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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has become a key tech-
nique for enhancing LLMs’ reasoning abilities, yet its data inefficiency remains a
major bottleneck. To address this critical yet challenging issue, we present a novel
gradient-alignment-based method, named LearnAlign, which intelligently selects
the learnable and representative training reasoning data for RLVR post-training.
To overcome the issue of response-length bias in gradient norms, we introduce the
data learnability based on the success rate, which can indicate the learning potential
of each data point. Experiments across five reasoning benchmarks show that our
method significantly reduces training data requirements while achieving minor
performance degradation or even improving performance compared to full-data
training. Specifically, it reduces data requirements by up to 1,000 data points with
better performance (77.5%) than that on the full dataset on the GSM8K benchmark
(77.0%). Furthermore, its efficiency is demonstrated on both mathematical and
code benchmarks by using much less data from the DAPO-MATH-17K dataset.
We believe this work provides some insights for data-efficient RL post-training and
could help future research on reasoning data selection. To facilitate future work,
we will release code.

Figure 1: Performance comparison between baseline methods and our proposed LearnAlign on
various benchmarks, including GSM8K, MATH500, AMC2023, AIME2024, and CRUX, using the
Qwen2.5-3B model.

1 INTRODUCTION

Recently, Reinforcement Learning (RL) has become a successful and crucial post-training paradigm
for enhancing the reasoning ability of large language models (LLMs), exemplified by OpenAI
o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), Kimi k1.5 (Team et al., 2025), and so on.
These models commonly utilize a rule-based reward function, such as the correctness of mathematical
solving and code generation problems, to provide the supervision signal.

Due to the large number of parameters, the post-training for LLMs usually needs a lot of computing
resources with large-scale data (Zhou et al., 2023; Luo et al., 2024; 2025; Liu et al., 2025a; Li et al.,
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2022; Zhang et al., 2024). While, according to the recent studies (Zhou et al., 2023; Ye et al., 2025), it
is feasible to activate the specialized ability of a pre-trained language model in downstream tasks with
a small set of examples. Inspired by this observation, several works (Xia et al., 2024a; Li et al., 2023a;
Liu et al., 2024a) have explored data selection strategies for the post-training of LLMs. Most of these
data selection methods obtain a quality score for each data point by utilizing an external expert model
or the learning signals of the model that needs to be trained, and then select the top-sorted data with
scores. While, these works are specially designed for the supervised fine-tuning paradigm rather
than the reinforcement learning paradigm, which shows limited effectiveness in reasoning-oriented
scenarios. As far as we know, there are very few works (Li et al., 2025; Wang et al., 2025) that
studied the data selection problem of the reinforcement learning paradigm at present. These works (Li
et al., 2025; Wang et al., 2025) verified that a small amount of data or even one training example
can still provide sufficient information for RLVR post-training. However, their methods are not
computationally efficient, since they need to train the whole original dataset for several epochs during
data selection, which makes them less practical for saving computing resources.

To address the above issue, we propose a practical data selection method, named LearnAlign, for the
RLVR paradigm in large language models via gradient alignment. Inspired by (Pruthi et al., 2020;
Xia et al., 2024a), to select the high-valued reasoning data, we consider measuring the influence
of each data point for training the LLM. First, we estimate the influence of one data point for the
training dataset by approximating the change of the training loss using a first-order Taylor expansion.
Such influence then can be transformed to the alignment score of gradients between that data point
and the training dataset, which can reflect the representativeness of data points to the dataset. In
addition, to address the well-known response-length bias for gradient norms (Liu et al., 2025b; Xia
et al., 2024a), we introduce the learning ability of data estimated by the success rate to replace it,
which can represent the learnable potential without the bias (Florensa et al., 2018; Tzannetos et al.,
2023). Finally, we can obtain an improved gradient alignment score, and then the top-sorted data
points are identified as the learnable and representative reasoning data.

Experiments across four mathematical reasoning benchmarks (GSM8K (Cobbe et al., 2021),
MATH500 (Hendrycks et al., 2021a), AMC2023 (AMC, 2023), and AIME2024 (AIM, 2024))
and one code generation benchmark (CRUX (Gu et al., 2024)) reveal two key findings: (1) conven-
tional SFT data selection methods fall short in the RLVR paradigm for the post-training phase of
LLMs; (2) LearnAlign achieves minor performance degradation or even superior performance while
requiring only a fraction of the training data (As seen in Figure 1). Notably, our method achieves
comparable performance compared to full data (42.4% vs. 44.9%) using much less data (1,000 vs.
17,000 examples) across five benchmarks.

Our main contributions are summarized as follows:

• In this paper, we explore efficient data selection for RLVR post-training from the perspective of
gradient alignment, a direction that has received limited attention in prior work.

• We introduce LearnAlign, a novel data selection framework that constructs learnability-weighted
gradient representations to measure influence between data points, where the learnability metric
captures learning potential and addresses the response-length bias for gradient norms.

• Comprehensive comparison with prior methods across five benchmarks and three LLMs clearly re-
veals the shortcomings of traditional SFT data selection methods, and demonstrates that LearnAlign
identifies high-value subsets that match or exceed full-dataset performance.

2 RELATED WORK

We review the existing data selection studies for LLM post-training, including Supervised Fine-Tuning
(SFT) and Reinforcement Learning with Verifiable Rewards (RLVR).

Data Selection for SFT Post-training: Commonly, the data selection methods for LLM SFT obtain a
quality score for each data point based on different signals. According to the kinds of signals, we can
divide these methods into two categories: external-scoring methods and self-scoring methods. For the
first category, several recent studies have utilized external LLMs for SFT data scoring and selection.
INSTAG (Lu et al., 2023) proposed an open-set instruction tagging framework that employs ChatGPT
to generate fine-grained tags, enabling the assessment of instruction diversity and complexity in
SFT. Similarly, ALPAGASUS (Chen et al., 2023) leverages ChatGPT to evaluate instruction quality
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and selects high-scoring samples for training. IFD (Li et al., 2023a) identifies relevant instruction
pairs using a metric measuring discrepancies between model predictions and self-generated outputs.
LESS (Xia et al., 2024a) designed a gradient-based selection method that prioritizes data resembling
few-shot examples for specific tasks. SelectIT(Liu et al., 2024a) leveraged model uncertainty at
multiple levels (token, sentence, and model) to identify high-quality instructions without external
supervision. Nuggets (Li et al., 2023b) scores candidate examples by their influence on anchor set
perplexity, optimizing instruction tuning efficiency.

Data Selection for RLVR Post-training: As far as we know, there are few works that have explored
data selection for RLVR post-training. LIMR (Li et al., 2025) and 1-shot RLVR (Wang et al., 2025)
verify earlier that a small amount of data can still provide sufficient information for the scaling of RL.
While these methods are not computationally efficient, since they need to train the original dataset for
several epochs during data selection. To address this issue, this work offers a more practical solution
for RL post-training.

3 PRELIMINARY

A next-token prediction LLM can be regarded as a token-level Markov Decision Process (MDP)
(Sutton et al., 1998; Foster & Foerster, 2025), which is denoted by a tuple M :=

{
S,A, γ, T ,R,P0

}
.

