
Are Large Language Models Post Hoc Explainers?

Nick Kroeger*
University of Florida
nkroeger@ufl.edu

Dan Ley*
Harvard University

dley@g.harvard.edu

Satyapriya Krishna
Harvard University

skrishna@g.harvard.edu

Chirag Agarwal
Harvard University
cagarwal@hbs.edu

Himabindu Lakkaraju
Harvard University

hlakkaraju@hbs.edu

Abstract

Large Language Models (LLMs) are increasingly used as powerful tools for a
plethora of natural language processing (NLP) applications. A recent innovation,
in-context learning (ICL), enables LLMs to learn new tasks by supplying a few
examples in the prompt during inference time, thereby eliminating the need
for model fine-tuning. While LLMs have been utilized in several applications,
their applicability in explaining the behavior of other models remains relatively
unexplored. Despite the growing number of new explanation techniques, many
require white-box access to the model and/or are computationally expensive,
highlighting a need for next-generation post hoc explainers. In this work, we
present the first framework to study the effectiveness of LLMs in explaining other
predictive models. More specifically, we propose a novel framework encompassing
multiple prompting strategies: i) Perturbation-based ICL, ii) Prediction-based ICL,
iii) Instruction-based ICL, and iv) Explanation-based ICL, with varying levels of
information about the underlying ML model and the local neighborhood of the test
sample. We conduct extensive experiments with real-world benchmark datasets to
demonstrate that LLM-generated explanations perform on par with state-of-the-art
post hoc explainers using their ability to leverage ICL examples and their internal
knowledge in generating model explanations. On average, across four datasets
and two ML models, we observe that LLMs identify the most important feature
with 72.19% accuracy, indicating promising avenues for further research into LLM
based explanation frameworks within explainable artificial intelligence (XAI).

1 Introduction

Over the past decade, machine learning (ML) models have become ubiquitous across various
industries and applications. With their increasing use in critical applications (e.g., healthcare, financial
systems, and crime forecasting), it becomes essential to ensure that ML developers and practitioners
understand and trust their decisions. To this end, several approaches [18, 17, 21, 22, 12, 19] have
been proposed in XAI literature to generate explanations for understanding model predictions.
However, these explanation methods are highly sensitive to changes in their hyperparameters [25, 2],
require access to the underlying black-box ML model [12, 18], and/or are often computationally
expensive [20], thus impeding reproducibility and the trust of relevant stakeholders.

More recently, generative models such as LLMs [16] have steered ML research into new directions
and shown exceptional capabilities, allowing them to surpass state-of-the-art models at complex
tasks like machine learning translation [6], language understanding [4], and commonsense
reasoning [9, 24]. However, there is very little work on systematically analyzing the reliability of
LLMs as explanation methods. While recent research has used LLMs to explain what patterns in
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Figure 1: Overview of our framework. Given a dataset and model to explain, we provide 1) different
prompting strategies to generate explanations using LLMs, 2) functions to parse LLM-based explanations, 3)
utility functions to support new LLMs, and 4) diverse metrics to evaluate the faithfulness of explanations.

a text cause a neuron to activate, they simply explain correlations between the network input and
specific neurons and do not explain what causes model behavior at a mechanistic level [3]. Thus, the
ability of LLMs to act as reliable explainers to understand predictive models remains unexplored.

Present work. In this work, we present the first framework to study the effectiveness of LLMs
in explaining other predictive models (see Fig. 1). More specifically, we introduce four broad
prompting strategies — Perturbation-based ICL, Prediction-based ICL, Instruction-based ICL, and
Explanation-based ICL — for generating post hoc explanations using LLMs. Our first three strategies
entail providing local neighborhood samples and labels of a given instance whose prediction we
want to explain, before asking an LLM to identify features that are key drivers in the model’s
predictions. In our last approach, we leverage the in-context learning (ICL) [11] behavior of LLMs
by providing a small set of instances and their corresponding explanations (output by state-of-the-art
post hoc explanation methods) as input to an LLM and ask it to generate feature importance-based
explanations for new samples. We also explore different prompting and design choices, such as
increasing the level of information in each, to generate more faithful explanations using LLMs.

We conduct extensive experimentation with four benchmark datasets, two black-box models, and
two GPT models to analyze the efficacy of our proposed framework. Our empirical studies reveal
the following key findings. 1) LLMs, on average, accurately identify the most important feature
with 72.19% accuracy across different datasets, with performance drop for larger values of top-𝑘
features. 2) LLMs can mimic the behavior of six state-of-the-art post hoc explanation methods using
the proposed Explanation-based ICL prompting strategy and only four ICL samples. On average,
LLMs behave as post hoc explainers by providing explanations that are on par with existing methods,
such as LIME and gradient-based methods, in terms of their faithfulness. 3) LLMs struggle to
retrieve relevant information from longer prompts, resulting in a decrease in the faithfulness of the
explanations generated using a large set of ICL samples. 4) Our proposed framework paves the way
for a new paradigm in XAI research, where LLMs can aid in explaining black-box model predictions.

2 Our Framework

Next, we describe our framework that aims to generate explanations using LLMs. To achieve this goal,
we outline four distinct prompting strategies — Perturbation-based ICL (Sec. 2.1), Prediction-based
ICL (Sec. 2.2), Instruction-based ICL (Sec. 2.3), and Explanation-based ICL (Sec. 2.4).

Notation. Let 𝑓 : R𝑑 → [0, 1] denote a black-box ML model that takes an input x ∈ R𝑑 and returns
the probability of x belonging to a class 𝑐 ∈ C and the predicted label 𝑦. Following previous XAI
works [18, 21], we randomly sample points from the local neighborhood N𝑥 of the given input x to
generate explanations, where N𝑥 = N(x, 𝜎2) denotes the neighborhood of perturbations around x
using a Normal distribution with mean 0 and variance 𝜎2.

