
Under review as submission to TMLR

A Deeper Look at Optimal Transport for
Imitation Learning

Anonymous authors
Paper under double-blind review

Abstract

Optimal transport (OT) tools have shown early promise for imitation learning (IL) and
enable a metric-aware alignment of the expert and agent’s stationary distributions. Despite
encouraging results, the use of OT for IL is still ad hoc and lacks a systematic treatment,
which could guide future research. To help understand these inner workings, we summarize
key components of prior OT-based methods for IL. We then demonstrate an instantiation
of OT-based IL that attains state-of-the-art performance on a wide range of environments
featuring both continuous and discrete action spaces, as well as state and image observations.
Our experimentation code is public1.

1 Introduction

Learning control policies from observations is a fundamental problem in many fields, such as robotics,
autonomous driving and video games. If a reward signal which describes success on the task, is available,
reinforcement learning (RL) offers an effective approach, which has proven successful in a number of areas
(Tesauro et al., 1995; Mnih et al., 2013; 2016; Schulman et al., 2017). However, in other settings it may
be difficult to design a reward function that captures complex behaviors. For example, designing a reward
function to make an agent to behave in a natural or human-like way is challenging. Instead, it may be easier
to demonstrate the desired behavior and train the agent to mimic it.

Imitation learning (IL) and inverse reinforcement learning (IRL) (Ng & Russell, 2000) approach the problem of
training an agent from expert demonstrations. IRL methods attempt to infer the expert’s underlying reward
function and then use RL to train the agent using this recovered reward function. IL methods use a variety
of approaches, including supervised learning (Pomerleau, 1988), uncertainty estimation (Brantley et al., 2020;
Wang et al., 2019) and adversarial approaches (Ho & Ermon, 2016; Kostrikov et al., 2019). Optimal transport
tools have the potential to be well-suited to IL, as they allow one to align and compare multiple agent and
expert trajectories, interpreted as discrete probability measures over the agent’s observation space. Various
recent works build on this intuition and propose imitation learning approaches using OT, notably Dadashi
et al. (2021); Papagiannis & Li (2020); Fickinger et al. (2022).

We begin by summarizing the key components of existing OT methods for IL: the observation encoding,
OT cost function, choice of OT solver, reward squashing, and treatment of signals arising from distinct
demonstrations. These design choices are essential as they characterize the target behavior of the trained
policy and the optimization landscape. We characterize unexpected behaviors that can positively or negatively
impact recovering the expert policy. We also propose an instantiation of these that we refer to as OTIL, an
OT method for IL that significantly improves upon previous methods w.r.t. sample efficiency (number of
interactions with the environment), simplicity, generalizability (to pixel-based learning) and performance.

A notable feature of OTIL is that it does not require access to the expert’s actions, and achieves expert
performance on challenging tasks from state observations alone. Also, it extends directly to pixel-based
settings by leveraging representations from the RL encoder, which can be used to encode observations in
a compact latent space. As a result, OTIL is also applicable to pixel-based learning without requiring any
encoder pre-training via self-supervision/reconstruction or through adversarial learning.

1Code at https://anonymous.4open.science/r/OTIL_TMLR-52CC/

1

https://anonymous.4open.science/r/OTIL_TMLR-52CC/

Under review as submission to TMLR

Figure 1: Visual summary of OT-based imitation learning methods. Methods i) encodes the agent oa and
expert oe trajectories via fϕ ii) compute cost matrices and iii) an alignment matrix µ⋆ between these to
iv) produce imitation rewards r1:T , which are squashed through s(x). These rewards are then used to train
agents via reinforcement learning. For clarity, we did not include the aggregation module in this illustration.

We evaluate OTIL across a range of tasks from the DeepMind Control Suite (DMC), in both the state- and
pixel-based settings. We observe significant gains with respect to sample efficiency and performance compared
to state-of-the-art baselines. In particular, OTIL is, to the best of our knowledge, the first approach to
achieve strong performance on the quadruped benchmark from pixel observations.

2 Background

2.1 Reinforcement Learning (RL)

We instantiate RL as a discounted infinite-horizon Markov decision process (MDP) (Bellman, 1957; Sutton &
Barto, 2018). In the case of pixel observations, the agent’s state is approximated by a stack of consecutive RGB
frames (Mnih et al., 2015). The MDP is of the form (O, A, P , R, γ, d0) where O and A are the observation
and action spaces, respectively, P : O × A → ∆(O) is the transition function (∆(O) is a distribution over O),
R : O × A → R is the reward function, γ ∈ [0, 1) is the discount factor and d0 is the initial state distribution.
The RL problem consists of finding an optimal policy π : O → ∆(A) that maximizes the expected long-term
reward Eπ[

∑∞
t=0 γtR(ot, at)], where o0 ∼ d0, at ∼ π(·|ot) and ot+1 ∼ P (·|ot, at).