S represents the state space, and A denotes the action space. P0 means the starting state distribution
while T is the transition function. The reward function and the discount factor are denoted R
and γ, respectively. LLM post-training by RL is formulated as a token-level MDP, where the
objective is to sequentially generate text conditioned on the given prompt. It starts from a prompt
or question query denoted as ξ = [ξ1, ξ2, · · · , ξn], represents n tokens. At each timestep t, the
action yt ∈ A corresponds to the generation of a token yt, sampled from the model’s output
distribution. The transition function T ([ξ0:t−1, yt]) = ξ0:t is deterministic. It concatenates the
generated token yt to the existing sequence ξ0:t−1 = [ξ1, . . . , ξn, y1, . . . , yt−1] to form the new state
ξ0:t = [ξ1, . . . , ξn, y1, . . . , yt]. The reward for generating token yt at timestep t is sparse, assigned
only at the final timestep T of the episode. The reward is binary, with R(ξy) = 1 if the complete
sequence ξy = [ξ1, . . . , ξn, y1, . . . , yT ] (the prompt followed by the generated tokens) is correct,
and R(ξy) = 0 otherwise. Typically, the discount factor γ is set to 1 , so the cumulative discounted
finite-horizon return is simply R(ξy).

Group Relative Policy Optimization (GRPO). Recently, GRPO (Shao et al., 2024) emerges as a
popular RL algorithm. In this paper, we use it for our experiments. In particular, the GRPO consists of
two terms, a policy term JPolicy and another KL divergence term to constrain the divergence between
the old and new policy model. This can be formulated as follows:

JGRPO(θ) =E(q,a)∼Pq,{oi}G
i=1∼πθold

(o|q){ 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
[
ri,tÂi,t, clip(rt, 1− ε, 1 + ε)Âi,t

]
− βDKL[πθ|πref]

}
,

(1)

where ri,t =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

, and Âi,t denotes the relative advantage, which is computed using a

group of rewards {r1, r2, · · · , rG}: Âi,t =
ri−mean({ri}G

i=1)

std({ri}G
i=1)

.DKL denotes the KL-divergence between
πθ and πref. The hyperparameters ϵ and β require tuning, while πref typically represents the original
pre-trained model prior to the RL post-training process.

4 METHOD

Here, we outline our strategy for selecting data to effectively enhance the large language model’s
performance during the reinforcement learning (RL) post-training phase. We begin by defining
the data selection problem (Section 4.1). Next, we discuss data influence estimation via gradient
alignment (Section 4.2) and improving gradient alignment with data learnability (Section 4.3), which
provides a way to assess the utility of data pairs. Finally, we present a comprehensive overview of
our data selection method (Section 4.4).

3
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4.1 PROBLEM DEFINITION

The objective of data selection for LLM RL post-training is to identify a subset Ds
train ⊂ Dtrain, where

|Ds
train| < |Dtrain|, from the full training dataset Dtrain. The selected subset is used to train an LLM

policy model πθ via reinforcement learning techniques, e.g., PPO (Schulman et al., 2017) or GRPO
(Shao et al., 2024), aiming to achieve lower loss and improved performance on a test dataset Dtest.
Moreover, no additional information beyond the original training dataset Dtrain is available. Ideally,
the selected subset should enable the model to achieve performance comparable to training on the full
dataset Dtrain with significantly fewer data, or ensure that any performance degradation is minimal,
thereby maximizing training efficiency.

4.2 DATA INFLUENTIAL ESTIMATION VIA GRADIENT ALIGNMENT

Similar to SFT data selection methods (Xia et al., 2024a), selecting data for LLM post-training also
requires analyzing and understanding the training dynamics of the data. Specifically, we need to
identify which data can most effectively reduce the model’s loss. Drawing inspiration from (Pruthi
et al., 2020; Liu et al., 2024b), the change in the loss function J (·) for a given data ξ as the model
parameters change from θt to θt+1 can be approximated using a first-order Taylor expansion as
follows:

J (θt+1; ξ′) ≈ J (θt; ξ′) +∇J (θt, ξ′)(θt+1 − θt) +O(∥θt+1 − θt∥2). (2)

If the model θt+1 is trained by a single data ξ with stochastic gradient descent (SGD) at time t, this
can be expressed as θt+1 = θt − ηt∇J (θt; ξ), where ηt denotes the learning rate for the time t.
Substituting this update into Eq.(2), a data ξ update to the model introduces the change of the loss on
another sample ξ′, which can be formulated as:

J (θt+1; ξ′)− J (θt; ξ′) ≈ ∇J (θt; ξ′)(θt+1 − θt)

= −ηt
(
∇J (θt; ξ′) · ∇J (θt; ξ)

)
,

(3)

where we ignore the higher-order term O(∥θt+1 − θt∥2) as it is small for a sufficiently small step
size ηt. Based on this, we can formalize the influence between two data ξi and ξj .

Definition 4.1 (Data Influence via Gradient Alignment). Let ξi and ξj be two data from the training
dataset Dtrain, and let θ represent the model parameters. The influence of data ξi on data ξj , denoted
as Inft(ξi, ξj), is defined as the dot product of the gradients of the loss function J (·) with respect to
the model parameters, evaluated at θt:

Inft(ξi, ξj) = ∇J (θt; ξi) · ∇J (θt; ξj). (4)

This quantity measures the first-order effect of updating the model with data ξi on the loss of data ξj ,
capturing the similarity in their training dynamics.

The gradients for each data point reflect the average gradients of all tokens within that data. Previous
studies have observed that the gradient norm is inversely correlated with response length (Liu et al.,
2025b; Xia et al., 2024a). Using only the inner product of gradients between two data points may bias
the data selector toward shorter sequences. To address this issue, some works (Wang et al., 2020; Xia
et al., 2024a) employ the cosine similarity instead, but they still suffer from performance degradation
when selecting data for post-training LLMs.

4.3 IMPROVING GRADIENT ALIGNMENT WITH LEARNING POTENTIAL

Motivation: Based on the preceding analysis, the post-training dynamics of large language models
reveal two critical limitations when using the cosine similarity of data gradients as a selection criterion:
(1) Loss of Magnitude Information. By normalizing the gradients, the cosine similarity focuses
exclusively on their directional alignment, thereby discarding magnitude information. In post-training
LLMs, the gradient magnitude often indicates a data point’s influence on model updates, which is
essential for effective policy optimization. Ignoring this aspect prevents the cosine similarity from
prioritizing data that could drive more substantial improvements in model performance. (2) Failure
to Capture Learning Potential. The cosine similarity does not account for the learning potential of
data. Even if two data points exhibit high directional similarity, their utility may be limited if they

4
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Figure 2: The procedure of the proposed selection method based on improved gradient alignment.
We obtain the gradient information and learnability of each data point through Steps 1-3 and then
select data for subsequent training according to datapoint-wise LearnAlign score in Step 4.

are either too easy (success rate p ≈ 1) or too difficult (success rate p ≈ 0) for the current policy,
leading to suboptimal data selection. This limitation aligns with the theory of the Zone of Proximal
Development (ZPD) (Chaiklin et al., 2003), which suggests that effective learning occurs when tasks
are of moderate difficulty—neither too challenging nor too simple—for the learner (e.g., an LLM).

To address the aforementioned limitations, we introduce a data learnability metric based on the
success rate p, drawing inspiration from prior work to account for both the learning potential and the
magnitude of the data (Florensa et al., 2018; Tzannetos et al., 2023; Foster & Foerster, 2025).

