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Abstract

Recent research in supervised learning has demonstrated that noise in data genera-
tion processes leads to the existence of accurate and simpler/interpretable machine
learning models. However, the implications of this effect in the context of reinforce-
ment learning, specifically in Markov Decision Processes (MDPs), have not been
thoroughly explored. This paper investigates how noise influences the interpretabil-
ity of MDPs. For two different types of transition noise, adding noise is provably
equivalent to solving a noiseless MDP with a smaller discount factor. Regardless
of the value function or policy function representation, problems with shorter plan-
ning horizons may be more conducive to interpretable solutions, simply because
short-term effects and consequences tend to have more concise representations.

1 Introduction

Reinforcement learning (RL) is inherently complex. The algorithms rely on learning from vast
amounts of data generated through interactions with the environment, which often results in highly
complex models. This complexity can make it difficult to interpret or understand the reasoning
behind specific decisions made by the RL agent, making the system very challenging to debug,
adjust to domain knowledge, or trust – all crucial aspects for applications in high-stakes decision
domains such as medical treatment or autonomous vehicle control.

Designing interpretable models is not always straightforward and might require complicated op-
timization techniques or extensive domain knowledge. Therefore, it is important to assess when
interpretability is possible in RL systems. For example, recent results in supervised learning (Se-
menova et al., 2023; 2022), have demonstrated that noise in data generation processes is the practical
and theoretical motivator for the increased interpretability of optimal models.

This paper takes an agnostic approach to policy or value function representation, as well as an
agnostic approach to solution algorithms.

For a discounted, infinite horizon Markov Decision Processes (MDP), the planning horizon is nomi-
nally infinite, but discounting attenuates the impact of future rewards. For any discount factor and
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any ϵ, one can compute a horizon length τ beyond which future choices can be ignored with penalty
of no more then ϵ on the quality of decisions made. This so-called ϵ-horizon Kearns et al. (1999), τ ,
can be used to determine a maximum number of steps of value iteration needed, or the depth of a
search needed to determine (or possibly explain) the decision taken from a single state.

The discount factor, γ, in MDPs is often viewed as a measure of future uncertainty. One interpreta-
tion of the discounting factor is that it represents a 1 − γ probability of death (transition to a state
with value 0) at every time step. Anecdotally, researchers have likened other types of uncertainty
to discounting but, to our knowledge, this connection has not been formalized to the extent done in
this paper.

The main technical contributions of this paper are to describe two specific noise models where
adding noise is exactly equivalent to solving the noiseless version of the problem with a larger
discount factor. To some extent, these results align with longstanding intuitions among MDP and
reinforcement learning (RL) practitioners. The somewhat surprising results are the precise nature
of the equivalence to a noiseless case.

2 Preliminaries

2.1 MDP notation

An MDP is a tuple, M = (S, A, T, R, γ), where:

• S is the state space. We will assume a finite state space of size n, but our results should
generalize to continuous state spaces.

• A is the action space. We assume a discrete set of actions, a ∈ A are possible in each state.

• T is a transition model, specifying the probability of next states, P (s′|s, a) for combinations
of states, next states, and actions.

• R is a reward function. For simplicity, we will assume R is defined over states. We will
express R as a column vector, with Ri as entry i in the vector.

• γ is a discount factor 0 ≤ γ < 1.

• 1m×n is an m × n matrix of 1s. If only one dimension is specified, then this is a vector of
the (context dependent) conformable orientation.

A policy, π, for an MDP is a mapping from states to actions. Every policy corresponds to a transition
matrix, P π. The value function for a policy π satisfies:

V π = R + γP πV π = (I − γP π)−1R =
∞∑

i=0
γiP iR.

A policy π∗ is optimal if:
∀π : V π∗ ≥ V π.