2.1 Perturbation-based ICL

In the Perturbation-based ICL prompting strategy, we use an LLM to explain 𝑓 , trained on tabular
data, by querying the LLM to identify the top-𝑘 most important features in determining the output of
𝑓 in a rank-ordered manner. To tackle this, we sample input-output pairs from the neighborhood N𝑥

of x and generate their respective strings following a serialization template; for instance, a perturbed
sample’s feature vector x′ = [0.058, 0.632,−0.015, 1.012,−0.022,−0.108], belonging to class 0 in
the Recidivism dataset, is converted into a natural-language string as:
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# Serialization template
Input: A = 0.058, B = 0.632, C = -0.015, D = 1.012, E = -0.022, F = -0.108
Output: 0

While previous post hoc explainers suggest using a large number of neighborhood samples [18, 21],
it is impractical to provide all samples from N𝑥 in the prompt for an LLM due to their constraint on
the maximum context length and performance loss when given more information [10]. Consequently,
we select 𝑛ICL samples from N𝑥 to use in the LLM’s prompt. In the interest of maintaining a neutral
and fundamental approach, we employ two primary sampling strategies, both selecting balanced
class representation within the neighborhoods defined by N𝑥 . The first strategy selects samples
randomly, while the second chooses those with the highest confidence levels, aiding the LLM in
generating explanations centered on model certainty.

Given 𝑛ICL input-output pairs from N𝑥 and the test sample x to be explained, we add context with
respect to the predictive model, dataset, and task description in our prompt to aid the LLM in
behaving like a post hoc explanation method. Motivated by the local neighborhood approximation
works in XAI, the Perturbation-based ICL prompting strategy presumes that the local behavior of 𝑓
is a simple linear decision boundary, contrasting with the often globally exhibited complex non-linear
decision boundary. Hence, assuming a sufficient number of perturbations in N𝑥 , the LLM is expected
to accurately approximate the black box model’s behavior and utilize this information to identify
the top-𝑘 most important features. The final prompt structure is given below, where the “Context”
provides the LLM with the background of the underlying ML model, the number of features in the
dataset, and model predictions, “Dataset” denotes the 𝑛ICL instances sampled from the neighborhood
N𝑥 of x, “Question” is the task we want our LLM to perform, and “Instructions” are the guidelines
we want the LLM to follow while generating the output explanations.

# Perturbation-based ICL Prompt Template
Context: “We have a two-class machine learning model that predicts based on 6 features: [‘A’, ‘B’, ‘C’,
‘D’, ‘E’, ‘F’]. The model has been trained on a dataset and has made the following predictions.”
Dataset:
Input: A = -0.158, B = 0.293, C = 0.248, D = 1.130, E = 0.013, F = -0.038
Output: 0
. . .
Input: A = 0.427, B = 0.016, C = -0.128, D = 0.949, E = 0.035, F = -0.045
Output: 1
Question: “Based on the model’s predictions and the given dataset, what appears to be the top five most
important features in determining the model’s prediction?”
Instructions: “Think about the question. After explaining your reasoning, provide your answer as the top
five most important features ranked from most important to least important, in descending order. Only
provide the feature names on the last line. Do not provide any further details on the last line.”

2.2 Prediction-based ICL

Here, we devise Prediction-based ICL, a strategy closer to the traditional ICL prompting style,
where the primary objective remains the same — understanding the workings of the black-box
model 𝑓 by identifying the top-𝑘 most important features. This strategy positions the LLM to
first emulate the role of the black-box model by making predictions, staging it to extract important
features that influenced its decision. We follow the perturbation strategy of Sec. 2.1 and construct
the Prediction-based ICL prompt using 𝑛ICL input-output pairs from N𝑥 . The main difference in
the Prediction-based ICL prompting strategy lies in the structuring of the prompt (see Appendix A.1
for prompt template). Here, we construct the prompt using the task description followed by the 𝑛ICL
ICL samples and then ask the LLM to provide the predicted label for the test sample x and explain
how it generated that label. The primary motivation behind the Prediction-based ICL prompting
strategy is to investigate whether the LLM can learn the classification task using the ICL set and,
if successful, identify the important features in the process. This approach aligns more closely with
the traditional ICL prompting style, offering a different perspective on the problem.
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2.3 Instruction-based ICL

The Instruction-based prompting transitions from specifying task objectives to providing detailed
guidance on the strategy for task execution. Rather than solely instructing the LLM on what the task
entails, this strategy delineates how to conduct the given task. The objective remains to understand
the workings of the black-box model and identify the top-𝑘 important features. However, in using
step-by-step directives, we aim to induce a more structured and consistent analytical process within
the LLM to target more faithful explanations (see Appendix A.2 for prompt template). Here, we
provide some general instructions to the LLM for understanding the notion of important features
and how to interpret them through the lens of correlation analysis. To achieve this, we instruct
LLMs to analyze each feature sequentially and ensure that both positive and negative correlations
are equally emphasized. The LLM assigns an importance score for each feature in the given dataset
and then positions it in a running rank. This rank is necessary to differentiate features and avoid
ties in the LLM’s evaluations. The final line ensures that the LLM’s responses are strictly analytical,
minimizing non-responsiveness or digressions into tool or methodology recommendations.

2.4 Explanation-based ICL

Recent studies show that LLMs can learn new tasks through ICL, enabling them to excel in
new downstream tasks by merely observing a few instances of the task in the prompt. In the
Explanation-based ICL prompting strategy, we leverage the ICL capability of LLMs to alleviate
the computation complexity of some post hoc explanation methods. In particular, we investigate
whether an LLM can mimic the behavior of a post hoc explainer by looking at a few input, output,
and explanation examples. We generate explanations for a given test sample x using LLMs by
utilizing the ICL framework and supplying 𝑛ICL input, output, and explanation examples to the LLM,
where the explanations in the ICL can be generated using any post hoc explanation method. For
constructing the ICL set, we randomly select 𝑛ICL input instances XICL from the ICL split of the
dataset and generate their predicted labels yICL using model 𝑓 . Next, we generate explanations EICL
for samples (XICL, yICL) using any post hoc explainer. Using the above input, output, and explanation
samples, we construct a prompt by concatenating each pair.