Definition 4.2 (Data Learnability). Consider a sample ξ evaluated by an LLM policy πθ. Let
p ∈ [0, 1] represent the success rate, defined as the fraction of successful outcomes for the query
ξ across G rollouts, where p reflects the probability of a successful learning outcome. The data
learnability of data ξ, denoted V (ξ), is defined as:

V (ξ) = p(1− p),

where 1−p represents the potential for improvement, and p(1−p) quantifies the expected learnability
of data. This measure captures the sample’s utility for enhancing the policy πθ , reaching its maximum
when p = 0.5, indicating a sample at the boundary of the policy’s current capability. Besides, the
detailed justification for the data learnability can be found in Appendix C.

Built upon the above motivation and our definition of data learnability, we first define a new
learnability-weighted gradient vector for each data point ξi as:

V(ξi) =
∇J (θ; ξi)

∥∇J (θ; ξi)∥
· V (ξi), (5)

where the first term is the unit gradient vector and V (ξi) is the learnability score (Definition 4.2).
Using these vectors, we can then compute the LearnAlign Score between two data points ξi and ξj as

LearnAlign(ξi, ξj) = V(ξi) ·V(ξj) = V (ξi)V (ξj)
∇J (θ; ξi)

⊤∇J (θ; ξj)

∥∇J (θ; ξi)∥∥∇J (θ; ξj)∥
. (6)

This formulation leverages the learnability of each data point to weight the gradient inner product by
the learning potential, thus reducing the tendency to favor shorter sequences.

5
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4.4 DATA SELECTION FOR RLVR POST-TRAINING

As shown in Figure 2, the procedure to select suitable data for LLM RL consists of four steps, where
we elaborate LearnAlign from step 1 to step 4 in detail.

Step 1. Warmup Training: Initially, we randomly select a small subset Dwarmup ⊂ Dtrain from the
training dataset to perform warmup training on the policy model πθ. This step ensures a more stable
and accurate gradient estimation, resulting in a warm-up model θs.

Step 2. Gradient Information Estimation: Additionally, we can derive the original gradient
information from the model θ checkpoint during the warmup phase of RL-based LLM post-training
(e.g., GRPO) as follows:

∇θJGRPO(θ) = E(q,a)∼Pq,{oi}G
i=1∼πθold

(o|q)

{ 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

G(q, a, t, πθ)∇θ log πθ(oi,t|q, oi,<t)
}
,

(7)

where G(q, a, t, πθ) denotes the gradient coefficient Âi,t+β
(

πref(oi,t|q,oi,<t)
πθ(oi,t|q,oi,<t)

− 1
)

, Âi,t is computed
as GRPO. Since this gradient has nearly the same dimensions as the original model, it is computa-
tionally complex. Following prior work, we apply a random projection Γ to the gradient information
for each data point (Johnson et al., 1984; Xia et al., 2024a). So we can get a low-dimensional
gradient-related information denoted as ϕ(θ; ξ) = Γ⊤∇JGRPO(θ; ξ).

Step 3. Learnability Computation: We first sample G rollouts for each question and compute
the success rate of question i based on the ground truth answer y∗ and the generated answers y

across these G rollouts. The success rate p is calculated as p = 1
G

∑G
g=1 I(yg = y∗), where I is the

indicator function. Following Definition 4.2, we can get the learnability V (ξi) for each data i.

Step 4. Data Selection based on LearnAlign: Based on the projected gradient from the warmed-up
model θs, we can rewrite the LearnAlign Score between two data ξi and ξj as:

Sij = V (ξi)V (ξj)

(
ϕ(θ; ξi)ϕ(θ; ξj)

∥ϕ(θ; ξi)∥∥ϕ(θ; ξj)∥

)
. (8)

So we can get a n × n LearnAlign Score Matrix S (where |Dtrain| = n), capturing the pairwise
relation among all data points in the training dataset. Using the LearnAlign Score Matrix S, we select
the top-N data. For each data ξi, the average LearnAlign Score across its row as Avgi =

1
n

∑n
j=1 Sij ,

where Sij represents the pairwise alignment scores for all j (including j = i) and |Dtrain| = n. These
average scores are then sorted in descending order, and the top-N samples with the highest averages
are selected, ensuring the chosen data exhibit the strongest learnability within the training dataset.

5 EXPERIMENTS

We first introduce the experimental setup (Section 5.1) of LearnAlign, and then we present the main
results (Section 5.2) on the five benchmarks with some key observations. Moreover, we give some
discussions (Section 5.3), and complexity analysis (Section 5.4) about our methods.

5.1 EXPERIMENTAL SETUP

Settings: We validate the effectiveness of our algorithm under two primary configurations: (1) We
train models on subsets of the GSM8K (Cobbe et al., 2021) training set with varying sizes: 100,
500, 1,000, and 2,000 samples. The base policy model is Qwen2.5-1.5B-Instruct, and evaluation is
performed on the GSM8K test set, with greedy decoding used during the inference stage, and the
pass@1 accuracy is reported. (2) We train on 1,000 samples from the DAPO-MATH-17K dataset (Yu
et al., 2025) training set using Qwen2.5-3B and Qwen2.5-7B as the initial policy model. Evaluation is
conducted on both math reasoning benchmarks (GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks
et al., 2021a), AMC2023 (AMC, 2023), and AIME2024 (AIM, 2024)) and one code generation

6
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Table 1: Comparison of data selection methods on GSM8K test set. We train Qwen2.5-1.5B-Instruct
on the GSM8K training selected subset.

Data Selection Method Selected Data Size

100 500 1,000 2,000

Qwen2.5-1.5B-Instruct 55.7
Qwen2.5-1.5B-Instruct-FULL 77.0

Random Sampling 73.1 75.1 75.6 75.5
PPL-Top (Laurençon et al., 2022) 72.5 75.8 74.6 75.2
PPL-Middle (Ankner et al., 2024) 72.8 74.7 75.0 74.2

IFD (Li et al., 2023a) 72.0 76.0 75.6 75.4
Token Length (Xia et al., 2024b) 72.3 74.4 76.2 75.6

SelectIT (Liu et al., 2024a) 72.8 75.7 75.6 75.5

LIMR (Li et al., 2025) 74.2 76.2 76.1 76.7
LearnAlign 74.8 76.4 77.5 78.3

benchmark (CRUX (Gu et al., 2024)). For GSM8K, MATH500, and CRUX, we report the pass@1
accuracy; for AMC2023, we report avg@8 as the metric; for AIME2024, we report the pass@8
accuracy. The evaluation temperature is set to 0.8, and the tokp is set to 0.95.

Implementation Details: In these experimental settings, for the training hyperparameters, during
exploration, we generated 8 rollouts per sample at a temperature of 1.0; the learning rate was set
to 1.0× 10−6; the KL coefficient β was fixed at 0.04; and the clipping parameter ϵ was set to 0.2.
The batch size is set to 48 for GSM8K and 64 for DAPO-MATH-17K. We follow (Xia et al., 2024a)
for the projection of gradients and use 300 and 1000 samples for warmup training in GSM8K and
DAPO-MATH-17K, respectively. For DAPO-MATH-17K, inspired by (Lin et al., 2025), we calculate
the gradient of one correct rollout for each sample. Additional details are provided in Appendix B.1.