2.2 Optimal Transport

Optimal transport (Villani, 2009; Peyré & Cuturi, 2019) tools enable comparing probability measures
while incorporating the geometry of the space. The Wasserstein distance between two discrete measures
µx = 1

T

∑T
t=1 δxt

and µy = 1
T ′

∑T ′

t=1 δyt
is given by

W2(µx, µy) = min
µ∈M

T,T ′∑
t,t′=1

c(xt, yt′)µt,t′ , (1)

where M = {µ ∈ RT ×T ′ : µ1 = 1
T 1, µT 1 = 1

T ′ 1} is the set of coupling matrices, and c : O × O → R is a cost
function. Also, δx refers to the Dirac measure for x ∈ O.

Intuitively, the optimal coupling µ⋆ provides an alignment of samples of µx and µy. The Wasserstein distance
can hence be interpreted as the expected cost of transporting mass between aligned samples.

2.3 Imitation Learning via Inverse RL

In imitation learning, agents do not have access to the environment reward R. Instead, they are provided
with a dataset of multiple expert trajectories, which the agent aims to imitate, where each trajectory is

2

Under review as submission to TMLR

Agent Preprocessor OT Solver Cost Squashing Aggregator Extra Opt.

PWIL Fixed normalization (states) Greedy Wasserstein Euclidean αe−βx Traj. concat. No
SIL Discriminator (states) Adversarial Sinkhorn Cosine None Mean Yes

GWIL None (states) Gromov-Wasserstein Euclidean None 1 demo No
GDTW-IL None (states) Gromov-DTW Euclidean None 1 demo No

OTIL Rolling norm. (states) Sinkhorn Cosine None Top-K No
(Sect. 3.1) Target RL encoder (pixels)

Table 1: Methods for OT-based imitation learning: PWIL (Dadashi et al., 2021), SIL (Papagiannis & Li,
2020), GWIL (Fickinger et al., 2022), GDTW-IL (Cohen et al., 2021), and OTIL (Sect. 3.1).

of the form oe = (oe
0, . . . , oe

T) ∈ OT . To do so, IL aims to find a policy π so that the corresponding agent
trajectories oa = (oa

0 , . . . , oa
T) are close to expert trajectories oe under some metric between trajectories. In

recent works, OT distances introduced in Sect. 2.2 have been used to define such metrics.2 Inverse RL is an
approach to IL that designs pseudo-reward signals ril(oa

t) for agent observations oa
t , t = 1, . . . , T . A policy

can then be learned via RL, replacing unavailable environment rewards R by pseudo-rewards ril. For learning,
the main design choices are the RL backbone used to train from rewards and a method to design rewards
from observations.

3 Key Components of Optimal Transport-based Imitation Learning

In this section, we present the key components of recent approaches for imitation learning based on optimal
transport. In this view, these approaches are composed of a common set of modules, but they differ in their
design choices for each module. The modules include observation preprocessing, cost function, OT solver,
pseudo-reward function, reward squashing and aggregation functions. We interpret each agent trajectory
oa as a discrete uniform probability measure with a fixed number of samples (oa

1 , . . . , oa
T) living in the

agent’s observation space (and similarly for each expert demonstration oe). Many methods aim to design
pseudo-reward signals for each observation in oa, which can then be optimized using an RL backbone.

We now describe the main components of the methods, which are illustrated in Figure 1. In Table 1, we show
how recent methods including PWIL (Dadashi et al., 2021), SIL (Papagiannis & Li, 2020), GWIL (Fickinger
et al., 2022), GDTW-IL (Cohen et al., 2021), along with OTIL Sect. 3.1, can be instantiated.

Preprocessor The preprocessor aims to extract informative state representations from observations. In
the case of state-based observations, two common choices for the preprocessor function fϕ are the identity
and scaling by the mean and standard deviation, so that

fϕ(oa
t) = (oa

t − m) ⊘ σ, fϕ(oe
t) = (oe

t − m) ⊘ σ, (2)

where ⊘ is the elementwise division. Here m, σ are the component-wise means and standard deviations
computed over a selected set of trajectories. For instance, in the case of PWIL, the statistics are computed
over expert demonstrations. The preprocessor fϕ can also be a parametric function, such as a neural network.
Two choices that we consider are a discriminator trained by optimizing an adversarial auxiliary loss (as in
SIL), and a novel approach where we use the policy encoder itself.

Optimal Transport Solver and Cost The solver computes an alignment

µ⋆ ∈ arg min
µ∈M

g(µ; fϕ(oa), fϕ(oe), c) (3)

between the trajectories for an OT objective g that takes the embedded agent and expert’s observations as
inputs and is also parameterized by a cost function c defined in the preprocessor’s output space. For example,

2Note that agent and expert trajectories are empirical proxies for the occupancy distributions under the learner and expert
policies (Ho & Ermon, 2016; Dadashi et al., 2021).

3

Under review as submission to TMLR

the Wasserstein distance in (1) uses

gW(µ; x, y, c) =
T,T ′∑

t,t′=1
c(xt, yt′)µt,t′ , (4)

where the cost c can be the Euclidean or cosine distance, and M is the set of coupling matrices. In particular,
W2(fϕ(oa), fϕ(oe)) = gW(µ⋆; fϕ(oa), fϕ(oe), c).