2.2 MDP Properties

Another convenient property of MDPs is that shifting the reward function by a uniform constant
shifts the value function by a scaled version of this constant, i.e.,

(I − γP π)−1(R + c) = c

1 − γ
+ (I − γP π)−1R = V π + c

1 − γ
.
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This allows us to assume that all rewards are non-negative without loss of generality. When all
rewards are non-negative, multiplying the reward by a positive constant shifts the entire value
function by the same constant:

(I − γP π)−1δR = δ(I − γP π)−1R = δV π.

Since shifting or scaling by a positive constant does not change an argmax, the optimal policy is
invariant to these changes as well.

One way to think about discounting is that the agent makes a transition to a state with value fixed
at 0 at each time step with probability 1 − γ. This effectively reduces the probability mass the
agent can control by a factor of γ at each time step. We can derive the ϵ-horizon in terms of the
probability mass the agent gets to control after time τ . If we assume that after time τ all of the
agent’s controllable mass is allocated towards the worst possible choices (value 0) instead of achieving
the highest possible value (R = 1), then the suboptimality of failing to plan beyond horizon depth
τ is:

∞∑
i=τ

γi(1 − 0) = γτ
∞∑

i=0
γi = γτ

1 − γ
.

The ϵ-horizon is obtained by solving for τ :
γτ

1 − γ
≤ ϵ

τ ≥ logγ ϵ + logγ(1 − γ).

3 Sticky Noise

We augment the definition of MDPs to Mβ , where β determines a tendency to stay in the same
state that is added to every policy. We assume this is true for all policies, π:

P π
β = βP π + (1 − β)I.

Thus, when β = 1 we have our original M , and when β = 0, it is impossible to leave whatever
state the agent starts in. One realization of sticky noise can be actions that have a small probability
of failing at any time. Another realization could be an artifact of discretization: A discretized
environment always violates the Markov property a little in that it treats all parts of the state space
that lie within a cell as equivalent. In practice, if an agent starts in a corner of a cell and executes
an action designed to move to an adjacent cell, that action may not always succeed; sometimes it
could move the agent to an opposing edge or vertex of the cell it is currently in rather than the next
cell.

3.1 Finite Horizon Case

We build our intuitions for the effects of this type of noise by starting with the finite horizon case for
a fixed policy, π. Denote by ij the time the agent arrived at the j-th state and by ∆j the number
of time steps the agent was at state j. Thus, ij+1 = ij + ∆j . Note that these are random variables
that are independent of each other and independent of the state; they solely depend on the noise.

The value function of the noisy MDP is the expectation of the following terms:

R0 + γR0 + γ2R0 + . . . + γ∆0−1R0 + γi1R1 + γi1+1R1 + . . . (1)

If we group together all terms that are associated with the same state, and use the formula for the
sum of a geometrical series we get that Equation 1 is equal to:

R0(1 + γ + γ2 + . . . + γ∆0−1) + R1γi1(1 + γ + γ2 + . . .)

= R0
1 − γ∆0

1 − γ
+ R1γi1

1 − γ∆1

1 − γ
+ . . .
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Taking the expectation, and exploiting linearity of expectation we can focus on each term in the
addition separately:

E
[
Rjγij

1 − γ∆j

1 − γ

]
.

The three terms Rj , γij
, and 1−γ∆j

1−γ are independent, so we can analyze the expectation of each of
the three terms independently. Let us start with E

[
1−γ∆j

1−γ

]
. Importantly, the expectation of γ∆j is

equal for all states, and we will denote it by E[γ∆].

The implication is that the value function in the noisy MDP is scaled by E
[

1−γ∆

1−γ

]
.

Now let us analyze the term E[γij ].
Claim 3.1.

E[γij ] = E[γ∆]j .

Proof. We will prove the claim by induction. For the basis we have E[γi0 ] = E[γ0] = 1, where the
first equality follows from the fact that i0 = 0. For the induction step we have,

E[γij+1 ] = E[γij+∆j ] = E[γij ]E[γ∆] = E[γ∆]j+1.

The implication is that the value function in the noisy MDP has an effective discount factor of
E[γ∆].