Baselines: We compared LearnAlign with several baselines: Random Sampling, PPL-Top (Lau-
rençon et al., 2022), PPL-Middle (Ankner et al., 2024) IFD (Li et al., 2023a), Token Length (Xia
et al., 2024b),SelectIT (Liu et al., 2024a), and LIMR (Li et al., 2025). For GSM8K, we utilize the
official solutions in training data as responses to calculate the above metrics. For DAPO-MATH-17K,
we make the warmed-up model to generate one response for each problem to conduct their selection.
More details about the baselines can refer to Appendix B.2.

5.2 MAIN RESULTS

Table 1 presents the evaluation results of training models on the GSM8K dataset with varying selected
data sizes. Table 2 shows the evaluation results of training models on the DAPO-MATH-17K dataset.
From these results, we have the following key observations:

Key Observation 1: Traditional SFT data selection methods fall short in the RLVR paradigm
for the post-training phase of LLMs. on the one hand, as shown in Table 1, when the official
solutions of the training data are applied as the responses in data selection, traditional SFT approaches
show limited and inconsistent effectiveness when applied to RL post-training. For example, Token
Length performs well at 1,000 samples (76.2%) but drops at 2,000 samples (75.6%). On the other
hand, as shown in Table 2, when the rollouts of the warmed-up model are generated for data selection,
PPL-Top are slightly higher than Random Sampling on average. Note that none of these baselines
consistently outperforms random sampling across the five benchmarks. Such suboptimal performance
of SFT data selection methods may stem from a misalignment between SFT and RL objectives. SFT
post-training aims to maximize the likelihood of target outputs, where harder examples identified by
those methods are often more valuable (assuming they are not noisy). RL post-training optimizes for
reward maximization, requiring the difficulty to match the model’s current capability.

Key Observation 2: LearnAlign achieves minor performance degradation or superior perfor-
mance while requiring only a fraction of the training data. As shown in Table 1, our approach

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of data selection methods on four math benchmarks (GSM8K, MATH500,
AMC2023, AIME2024) and one code benchmark (CRUX). We train Qwen2.5-3B and Qwen2.5-7B
on the DAPO-MATH-17K selected subset with 1,000 data points.

Data Selection Method GSM8K MATH500 AMC2023 AIME2024 CRUX Avg.

Qwen2.5-3B 20.1 52.2 8.1 3.3 14.6 19.7
Qwen2.5-3B-FULL 83.6 65.8 31.0 20.0 24.3 44.9

Random Sampling 70.5 53.4 19.4 13.3 17.4 34.8
PPL-Top (Laurençon et al., 2022) 71.3 57.8 23.0 13.3 16.1 36.3
PPL-Middle (Ankner et al., 2024) 70.1 54.0 24.1 10.0 18.1 35.3

IFD (Li et al., 2023a) 70.9 54.4 23.3 6.7 15.4 34.1
Token Length (Xia et al., 2024b) 35.7 50.4 18.5 16.7 15.3 27.3

SelectIT (Liu et al., 2024a) 70.1 60.2 25.2 16.7 17.8 38.0

LIMR (Li et al., 2025) 74.0 55.6 25.6 23.3 16.5 39.0
LearnAlign 79.3 60.2 28.3 23.3 21.0 42.4

Qwen2.5-7B 26.4 67.2 18.1 16.7 25.1 30.7
Qwen2.5-7B-FULL 89.8 76.4 47.0 30.0 51.1 58.9

Random Sampling 81.1 65.0 30.1 23.3 40.8 48.1
PPL-Top (Laurençon et al., 2022) 87.7 65.4 28.0 20.0 42.5 48.7
PPL-Middle (Ankner et al., 2024) 85.1 64.4 27.3 16.7 43.3 47.4

IFD (Li et al., 2023a) 79.4 58.6 29.8 13.3 34.9 43.2
Token Length (Xia et al., 2024b) 81.4 62.2 31.0 20.0 38.1 46.5

SelectIT (Liu et al., 2024a) 85.4 67.0 32.7 26.7 41.5 50.7

LIMR (Li et al., 2025) 84.2 61.6 27.1 16.7 39.9 45.9
LearnAlign 88.3 70.4 35.4 30.0 44.0 54.6

consistently outperforms baselines at every data scale, achieving comparable or superior performance
to full-data training with a small amount of the data. Specifically, With 1,000 samples (≈ 13.4% of
full data), LearnAlign reaches 77.5%, already matching the full-data baseline (77.0%). With 2,000
samples (≈ 26.8% of full data), the proposed method significantly surpasses full-data training (78.3%
vs. 77.0%). Besides, with fewer samples (e.g., 100 and 500), the proposed data selection method can
largely improve the base model (55.7%) and even exceed other baselines with more samples, proving
that smart selection is better than brute-force scaling, i.e., RL post-training with a carefully curated
seed set can rapidly unlock a pretrained model’s reasoning ability (Li et al., 2025).

Key Observation 3: LearnAlign shows consistent effectiveness across various settings. As
shown in Table 1 and Table 2, our proposed data selection method demonstrates consistent SOTA per-
formance not only on in-distribution (GSM8K, MATH500) but also on out-of-distribution (AMC2023,
AIME2024) test sets, and it even generalizes well on the code domain benchmark (CRUX). In ad-
dition, as shown in Appendix K, LearnAlign boosts the performance of RL post-training in the
staged setting. These results show that it can be effectively applied in various settings by considering
learnability and alignment.

5.3 DISCUSSIONS

Response-length bias issue: Similar to SFT, sequence-level policy gradients require averaging
across tokens within a sequence. As shown in Figure 3a, the gradient norm exhibits an inverse
correlation with response length, introducing a systematic bias. Consequently, as shown in Figure 3b,
compared with LearnAlign, which replaces gradient norms with success-rate–based learnability, the
data selected by vanilla gradient matching yields much shorter responses and lower performance.
Given that incorrect responses may lead to longer outputs, LearnAlign selects data with more moderate
response lengths between vanilla gradient and random, and achieves higher average performance.
Therefore, success-rate-based learnability serves as a more suitable indicator than raw gradient norms.
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(a) Gradient norms of examples negatively
correlate with the length of the response.
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Figure 3: Analysis of response length and gradient-based example selection.

Table 3: Ablation study of our method with Qwen2.5-1.5B-Instruct and Qwen2.5-3B model.

Model Qwen2.5-1.5B-Instruct Qwen2.5-3B
Data Size 1,000 2,000 1,000 1,000 1,000

Benchmark GSM8K GSM8K GSM8K MATH500 AMC2023
LearnAlign 77.5 78.3 79.3 60.2 28.3

w/o warmup training 76.6 76.6 76.7 58.2 26.1
w/o the data learnability 75.6 76.7 77.5 58.4 28.3

w/ feature similarity 75.7 76.6 79.1 57.6 27.5

Ablation studies: We conducted three ablation studies on the GSM8K dataset with 1,000 and 2,000
problems, and the DAPO-MATH-17K dataset with 1,000 problems: (1) removing the warmup phase;
(2) omitting the learnability metric; and (3) replacing the cosine similarity between gradients with
a feature-similarity measure (Ivison et al., 2025). As shown in Table 3, the removal of any single
component leads to a decline in performance. It indicates that the warmup phase, the learnability
metric, and gradient similarities each make a significant contribution to letting the data selection
method capture the model’s current capability. These findings align with the extended results in
Appendix F, further confirming that both warmup training and data learnability play essential roles in
the effectiveness of the proposed method.