Other instantiantions of (3) include Sinkhorn (Cuturi, 2013) (used in SIL), Gromov-Wasserstein (Peyré et al.,
2016) (used in GWIL), GDTW (Cohen et al., 2021) (used in GDTW-IL) or CO-OT (Redko et al., 2020),
which are instantiated via different choices of g and M . Each µ ∈ M provides an alignment between agent
and expert trajectories, i.e., intuitively, if µt,t′ > 0, then oa,ϕ

t and oe,ϕ
t′ are aligned.

Pseudo-reward Function The pseudo-reward function computes an intrinsic reward signal for each agent
observation by comparing it to the expert observations it is aligned with. For losses relying on a linear
program (e.g., Wasserstein variants or DTW variants), we can define rewards as

rot(oa,ϕ
t) = −

T,T ′∑
t′=1

Ct,t′µ⋆
t,t′ , (5)

where Ct,t′ = c(fϕ(oa
t), fϕ(oe

t′)) is the cost, and µ⋆ is an alignment obtained through (3) for a choice of
g and M . In this case, rewards amount to the negative sum of costs between the agent observation and
expert observations it is aligned with. For losses relying on a quadratic program (GW, GDTW,. . .), the
pseudo-reward is of the form

rot(oa,ϕ
t) = −

T2,T3,T4∑
t2,t3,t4=1

|Ca
t,t3

− Ce
t2,t4

|2µ⋆
t,t3

µ⋆
t2,t4

, (6)

where Ca
t,t′ = c(fϕ(oa

t), fϕ(oa
t′)), Ce

t,t′ = c(fϕ(oe
t), fϕ(oe

t′)) are pairwise cost matrices. The alignment is
constructed by comparing the pairwise distances between samples of each compared trajectory. Observations
with similar observation neighborhood will hence be aligned, and leveraged to define rewards.

Squashing The squashing function s can optionally apply an exponential to the pseudo-rewards, e.g.,
s(x) = αeβx as in PWIL. Other methods simply use the linear s(x) = αx.

Aggregation When multiple expert trajectories oe1 , . . . , oeN are available, existing methods either combine
these demonstrations by concatenating the observations and subsampling (as done in PWIL), or they combine
the pseudo-rewards computed based on these demonstrations. For instance, SIL defines rewards as the mean
of rewards computed from each demonstration, i.e.,

rot(oa,ϕ
t) = 1

N

N∑
n=1

rn
ot(o

a,ϕ
t), (7)

where rn
ot(o

a,ϕ
t) is computed using (5) or (6) and leveraging the nth demonstration.

3.1 The OTIL instantiation

We now propose a simple and effective variant of the framework introduced in the previous section that we
will refer to as Optimal Transport Imitation Learning (OTIL).

Cost function Prop. 1 and Prop. 2 reveal the intricate links between the cost function c, the state
normalization strategy fϕ, and the learning dynamics. In the Euclidean case, the variance statistics of the
trajectory used to standardize states act as learning rate modulators, which may differ across environments

4

Under review as submission to TMLR

and domains, and make the Euclidean cost a sub-optimal approach towards a method effective from states
and pixels due to the scale difference. On the other hand, the cosine cost is invariant to trajectory scale, and
hence to the variance of standardization. For this reason, OTIL leverages the cosine cost, i.e.,

Ct,t′ = c(fϕ(oa
t), fϕ(oe

t′)) =
[
1 − ⟨fϕ(oa

t), fϕ(oe
t′)⟩

∥fϕ(oa
t)∥ ∥fϕ(oe

t′)∥

]
(8)

Preprocessing - State-based To preprocess state-based observations, we apply standard-scaling based
on the learning agent’s rollouts. Scaling statistics are updated every episode based on the current trajectory.
In particular,

fϕ(oa
t) = (oa

t − ma
t) ⊘ σa

t , fϕ(oe
t) = (oe

t − ma
t) ⊘ σa

t , (9)

where ⊘ is the elementwise division. Here ma
t , σa

t are the component-wise means and standard deviations
computed over the current agent trajectory.

Preprocessing - Pixel-based To infer informative OT rewards, we propose to use a target network
updated based on the RL encoder’s weights as preprocessor for trajectories. This avoids the need to learn
a network for representations in the IL part of the framework. Formally, let θ̄ be the slow-moving weights
(updated every P episode based on the current RL encoder hθ’s weights θ). Then we preprocess observations
in the following way:

fϕ(oa
t) = hθ̄(oa

t) fϕ(oe
t) = hθ̄(oa

t), (10)

Solver OTIL’s solver is Sinkhorn, i.e., g is defined as

gW(µ; x, y, c) =
T,T ′∑

t,t′=1
Ct,t′µt,t′ − ϵH(µ), H(µ) =

T,T ′∑
t,t′=1

µt,t′ log(µt,t′) (11)

and rewards as rot(oa,ϕ
t) = −

∑T,T ′

t′=1 Ct,t′µ⋆
t,t′ . We pick it over EMD because it is faster for long trajectories

(quadratic over cubic complexity). We also pick it over DTW-based solutions because the latter are over-
constrained – notably, the first time step of the agent and expert trajectories are constrained to be aligned
which can be problematic in settings where the episode initialization has large variance (e.g., in Deepmind
control environments).

