highly dependent on the choice of the particular t-(co)norm aggregation functions,
which, in turn, leads to discrepancies within the intermediate reasoning process and final predictions.
As a side effect, the lack of calibration also means that the equivalent of logical negation in fuzzy
logic does not work as expected.

With CQDA, we propose a solution to these limitations by introducing a scalable adaptation function
that calibrates link prediction scores for query answering. Furthermore, we extend the formulation of
CQD to support a broader class of FOL queries, such as queries with atomic negation.

3 Background

A Knowledge Graph G ⊆ E × R × E can be defined as a set of subject-predicate-object ⟨s, p, o⟩
triples, where each triple encodes a relationship of type p ∈ R between the subject s ∈ E and the
object o ∈ E of the triple, where E andR denote the set of all entities and relation types, respectively.
A Knowledge Graph can be represented as a First-Order Logic Knowledge Base, where each triple
⟨s, p, o⟩ denotes an atomic formula p(s, o), with p ∈ R a binary predicate and s, o ∈ E its arguments.

First-Order Logical Queries We are concerned with answering logical queries over incomplete
knowledge graphs. We consider queries that use existential quantification (∃) and conjunction (∧)
operations. Furthermore, we include disjunctions (∨) and atomic negations (¬). We follow Ren et al.
[2020] by transforming a logical query into Disjunctive Normal Form [DNF, Davey and Priestley,
2002], i.e. a disjunction of conjunctive queries, along with the subsequent extension with atomic
negations in [Ren and Leskovec, 2020]. We denote such queries as follows:

Q[A] ≜?A : ∃V1, . . . , Vm.
(
e11 ∧ . . . ∧ e1n1

)
∨ . . . ∨

(
ed1 ∧ . . . ∧ ednd

)
,

where eji = p(c, V), with V ∈ {A, V1, . . . , Vm}, c ∈ E , p ∈ R,
or eji = p(V, V ′), with V, V ′ ∈ {A, V1, . . . , Vm}, V ̸= V ′, p ∈ R.

(1)

In Equation (1), the variableA is the target of the query, V1, . . . , Vm denote the bound variable nodes,
while c ∈ E represent the input anchor nodes, which correspond to known entities in the query. Each
ei denotes a logical atom, with either one (p(c, V)) or two variables (p(V, V ′)).

The goal of answering the logical query Q consists in finding the answer set JQK ⊆ E such that
a ∈ JQK iff Q[a] holds true. As illustrated in Figure 1, the dependency graph of a conjunctive
query Q is a graph where nodes correspond to variable or non-variable atom arguments in Q and
edges correspond to atom predicates. We follow Hamilton et al. [2018] and focus on queries whose
dependency graph is a directed acyclic graph, where anchor entities correspond to source nodes, and
the query target A is the unique sink node.

Example 3.1 (Complex Query). Consider the question “Which people are German and pro-
duced the music for the film Constantine?”. It can be formalised as a complex query Q ≡ ?T :
country(Germany, T) ∧ producerOf(Constantine, T), where Germany and Constantine are anchor
nodes, and T is the target of the query, as presented in Figure 1. The answer JQK corresponds to all
the entities in the knowledge graph that are German composers for the film Constantine.

Continuous Query Decomposition CQD is a framework for answering EPFO logical queries in
the presence of missing edges [Arakelyan et al., 2021, Minervini et al., 2022]. Given a queryQ, CQD

3

defines the score of a target node a ∈ E as a candidate answer for a query as a function of the score
of all atomic queries in Q, given a variable-to-entity substitution for all variables in Q.

Each variable is mapped to an embedding vector that can either correspond to an entity c ∈ E or to a
virtual entity. The score of each of the query atoms is determined individually using a neural link
predictor [Nickel et al., 2016]. Then, the score of the query with respect to a given candidate answer
Q[a] is computed by aggregating all of the atom scores using t-norms and t-conorms – continuous
relaxations of the logical conjunction and disjunction operators.

Neural Link Predictors A neural link predictor is a differentiable model where atom arguments
are first mapped into a d-dimensional embedding space and then used to produce a score for the
atom. More formally, given a query atom p(s, o), where p ∈ R and s, o ∈ E , the score for
p(s, o) is computed as ϕp(es, eo), where es, eo ∈ Rd are the embedding vectors of s and o, and
ϕp : Rd × Rd 7→ [0, 1] is a scoring function computing the likelihood that entities s and o are related
by the relationship p. Following Arakelyan et al. [2021], Minervini et al. [2022], in our experiments,
we use a regularised variant of ComplEx [Trouillon et al., 2016, Lacroix et al., 2018] as the neural
link predictor of choice, due to its simplicity, efficiency, and generalisation properties [Ruffinelli et al.,
2020]. To ensure that the output of the neural link predictor is always in [0, 1], following Arakelyan
et al. [2021], Minervini et al. [2022], we use either a sigmoid function or min-max re-scaling.