More training steps discussion: To examine whether the selected subset constrains the final
achievable performance, we train the LearnAlign-selected data with more steps from 250 to 2000.
As shown in Table 5, training with more steps on the selected subset reaches the FULL-dataset
performance and even surpasses it.

Convergence behavior analysis: As shown in Figure 4, FULL training peaks at 63.12% validation
accuracy at step 640, whereas LearnAlign reaches the same accuracy by step 440, using 31% fewer
steps. This indicates substantially faster convergence under identical budgets. LearnAlign then
surpasses FULL’s peak, achieving 64.22% at step 1040, after which its curve remains stable with a
smoother plateau than FULL.

5.4 COMPLEXITY ANALYSIS

Let n = |Dtrain|, m = |Dwarmup| ≪ n, and d be the projected gradient dimension. Let C∇J and Cgen
denote the time cost of computing one gradient and generating one rollout, respectively. The data
selection includes four steps: (1) RL fine-tuning on Dwarmup to obtain θs: time O(mC∇J ), space
O(dim(θ)). (2) Computing GRPO gradients for each ξ ∈ Dtrain and projecting to ϕ(θs; ξ) ∈ Rd:
time O(nC∇J ), space O(nd). (3) Generating G rollouts per sample and computing Learnability:
time O(nGCgen), space O(n). (4) Constructing the pairwise score matrix S ∈ Rn×n and averaging
rows to select top-N : time O(n2d), space O(n2). Note that the alternative data selection method
LIMR (Li et al., 2025) requires multi-epoch training on the full dataset. As shown in Table 4, our
approach offers a more practical solution for RLVR post-training. For the time-cost analysis of all
steps and a detailed discussion, please refer to Appendix G.
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Table 4: Comparison of time cost for training Qwen2.5-3B on the DAPO-MATH-17K selected 1,000
subset with different methods. Time is reported in hours on a single H100 GPU. In the DAPO-MATH-
17K experiments, inspired by (Lin et al., 2025), we calculate the gradient of one correct rollout for
each sample. * means that we calculate the gradients of all rollouts for each sample.

Method Data Selection Time Training Time Speedup Avg. performance
FULL - 42.3h x1.00 44.9
LIMR 42.3h 2.4h x0.95 39.0

LearnAlign 8.9h 2.4h x3.74 42.4
LearnAlign* 22.8h 2.4h x1.68 43.3

Table 5: Performance of our method with more training steps. * The FULL method on Qwen2.5-3B
uses 2,174 training steps, and when training on Qwen2.5-7B, it uses 1,000 training steps with a
training batch size of 256 to support long-time training and prevent training crashes.

Method Qwen2.5-3B Qwen2.5-7B
GSM8K MATH500 AMC2023 GSM8K MATH500 AMC2023

FULL* 83.6 65.8 31.0 90.0 77.6 47.3

LearnAlign (250 steps) 79.3 60.2 28.3 88.3 70.4 35.4
LearnAlign (500 steps) 80.7 63.4 31.5 89.0 75.3 43.8

LearnAlign (1,000 steps) 82.9 64.6 35.2 90.4 76.7 48.6
LearnAlign (2,000 steps) 83.8 67.8 36.9 - - -
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Figure 4: Validation accuracy vs. training step for LearnAlign and the FULL method with Qwen2.5-
3B. The validation is conducted on the validation set of the MATH dataset (Hendrycks et al., 2021b).

6 CONCLUSION

In this study, we propose a novel data selection framework for reinforcement learning post-training
of large language models, driven by a gradient-alignment method. Building upon policy-gradient
direction alignment, our framework introduces a success-rate-based learnability score to mitigate
response-length bias and efficiently identify a compact subset of reasoning examples. Experiments
on the five benchmarks demonstrate that, with only approximately 1,000 samples (less than 15% of
the full training set), our method matches or surpasses the performance of full-data training on both
in-distribution and out-of-distribution tasks.
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APPENDIX

A LIMITATIONS

Due to limited GPU resources, we only evaluate the effectiveness of data selection methods on
relatively small-scale models (1.5B, 3B and 7B models) and datasets. Specifically, our current
assessment of the proposed method’s effectiveness focuses on math reasoning datasets, including
GSM8K and DAPO-MATH-17k. In the future, we plan to evaluate it on larger models and diverse
datasets. We believe this work establishes an effective paradigm for data-efficient RL fine-tuning.
Future research directions may encompass the extension to a broader range of task domains, the
integration of dynamic curricula with adaptive selection strategies, and the pursuit of alignment with
out-of-distribution data.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 HYPERPARAMETES AND PROMPT

For additional experimental hyperparameters, please refer to Table 6. The prompts used for GSM8K
and DAPO-MATH-17K are as follows:

The System Prompt for GSM8K:

A conversation between User and Assistant. The user asks a question, and the Assistant
solves it. The assistant first thinks about the reasoning process in the mind and then provides
the user with the answer. The reasoning process and answer are enclosed within <think>
</think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here
</think> <answer> answer here </answer>.

The System Prompt for DAPO-MATH-17K:

Let’s think step by step and output the final answer within \boxed{}.

B.2 DETAILED COMPARED METHODS

In this section, we detail the baseline methods compared with LearnAlign. Random Sampling:
We randomly select a portion of all the datasets as the training set data. PPL-Top (Laurençon et al.,
2022) and PPL-Middle (Ankner et al., 2024) all based on the perplexity calculated by Eq.(9):

PPL(ξ) = exp

(
− 1

T

T∑
t=1

log πθ(yt|ξ0:t−1)

)
, (9)

where PPL-Top selects data with the top perplexity, while PPL-Middle selects the data with the
middle perplexity. Furthermore, Instruction-Following Difficulty (IFD) (Li et al., 2023a) quantifies
the inherent difficulty of an instruction-answer pair for a Large Language Model (LLM). It is
calculated as the ratio between the direct answer score sθ(o) and the conditioned answer score
sθ(o|q). Direct answer score sθ(o) is the averaged cross-entropy loss of generating the answer o
without any instructional context. At the same time, conditioned answer score sθ(o|q) is the averaged
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Table 6: More detailed experimental parameter setting.

Training Dataset GSM8K DAPO-MATH-17K
Training Configuration
Train Batch Size 48 64
Max Prompt Length 512 512
Max Response Length 1024 2048
Train epochs 2 2
Clip Ratio 0.2 0.2

Optimizer Parameters

Optimizer AdamW (β1 = 0.9, β2 = 0.999, ϵ = 10−8) AdamW (β1 = 0.9, β2 = 0.999, ϵ = 10−8)
Learning Rate 1e-06 1e-06
Warmup Style Cosine Cosine
Warmup Steps Ratio 0.1 0.1
KL Loss Coefficient 0.04 0.04

Temperature
Training Temperature 1.0 1.0
Evaluation Temperature 0 0.8

cross-entropy loss of generating the ground-truth answer o given the instruction q. The IFD is then
calculated as:

IFDθ =
sθ(o|q)
sθ(o)

, (10)

where a higher IFD score indicates that the instruction provides less benefit to the response generation.

Token Length (Xia et al., 2024b) quantifies the value of a sample based on its token count. We
calculate the total token length by combining the tokens from both the question and the answer.
SelectIT (Liu et al., 2024a) harnesses the inherent uncertainty within the LLMs. This approach
utilizes a multi-granularity self-reflection mechanism, seamlessly integrating token-level, sentence-
level, and parameter-weighted model-level uncertainty analyses to evaluate and rank the quality of
instruction data. LIMR (Li et al., 2025) measures the learning impact of each training sample by its
alignment with the overall learning trajectory of the model.