Aggregator We now discuss the choice of expert aggregation. As summarized by Proposition 3, averaging
rewards can lead to an ill-defined objective that will not have any of the expert demonstrations as minimizer,
and the target may be far from the shape of each trajectory. Another choice that leads to consistency is to
use an argmax loss, which for each agent rollout computes rewards based on the closest expert trajectory.
However, it can be problematic in the setting where all expert demonstrations are suboptimal and where
it is required to aggregate signals from multiple demonstrations to mitigate suboptimality as illustrated
in Figure 11 in the Acrobot environment. We hence recommend leveraging a mean over the top-K closest
demonstrations, which interpolates between the mean and argmax approaches. We note there is an inherent
trade-off if some trajectories are low-return because the top-K rewards may lead to sub-optimality if K is
too small as the policy targeted may hence be sub-optimal. To sum up, rewards are defined as

rot(oa,ϕ
t) = 1

K

K∑
k=1

rk
ot(o

a,ϕ
t), (12)

where rk
ot is the reward function that relies on the kth closest trajectory under the Sinkhorn loss.

5

Under review as submission to TMLR

Squashing Finally, we discuss the squashing function s(x). While reward shaping with exponential
squashing can improve sample efficiency by heightening the learning signals for states lying near expert
trajectories, it exacerbates the impact of the evolving scale of typical observation preprocessors, which we
observed led to unstability in the pixel-based case. We therefore use linear squashing s(x) = αx.

3.2 Theoretical Analysis

0.0 0.2 0.4 0.6 0.8
Frames (×105)

10-2

10-1

100

101

Tr
aj

ec
to

ry
 S

td

σmin σmax

Figure 2: min and max standard devi-
ation statistics of rollouts of an agent
being trained on the cartpole swingup
task. These grow significantly during
exploration, and then stabilize.

We next theoretically analyze some of the choices for the normaliza-
tion, cost, and aggregation, in order to provide insights into learning
policies under OTIL’s various design choices. We focus on the same-
domain IL setting (agent and expert MDPs are the same) for clarity,
but believe our findings will be useful for the cross-domain IL setting
(agent and expert MDPs differ) in the grounding of Fickinger et al.
(2022) and Cohen et al. (2021). All proofs can be found in Appendix
E.

State normalization Standard normalization of states, as de-
scribed in the previous section, is commonly used in RL and IL, and
has been used in an ad-hoc way in recent OT works. We study its
implications on learning dynamics and the loss landscape.
Proposition 1. Let g = gW (see (4)), and the preprocessing strategy
be standard scaling using statistics m and σ (fϕ in (2)). If c is the
Euclidean cost, the sum of agent rewards computed using a single
demonstration is bounded above and below by

− 1
σmin

T,T ′∑
t,t′=1

∥(oa
t − oe

t′)∥ µ⋆
t,t′ ≤

T,T ′∑
t=1

rot(oa
t) ≤ − 1

σmax

T,T ′∑
t,t′=1

∥(oa
t − oe

t′)∥ µ⋆
t,t′ . (13)

Proof. If c is the Euclidean cost,

T∑
t=1

rot(oa
t) = −

T,T ′∑
t,t′=1

∥(oa
t − m + m − oe

t′) ⊘ σ∥ µ⋆
t,t′ (14)

= −
T,T ′∑

t,t′=1
∥(oa

t − oe
t′) ⊘ σ∥ µ⋆

t,t′ (15)

= −
T,T ′∑

t,t′=1

√∑
i

[(oa
t)i − (oe

t′)i

σi

]2
µ⋆

t,t′ (16)

≥ −
T,T ′∑

t,t′=1

√∑
i

[(oa
t)i − (oe

t′)i

σmin

]2
µ⋆

t,t′ (17)

= − 1
σmin

T,T ′∑
t,t′=1

∥(oa
t − oe

t′)∥ µ⋆
t,t′ , (18)

where σmin = min(σ1, . . . , σd). The σmax bound can be obtained equivalently.

Prop. 1 highlights a potential issue arising when optimizing the Wasserstein loss with squared Euclidean
cost (this problem also extends to the Gromov–Wasserstein case). The standard deviation of the trajectory
used to normalize states acts as a modulator for the reward scale and as a result for the learning rate. In
Figure 2, we observe that empirically, σmin and σmax vary significantly during training, hence leveraging
a rolling normalization (updating m and σ leveraging current agent rollouts) can render the optimization

6

Under review as submission to TMLR

landscape unstable in the Euclidean case. Fixed normalization computed using expert statistics can also be
problematic in settings where the variance statistic of the expert trajectory is large, which can in practice
decrease the learning rate significantly and lead to slow convergence. In contrast, for the cosine cost case,

T∑
t=1

rot(oa
t) = −

T,T ′∑
t,t′=1

[
1 − ⟨oa

t − m, oe
t′ − m⟩

∥oa
t − m∥ ∥oe

t′ − m∥

]
µ⋆

t,t′ . (19)