T-norms and Negations Fuzzy logic generalises over Boolean logic by relaxing the logic conjunc-
tion (∧), disjunction (∨) and negation (¬) operators through the use of t-norms, t-conorms, and fuzzy
negations. A t-norm ⊤ : [0, 1]× [0, 1] 7→ [0, 1] is a generalisation of conjunction in fuzzy logic [Kle-
ment et al., 2000, 2004]. Some examples include the Gödel t-norm ⊤min(x, y) = min{x, y}, the
product t-norm ⊤prod(x, y) = x× y, and the Łukasiewicz t-norm ⊤Luk(x, y) = max{0, x+ y − 1}.
Analogously, t-conorms are dual to t-norms for disjunctions – given a t-norm ⊤, the complementary
t-conorm is defined by ⊥(x, y) = 1−⊤(1− x, 1− y). In our experiments, we use the Gödel t-norm
and product t-norm with their corresponding t-conorms.

Fuzzy logic also encompasses negations n : [0, 1] 7→ [0, 1]. The standard nstand(x) = 1 − x and
strict cosine ncos =

1
2 (1 + cos(πx)) are common examples of fuzzy negations[Kruse and Moewes,

1993]. To support a broader class of queries, we introduce the standard and strict cosine functions to
model negations in CQDA, which was not considered in the original formulation of CQD.

Continuous Query Decomposition Given a DNF query Q as defined in Equation (1), CQD aims
to find the variable assignments that render Q true. To achieve this, CQD casts the problem of
query answering as an optimisation problem. The aim is to find a mapping from variables to entities
S = {A ← a, V1 ← v1, . . . , Vm ← vm}, where a, v1, . . . , vm ∈ E are entities and A, V1, . . . , Vm
are variables, that maximises the score of Q:

argmax
S

score(Q, S) = argmax
A,V1,...,m∈E

(
e11⊤ . . .⊤e1n1

)
⊥ . . .⊥

(
ed1⊤ . . .⊤ednd

)
where eji = ϕp(ec, eV), with V ∈ {A, V1, . . . , Vm}, c ∈ E , p ∈ R
or eji = ϕp(eV , eV ′), with V, V ′ ∈ {A, V1, . . . , Vm}, V ̸= V ′, p ∈ R,

(2)

where ⊤ and ⊥ denote a t-norm and a t-conorm – a continuous generalisation of the logical conjunc-
tion and disjunction, respectively – and ϕp(es, eo) ∈ [0, 1] denotes the neural link prediction score
for the atom p(s, o).

Complex Query Answering via Combinatorial Optimisation Following Arakelyan et al. [2021],
Minervini et al. [2022], we solve the optimisation problem in Equation (2) by greedily searching for
a set of variable substitutions S = {A← a, V1 ← v1, . . . , Vm ← vm}, with a, v1, . . . , vm ∈ E , that
maximises the complex query score, in a procedure akin to beam search. We do so by traversing the
dependency graph of a query Q and, whenever we find an atom in the form p(c, V), where p ∈ R,
c is either an entity or a variable for which we already have a substitution, and V is a variable for
which we do not have a substitution yet, we replace V with all entities in E and retain the top-k
entities t ∈ E that maximise ϕp(ec, et) – i.e. the most likely entities to appear as a substitution of V
according to the neural link predictor. As we traverse the dependency graph of a query, we keep a
beam with the most promising variable-to-entity substitutions identified so far.

4

Example 3.2 (Combinatorial Optimisation). Consider the query “Which musicians M received
awards associated with a genre g?, which can be rewritten as ?M : ∃A.assoc(g,A)∧received(A,M).
To answer this query using combinatorial optimisation, we must find the top-k awards a that are
candidates to substitute the variable A in assoc(g,A). This will allow us to understand the awards
associated with the genre g. Afterwards, for each candidate substitution for A, we search for the top-k
musicians m that are most likely to substitute M in received(A,M), ending up with k2 musicians.
Finally, we rank the k2 candidates using the final query score produced by a t-norm. ■

4 Calibrating Link Prediction Scores on Complex Queries

The main limitation in the CQD method outlined in Section 3 is that neural link predictors ϕ are
trained to answer simple, atomic queries, and the resulting answer scores are not trained to interact
with one another.

Example 4.1. Consider the running example query “Which people are German and produced
the music for the film Constantine?” which can be rewritten as a complex query Q ≡ ?T :
country(Germany, T) ∧ producerOf(Constantine, T). To answer this complex query, CQD answers
the atomic sub-queries Q1 = country(Germany, T) and Q2 = producerOf(Constantine, T) using a
neural link predictor, and aggregates the resulting scores using a t-norm. However, the neural link
predictor was only trained on answering atomic queries, and the resulting scores are not calibrated to
interact with each other. For example, the scores for the atomic queries about the relations country
and producerOf may be on different scales, which causes problems when aggregating such scores via
t-norms. Let us assume the top candidates for the variable T coming from the atomic queries Q1,Q2

are A1 ← Sam Shepard and A2 ← Klaus Badelt, with their corresponding neural link prediction
scores 1.2 and 8.9, produced using ϕcountry and ϕproducerOf. We must also factor in the neural link
prediction score of the candidate A1 for query Q2 at 7.4 and vice versa at 0.5. When using the
Gödel t-norm ⊤min(x, y) = min{x, y}, the scores associated with the variable assignments A1,A2

are computed as, min(8.0, 0.5) = 0.5 min(7.4, 1.2) = 1.2. For both answers A1 and A2, the
scores produced by ϕcountry for Q1 are always lower than the scores produced with ϕproducerOf for
Q2, meaning that the scores of the latter are not considered when producing the final answer. This
phenomenon can be broadly observed in CQD, illustrated in Figure 2. ■