C THEORETICAL MOTIVATION FOR THE LEARNABILITY METRIC

Although the proposed learnability metric p(1− p) may appear simple, it is in fact a theoretically
grounded formulation for modeling learnability under Bernoulli feedback in RLVR.

First, the success rate p measures how often the model receives informative positive trajectories
revealing correct behavior, while 1 − p captures the remaining room for improvement. A sample
provides a useful learning signal only when both conditions co-exist, and thus their product p(1− p)
can represent the expected improvement that a data point will provide (Florensa et al., 2018; Tzannetos
et al., 2023).

Second, p(1− p) is precisely the variance of Bernoulli accuracy rewards. Recent theoretical anal-
yses (Razin et al., 2025; Bae et al., 2025) show that the reward variance lower-bounds the KL
divergence between the initial and the optimal model, making it an effective statistical quantity
reflecting the gradient informativeness of a sample.

Third, this quadratic form is not arbitrary: it is the unique smooth, symmetric, unimodal function
that (i) peaks at intermediate difficulty, (ii) vanishes at p = 1, and (iii) aligns with Fisher information
based measures of sample utility (MacKay, 1992). Alternative function choices fail to satisfy these
properties or lack comparable theoretical interpretability.

Last but not least, as shown in Appendix D, for a fixed query ξ and model θ, the gradient magnitude
is positively proportional to p(1− p). It indicates that p(1− p) can represent the information about
the gradient magnitude without the issue of response-length bias.

Overall, p(1 − p) is a principled, theoretically grounded, and empirically supported metric for
modeling learnability.
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D THEORETICAL ANALYSIS OF THE LEARNABILITY–GRADIENT
RELATIONSHIP

Here, we prove a theorem to show the gradient magnitude is positively proportional to p(1 − p).
Given a prompt ξ and a response y ∈ Y . The policy πθ(y | ξ) has logits zξ,y(θ), which are functions
of the parameters θ; for simplicity, we denote them as zξ,y in the following. Under this notation, the
policy satisfies

πθ(y | ξ) = exp(zξ,y)∑
y′∈Y exp(zξ,y′)

.

Let y∗ be the unique correct action with success probability p := πθ(y
∗ | ξ), binary reward

r(y) = 1[y = y∗], and baseline b(ξ) := Ey∼πθ(·|ξ)[r(y)] = p. For simplicity, assume a single
incorrect action ȳ ̸= y∗, with probability 1− p = πθ(ȳ | ξ).
Theorem D.1 (Gradient Magnitude Factorization). For the one-correct-answer setting with binary
reward, the policy gradient for a sample ξ can be written as

∇θJ (θ; ξ) = p(1− p)d(ξ, θ),

for the direction vector d(ξ, θ) ∈ Rdim(θ). Consequently, for fixed ξ and θ,

∥∇θJ (θ; ξ)∥ ∝ p(1− p),

i.e., the gradient magnitude is positively proportional to p(1− p).

Proof. The advantage for an action can be expressed as:

A(ξ, y) = r(y)− b(ξ), b(ξ) = p,

where the baseline is chosen to be the constant b(ξ) = p. Consequently,

A(ξ, y∗) = 1− p, A(ξ, ȳ) = −p.

Consider the expected advantage under the policy πθ:

J (θ; ξ) := Ey∼πθ(·|ξ)[A(ξ, y)]

The policy gradient is then given by the standard identity:

∇θJ (θ; ξ) = Ey∼πθ(·|ξ)
[
A(ξ, y)∇θ log πθ(y | ξ)

]
.

For a softmax policy parameterized by logits zξ,y , the score function satisfies:

∂ log πθ(y
′ | ξ)

∂zξ,y
= 1[y′ = y]− πθ(y | ξ).

Differentiating J (θ; ξ) with respect to a specific logit zξ,y therefore yields:

∂J (θ; ξ)

∂zξ,y
= πθ(y | ξ)A(ξ, y)− πθ(y | ξ)Ey′∼πθ

[A(ξ, y′)].

Since the baseline is the expected reward probability,

Ey′∼πθ
[A(ξ, y′)] = E[r(y′)− p] = p− p = 0,

we obtain the simplified logit gradient:

∂J (θ; ξ)

∂zξ,y
= πθ(y | ξ)A(ξ, y).

The corresponding logit update is:

∆zξ,y ∝ πθ(y | ξ)A(ξ, y),

Substituting the two possible actions. Let πθ(y
∗ | ξ) = p, then:

∆zξ,y∗ ∝ p(1− p), ∆zξ,ȳ ∝ −(1− p)p.
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By the chain rule, the full parameter gradient satisfies:

∇θJ (θ; ξ) ∝ ∂zξ,y∗

∂θ
p(1− p) +

∂zξ,ȳ
∂θ

[
−p(1− p)

]
= p(1− p)

(
∂zξ,y∗

∂θ
− ∂zξ,ȳ

∂θ

)
.

Define

d(ξ, θ) :=
∂zξ,y∗

∂θ
− ∂zξ,ȳ

∂θ
.

We therefore have:
∇θJ (θ; ξ) = p(1− p)d(ξ, θ).

Taking norms yields:
∥∇θJ (θ; ξ)∥ = p(1− p) ∥d(ξ, θ)∥.

For fixed state ξ and parameters θ, the magnitude of the policy gradient is directly proportional to
p(1− p), with proportionality constant ∥d(ξ, θ)∥ > 0, which completes the proof.

E THE MEANS AND STANDARD DEVIATIONS OF MAIN RESULTS

We conduct multiple rounds of evaluation, and report the means and standard deviations of the main
results in Table 7, and 8.

Table 7: Comparison of data selection methods on GSM8K test set. We train Qwen2.5-1.5B-Instruct
on the GSM8K training selected subset. The mean and standard deviation of results are reported.

Data Selection Method Selected Data Size

100 500 1,000 2,000

Qwen2.5-1.5B-Instruct 55.7±0.8
Qwen2.5-1.5B-Instruct-FULL 77.0±0.3

Random Sampling 74.0±0.7 74.8±0.5 74.9±0.1 75.8±0.2
PPL-Top (Laurençon et al., 2022) 72.2±0.3 73.1±0.1 73.8±0.6 75.3±0.4
PPL-Middle (Ankner et al., 2024) 73.9±0.1 74.8±0.5 74.8±0.4 75.3±0.6

IFD (Li et al., 2023a) 74.1±0.7 76.0±0.3 75.5±0.4 76.1±0.5
Token Length (Xia et al., 2024b) 74.0±0.3 75.4±0.5 75.3±0.4 76.3±0.7

SelectIT (Liu et al., 2024a) 74.2±0.3 75.0±0.2 75.4±0.6 75.0±0.4

LIMR (Li et al., 2025) 74.2±0.3 75.6±0.7 75.5±0.6 76.3±0.3
LearnAlign 74.5±0.3 76.8±0.5 77.5±0.4 78.0±0.3

F THE SIGNIFICANCE OF "WARMUP TRAINING" AND "DATA LEARNABILITY"

To fully show the role of "warmup training" and "data learnability", we conducted the ablation
experiments on Qwen2.5-3B and Qwen2.5-7B by training for 2,000 and 1,000 steps, respectively. As
shown in Table 9, both of them have a significant impact on the proposed method through sufficient
training.