Equation (19) shows that the loss is independent of the variance statistic of the trajectory if c is cosine, and
state normalization hence amounts to mean centering. This avoids the large fluctuations in the effective
learning rate (which occur when using the squared Euclidean cost), which can lead to more stable training.
We note the fact of using adaptive optimizers does not mitigate for these unstable reward scales. Reward
scaling is indeed essential for performance, as previously studied in Engstrom et al. (2020)

Cost function The choice of OT cost can also impact the landscape of solutions of the IL problem. Typical
choices include the Euclidean distance (Dadashi et al., 2021) and the cosine distance (Papagiannis & Li, 2020).
For simplicity, we focus our discussion on the squared Wasserstein with access to a single demonstration. We
introduce the following equivalence relation:

oa ∼ oe iff ∃k ∈ RT s.t. oa = (k1oe
a, . . . , kT oe

T). (20)

Proposition 2. Assume oe and oa have length T . Then the Wasserstein distance with cosine cost is a
semi-metric up to scale invariance as defined in (20).

Proof. A proof is provided in Appendix E

Corollary 1. If g = gW (see (4)), c is the cosine cost, T = T ′, squashing is identity, and pseudo-rewards
are computed using a single expert trajectory oe, then the set of trajectories maximizing the sum of rewards∑T

t=1 rot(ot) consists of all elements of the scale-equivalence class introduced in (20).

Proof. Given the result of Prop. 2, W with cosine cost between oe and oa is 0 iff oa ∼ oe, i.e. if they are
equivalent up to scaling. Also, it holds that

T∑
t=1

rot(ot) =
T∑

t=1

T∑
t′=1

[
1 − ⟨oa

t , oe
t′⟩

∥oa
t ∥ ∥oe

t′∥

]
µ⋆

t,t′ = −W2(oa, oe), (21)

which is maximized when W2(oa, oe) = 0, which holds if and only if oa ∼ oe.

Corollary 1 shows that optimizing cosine rewards amounts to aiming to recover an element of the scale-
equivalence class of the expert trajectory. Invariance to scale has been shown to be a good inductive bias in
other contexts (Salimans et al., 2018); since the target of the learning process is now an equivalence class,
some representatives may be easier to target.

Expert aggregation We next study the behaviours induced by existing approaches to aggregating the
signal from multiple expert demonstrations. Consider the case where we average the rewards from each
expert; see (7).
Proposition 3. Assume reward squashing is the identity. If g is the W (or GW)-induced loss, and pseudo-
rewards are aggregated by averaging with (7), then the maximizer of the sum of pseudo-rewards

∑T
t=1 rot(oa

t)
is a barycenter in the measure space induced by g.

Proof. It holds that

T∑
t=1

rot(oa,ϕ
t) =

T∑
t=1

N∑
n=1

rn
ot(o

a,ϕ
t) = −

N∑
n=1

g(µ⋆,n; oa,ϕ, oen,ϕ, c). (22)

7

Under review as submission to TMLR

Also, by definition, g(µ⋆,n; oa,ϕ, oen,ϕ, c) = W2(oa,ϕ, oen , ϕ) if g induces W (and g(µ⋆,n; oa,ϕ, oen,ϕ, c) =
GW2(oa,ϕ, oen,ϕ) if g induces GW). Therefore,

T∑
t=1

rot(oa,ϕ
t) = −

N∑
n=1

W2(oa,ϕ, oen,ϕ) (23)

if g induces W and similarly for GW. The maximizer of the above objective minimizes the sum of squared
Wasserstein distances (and similarly for Gromov–Wasserstein), and is therefore a barycenter.

Note this result extends to more general choices of alignments (e.g., DTW, GDTW, entropic distances..).

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

Barycenter

Figure 3: Barycenter of 4 linear trajec-
tories starting at the origin and going
in different directions. The barycenter
does not have the shape of any of the
individual trajectories.

Prop. 3 provides intuition for the structure of rollouts of agents trained
with rewards averaged over expert demonstrations. In particular,
said trajectories are barycenters under the chosen OT metric, i.e.,
they minimize the sum of OT distances to each individual expert
trajectory. The properties of barycenters are widely studied: 2-
Wasserstein barycenters are notably known to have interpolation
properties, which can be problematic in imitation learning as the
learned policy may be far in Wasserstein distance from each of the
individual trajectories. Figure 3 illustrates this issue.

Another typical aggregation strategy is to concatenate all trajectories
and subsample them into the same shape as a single agent trajectory;
see (Dadashi et al., 2021). This can also lead to undesirable policy
behaviors for similar reasons as the shape of the aggregated trajectory
can significantly differ from the shape of the individual trajectories.

4 Main Experiments

In this work, we aim to answer the following questions.

1. What are important design choices for imitation learning approaches leveraging optimal transport?
OT cost – see Figure 7, state-based normalization – see Figure 8, and encoding for OT in the pixel
case – see Figure 9, OT solver – see Figure 10, OT aggregation – see Figure 11, and squashing – see
Figure 12.

2. Can we design an OT approach that directly extends to pixel-based learning without extra learning?
Yes, by performing OT in the latent space of the backbone’s encoder – see Figure 9 for an ablation, –
see Figure 5 for main results

3. Can non-adversarial OT methods match/improve the performance of (OT and non-OT) adversarial-
based methods? Yes, OTIL achieves equivalent or better sample efficiency and performance on most
tasks from states and pixels.