To address this problem, we propose a method for adaptively learning to calibrate neural link
prediction scores by back-propagating through the complex query-answering process. More formally,
let ϕp denote a neural link predictor. We learn an additional adaptation function ρθ, parameterised by
θ = {α, β}, with α, β ∈ R. Then, we use the composition of ρθ and ϕp, ρθ ◦ ϕp, such that:

ρθ(ϕp(eV , eV ′)) = ϕp(eV , eV ′)(1 + α) + β. (3)

Here, the function ρ defines an affine transformation of the score and when the parameters α = β = 0,
the transformed score ρθ(ϕp(eV , eV ′)) recovers the original scoring function. The parameters θ
can be conditioned on the representation of the predicate p and the entities V and V ′, i.e. θ =
ψ(eV , ep, eV ′); here, ψ is an end-to-end differentiable neural module with parameters W. eV ,
ep, eV ′ respectively denote the representations of the subject, predicate, and object of the atomic
query. In our experiments, we consider using one or two linear transformation layers with a ReLU
non-linearity as options for ψ.

The motivation for our proposed adaptation function is twofold. Initially, it is monotonic, which is
desirable for maintaining the capability to interpret intermediate scores, as in the original formulation
of CQD. Moreover, we draw inspiration from the use of affine transformations in methodologies such
as Platt scaling [Platt et al., 1999], which also use a linear function for calibrating probabilities and
have been applied in the problem of calibration of link prediction models [Tabacof and Costabello,
2020]. Parameter-efficient adaptation functions have also been applied effectively in other domains,
such as adapter layers Houlsby et al. [2019] used for fine-tuning language models in NLP tasks.

Training For training the score calibration component in Equation (3), we first compute how likely
each entity a′ ∈ E is to be an answer to the query Q. To this end, for each candidate answer a′ ∈ E ,
we compute the answer score as the complex query score assuming that a′ ∈ E is the final answer as:

score(Q, A← a′) =max
S

score(Q, S), where A← a′ ∈ S. (4)

5

4 2 0 2 4 6 8 10
Score

0.0

0.2

0.4

0.6

De
ns

ity

Distribution of neural link prediction scores
1 = gender(male, T)
2 = producerOf(Constantine, T)

Tmin(1, 2)

Figure 2: The distributions of two atomic scores
Q1 and Q2, and the aggregated results via ⊤min –
the scores from Q2 dominate the final scores.

Split Query Types FB15K FB15K-237 NELL995

Train 1p, 2p, 3p, 2i, 3i 273,710 149,689 107,982
2in, 3in, inp, pin, pni 27,371 14,968 10,798

Valid 1p 59,078 20,094 16,910
Others 8,000 5,000 4,000

Test 1p 66,990 22,804 17,021
Others 8,000 5,000 4,000

Table 1: Statistics on the different types of query
structures in FB15K, FB15K-237, and NELL995.

Training Queries

2in 3in3i2i

n n

1p 2p 3p pi
u

u

2u

n

inp

ip
u

u

up

n

pin
n

pni

Anchor Node Variable Node Target Node
u

Disjunction
n

Negation

Figure 3: Query structures considered in our experiments, as proposed by Ren and Leskovec [2020]
– the naming of each query structure corresponds to projection (p), intersection (i), union (u) and
negation (n), reflecting how they were generated in the BetaE paper [Ren and Leskovec, 2020]. An
example of a pin query is ?T : ∃V.p(a, V), q(V, T),¬r(b, T), where a and b are anchor nodes, V is
a variable node, and T is the query target node.

Equation (4) identifies the variable-to-entity substitution S that 1) maximises the query score
score(Q, S), defined in Equation (2), and 2) associates the answer variable A with a′ ∈ E , i.e.
A ← a′ ∈ S. For computing S with the additional constraint that A ← a′ ∈ S, we use the
complex query answering procedure outlined in Section 3. We optimise the additional parameters
W introduced in Section 4, by gradient descent on the likelihood of the true answers on a dataset
D = {(Qi, ai)}|D|

i=1 of query-answer pairs by using a 1-vs-all cross-entropy loss, introduced by
Lacroix et al. [2018], which was also used to train the neural link prediction model:

L(D) =
∑

(Qi,ai)∈D

−score(Qi, A← ai) + log

[∑
a′∈E

exp (score(Qi, A← a′))

]
. (5)

In addition to the 1-vs-all [Ruffinelli et al., 2020] loss in Equation (5), we also experiment with the
binary cross-entropy loss, using the negative sampling procedure from Ren and Leskovec [2020].