# Explanation-based ICL Prompt Template
Input: A = 0.172, B = 0.000, C = 0.000, D = 1.000, E = 0.000, F = 0.000
Output: 1
Explanation: A,C,B,F,D,E
. . .
Input: A = 0.052, B = 0.053, C = 0.073, D = 0.000, E = 0.000, F = 1.000
Output: 0
Explanation: A,B,C,E,F,D
Input: A = 0.180, B = 0.222, C = 0.002, D = 0.000, E = 0.000, F = 1.000
Output: 0
Explanation:

Using the Explanation-based ICL prompting strategy, we aim to investigate the learning capability
of LLMs such that they can generate faithful explanations by examining the 𝑛ICL demonstration
pairs of inputs, outputs, and explanations generated by state-of-the-art post hoc explainer.

3 Experiments
Next, we evaluate the effectiveness of LLMs as post hoc explainers. More specifically, our
experimental analysis focuses on the following questions: Q1) Can LLMs generate faithful post
hoc explanations? Q2) Do LLM-Augmented post hoc explainers achieve similar faithfulness vs. their
vanilla counterpart? Q3) Are LLMs better than state-of-the-art post hoc explainers at identifying
the most important feature? Q4) Is GPT-4 a better explainer than GPT-3.5?

3.1 Datasets and Experimental Setup

We first describe the datasets and models used to study the reliability of LLMs as post hoc explainers
and then outline the experimental setup.

Datasets. Following previous LLM works [5], we performed analysis on four real-world tabular
datasets: Blood [26] having four features, Recidivism [15] having six features, Adult [7] having
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13 features, and Default Credit [23] having 10 features. The datasets come with a random train-test
split, and we further subdivide the train set, allocating 80% for training and the remaining 20% for
ICL sample selection, as detailed in Sec. 2.4. We use a random set of 100 samples from the test
split to generate explanations for all of our experiments.

Models. We consider two predictive models in our experiments: i) Logistic Regression (LR) and
ii) Artificial Neural Networks (ANN). We use PyTorch [14] to implement the models with the
following configurations: one layer of size 16 for the LR model; and three layers of size 64, 32, and
16 for the ANN, using RELU for the hidden layers and SOFTMAX for the output (see Table 1 for
predictive performances). Further, we consider GPT-3.5 and GPT-4 as LLMs for our experiments.

Baseline Explanation Methods. We use six post hoc explainers as baselines to investigate the
effectiveness of explanations generated using LLMs: LIME [18], SHAP [12], Vanilla Gradients [27],
SmoothGrad [21], Integrated Gradients [22], and Gradient x Input (ITG) [19].

Performance Metrics. We employ four metrics to measure the faithfulness of an explanation. To
quantify the faithfulness of an explanation where there exists a ground-truth top-𝑘 explanation for
each test input (i.e., LR model coefficients), we use the Feature Agreement (FA) and Rank Agreement
(RA) metrics introduced in Krishna et al. [8], which compares the LLM’s top-𝑘 directly with the
model’s ground-truth. The FA and RA metrics range from [0, 1], where 0 means no agreement and
1 means full agreement. However, in the absence of a top-𝑘 ground-truth explanation (as is the case
with ANNs), we use the Prediction Gap on Important feature perturbation (PGI) and the Prediction
Gap on Unimportant feature perturbation (PGU) metrics from OpenXAI [1]. While PGI measures
the change in prediction probability that results from perturbing the features deemed as influential,
PGU examines the impact of perturbing unimportant features. Here, the perturbations are generated
using Gaussian noise N(0, 𝜎2). See Appendix A.3 for implementation details.

3.2 Results

Next, we discuss experimental results to answer key questions (Q1-Q4) about LLMs as explained.
See Appendix A.4 for additional results on our ablation studies.

1) LLMs can generate faithful explanations. We compare our proposed LLM explanation strategies
to existing post hoc explainers on the task of identifying important features for understanding
ANN (Fig. 2) and LR (Fig. 3) model predictions across four real-world datasets (see Table 2). For the
ANN model, the LLM-based explanations perform on par with the gradient-based methods (despite
having white-box access to the underlying black-box model) and LIME (that approximates model
behavior using a surrogate linear model). In particular, our proposed prompting strategies perform
better than ITG, SHAP, a Random baseline, and a 16-sample version of LIME, namely LIME16,
which is analogous to the number of ICL samples used in the LLM prompts. We observe that LLM
explanations, on average, achieve 51.74% lower PGU and 163.40% higher PGI than ITG, SHAP, and
Random baseline for larger datasets (more number of features) like Adult and Credit compared to
25.56% lower PGU and 22.86% higher PGI for Blood and Recidivism datasets. While our prompting
strategies achieve competitive PGU and PGI scores among themselves across different datasets for
ANN models, the Instruction-based ICL strategy, on average across datasets, achieves higher FA and
RA scores for the LR model. We find that gradient-based methods and LIME achieve almost perfect
scores on FA and RA metrics as they are able to get accurate model gradients and approximate the
model behavior with high precision. Interestingly, the LLM explanations perform better than ITG,
SHAP, and Random baseline methods, even for a linear model.

P3: Instruction-based ICL   P2: Prediction-based ICL   P1: Perturbation-based ICL  

Figure 2: PGU and PGI scores of explanations generated using post hoc methods and LLMs (Instruction-based,
Prediction-based, and Perturbation-based ICL prompting strategies) for an ANN model. On average, across
four datasets, we find that LLM-based explanations perform on par with gradient-based and LIME methods
and outperform LIME16, ITG, and SHAP methods.
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P3: Instruction-based ICL   P2: Prediction-based ICL   P1: Perturbation-based ICL  

Figure 3: FA and RA scores of explanations generated using post hoc methods and LLMs (Instruction-,
Prediction-, and Perturbation-based ICL prompting strategies) for an LR model. On average, across four
datasets, we find that gradient-based and LIME methods (with 1000 samples) outperform all other methods
and Instruction-based ICL explanations outperform the other two prompting strategies across all datasets.