3.2 Infinite Horizon Case

We now state and prove the effect of sticky noise on general, infinite horizon MDPs.
Theorem 3.2. For MDP M = (S, A, T, R, γ), and sticky version of M , Mβ, with sticky noise
parameter β, there exists an MDP, M ′ = (S, A, T, R, βγ

(1−γ(1−β)) ), with the same optimal policy as
Mβ.

Proof. The fixed point for the value function for policy π in the sticky MDP must obey:

V π
β = R + γP π

β V π
β

V π
β = R + γ(βP π + (1 − β)I)V π

β

V π
β − γ(1 − β)V π

β − βγP πV π
β = R

(1 − γ(1 − β))V π
β − βγP πV π

β = R

V π
β − βγ

(1 − γ(1 − β))P πV π
β = R

(1 − γ(1 − β))

(I − βγ

(1 − γ(1 − β))P π)V π
β = R

(1 − γ(1 − β))

V π
β = (I − βγ

(1 − γ(1 − β))P π)−1 R

(1 − γ(1 − β)) .

Observe that this is equivalent to solving for the value function of M with the original transi-
tion matrix but replacing γ with with a scaled discount factor, βγ

(1−γ(1−β)) and reward scaled by
1

(1−γ(1−β)) . This can be replaced with the unscaled discount factor without changing the optimal
policy, completing the proof.
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3.3 Reconciling the infinite and finite horizon cases

If we extend the effective discount factor for the finite horizon case to the infinite horizon, we get:

E[γ∆] =
∞∑

i=1
β(1 − β)i−1γi = βγ

∞∑
i=0

[γ(1 − β)]i = βγ

1 − γ(1 − β) .

This shows that, in the limit of an infinite number of time steps, the finite horizon analysis is
consistent with the infinite horizon case – as it should be. (Note that the first summation starts
from 1 because γ∆ includes the waiting time in the first state.)

4 Reset Noise

In this section, we consider a noise model that is identical for each state. For all states and actions,
suppose there is a noise distribution µ that is mixed with each state’s next state distribution.
One way to think of this as some sort of reset noise, by which with some probability 1 − α, the
agent is reset to some distribution over states. This probability and the reset state distribution are
independent of the agent’s current state and action. This can be thought of as a probability of the
robot getting “kidnapped” by a human and moved to another location, or a game being reset to a
starting configuration. Other realizations of this could include a random outcome in a game (such
as going to jail in MonopolyTM) that can happen from any state, the bat in Hunt the Wumpus.

Following the convention of the previous section, we augment the definition of MDPs to Mα, where
α determines an amount of reset noise that is added to the transition matrix for every policy. Define
P µ to be an n × n matrix with µ in each row. For any π and any α, we have:

V π
α = αP π + (1 − α)P µ.

Thus, when α = 1 we have our original M , and when α = 0, all states transition uniformly to all
other states under any policy.
Theorem 4.1. For MDP M = (S, A, T, R, γ), and sticky version of M , Mα, with reset noise
parameter α, there exists an MDP, M ′ = (S, A, T, R, αγ), with the same optimal policy as Mα.

Proof. The value function for a policy in this Mα satisfies:

V π
α = R + γP π

α V π
α

V π
α = R + γ(αP π + (1 − α)P U )V π

α

V π
α = R + γαP πV π

α + γ(1 − α)P µV π
α

V π
α − γαP πV π

α − γ(1 − α)P µV π
α = R

(I − γαP π − γ(1 − α)P µ)V π
α = R

V π
α = (I − γαP π − γ(1 − α)P µ)−1R

Before simplifying this further, we review the Sherman-Morrison formula:

(D + uvT )−1 = D−1 − D−1uvT D−1

1 + vT D−1u

To align with our matrix inversion problem, we consider:

• D = (I − γαP π)

• u = −γ(1 − α)1n

• v = µ
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Given this, we observe that:

• D1n = (1 − γα)1n =⇒ D−11n = 1
1−γα 1n

• uvT = −γ(1 − α)P µ

• D−1u = −γ(1 − α)D−11n = −γ 1−α
1−γα 1n

• vT D−1u = −γ 1−α
1−γα µT 1n = −γ 1−α

1−γα

• 1 + vT D−1u = 1 − γ 1−α
1−γα = 1−γα−γ+γα

1−γα = 1−γ
1−γα

• D−1uvT = −γ 1−α
1−γα 1nµT = −γ 1−α

1−γα P µ

• D−1uvT

1+vT D−1u
= −γ 1−α

1−γα P µ

1−γ
1−γα

= −γ 1−α
(1−γ) P µ.

Using the Sherman-Morrison formula, we get:

V π
α = (I − γαP π − γ(1 − α)P µ)−1R

= (D + uvT )−1R

=
(

D−1 − D−1uvT D−1

1 + vT D−1u

)
R

= D−1R − D−1uvT

1 + vT D−1u
D−1R

= (I − γαP π)−1R + γ
1 − α

1 − γ
P µ(I − γαP π)−1R.

For M ′ = (S, A, T, R, γα), and V ′π as the value function for policy π in M ′, we have:

V π
α = V ′π + γ

1 − α

1 − γ
P µV ′π

V π
α = V ′π + γ

1 − α

1 − γ
v′π

µ

where v′π
µ is the µ-weighted mean state value in V ′π.

So far, we have made a connection between Mα and an MDP with a reduced discount M ′, but these
are not identical MDPs. Since v′π

µ is a policy-dependent offset, we still need to show that a policy that
is optimal for M ′ must also be optimal for Mα. To see this, we first make the following observation
about about any average of state values for two policies. Let ρ be column vector corresponding
to a distribution over states, then for any π1 and π2, where π1 weakly dominates π2, and positive
constant c, we have:

V π1 ≥ V π2 → cρT V π1 ≥ cρT V π2 .

Now, consider ρ = µ, and c = γ 1−α
1−γ , π′∗ optimal for M ′, and any other π:

V ′π′∗
≥ V ′π

V ′π′∗
+ cµT V ′π′∗

≥ V ′π + cµT V ′π′∗

V ′π′∗
+ v′π′∗

µ ≥ V ′π + cµT V ′π

V ′π′∗
+ v′π′∗

µ ≥ V ′π + v′π
µ

V π′∗

α ≥ V π
α .

Therefore π′∗ must also be optimal for Mα.
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In summary, we have shown that solving a MDP Mα, which adds reset noise parameterized by α to
MDP M is equivalent to solving another MDP M ′ which has the same transition model T as M ,
but has the discount factor reduced from γ to γα.

Since sticky noise and reset noise each result in an MDP with the same optimal policy but a smaller
discount factor, the analysis can be combined sequentially to model MDPs that contain both types
of noise.

5 Discussion

We introduced two models for MDP transition noise, and demonstrated that adding these types
of noise is exactly equivalent to solving a noiseless version of the MDP with a smaller discount
factor. Smaller discount factors imply shorter ϵ-horizons, which we believe facilitates the discovery
of interpretable policies or value functions. These results parallel recent findings in supervised
learning, where noise increases the Rashomon set, thereby making it easier to find interpretable
hypotheses.

One might wonder if strong statements like these can be made about more general noise models. The
simulation lemma for MDPs (Kearns & Singh, 2002) suggests that it may be difficult to make such
claims about arbitrary noise models. The simulation lemma bounds the effects of small changes in
transition probabilities on the infinite horizon value function. The bounds are quite large, indicating
a maximum change in value that scales with the 1-norm of the transition probability difference, and

1
(1−γ)2 . Getting the tighter and more informative results in this paper required making very specific
assumptions about the form of the noise. An interesting question for future work is whether the
two noise models considered here are the only two non-trivial models for which this tight coupling
between noise and discounting exists.
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