5 Experiments

Datasets To evaluate the complex query answering capabilities of our method, we use a benchmark
comprising of 3 KGs: FB15K [Bordes et al., 2013], FB15K-237 [Toutanova and Chen, 2015] and
NELL995 [Xiong et al., 2017]. For a fair comparison with previous work, we use the datasets
of FOL queries proposed by Ren and Leskovec [2020], which includes nine structures of EPFO
queries and 5 query types with atomic negations, seen in Figure 3. The datasets provided by Ren
and Leskovec [2020] introduce queries with hard answers, which are the answers that cannot be
obtained by direct graph traversal; in addition, this dataset does not include queries with more than
100 answers, increasing the difficulty of the complex query answering task. The statistics for each
dataset can be seen in Table 1. Note that during training, we only use 2i, 3i, 2in, and 3in queries,
corresponding to ≤ 30% of the training dataset, for the adaptation of the neural link predictor. To
assess the model’s ability to generalise, we evaluate it on all query types.

6

Model avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15K
GQE 28.0 - 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6 - - - - -
Q2B 38.0 - 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7 - - - - -

BetaE 41.6 11.8 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 14.3 14.7 11.5 6.5 12.4
CQD-CO 46.9 - 89.2 25.3 13.4 74.4 78.3 44.1 33.2 41.8 21.9 - - - - -

CQD-Beam 68.4 - 89.2 65.3 29.7 76.1 79.3 70.6 70.6 72.3 59.4 - - - - -
ConE 49.8 14.8 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 17.9 18.7 12.5 9.8 15.1

GNN-QE 72.8 38.6 88.5 69.3 58.7 79.7 83.5 69.9 70.4 74.1 61.0 44.7 41.7 42.0 30.1 34.3
CQDA 70.4 42.8 89.2 64.5 57.9 76.1 79.4 70.0 70.6 68.4 57.9 54.7 47.1 37.6 35.3 24.6

FB15K-237
GQE 16.3 - 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 - - - - -
Q2B 20.1 - 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 - - - - -

BetaE 20.9 5.5 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.5 3.4
CQD-CO 21.8 - 46.7 9.5 6.3 31.2 40.6 23.6 16.0 14.5 8.2 - - - - -

CQD-Beam 25.3 - 46.7 13.3 7.9 34.4 48.3 27.1 20.4 17.6 11.5 - - - - -
ConE 23.4 5.9 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 5.4 8.6 7.8 4.0 3.6

GNN-QE 26.8 10.2 42.8 14.7 11.8 38.3 54.1 31.1 18.9 16.2 13.4 10.0 16.8 9.3 7.2 7.8
CQDA 25.7 10.7 46.7 13.6 11.4 34.5 48.3 27.4 20.9 17.6 11.4 13.6 16.8 7.9 8.9 5.8

NELL995
GQE 18.6 - 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 - - - - -
Q2B 22.9 - 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 - - - - -

BetaE 24.6 5.9 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5
CQD-CO 28.8 - 60.4 17.8 12.7 39.3 46.6 30.1 22.0 17.3 13.2 - - - - -

CQD-Beam 31.8 - 60.4 22.6 13.6 42.6 52.0 31.2 25.6 19.9 16.7 - - - - -
ConE 27.2 6.4 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9

GNN-QE 28.9 9.7 53.3 18.9 14.9 42.4 52.5 30.8 18.9 15.9 12.6 9.9 14.6 11.4 6.3 6.3
CQDA 32.3 13.3 60.4 22.9 16.7 43.4 52.6 32.1 26.4 20.0 17.0 15.1 18.6 15.8 10.7 6.5

Table 2: MRR results for FOL queries on the testing sets. avgp designates the averaged results for
EPFO queries (∧,∨), while avgn pertains to queries including atomic negations (¬). The results for
the baselines are from Zhu et al. [2022].

Evaluation Protocol For a fair comparison with prior work, we follow the evaluation scheme in
Ren and Leskovec [2020] by separating the answer of each query into easy and hard sets. For test and
validation splits, we define hard queries as those that cannot be answered via direct traversal along the
edges of the KG and can only be answered by predicting at least one missing link, meaning non-trivial
reasoning should be completed. We evaluate the method on non-trivial queries by calculating the
rank r for each hard answer against non-answers and computing the Mean Reciprocal Rank (MRR).

Baselines We compare CQDA with state-of-the-art methods from various solution families in
Section 2. In particular, we choose GQE [Hamilton et al., 2018], Query2Box [Ren et al., 2020],
BetaE [Ren and Leskovec, 2020] and ConE [Zhang et al., 2021] as strong baselines for query
embedding methods. We also compare with methods based on GNNs and fuzzy logic, such as
FuzzQE [Chen et al., 2022], GNN-QE [Zhu et al., 2022], and the original CQD [Arakelyan et al.,
2021, Minervini et al., 2022], which uses neural link predictors for answering EPFO queries without
any fine-tuning on complex queries.

Model Details Our method can be used with any neural link prediction model. Following Arakelyan
et al. [2021], Minervini et al. [2022], we use ComplEx-N3 [Lacroix et al., 2018]. We identify the
optimal hyper-parameters using the validation MRR. We train for 50, 000 steps using Adagrad
as an optimiser and 0.1 as the learning rate. The beam-size hyper-parameter k was selected in
k ∈ {512, 1024, . . . , 8192}, and the loss was selected across 1-vs-all [Lacroix et al., 2018] and
binary cross-entropy with one negative sample.