4. Does OTIL perform better than predecessor OT methods? Yes, OTIL outperforms SIL and PWIL on
all tasks from states and pixels; see Figure 4, Figure 5.

4.1 Experimental Setup

Environments We consider Mujoco (Todorov et al., 2012) tasks in the DeepMind control suite (Tassa
et al., 2018), and tasks in the Arcade learning environment (Bellemare et al., 2013). The selected tasks
are distinct enough to demonstrate the versatility and robustness of our approach. We experiment with
state-based and pixel-based settings. We evaluate the agents with the environment rewards, but these rewards
are not provided to the agents during training. Full experimental details can be found in Appendix ??.

8

Under review as submission to TMLR

0 1 2 3
0

500

1000

Ep
iso

de
 R

et
ur

n
Cheetah Run

0 1 2 3
0

500

1000

Walker Walk

0 1 2 3
0

500

Walker Run

0 1 2 3
0

200

400

600
Acrobot Swingup

0 1 2 3
0

500

1000
Quadruped Walk

0 1 2 3
Frames (×106)

0

500

1000
Ep

iso
de

 R
et

ur
n

Quadruped Run

0 10 20
Frames (×106)

0

500

1000
Humanoid Stand

0 10 20
Frames (×106)

0

500

1000
Humanoid Walk

Expert PWIL SIL DAC OTIL

Figure 4: Episodic return of the OTIL agent along with SIL, DAC and PWIL baselines trained from state-
based observations. On medium-complexity tasks (top row), all baselines achieve expert performance. On
hard tasks (bottom), OTIL outperforms all baselines in terms of performance and sample efficiency by a
significant margin on all tasks.

Expert Demonstrations For continuous control, we use DDPG with the true environment rewards. For
discrete control, we use a DQN agent. We run 10 seeds and pick the seed that achieves highest episodic
reward.

Setup In all Deepmind control experiments, we run 10 seeds under each configuration and average results
with a 90% confidence interval (computed using seaborn’s lineplot function) over the rewards obtained from
each seed. In Atari experiments, we use 5 seeds. We compare agents with the episodic return to verify
whether the agent solves the task. We provide further experimental details in App. B, and a description of
the general OT for IL framework in App. C.

4.2 State-Based Continuous Control (DMC)

We consider two OT baselines, PWIL (Dadashi et al., 2021) and SIL (Papagiannis & Li, 2020), and a strong
GAN-based baseline, DAC (Kostrikov et al., 2019). For fair comparison, we equip all baselines with the same
RL backbone for learning, namely soft-actor critic (SAC) (Haarnoja et al., 2018). We train all baselines for
the same number of frames and with the same noise schedule for exploration. Given that this paper focuses
on the observation-only setup, behavioral cloning (Pomerleau, 1988) does not apply here as it requires expert
actions. A description of SAC is provided in App. A.

In Figure 4, we observe results of all baselines on 8 representative tasks from the Deepmind control suite. On
all medium-complexity tasks (first row), all methods (including ours, OTIL) but SIL perform on par. The
latter has a lower sample efficiency (particularly on Cheetah Run). On harder tasks, OTIL is significantly
more efficient than baselines, and is the only method to solve the hard humanoid tasks.

4.3 Pixel-Based Continuous Control (DMC)

For pixel-based learning we compare OTIL to SIL (Dadashi et al., 2021) and DAC (Kostrikov et al., 2019).
We equip all baselines with the same SOTA pixel-based RL backbone for learning, DrQ-v2 (Yarats et al.,
2021). Also, all baselines benefit from data augmentation in the form of padding, random crops and bilinear
interpolation as proposed in Yarats et al. (2021). We train all baselines for the same number of frames and
with the same noise schedules for exploration. A description of DrQ-v2 is provided in App. A.

9

Under review as submission to TMLR

0 1 2 3
0

500

1000

Ep
iso

de
 R

et
ur

n Cartpole Swingup

0 1 2 3
0

500

1000
Finger Spin

0 1 2 3
0

500

1000

Cup Catch

0 1 2 3
Frames (×106)

0

200

400

600
Acrobot Swingup

0 1 2 3
Frames (×106)

0

500

1000

Ep
iso

de
 R

et
ur

n Cheetah Run

0 1 2 3
Frames (×106)

0

500

1000
Walker Walk

0 1 2 3
Frames (×106)

0

250

500

750
Walker Run

0 5 10 15
Frames (×106)

0

500

Quadruped Run

Expert SIL DAC OTIL

Figure 5: Episodic return of the OTIL agent along with SIL and DAC baselines trained from pixel-based
observation on Deepmind control suite tasks. On medium-complexity tasks (top row), all baselines achieve
expert performance. On hard tasks (bottom), OTIL outperforms baselines in terms of performance and
sample efficiency by a significant margin.

We report results on 8 tasks from the control suite in Figure 5. OTIL matches or outperforms SIL and DAC
on all environments besides Acrobot in terms of sample efficiency and performance.

Moreover, in contrast to the baselines, OTIL does not require training a discriminator in order to obtain
representations to define rewards on, and still achieves expert performance on most tasks.