2) LLM-augmented explainers achieve similar faithfulness to their vanilla counterparts. We
evaluate the faithfulness of the explanations generated using the Explanation-based ICL prompting
strategy. Our results show that LLMs generate explanations that achieve faithfulness performance
on par with those generated using state-of-the-art post hoc explanation methods for LR and large
ANN predictive models across all four datasets (Fig. 4; see Table 3 for complete results) and four
evaluation metrics. We demonstrate that very few in-context examples (here, 𝑛ICL=4) are sufficient
to make the LLM mimic the behavior of any post hoc explainer and generate faithful explanations,
suggesting the effectiveness of LLMs as an explanation method. Interestingly, for low-performing
explanation methods like ITG and SHAP, we find that explanations generated using their LLM
counterparts achieve higher feature and rank agreement (Fig. 4) scores in the case of LR models,
hinting that LLMs can use their internal knowledge to improve the faithfulness of explanations.
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Figure 4: Faithfulness metrics on the Recidivism dataset for six post hoc explainers and their LLM-augmented
counterparts for a given LR and ANN model. LLM-augmented explanations achieve on-par performance w.r.t.
post hoc methods across all four metrics (see Table 3 for results on other datasets).

3) LLMs accurately identify the most important feature. To demonstrate the LLM’s capability
in identifying the most important feature, we show the faithfulness performance of generated
explanations across four datasets. Our results in Fig. 5 demonstrate the impact of different top-𝑘
feature values on the faithfulness of explanations generated using our prompting strategies. We
observe a steady decrease in RA scores (0.722 for top-𝑘 = 1 vs. 0.446 for top-𝑘 = 2 vs. 0.376 for
top-𝑘 = 4) across three datasets (Blood, Credit, and Adult) as the top-𝑘 value increases. Interestingly,
the RA value for top-𝑘 = 1 for the Recidivism dataset is almost zero, though this can be attributed
to the LLM’s handling of the two primary features, whose LR coefficients have nearly identical
magnitudes; the LLM generally places them both within the top two but, due to their similar
importance, defaults to alphabetical order. However, when employing our Instruction-based ICL
running-rank strategy, we find that the RA value rises from 0 to 0.5, highlighting the influence of
nuanced prompts on the LLM’s ranking mechanism. Further, we observe that LLMs, on average
across four datasets and three prompting strategies, faithfully identify top-𝑘 = 1 features with 72.19%
FA score (see Fig. 10), and their faithfulness performance takes a hit for higher top-𝑘 values. For
context, baseline methods’ performances in identifying top-𝑘=1 features are as follows: Random
baseline (15%), SHAP (29.75%), ITG (29.5%), and LIME/IG/SG/Grad (100%) (see Tables 4-5).

4) GPT-3.5 vs. GPT-4. An interesting question is how the reasoning capability of an LLM affects
the faithfulness of the generated explanations. Hence, we compare the output explanations from
GPT-3.5 and GPT-4 models to understand black-box model predictions. Results in Figs. 6, 11,
and 12 show that explanations generated using GPT-4, on average across four datasets, achieve higher
faithfulness scores than explanations generated using the GPT-3.5 model. Across four prompting
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PERTURBATION-BASED ICL PREDICTION-BASED ICL INSTRUCTION-BASED ICL

1 2 3 4 5
TopK Feature Importance

0.0

0.2

0.4

0.6

0.8

1.0

RA
 (

)

1 2 3 4 5
TopK Feature Importance

0.0

0.2

0.4

0.6

0.8

1.0

RA
 (

)

1 2 3 4 5
TopK Feature Importance

0.0

0.2

0.4

0.6

0.8

1.0

RA
 (

)

Blood
Recidivism
Credit
Adult

Figure 5: Effects of top-𝑘 value on the RA metric using Perturbation-, Prediction-, and Instruction-based ICL
prompting strategies. Shown are the results for three prompting strategies and four datasets using the LR model.
On average, LLMs successfully achieve high scores in identifying the most important feature (top-𝑘=1) and
the performance decreases as we increase the top-𝑘 value (see Fig. 10 for results on FA).
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Figure 6: RA faithfulness metric of explanations generated using Perturbation-based ICL, Prediction-based
ICL, and Instruction-based ICL prompting strategies on four real-world datasets. Explanations from GPT-4,
on average, achieve higher RA scores than their GPT-3.5 counterparts (see Figures 11-12 for similar plots on
Feature Agreement metric and Explanation-based ICL strategy).

strategies, GPT-4, on average, obtains 4.53% higher FA and 48.01% higher RA scores than GPT-3.5
on explanations generated for the Adult dataset. We attribute this increase in performance of GPT-4
to its superior reasoning capabilities compared to the GPT-3.5 model [13]. In Figure 6, we find
that Instruction-based ICL, on average across four datasets, outperforms the Perturbation-based ICL
and Prediction-based ICL strategies on the RA metric. Further, our results in Fig. 12 show that the
faithfulness performance of GPT-4 and GPT-3.5 are on par with each other when evaluated using
our Explanation-based ICL strategy, which highlights that both models are capable of emulating the
behavior of a post hoc explainer by looking at a few input, output, and explanation examples.