Parameter Efficiency We use the query types 2i, 3i, 2in, 3in for training the calibration module
proposed in Section 4. We selected these query types as they do not require variable assignments other
than for the answer variable A, making the training process efficient. As the neural link prediction
model is frozen, we only train the adapter layers that have a maximum of W ∈ R2×2d learnable
weights. Compared to previous works, we have ≈ 103 times fewer trainable parameters, as shown in
Table 3, while maintaining competitive results.

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Iteration per 400 epochs

2
4
6
8

10
12
14
16
18

M
RR

Average MRR with 1% and 100% training data

average MRR with 1%
Performance Difference
average MRR with 100%

Figure 4: Average test MRR score (y-axis)
of CQDA using 1% and 100% of the training
queries from FB15K-237 throughout the training
iterations (x-axis).

Number of parameters
FB15K FB15K-237 NELL

CQDA 1.3× 107︸ ︷︷ ︸
frozen

1.3× 107︸ ︷︷ ︸
frozen

7.5× 107︸ ︷︷ ︸
frozen

+4× 103 +4× 103 +4× 103

BetaE 1.3× 107 1.3× 107 6× 107

Q2B 1.2× 107 1.2× 107 6× 107

GNN-QE 3× 106 3× 106 3× 106

ConE 1.2× 107 1.2× 107 6× 107

GQE 1.5× 107 1.5× 107 7.5× 107

Table 3: Number of parameters used by different
complex query answering methods – values for
GNN-QE are approximated using the backbone
NBFNet [Zhu et al., 2021], while the remaining
use their original studies.

5.1 Results

Complex Query Answering Table 2 shows the predictive accuracy of CQDA for answering
complex queries compared to the current state-of-the-art methods. Some methods do not support
queries that include negations; we leave the corresponding entries blank. We can see that CQDA

increases the MRR from 34.4 to 35.1 averaged across all query types and datasets. In particular,
CQDA shows the most substantial increase in predictive accuracy on NELL995 by producing more
accurate results than all other methods for all query types. CQDA can achieve these results
using ≤ 30% of the complex query types during training while maintaining competitive results
across each dataset and query type. For queries including negations, CQDA achieves a relative
improvement of 6.8% to 37.1%, which can be attributed to the fact that the adaptation is completed
with query types 2in and 3in that include negation, which allows for learning an adaptation layer
that is robust for these types of queries. In our experiments, we found that calculating the neural
adaptation parameters θ of the adaptation function ρθ in Equation (3) as a function of the predicate
representation yields the most accurate results followed by computing θ as a function of the source
entity and predicate representation, which is strictly more expressive. In Appendix A, we show the
impact of the adaptation layers on the neural link prediction scores.

The adaptation process does not require data-intensive training and allows the model to generalise to
query types not observed during training. This prompts us to investigate the minimal amount of data
samples and query types required for adaptation.

Data Efficiency To analyse the data efficiency of CQDA, we compare the behaviour of the
pre-trained link predictors tuned with 1% and 100% of the training complex query examples in
FB15K-237, presented in Table 4. For adapting on 1% of the training complex queries, we used
the same hyper-parameters we identified when training on the full dataset. Even when using 1% of
the complex training queries (3290 samples) for tuning, the model still achieves competitive results,
with an average MRR difference of 2.2 compared to the model trained using the entire training set.
CQDA also produces higher test MRR results than GNN-QE with an average MRR increase of 4.05.

We can also confirm that the adaptation process converges after ≤ 10% of the training epochs as
seen in Figure 4. The convergence rate is not hindered when using only 1% of the training queries.
This shows that CQDA is a scalable method with a fast convergence rate that can be trained in a
data-efficient manner.

Out-of-Distribution Generalisation To study the generalisation properties of CQDA, we trained
the adaptation layer on all atomic queries and only 1% of samples for one training query type 2i, one
of the simplest complex query types. We see in Table 4 that CQDA can generalise to other types
of complex queries not observed during training with an average MRR difference of 2.9 compared
to training on all training query types. CQDA also produces significantly higher test MRR results

8

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB237, 1%
CQDA 46.7 11.8 11.4 33.6 41.2 24.82 17.81 16.45 8.74 10.8 13.86 5.93 5.38 14.82

GNN-QE 36.82 8.96 8.13 33.02 49.28 24.58 14.18 10.73 8.47 4.89 12.31 6.74 4.41 4.09
BetaE 36.80 6.89 5.94 22.84 34.34 17.12 8.72 9.23 5.66 4.44 6.14 5.18 2.54 2.94

FB237 2i, 1%
CQDA 46.7 11.8 11.2 30.35 40.75 23.36 18.28 15.85 8.96 9.36 10.25 5.17 4.46 4.44

GNN-QE 34.81 5.40 5.17 30.12 48.88 23.06 12.65 9.85 5.26 4.26 12.5 4.43 0.71 1.98
BetaE 37.99 5.62 4.48 23.73 35.25 15.63 7.96 9.73 4.56 0.15 0.49 0.62 0.10 0.14

Table 4: Comparison of test MRR results for queries on FB15K-237 using the following training sets
– FB237, 1% (resp. FB237 2i, 1%) means that, in addition to all 1p (atomic) queries, only 1% of
the complex queries (resp. 2i queries) was used during training. As CQDA uses a pre-trained link
predictor, we also include all 1p queries when training GNN-QE for a fair comparison.