4.4 Pixel-Based Discrete Control (Atari)

0 10 20
20

0

20

Ep
iso

de
 R

et
ur

n

Pong

0 10 20

0

20

Freeway

DAC OTIL

Figure 6: Episodic return of the OTIL agent and DAC
trained from pixel-based observation on Atari tasks.

To test the generality of our approach, we evaluate
on two discrete control Atari environments, with no
modification to the method besides switching to a
DQN backbone (Figure 6). On these tasks, DAC
and OTIL have comparable sample efficiency and
performance, both matching the expert.

4.5 Ablations

Finally, we provide an ablation study of the main
components of OTIL to study its stability to changes
in hyperparameters, and report results in Figures
7-12. Note we did not re-tune all of the other hyper-
parameters when we ablated OTIL, hence it could
be possible for a method to work well with some of
the less effective components if properly tuned. Note we provide full learning curves for these experiments in
App. D.

Cost function Figure 7 shows that in practice, the cosine cost leads to better performance than the Euclidean
cost (when all other OTIL components are kept fixed).

Preprocessing We consider agent-based standard-scaling (statistics are updated every P episodes based on
the current rollout), expert-based standard-scaling (statistics are computed on the expert demonstrations),
no scaling, and adversarial training of a discriminator similarly to SIL (Papagiannis & Li, 2020). We observe
in Figure 8 that preprocessing with agent-based standard-scaling performs best. For pixel-based learning, we
compare our target network approach to adversarial learning of an encoder, a randomly initialized encoder,

10

Under review as submission to TMLR

Cartpole Swingup Cheetah Run Acrobot Swingup Quadruped Walk0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

 R
et

ur
n

OTIL variants: Euclidean Cosine

Figure 7: Episodic return (rescaled to expert return)
of the OTIL agent trained with Euclidean and cosine
cost. As expected by Prop. 2 and Prop. 1, the
Euclidean cost leads to suboptimal performance
compared to the cosine cost.

Cartpole Swingup Cheetah Run Acrobot Swingup Quadruped Walk0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

et
ur

n

OTIL variants: no scaler Disc.
expert scaling agent scaling

Figure 8: Episodic return (rescaled by exp.) of
OTIL trained from states with different preprocess-
ing strategies: identity, adversarially-trained dis-
criminator, fixed normalization via expert statistics,
and rolling normalization via agent statistics.

Cartpole SwingupAcrobot Swingup Cheetah Run Finger Spin0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

et
ur

n

OTIL variants: disc. no target net.
target net. random encoder

Figure 9: Episodic return (rescaled to expert return)
of OTIL trained from pixels with different obser-
vation encoding strategies: adversarial training of
a discriminator (disc.), encoding via RL encoder’s
representations (no target net.), encoding via a tar-
get network updated using the RL encoder (target
net.), and finally a random encoder.

Cartpole Swingup Cheetah Run Acrobot Swingup Quadruped Walk0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

et
ur

n

OTIL variants: Soft-DTW Identity
EMD Sinkhorn

Figure 10: Episodic return (rescaled to expert re-
turn) of the OTIL agent trained from state obser-
vations with different OT losses. We consider the
following strategies: Soft-DTW rewards, Identity
rewards, EMD rewards (non-entropic Wasserstein)
and Sinkhorn rewards (entropic Wasserstein).

Cartpole Swingup Cheetah Run Acrobot Swingup Quadruped Walk0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

et
ur

n

OTIL variants: k = 1 k = 3 k = 5

Figure 11: Episodic return (rescaled to expert re-
turn) of the OTIL agent trained from state obser-
vations with various values of k in the Top − k
operator. For most tasks, k = 1 is sufficient, but on
Acrobot higher ones are required to avoid converg-
ing to low-return expert trajectories, and to benefit
from a more accurate estimate of the stationary
expert trajectory.

0.0 0.5 1.0
0

500

Ep
iso

de
 R

et
ur

n Cheetah Run

0.0 0.5 1.0
0

500

1000
Quadruped Walk

OTIL variants: Exponential Linear

Figure 12: Episodic return of the OTIL agent
trained from state observations with linear and ex-
ponential reward squashing. Exponential shaping
leads to a better sample efficiency, but overall per-
formance is equivalent.

11

Under review as submission to TMLR

and leveraging the RL encoder without target updates. We observe our approach performs best across all
environments.

Solver We consider four alignment instantiations (parametrizations of g and M): W2 solved via the Hungarian
algorithm, W2

ϵ via Sinkhorn’s algorithm, the identity, and DTW (which we approximate using a soft version
named Soft-DTW (Cuturi & Blondel, 2017). As shown in Figure 10, we achieve best performance with
Sinkhorn, and EMD.

Squashing We also report an empirical analysis of squashing functions in Figure 8. Linear and exponential
squashing lead to equivalent final performance in the state-based case although the latter has better sample
efficiency. However, we were not able to train any policy with exponential squashing in the pixel-based
case, which we expect to be due to the significant variance of the scale of the encoder being trained.
This could potentially be fixed by pre-training an encoder, and leveraging its representations to compute
exponentially-squashed rewards.