4 Conclusion

We introduce and explore the potential of using state-of-the-art LLMs as post hoc explainers. To
this end, we propose four prompting strategies — Perturbation-based ICL, Prediction-based ICL,
Instruction-based ICL, and Explanation-based ICL— with varying levels of information about the
local neighborhood of a test sample to generate explanations using LLMs for black-box model
predictions. We conducted several experiments to evaluate LLM-generated explanations using four
benchmark datasets. Our results across different prompting strategies highlight that LLMs can
generate faithful explanations and consistently outperform methods like ITG and SHAP. Our work
paves the way for several exciting future directions in explainable artificial intelligence (XAI) to
explore LLM-based explanation frameworks.
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A Appendix: Additional results and Experimental details

A.1 Prompt Structure: Prediction-based ICL

# Prediction-based ICL Prompt Template
Context: “We have a two-class machine learning model that predicts based on 6 features: [‘A’, ‘B’, ‘C’,
‘D’, ‘E’, ‘F’]. The model has been trained on a dataset and has made the following predictions.”
Dataset:
Input: A = 0.192, B = 0.240, C = 0.118, D = 1.007, E = 0.091, F = 0.025
Output: 0
. . .
Input: A = 0.709, B = -0.102, C = -0.177, D = 1.056, E = -0.056, F = 0.015
Output: 1
Input: A = 0.565, B = -0.184, C = -0.386, D = 1.003, E = -0.123, F = -0.068
Output:
Question: “Based on the model’s predictions and the given dataset, estimate the output for the final input.
What appears to be the top five most important features in determining the model’s prediction?”
Instructions: “Think about the question. After explaining your reasoning, provide your answer as the top
five most important features ranked from most important to least important, in descending order. Only
provide the feature names on the last line. Do not provide any further details on the last line.”

A.2 Prompt Structure: Instruction-based ICL

# Instruction-based ICL Prompt Template
Context: “We are analyzing a fixed set of perturbations around a specific input to understand the influence
of each feature on the model’s output. The dataset below contains the change in features ‘A’ through

‘F’ (with negative values denoting a decrease in a feature’s value) and the corresponding outputs.”
Dataset:
Change in Input: A: -0.217, B: 0.240, C: 0.114, D: 0.007, E: 0.091, F: 0.025
Change in Output: -1
. . .
Change in Input: A: 0.185, B: -0.185, C: -0.232, D: -0.130, E: -0.020, F: 0.015
Change in Output: 0
Instructions: “For each feature, starting with ‘A’ and continuing to ‘F’:
1. Analyze the feature in question:
a. Compare instances where its changes are positive to where its changes are negative and explain how
this difference correlates with the change in output.
b. Rate the importance of the feature in determining the output on a scale of 0-100, considering
both positive and negative correlations. Ensure to give equal emphasis to both positive and negative
correlations and avoid focusing only on absolute values.
2. After analyzing the feature, position it in a running rank compared to the features already analyzed.
For instance, after analyzing feature ‘B’, determine its relative importance compared to ‘A’ and position it
accordingly in the rank (e.g., BA or AB). Continue this process until all features from ‘A’ to ‘F’ are ranked.
Upon completion of all analyses, provide the final rank of features from ‘A’ to ‘F’ on the last line.
Avoid providing general methodologies or suggesting tools. Justify your findings as you go.”

Table 1: Results of the machine learning models trained on four datasets. Shown are the accuracy
of the LR and ANN models trained the datasets. The best performance is bolded.

Dataset LR ANN

Blood
Recidivism
Default Credit
Adult

70.59%
76.90%
87.37%
77.37%

64.71%
76.90%
88.34%
80.11%
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A.3 Implementation Details

To generate perturbations for each ICL prompt, we use a neighborhood size of 𝜎 = 0.1 and generate
local perturbation neighborhoods N𝑥 for each test sample x. We sample n𝑥 = 10, 000 points for each
neighborhood, where the values for 𝜎 and n𝑥 were chosen to give an equal number of samples for
each class, whenever possible. We present perturbations in two main formats: as the raw perturbed
inputs alongside their corresponding outputs (shown in Sec. 2.1 and Appendix A.1 templates); or
as the change between each perturbed input and the test sample, and the corresponding change
in output (shown in Appendix. A.2 template). The second approach significantly aids the LLM in
discerning the most important features (Fig. 7), providing only the changes relative to the test sample,
and bypassing the LLM’s need to internally compute these differences. As a result, the consistent
value of the original test point becomes irrelevant, and this clearer, relational view allows the LLM
to focus directly on variations in input and output. Note that both of these formats are absent from
Sec. 2.4, which uses test samples directly and does not compute perturbations.

PERTURBATION-BASED ICL PREDICTION-BASED ICL

FA ( ) RA ( ) PGU ( ) PGI ( )0.0

0.2

0.4

0.6 Perturbed Samples
Raw Perturbations

FA ( ) RA ( ) PGU ( ) PGI ( )0.0

0.2

0.4

0.6 Perturbed Samples
Raw Perturbations

Figure 7: Faithfulness performance of explanations generated using Perturbation-based ICL (left) and Prediction-
based ICL (right) on using perturbed samples vs difference between perturbed samples and the input sample (raw
perturbations) in the ICL prompts for LR models trained on the Adult dataset. Across both prompting strategies,
we find that using ICL samples using the raw perturbation style results in significantly better faithfulness
performance across all four metrics.

For the LLMs, we use OpenAI’s text generation API with a temperature of 𝜏 = 0 for our main
experiments. To evaluate the LLM explanations, we extract and process its answers to identify the
top-𝑘 most important features. We first save each LLM query’s reply to a text file and use a script
to extract the features. We added explicit instructions like “. . . provide your answer as a feature name
on the last line. Do not provide any further details on the last line.” to ensure reliable parsing of
LLM outputs. In rare cases, the LLM won’t follow our requested response format or it replies with
“I don’t have enough information to determine the most important features.”

The median number of occurrences for cases where the LLM didn’t follow our requested response
format or it replies with “I don’t have enough information to determine the most important features”
is 3 for Perturbation-based ICL, 0.5 for Prediction-based ICL, and 0 for Explanation-based ICL. We
use the LLM’s top-𝑘 features to calculate explanation faithfulness using four evaluation metrics. For
calculating PGU and PGI metrics, we use perturbation mean 𝜇𝑃𝐺=0, standard deviation 𝜎𝑃𝐺=0.1,
and the number of perturbed samples 𝑚𝑃𝐺=10, 000. We follow the default hyperparameters from
OpenXAI for generating explanations from standard post hoc explainers.