G DETAILED DISCUSSION ON PRACTICAL DATA SELECTION TIME COST AND
COMPUTATIONAL EFFICIENCY

This appendix provides a detailed discussion on the computational efficiency of LearnAlign-based
data selection. We elaborate on (1) efficient implementation of gradient-information estimation
(Step 2), (2) the efficiency of LearnAlign score computation despite the nominal n× n matrix size
(Step 4), and (3) a comparison of time costs against baseline methods.
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Table 8: Comparison of data selection methods on four math benchmarks (GSM8K, MATH500,
AMC2023, AIME2024) and one code benchmark (CRUX). We train Qwen2.5-3B and Qwen2.5-7B
on the DAPO-MATH-17K selected subset with 1,000 data points. The mean and standard deviation
of results are reported.

Data Selection Method GSM8K MATH500 AMC2023 AIME2024 CRUX

Qwen2.5-3B 20.3±1.3 52.9±1.0 9.2±1.5 3.3±0.0 15.2±0.6

Qwen2.5-3B-FULL 82.5±0.5 64.3±0.4 32.5±0.2 20.0±5.4 22.8±0.3

Random Sampling 73.4±0.4 57.3±0.9 24.7±0.9 12.2±1.5 17.4±1.1
PPL-Top (Laurençon et al., 2022) 74.0±1.2 58.0±2.2 25.2±0.3 13.3±4.7 19.1±0.7

PPL-Middle (Ankner et al., 2024) 72.2±0.2 52.7±0.5 23.5±0.5 14.4±4.2 18.9±1.6

IFD (Li et al., 2023a) 69.6±0.4 56.0±1.8 22.7±0.4 15.5±6.8 17.9±0.2
Token Length (Xia et al., 2024b) 63.3±0.8 52.7±1.3 20.4±0.1 13.3±5.4 18.1±0.2

SelectIT (Liu et al., 2024a) 68.8±0.7 55.1±0.9 23.1±1.6 13.3±0.0 14.7±0.4

LIMR (Li et al., 2025) 73.6±0.8 57.3±1.5 23.3±0.4 15.6±3.1 17.1±0.3
LearnAlign 79.3±0.6 61.1±1.1 29.3±1.4 16.7±3.2 21.1±0.9

Qwen2.5-7B 27.0±1.1 66.1±1.5 17.9±0.3 17.8±1.9 25.7±0.8
Qwen2.5-7B-FULL 89.8±0.1 73.9±0.5 49.2±0.7 32.2±1.6 52.4±1.1

Random Sampling 82.9±0.5 64.5±0.5 30.2±0.5 23.3±0.0 41.0±0.5

PPL-Top (Laurençon et al., 2022) 83.6±0.8 64.4±0.4 27.4±0.4 27.8±3.1 44.0±1.5
PPL-Middle (Ankner et al., 2024) 79.5±1.2 64.6±0.5 27.8±0.1 17.8±3.1 38.9±0.6

IFD (Li et al., 2023a) 82.8±1.1 63.1±0.4 27.6±1.0 20.0±0.0 35.3±0.4
Token Length (Xia et al., 2024b) 78.7±0.9 62.1±2.1 25.8±0.4 23.3±4.7 34.4±2.9

SelectIT (Liu et al., 2024a) 84.6±0.2 64.3±1.5 27.7±0.1 18.9±3.1 40.8±0.8

LIMR (Li et al., 2025) 82.7±1.3 65.7±1.6 28.0±0.4 25.6±3.1 39.4±0.9
LearnAlign 87.7±0.7 71.0±0.4 34.0±1.4 28.9±3.1 43.1±0.2

Table 9: Ablation study of warmup training and data learnability. We train Qwen2.5-3B and Qwen2.5-
7B on the DAPO-MATH-17K selected 1,000 examples for 2,000 and 1,000 steps, respectively.

Benchmark GSM8K MATH500 AMC2023
LearnAlign(Qwen2.5-3B, 2,000 steps) 83.8±1.0 67.8±2.1 36.9 ±0.7

w/o warmup training (Qwen2.5-3B, 2,000 steps) 81.9±0.2 64.4±0.6 31.0±2.0
w/o data learnability (Qwen2.5-3B, 2,000 steps) 81.3±1.1 63.6±2.2 34.8 ±0.8

LearnAlign(Qwen2.5-7B, 1,000 steps) 90.4±0.4 76.7±0.4 48.6±0.3
w/o warmup training (Qwen2.5-7B, 1,000 steps) 89.9±0.1 73.2±0.2 43.7±0.3
w/o data learnability (Qwen2.5-7B, 1,000 steps) 89.9±0.3 75.3±0.5 46.4±0.7

G.1 EFFICIENT IMPLEMENTATION OF GRADIENT INFORMATION ESTIMATION (STEP 2)

Current efficiency measures in our method. As shown in Table 10, the Gradient Information
Estimation step (Step 2) is the most time-consuming part of our method. We adopt two strategies to
make gradient-information estimation efficient:

• Single-rollout gradient computation. Following (Lin et al., 2025), we compute the gradient of a
single correct rollout per sample, which significantly reduces backpropagation cost. Table 4 of the
main paper shows that this yields substantial savings while preserving the informative gradient
directions required for LearnAlign.

• Random projection of gradients. Full-dimensional gradients are prohibitively large. We adopt a
Johnson–Lindenstrauss–style (Johnson et al., 1984) random projection:

ϕ(θ;x) = Γ⊤∇JGRPO(θ;x), Γ ∈ Rd×k, k ≪ d.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Time cost of different steps in LearnAlign.

Step Time
Step 1: Warmup Training 2h 2min
Step 2: Gradient Information Estimation 4h 12min
Step 3: Learnability Computation 2h 41min
Step 4: LearnAlign-based Data Selection <1 min (12.7s)

Total 8h 55min

This preserves inner products, enabling efficient computation of LearnAlign scores in a low-
dimensional space.

Other possible techniques for efficient computation.

• Cancellation effect. Prior work (Yeh et al., 2022) shows that token-level gradients can exhibit
cancellation across time steps, allowing partial reuse of intermediate results and reducing redundant
backpropagation.

• LoRA-space gradients. Instead of backpropagating through the full parameter space, one may
compute gradients only within a low-rank LoRA subspace (Hu et al., 2022), dramatically reducing
dimensionality while preserving informative update directions.

• Neural-network surrogate models for influence prediction. A potential direction is to train
a compact neural network to predict influence scores from cheaper metadata (e.g., embeddings,
rollout statistics). Prior studies (Agarwal & Hakkani-Tür) show such surrogate models can remove
the need to compute full gradients for every sample.

G.2 EFFICIENT IMPLEMENTATION OF LEARNALIGN SCORE MATRIX (STEP 4)

Although Step 4 conceptually involves an n×n LearnAlign score matrix, the computation is extremely
efficient.

Current data scales (n = 103–104). In our experiments, the training set size is at most a few tens of
thousands. Step 4 is implemented as a single batched GPU matrix multiplication on low-dimensional
gradient features. Table 10 shows that LearnAlign selection takes only 12.7 seconds, compared
with over 4 hours for gradient computation. The computational bottleneck lies overwhelmingly in
obtaining gradients, not in matrix operations.