Model 2p 2i 3i pi ip 2u up 2in 3in inp pin pni
CQD 13.2 34.5 48.2 26.8 20.3 17.4 10.3 5.4 12.4 6.1 3.2 4.6
CQDF 9.3 22.8 34.9 19.8 14.5 13.0 7.2 7.4 7.1 4.9 3.9 3.8
CQDA

F 9.5 23.9 39.0 19.8 14.5 14.2 7.2 8.4 9.7 4.9 4.2 3.6
CQDC 10.9 33.7 47.3 25.6 18.9 16.4 9.4 7.9 12.2 6.6 4.2 5.0
CQDR 6.4 22.2 31.0 16.6 11.2 12.5 4.8 4.7 5.9 4.1 2.0 3.5
CQDA 13.2 35.0 48.5 27.3 20.7 17.6 10.5 13.2 14.9 7.4 7.8 5.5

Table 5: Test MRR results for FOL queries on FB15K-237 using the following CQD extensions: CQD
from Arakelyan et al. [2021], Minervini et al. [2022] with the considered normalisation and negations;
CQDF, where we fine-tune all neural link predictor parameters in CQD; CQDA

F , where we fine-tune
all link predictor parameters in CQDA; CQDR, where we learn a transformation for the entity and
relation embeddings and we use it to replace the initial entity and relation representations; and CQDC,
where we learn a transformation for the entity and relation embeddings, and we concatenate it to the
initial entity and relation representations.

than GNN-QE, with an average increase of 5.1 MRR. The greatest degradation in predictive accuracy
occurs for the queries containing negations, with an average decrease of 2.7. This prompts us to
conjecture that being able to answer general EPFO queries is not enough to generalise to the larger
set of queries, which include atomic negation. However, our method can generalise on all query
types, using only 1% of the 2i queries, with 1496 overall samples for adaptation.

Fine-Tuning All Model Parameters One of the reasons for the efficiency of CQDA is that the
neural link predictor is not fine-tuned for query answering, and only the parameters in the adaptation
function are learned. We study the effect of fine-tuning the link predictor using the full training data
for CQD and CQDA on FB15K-237. We consider several variants: 1) CQDF, where we Fine-tune all
neural link predictor parameters in CQD; 2) CQDA

F , where we fine-tune all link predictor parameters
in CQDA, 3) CQDR, where we learn a transformation for the entity and relation embeddings and
we use it to Replace the initial entity and relation representations, and 4) CQDC, where we learn a
transformation for the entity and relation embeddings, and we Concatenate it to the initial entity and
relation representations.

It can be seen from Table 5 that CQDA yields the highest test MRR results across all query types
while fine-tuning all the model parameters produces significant degradation along all query types,
which we believe is due to catastrophic forgetting [Goodfellow et al., 2013] of the pre-trained link
predictor.

6 Conclusions

In this work, we propose the novel method CQDA for answering complex FOL queries over KGs,
which increases the averaged MRR over the previous state-of-the-art from 34.4 to 35.1 while using
≤ 30% of query types. Our method uses a single adaptation layer over neural link predictors, which
allows for training in a data-efficient manner. We show that the method can maintain competitive
predictive accuracy even when using 1% of the training data. Furthermore, our experiments on training
on a subset (1%) of the training queries from a single query type (2i) show that it can generalise to

9

new queries that were not used during training while being data-efficient. Our results provide further
evidence for how neural link predictors exhibit a form of compositionality that generalises to the
complex structures encountered in the more general problem of query answering. CQDA is a method
for improving this compositionality while preserving computational efficiency. As a consequence,
rather than designing specialised models trained end-to-end for the query answering task, we can
focus our efforts on improving the representations learned by neural link predictors, which would
then transfer to query answering via efficient adaptation, as well as other downstream tasks where
they have already proved beneficial, such as clustering, entity classification, and information retrieval.

Acknowledgements

Pasquale was partially funded by the European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 875160, ELIAI (The Edinburgh Laboratory for Integrated
Artificial Intelligence) EPSRC (grant no. EP/W002876/1), an industry grant from Cisco, and a
donation from Accenture LLP, and is grateful to NVIDIA for the GPU donations. Daniel and Michael
were partially funded by Elsevier’s Discovery Lab. Michael was partially funded by the Graph-
Massivizer project (Horizon Europe research and innovation program of the European Union under
grant agreement 101093202). Erik is partially funded by a DFF Sapere Aude research leader grant
under grant agreement No 0171-00034B, as well as by a NEC PhD fellowship, and is supported by
the Pioneer Centre for AI, DNRF grant number P1. Isabelle is partially funded by a DFF Sapere Aude
research leader grant under grant agreement No 0171-00034B, as well as by the Pioneer Centre for
AI, DNRF grant number P1. This work was supported by the Edinburgh International Data Facility
(EIDF) and the Data-Driven Innovation Programme at the University of Edinburgh.

References
S. Amin, S. Varanasi, K. A. Dunfield, and G. Neumann. Lowfer: Low-rank bilinear pooling for link

prediction. In International Conference on Machine Learning, pages 257–268. PMLR, 2020.