A.4 Additional Results

Here, we include additional and detailed results of the experiments discussed in Sec. 3.

Ablation Study. We conduct ablations on several components of the prompting strategies, namely
the number of ICL samples, perturbation format, and temperature values. Results show that our
choice of hyperparameter values is important for the prompting techniques to generate faithful post
hoc explanations (Figs. 8, 9). Our ablation on the number of ICL samples (Fig. 8) shows that fewer
and larger numbers of ICL samples are not beneficial for LLMs to generate post hoc explanations.
While fewer ICL samples provide insufficient information to the LLM to approximate the predictive
behavior of the underlying ML model, a large number of ICL samples increases the input context,
where the LLM struggles to retrieve relevant information from longer prompts, resulting in a decrease
in the faithfulness of the explanations generated by LLMs. In contrast to LIME, the faithfulness
of LLM explanations deteriorates upon increasing the number of ICL samples (analogous to the
neighborhood of a given test sample). Across all four prompting strategies, we observe a drop in FA,
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RA, and PGI scores as we increase the number of ICL samples to 64. Further, our ablation on the
temperature parameter of the LLMs shows that the faithfulness performance of the explanations does
not change much across different values of temperature (Fig. 9). As described previously, results
in Fig. 7 show that our prompting strategies achieve higher faithfulness when using the difference
between the perturbed and test sample as input in the ICL sample.
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nshot in ICL samples
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Figure 8: FA, RA, and PGI performance of LIME and four proposed prompting strategies as we increase the
number of ICL samples (analogous to neighborhood samples in LIME) for the LR model trained on the Adult
dataset. In contrast to LIME, the faithfulness of LLM explanations across different metrics decreases for a
higher number of ICL samples, likely due to the limited capabilities of LLM for longer prompt length.
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Figure 9: Metric performances of LLM-based explanations for different temperatures (𝜏) with an LR model
(left) and a Neural Network (right) model. LLM-based explanations perform almost consistently across different
temperature values, but LLMs will more often reply along the lines of “not enough information to determine the
most important features,” for higher temperatures.
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Figure 10: Effects of top-𝑘 value on the FA explanation faithfulness metric when using Perturbation-based
ICL, Prediction-based ICL, and Instruction-based ICL prompting strategies. Shown are the results for three
prompting strategies and four datasets using the LR model. On average, LLMs successfully achieve high scores
in identifying the most important feature (top-𝑘 = 1) and the performance decreases as we increase the top-𝑘
value. For the Blood and Recidivism datasets, FA increases for top-𝑘 ≥ 4 because they have four and six features
in their dataset, respectively.
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GPT-3.5 vs. GPT-4. An interesting question is how the reasoning capability of an LLM affects
the faithfulness of the generated explanations. Hence, we compare the output explanations from
GPT-3.5 and GPT-4 models to understand black-box model predictions. Results in Figs.6, 11 and 12
show that explanations generated using GPT-4, on average across four datasets, achieve higher
faithfulness scores than explanations generated using the GPT-3.5 model. Across four prompting
strategies, GPT-4, on average, obtains 4.53% higher FA and 48.01% higher RA scores than GPT-3.5
on explanations generated for the Adult dataset. We attribute this increase in performance of GPT-4
to its superior reasoning capabilities compared to the GPT-3.5 model [13]. In Figure 6, we find
that Instruction-based ICL, on average across four datasets, outperforms the Perturbation-based ICL
and Prediction-based ICL strategies on the RA metric. Further, our results in Fig. 12 show that the
faithfulness performance of GPT-4 and GPT-3.5 are on par with each other when evaluated using
our Explanation-based ICL strategy, which highlights that both models are capable of emulating the
behavior of a post hoc explainer by looking at a few input, output, and explanation examples.

PERTURBATION-BASED ICL PREDICTION-BASED ICL INSTRUCTION-BASED ICL
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Figure 11: FA metric performances of explanations generated using Perturbation-based ICL, Prediction-based
ICL, and Instruction-based ICL prompting strategies on four real-world datasets. Explanations from GPT-4,
on average, achieve higher FA scores than GPT-3.5 counterparts.
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Figure 12: FA and RA metric performances for six LLM-augmented post hoc explainers when generating
explanations for a given LR model using GPT-3.5 vs. GPT-4. Explanations from GPT-4, on average,
outperform those generated using GPT-3.5 on both metrics on the Adult dataset.
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Table 2: Here we provide the average and standard error faithfulness metric values of explanations
calculated across 100 instances in the test set. The results are generated using Perturbation-based
ICL, Prediction-based ICL, Instruction-based ICL, six post hoc explanation methods, and a random
baseline. For the LLM methods, we queried the LLM for the top 𝑘 = 5 (𝑘 = 4 for Blood) most
important features and calculated each metric’s area under the curve (AUC) for 𝑘 = 3 (where the
AUC is calculated from 𝑘 = 1 to 𝑘 = 3). This will help us better understand the model’s (Logistic
Regression and Artificial Neural Network) predictions trained on four datasets. Arrows (↑, ↓) indicate
the direction of better performance.