Scalable extensions for ultra-large datasets. When n reaches hundreds of thousands, the following
scalable methods can be further applied:

• Low-rank/Nyström sampling. Approximate the full similarity matrix using a small subset of
rows/columns (e.g., via Nyström sampling (Williams & Seeger, 2000)), reducing cost from O(n2)
to O(nc), where c is the number of sampled rows/columns and c ≪ n.

• Two-stage cascade selection(Gong et al., 2025): Use a cheap embedding-based filter to reduce
the candidate pool, then apply LearnAlign only on that smaller set.

G.3 COMPUTATIONAL COST OF BASELINE METHODS

Table 11 summarizes the time cost of different data-selection baselines for training Qwen2.5-3B
on DAPO-MATH-17K. All baselines include the same warmup training time (2h2min) and rollout
sampling (2h41min).

H DISCUSSION ON REPRESENTATIVENESS AND DIVERSITY

To assess the trade-off between diversity and representativeness, we conduct additional experiments
that incorporate feature-space diversity (Xia et al., 2024b). For example, we combine K-means
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Table 11: Comparison of data selection time cost for different methods.

Method Time
PPL-Top 5h 34min
PPL-Middle 5h 34min
IFD 6h 26min
Token Length 4h 44min
SelectIT 6h 54min
LIMR 43h 12min
LearnAlign 8h 55min

clustering with LearnAlign, selecting the highest-scoring samples within each cluster to promote di-
versity. As shown in Table 12, incorporating explicit feature-space diversity does not yield significant
gains over LearnAlign, which prioritizes representativeness. Moreover, the diversity-aware variant
remains sensitive to the choice of the number of clusters k.

As reported in LIMO (Ye et al., 2025), the reasoning capability stimulated by an example is not directly
correlated with shallow features, making traditional diversity criteria (e.g., k-means over embeddings)
unreliable. For RLVR reasoning, recent studies (Ye et al., 2025; Li et al., 2025) show that very small
subsets of high-value reasoning data, even a one-shot example, can provide broad generalization
improvements across categories. Overall, current evidence suggests that representative and learnable
samples are the primary bottleneck for policy improvement, and feature-level diversity provides
limited additional benefit. Therefore, our method prioritizes representativeness. Nevertheless, we
acknowledge that diversity-aware RLVR data selection remains underexplored, and investigating
principled diversity metrics beyond surface features is an important direction for future work.

Table 12: The performance of LearnAlign that integrates the K-means clustering on DAPO-MATH-
14K with Qwen2.5-3B.

Model GSM8K MATH500 AMC2023
LearnAlign 79.3 60.2 28.3
+k-means (k=5) 77.5 59.8 27.1
+k-means (k=10) 80.3 60.8 27.4
+k-means (k=20) 78.4 60.4 26.8

I SENSITIVITY OF THE WARMUP DATASET

The warmup dataset also may affect the performance of LearnAlign. We perform experiments with
three different warmup datasets on DAPO-MATH-14K with Qwen2.5-3B. As shown in Table 13, the
proposed data selection method is robust to the randomness of the initial warmup dataset.

Table 13: The performance of LearnAlign with three different warmup datasets on DAPO-MATH-
14K with Qwen2.5-3B.

Model GSM8K MATH500 AMC2023
LearnAlign(warmup dataset 1) 79.3 60.2 28.3
LearnAlign(warmup dataset 2) 79.5 61.8 29.5
LearnAlign(warmup dataset 3) 81.2 60.4 28.9

J COMPARISON WITH FILTERING DATA BY THE PASS@N SCORE

In addition to the existing baselines, we also consider a baseline that selects data using the pass@N
score, which measures how often a model successfully solves a problem across N independent
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Table 14: Comparison of data selection methods on three benchmarks. We train Qwen2.5-3B on the
DAPO-MATH-17K with a selected subset.

Data Selection Method GSM8K MATH500 AMC2023
Qwen2.5-3B-FULL (2,174 steps) 83.6 65.8 31.0

Learnability (2,000 steps) 82.9 65.0 33.4
Pass@8 Score Filter (2,000 steps) 83.5 64.6 31.7
LearnAlign(2,000 steps) 83.8 67.8 36.9

Qwen2.5-7B-FULL (1,000 steps) 90.0 77.6 47.3

Learnability (1,000 steps) 89.9 74.4 46.4
Pass@8 Score Filter (1,000 steps) 89.9 75.0 43.7
LearnAlign(1,000 steps) 90.4 76.7 48.6

attempts. Specifically, we implement a pass@8–based filtering strategy: we remove questions whose
pass@8 score falls in {0, 1, 7, 8}, as these correspond to samples that are either extremely easy or
extremely difficult. Since the number of samples selected by pass@8–based filtering is not fixed, we
train all Qwen2.5-3B and Qwen2.5-7B for about 2,000 steps and 1,000 steps respectively, to ensure a
fair comparison. For completeness, we also include a learnability-only baseline that selects the 1,000
samples with the highest success-rate-based learnability introduced in this paper.

The comparison is shown in Table 14. Furthermore, we also highlight two key observations based on
the actual results:

1. Learnability and pass@8 filtering achieve comparable performance by selecting medium-difficulty
samples. Both methods aim to avoid overly easy and overly hard questions, and therefore select
samples near the “middle” of the model’s current capability. This results in comparable performance
between the two methods across three benchmarks. Importantly, both methods achieve accuracy
relatively close to full-data training, confirming the intuition that medium-difficulty samples carry
substantial training value under RLVR.

2. LearnAlign outperforms full-data training and clearly surpasses baselines. In contrast to purely
difficulty-based filtering, LearnAlign incorporates gradient-direction alignment to additionally
capture the representativeness of each sample. As shown in Table 14, LearnAlign exceeds the
full-data baseline and shows a clear margin over both Learnability and Pass@8 filtering across all
three benchmarks. This demonstrates that combining learnability with gradient alignment signals
yields a substantially more informative subset than using difficulty signal alone.

Overall, the results indicate that while selecting medium-difficulty samples is beneficial, considering
gradient alignment is essential for identifying the truly most impactful RLVR data, leading to stronger
and more consistent gains. Besides, we are running additional experiments and will update more
results once we finish them.

K STAGED REINFORCEMENT LEARNING WITH LEARNALIGN

To further assess the applicability of our method in a curriculum learning scenario, we design a
three-stage training procedure on the GSM8K dataset. Specifically:

• In the first stage, we use Qwen2.5-1.5B-Instruct to select the top 50% of the training
samples, and train the model until convergence.

• In the second stage, the resulting model is used to select the next 30% of the samples, and
again trained to convergence.

• In the final stage, the latest model selects the 20% of samples, and training is repeated until
convergence.

As shown in Figure 5, our method can seamlessly integrate into such a staged RL curriculum to
significantly improve capability acquisition.
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Figure 5: The performance of the staged reinforcement learning with the proposed data selection
method.

L STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In the preparation period, we employ the large language model ChatGPT-5, developed by OpenAI, as
a tool for writing assistance. Its role was strictly confined to enhancing language quality, including
improvements in grammar, spelling, clarity, and sentence structure. The model was not utilized for
generating scientific concepts, performing analyses, or interpreting results. All text produced by the
model was thoroughly reviewed and edited by the authors, who assume full responsibility for the
final content of this paper.
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