E. Arakelyan, D. Daza, P. Minervini, and M. Cochez. Complex query answering with neural link
predictors. In ICLR. OpenReview.net, 2021.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. DBpedia: A nucleus for a
web of open data. In ISWC/ASWC, volume 4825 of Lecture Notes in Computer Science, pages
722–735. Springer, 2007.

I. Balažević, C. Allen, and T. M. Hospedales. Tucker: Tensor factorization for knowledge graph
completion. arXiv preprint arXiv:1901.09590, 2019.

O. Bodenreider, R. Cornet, and D. J. Vreeman. Recent developments in clinical terminologies -
snomed ct, loinc, and rxnorm. Yearbook of medical informatics, 27:129–139, Aug 2018. ISSN
2364-0502.

K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created
graph database for structuring human knowledge. In SIGMOD Conference, pages 1247–1250.
ACM, 2008.

A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and O. Yakhnenko. Translating embeddings for
modeling multi-relational data. In NIPS, pages 2787–2795, 2013.

X. Chen, Z. Hu, and Y. Sun. Fuzzy logic based logical query answering on knowledge graphs. In
AAAI, pages 3939–3948. AAAI Press, 2022.

N. Choudhary, N. Rao, S. Katariya, K. Subbian, and C. K. Reddy. Self-supervised hyperboloid
representations from logical queries over knowledge graphs. In Proceedings of the Web Conference
2021, pages 1373–1384, 2021.

R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy, A. Smola, and A. Mc-
Callum. Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using
reinforcement learning. arXiv preprint arXiv:1711.05851, 2017.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order, Second Edition. Cambridge
University Press, 2002.

10

D. Daza and M. Cochez. Message passing query embedding. In ICML Workshop - Graph Represen-
tation Learning and Beyond, 2020. URL https://arxiv.org/abs/2002.02406.

T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolutional 2d knowledge graph embeddings.
In AAAI, pages 1811–1818. AAAI Press, 2018.

I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical investigation of
catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

W. L. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec. Embedding logical queries on
knowledge graphs. In NeurIPS, pages 2030–2041, 2018.

M. Hildebrandt, J. A. Q. Serna, Y. Ma, M. Ringsquandl, M. Joblin, and V. Tresp. Reasoning on
knowledge graphs with debate dynamics. In AAAI, pages 4123–4131. AAAI Press, 2020.

D. S. Himmelstein, A. Lizee, C. Hessler, L. Brueggeman, S. L. Chen, D. Hadley, A. Green, P. Khankha-
nian, and S. E. Baranzini. Systematic integration of biomedical knowledge prioritizes drugs for
repurposing. bioRxiv, 2017. doi: 10.1101/087619. URL https://www.biorxiv.org/content/
early/2017/08/31/087619.

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan,
and S. Gelly. Parameter-efficient transfer learning for nlp. In International Conference on Machine
Learning, pages 2790–2799. PMLR, 2019.

E. Klement, R. Mesiar, and E. Pap. Triangular Norms, volume 8 of Trends in Logic. Springer, 2000.

E. Klement, R. Mesiar, and E. Pap. Triangular norms. position paper I: basic analytical and algebraic
properties. Fuzzy Sets Syst., 143(1):5–26, 2004.

R. Kruse and C. Moewes. Fuzzy systems. BG Teubner Stuttgart, 1993.

T. Lacroix, N. Usunier, and G. Obozinski. Canonical tensor decomposition for knowledge base
completion. In ICML, volume 80 of Proceedings of Machine Learning Research, pages 2869–2878.
PMLR, 2018.

C. E. Lipscomb. Medical subject headings (mesh). Bull Med Libr Assoc., 2000. URL http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=35238. 88(3): 265–266.

G. A. Miller. WORDNET: a lexical database for english. In HLT. Morgan Kaufmann, 1992.

P. Minervini, E. Arakelyan, D. Daza, and M. Cochez. Complex query answering with neural link
predictors (extended abstract). In IJCAI, pages 5309–5313. ijcai.org, 2022.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine learning for
knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016.

N. F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. Industry-scale knowledge
graphs: lessons and challenges. Commun. ACM, 62(8):36–43, 2019.

J. Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

H. Ren and J. Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge graphs.
Advances in Neural Information Processing Systems, 33:19716–19726, 2020.

H. Ren, W. Hu, and J. Leskovec. Query2box: Reasoning over knowledge graphs in vector space
using box embeddings. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=BJgr4kSFDS.

H. Ren, M. Galkin, M. Cochez, Z. Zhu, and J. Leskovec. Neural graph reasoning: Complex logical
query answering meets graph databases. CoRR, abs/2303.14617, 2023.

D. Ruffinelli, S. Broscheit, and R. Gemulla. You CAN teach an old dog new tricks! on training
knowledge graph embeddings. In ICLR. OpenReview.net, 2020.