LR ANN
Dataset Method FA (↑) RA (↑) PGU (↓) PGI (↑) PGU (↓) PGI (↑)

Grad 1.000±0.000 1.000±0.000 0.010±0.000 0.042±0.000 0.060±0.009 0.115±0.013

SG 1.000±0.000 1.000±0.000 0.010±0.000 0.042±0.000 0.060±0.009 0.115±0.013

IG 1.000±0.000 1.000±0.000 0.010±0.000 0.042±0.000 0.061±0.009 0.116±0.013

ITG 0.722±0.019 0.563±0.037 0.019±0.001 0.037±0.001 0.081±0.010 0.100±0.012

SHAP 0.723±0.020 0.556±0.037 0.019±0.001 0.036±0.001 0.085±0.011 0.098±0.012

LIME 1.000±0.000 1.000±0.000 0.010±0.000 0.042±0.000 0.061±0.009 0.116±0.013

Random 0.502±0.022 0.232±0.032 0.029±0.001 0.026±0.001 0.091±0.011 0.090±0.012

Perturbation-based ICL 0.790±0.011 0.656±0.018 0.015±0.000 0.041±0.001 0.064±0.010 0.110±0.013

Prediction-based ICL 0.789±0.009 0.638±0.018 0.014±0.000 0.041±0.000 0.063±0.010 0.110±0.013

Blood

Instruction-based ICL 0.802±0.015 0.578±0.037 0.014±0.000 0.040±0.001 0.068±0.010 0.106±0.013

Grad 1.000±0.000 1.000±0.000 0.059±0.003 0.106±0.005 0.095±0.008 0.149±0.011

SG 1.000±0.000 1.000±0.000 0.059±0.003 0.106±0.005 0.095±0.008 0.149±0.011

IG 1.000±0.000 1.000±0.000 0.059±0.003 0.106±0.005 0.096±0.008 0.149±0.011

ITG 0.493±0.021 0.214±0.030 0.090±0.005 0.078±0.004 0.129±0.011 0.122±0.010

SHAP 0.473±0.023 0.217±0.032 0.092±0.005 0.076±0.004 0.130±0.011 0.122±0.010

LIME 1.000±0.000 1.000±0.000 0.059±0.003 0.106±0.005 0.096±0.008 0.149±0.011

Random 0.308±0.023 0.127±0.024 0.101±0.005 0.063±0.005 0.146±0.011 0.092±0.009

Perturbation-based ICL 0.744±0.004 0.084±0.003 0.060±0.003 0.104±0.005 0.096±0.008 0.148±0.011

Prediction-based ICL 0.744±0.008 0.120±0.017 0.061±0.003 0.103±0.005 0.096±0.008 0.146±0.011

Recidivism

Instruction-based ICL 0.811±0.017 0.478±0.044 0.063±0.003 0.103±0.005 0.102±0.009 0.146±0.011

Grad 0.999±0.001 0.999±0.001 0.056±0.006 0.221±0.011 0.081±0.011 0.228±0.014

SG 0.999±0.001 0.999±0.001 0.056±0.006 0.221±0.011 0.080±0.011 0.227±0.014

IG 1.000±0.000 1.000±0.000 0.056±0.006 0.221±0.011 0.082±0.011 0.228±0.014

ITG 0.385±0.012 0.099±0.019 0.215±0.011 0.061±0.007 0.227±0.014 0.075±0.010

SHAP 0.387±0.012 0.150±0.020 0.215±0.011 0.061±0.007 0.225±0.014 0.075±0.010

LIME 0.963±0.012 0.953±0.015 0.056±0.006 0.221±0.011 0.078±0.011 0.229±0.014

Random 0.130±0.017 0.053±0.015 0.198±0.012 0.054±0.008 0.213±0.014 0.064±0.010

Perturbation-based ICL 0.589±0.018 0.516±0.027 0.079±0.007 0.212±0.012 0.101±0.012 0.216±0.013

Prediction-based ICL 0.598±0.017 0.505±0.029 0.080±0.008 0.210±0.011 0.106±0.014 0.207±0.014

Adult

Instruction-based ICL 0.748±0.020 0.716±0.027 0.069±0.007 0.217±0.011 0.097±0.012 0.219±0.014

Grad 1.000±0.000 1.000±0.000 0.065±0.005 0.195±0.009 0.072±0.008 0.173±0.011

SG 1.000±0.000 1.000±0.000 0.065±0.005 0.195±0.009 0.072±0.008 0.172±0.011

IG 1.000±0.000 1.000±0.000 0.065±0.005 0.195±0.009 0.074±0.008 0.172±0.010

ITG 0.211±0.026 0.157±0.026 0.150±0.006 0.106±0.012 0.155±0.009 0.089±0.011

SHAP 0.212±0.026 0.161±0.026 0.150±0.006 0.107±0.012 0.150±0.008 0.098±0.012

LIME 0.988±0.005 0.985±0.007 0.065±0.005 0.195±0.009 0.071±0.008 0.173±0.010

Random 0.173±0.020 0.095±0.020 0.185±0.010 0.054±0.006 0.176±0.011 0.053±0.007

Perturbation-based ICL 0.609±0.006 0.595±0.006 0.077±0.006 0.192±0.009 0.077±0.008 0.170±0.011

Prediction-based ICL 0.577±0.009 0.565±0.010 0.080±0.007 0.189±0.009 0.081±0.009 0.166±0.011

Default
Credit

Instruction-based ICL 0.628±0.014 0.587±0.020 0.080±0.007 0.188±0.010 0.085±0.009 0.163±0.011
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Table 3: Results of explanations generated using Explanation-based ICL and six post hoc explanation
methods for understanding model (Logistic Regression and Artificial Neural Network) predictions
trained on three datasets. Shown are average and standard error metric values computed across 100
test samples. Arrows (↑, ↓) indicate the direction of better performance. Evaluation metrics were
computed for the top-𝑘 , 𝑘 being set to the number of features in each respective dataset.