11

https://arxiv.org/abs/2002.02406
https://www.biorxiv.org/content/early/2017/08/31/087619
https://www.biorxiv.org/content/early/2017/08/31/087619
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=35238
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=35238
https://openreview.net/forum?id=BJgr4kSFDS
https://openreview.net/forum?id=BJgr4kSFDS

A. Sadeghian, M. Armandpour, P. Ding, and D. Z. Wang. Drum: End-to-end differentiable rule
mining on knowledge graphs. Advances in Neural Information Processing Systems, 32, 2019.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling. Modeling relational
data with graph convolutional networks. In European semantic web conference, pages 593–607.
Springer, 2018.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In WWW, pages
697–706. ACM, 2007.

Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational
rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

P. Tabacof and L. Costabello. Probability calibration for knowledge graph embedding mod-
els. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?
id=S1g8K1BFwS.

K. Teru, E. Denis, and W. Hamilton. Inductive relation prediction by subgraph reasoning. In
International Conference on Machine Learning, pages 9448–9457. PMLR, 2020.

K. Toutanova and D. Chen. Observed versus latent features for knowledge base and text inference. In
Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality,
pages 57–66, Beijing, China, July 2015. Association for Computational Linguistics. doi: 10.18653/
v1/W15-4007. URL https://www.aclweb.org/anthology/W15-4007.

T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex embeddings for simple
link prediction. In ICML, volume 48 of JMLR Workshop and Conference Proceedings, pages
2071–2080. JMLR.org, 2016.

S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar. Composition-based multi-relational graph convolu-
tional networks. arXiv preprint arXiv:1911.03082, 2019.

D. Vrandečić and M. Krötzsch. Wikidata: A free collaborative knowledge base. Communi-
cations of the ACM, 57:78–85, 2014. URL http://cacm.acm.org/magazines/2014/10/
178785-wikidata/fulltext.

W. Xiong, T. Hoang, and W. Y. Wang. Deeppath: A reinforcement learning method for knowledge
graph reasoning. In EMNLP, pages 564–573. Association for Computational Linguistics, 2017.

B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations for learning and
inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

F. Yang, Z. Yang, and W. W. Cohen. Differentiable learning of logical rules for knowledge base
reasoning. Advances in neural information processing systems, 30, 2017.

Z. Zhang, J. Wang, J. Chen, S. Ji, and F. Wu. Cone: Cone embeddings for multi-hop reasoning over
knowledge graphs. Advances in Neural Information Processing Systems, 34:19172–19183, 2021.

Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang. Neural bellman-ford networks: A general graph
neural network framework for link prediction. Advances in Neural Information Processing Systems,
34:29476–29490, 2021.

Z. Zhu, M. Galkin, Z. Zhang, and J. Tang. Neural-symbolic models for logical queries on knowledge
graphs. arXiv preprint arXiv:2205.10128, 2022.

12

https://openreview.net/forum?id=S1g8K1BFwS
https://openreview.net/forum?id=S1g8K1BFwS
https://www.aclweb.org/anthology/W15-4007
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext

5 0 5 10
Score

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

Distribution of neural link prediction scores
Before Score Adaptation
After Score Adaptation

Figure 5: The distribution of the scores of the
neural link predictor before applying the adapta-
tion layer and after.

2p 3p 2i 3i ip pi 2in 3in inp pin pn
i

2u
-DNF

up
-DNF

av
era

ge
0

10

20

30

40

M
RR

MRR for training on 1% and 100% of the data. Average difference: 2.4
average 1%
average 100%
Trained on 1%
Trained on 100%

2p 3p 2i 3i ip pi 2in 3in inp pin pn
i

2u
-DNF

up
-DNF

av
era

ge
0

10

20

30

40

M
RR

MRR for training on 1% of 2i and All of training queries. Average difference: 2.7
average 2i 1%
average 100%
Trained on 1% of 2i
Trained on 100%

Figure 6: Evaluation of CQDA using 1% and
100% of the training complex queries during tun-
ing (top) and 2i queries (bottom) from FB15K-
237.

A Impact of adaptation

We investigate the effect of the adaptation process in CQDA by comparing the score of the neural link
predictor before and after applying the adaptation layer. As we see from Figure 5, the scores before
adaptation have a variation of 5.04 with the boundaries at [−8, 12]. This makes them problematic for
complex query answering as discussed in Section 4. The Adapted scores have a smaller variation at
0.03 while the maximum and minimum lie in the [0, 1] range.

B On data efficiency and generalisation of CQDA

We conduct a series of experiments comparing the performance of CQDA trained while only using
1% of the training data to the complete training set in FB15K-237. We see from Figure 6 (top) that
the model maintains a strong performance on the complex reasoning task with a 2.4 averaged MRR
degradation compared to using the complete data. This phenomenon is even more pronounced when
we use only 1% of the queries while using 2i as our training query types Figure 6 (bottom). In this
data and query type constrained mode CQDA maintains competitive performance with a degradation
of 2.7 averaged MRR for complex queries compared to training with complete data. This highlights
the data-efficient nature of CQDA and shows that training a score adaptation layer does not require
significant data for training. This is also accompanied by the observation that CQDA is able to
generalise to unseen query types while training only on 2i. This behaviour is not inherent, as seen
from Table 4.

13

	Introduction
	Related Work
	Background
	Calibrating Link Prediction Scores on Complex Queries
	Experiments
	Results

	Conclusions
	Impact of adaptation
	On data efficiency and generalisation of CQDÂ