LR ANN
Dataset Method FA (↑) RA (↑) PGU (↓) PGI (↑) PGU (↓) PGI (↑)

LLM-Lime 0.708±0.006 0.465±0.009 0.013±0.000 0.041±0.001 0.074±0.009 0.099±0.012

Lime 1.000±0.000 1.000±0.000 0.008±0.000 0.043±0.000 0.044±0.006 0.121±0.013

LLM-Grad 0.997±0.003 0.996±0.004 0.008±0.000 0.043±0.000 0.058±0.009 0.116±0.012

Grad 1.000±0.000 1.000±0.000 0.008±0.000 0.043±0.000 0.044±0.006 0.120±0.013

LLM-SG 0.990±0.006 0.983±0.011 0.008±0.000 0.043±0.000 0.055±0.008 0.116±0.012

SG 1.000±0.000 1.000±0.000 0.008±0.000 0.043±0.000 0.044±0.006 0.120±0.013

LLM-IG 0.989±0.005 0.982±0.009 0.008±0.000 0.043±0.000 0.046±0.007 0.120±0.013

IG 1.000±0.000 1.000±0.000 0.008±0.000 0.043±0.000 0.044±0.006 0.120±0.013

LLM-Shap 0.684±0.013 0.401±0.025 0.020±0.001 0.034±0.001 0.069±0.009 0.102±0.012

Shap 0.773±0.014 0.516±0.033 0.015±0.001 0.038±0.001 0.066±0.009 0.107±0.012

LLM-ITG 0.702±0.013 0.387±0.029 0.017±0.001 0.036±0.001 0.069±0.010 0.105±0.012

Blood

ITG 0.774±0.014 0.532±0.034 0.014±0.001 0.038±0.001 0.063±0.008 0.108±0.012

LLM-Lime 0.990±0.001 0.958±0.005 0.029±0.001 0.115±0.002 0.048±0.001 0.165±0.004

Lime 1.000±0.000 1.000±0.000 0.029±0.002 0.116±0.006 0.044±0.004 0.164±0.012

LLM-Grad 0.997±0.001 0.990±0.003 0.029±0.001 0.115±0.002 0.048±0.001 0.165±0.004

Grad 1.000±0.000 1.000±0.000 0.029±0.002 0.116±0.006 0.043±0.004 0.165±0.012

LLM-SG 0.997±0.001 0.990±0.003 0.029±0.001 0.115±0.002 0.047±0.001 0.165±0.004

SG 1.000±0.000 1.000±0.000 0.029±0.002 0.116±0.006 0.043±0.004 0.165±0.012

LLM-IG 0.996±0.001 0.988±0.003 0.029±0.001 0.115±0.002 0.048±0.001 0.166±0.004

IG 1.000±0.000 1.000±0.000 0.029±0.002 0.116±0.006 0.044±0.004 0.165±0.012

LLM-Shap 0.666±0.004 0.216±0.008 0.057±0.001 0.098±0.002 0.082±0.002 0.151±0.004

Shap 0.670±0.012 0.200±0.024 0.058±0.003 0.099±0.005 0.087±0.008 0.146±0.011

LLM-ITG 0.690±0.004 0.247±0.008 0.056±0.001 0.099±0.002 0.085±0.002 0.148±0.004

Recidivism

ITG 0.689±0.011 0.195±0.022 0.056±0.003 0.100±0.005 0.078±0.007 0.149±0.011

LLM-Lime 0.909±0.001 0.632±0.005 0.023±0.001 0.222±0.003 0.035±0.002 0.230±0.004

Lime 0.907±0.005 0.743±0.017 0.018±0.002 0.224±0.011 0.029±0.005 0.235±0.014

LLM-Grad 0.938±0.000 0.801±0.001 0.022±0.001 0.223±0.003 0.035±0.002 0.230±0.004

Grad 0.999±0.001 0.997±0.003 0.018±0.002 0.224±0.011 0.029±0.004 0.234±0.014

LLM-SG 0.938±0.000 0.802±0.001 0.022±0.001 0.223±0.003 0.035±0.002 0.230±0.004

SG 0.999±0.001 0.997±0.003 0.018±0.002 0.224±0.011 0.029±0.004 0.234±0.014

LLM-IG 0.938±0.000 0.804±0.000 0.022±0.001 0.223±0.003 0.033±0.002 0.231±0.004

IG 1.000±0.000 1.000±0.000 0.018±0.002 0.224±0.011 0.031±0.005 0.235±0.014

LLM-Shap 0.676±0.002 0.069±0.003 0.109±0.002 0.148±0.003 0.123±0.003 0.153±0.004

Shap 0.662±0.007 0.107±0.012 0.139±0.009 0.127±0.009 0.144±0.011 0.149±0.013

LLM-ITG 0.665±0.002 0.039±0.002 0.107±0.002 0.150±0.003 0.132±0.003 0.146±0.004

Adult

ITG 0.627±0.006 0.068±0.010 0.175±0.010 0.099±0.009 0.170±0.011 0.130±0.013

LLM-Lime 0.954±0.001 0.787±0.003 0.030±0.001 0.189±0.003 0.042±0.002 0.178±0.003

Lime 0.977±0.004 0.878±0.015 0.030±0.003 0.201±0.009 0.037±0.004 0.186±0.010

LLM-Grad 0.984±0.000 0.896±0.001 0.029±0.001 0.189±0.003 0.042±0.002 0.178±0.003

Grad 1.000±0.000 1.000±0.000 0.030±0.003 0.201±0.009 0.038±0.005 0.185±0.011

LLM-SG 0.984±0.000 0.897±0.000 0.029±0.001 0.189±0.003 0.072±0.003 0.165±0.003

SG 1.000±0.000 1.000±0.000 0.030±0.003 0.201±0.009 0.037±0.004 0.185±0.011

LLM-IG 0.984±0.000 0.896±0.001 0.029±0.001 0.189±0.003 0.041±0.002 0.179±0.003

IG 1.000±0.000 1.000±0.000 0.030±0.003 0.201±0.009 0.041±0.005 0.185±0.010

LLM-Shap 0.543±0.003 0.067±0.004 0.088±0.002 0.140±0.003 0.094±0.003 0.126±0.003

Shap 0.525±0.009 0.086±0.012 0.088±0.005 0.163±0.010 0.091±0.006 0.146±0.011

LLM-ITG 0.526±0.003 0.052±0.003 0.088±0.002 0.139±0.003 0.091±0.002 0.129±0.003

Default
Credit

ITG 0.516±0.010 0.076±0.012 0.086±0.005 0.165±0.010 0.084±0.006 0.152±0.010
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