5 Conclusion

We have given an overview of optimal transport approaches for imitation learning along with an extensive
study of design choices through theory and empirical ablations. In our proposed method, OTIL, we found
the choice of cost, alignment solver and observation representations essential to effective and stable learning.
We demonstrated state-of-the-art performance on all tasks doing IL from states and pixels, and push the
boundary of tasks solvable from pixel-based observations only.

References
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation

platform for general agents. Journal of Artificial Intelligence Research, 2013.

Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 1957.

Kiante Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation learning. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=rkgbYyHtwB.

Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, and Marc Deisenroth. Aligning time series
on incomparable spaces. In Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, Proceedings of Machine Learning Research, 2021.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NIPS, 2013.

Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function for time-series. In International
Conference on Machine Learning, pp. 894–903. PMLR, 2017.

Robert Dadashi, Leonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal wasserstein imitation
learning. In International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=TtYSU29zgR.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and
Aleksander Madry. Implementation matters in deep rl: A case study on ppo and trpo. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=r1etN1rtPB.

Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos. Cross-domain imitation learning via
optimal transport. In arXiv:2110.03684, 2022.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmassan, Stockholm, Sweden, July 10-15, 2018, 2018.

12

https://openreview.net/forum?id=rkgbYyHtwB
https://openreview.net/forum?id=TtYSU29zgR
https://openreview.net/forum?id=TtYSU29zgR
https://openreview.net/forum?id=r1etN1rtPB

Under review as submission to TMLR

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Jonathan Ho and S. Ermon. Generative adversarial imitation learning. In NIPS, 2016.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson.
Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation learning.
In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=Hk4fpoA5Km.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. CoRR, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv e-prints, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. CoRR,
2016.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, ICML ’00, pp. 663–670, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.

Georgios Papagiannis and Yunpeng Li. Imitation learning with sinkhorn distances. ArXiv, abs/2008.09167,
2020.

G. Peyré and Marco Cuturi. Computational optimal transport. Found. Trends Mach. Learn., 11:355–607,
2019.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and distance
matrices. In International Conference on Machine Learning, pp. 2664–2672. PMLR, 2016.

D. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In NIPS, 1988.

Ievgen Redko, Titouan Vayer, Rémi Flamary, and Nicolas Courty. Co-optimal transport. In Neural Information
Processing Systems (NeurIPS), 2020.

Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving gans using optimal transport. In
International Conference on Learning Representations, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller. DeepMind control
suite. Technical report, DeepMind, January 2018.

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM, 38(3):
58–68, 1995.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

13

https://openreview.net/forum?id=Hk4fpoA5Km
https://openreview.net/forum?id=Hk4fpoA5Km

Under review as submission to TMLR

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Ruohan Wang, Carlo Ciliberto, Pierluigi Vito Amadori, and Yiannis Demiris. Random expert distillation:
Imitation learning via expert policy support estimation. CoRR, abs/1905.06750, 2019. URL http:
//arxiv.org/abs/1905.06750.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

14

http://arxiv.org/abs/1905.06750
http://arxiv.org/abs/1905.06750

Under review as submission to TMLR

A RL Backbones

Soft Actor-Critic (SAC) For state-based continuous control, we use Soft Actor-Critic (Haarnoja et al.,
2018). In SAC, we train a state-action value network Q, a stochastic policy network π and a temperature α
to solve the MDP of study. The policy is trained to maximize expected rewards while maximizing entropy.

DrQ-v2 For pixel-based continuous control use DrQ-v2 (Yarats et al., 2021), which is an actor-critic method
based on the deep deterministic policy gradient (DDPG) algorithm (Lillicrap et al., 2015). Given a replay
buffer D, it learns simultaneously a Q-function Qθ and a policy πη. Qθ is trained by clipped double-Q-learning
(Fujimoto et al., 2018) with n-step returns. πη is trained via deterministic policy gradient. DrQv2 employs
data augmentation in the form of random shifts with padding and a random crop to restore the original
image dimension, followed by bilinear interpolation. Data augmentation acts as regularization and reduces
the variance of the Q estimates. Images are embedded into the latent space via an encoder fϕ after being
augmented. This encoder is trained to minimize the critic loss only.

Deep-Q-Network (DQN) For pixel-based discrete control, we use the Deep Q-Network method (Mnih
et al., 2013). It consists in learning a convolutional network approximating the state-action value function by
minimizing the squared residual error. We also leverage n-step returns.

B Hyperparameters and further experimental details.

Agent Parameter Value 1

Common Replay buffer size All (dm, states), 150000 (dm, pixels), 1M (Atari)
Learning rate 1e−4 (dm), 0.0000625 (Atari)

Discount 0.99
n-step returns 1 (dm states), 3 (dm pixels, Atari)
Action repeat 2 (dm), 4 (Atari)
Seed frames 12000 (dm), 800000 (Atari)

Exploration frames 10000 (dm)
Mini-batch size 256 (dm), 64 (Atari)

Agent update frequency 2 (dm), 4 (Atari)
Critic soft-update rate 0.01

Features dim 50 (dm), 512 (Atari)
Hidden dim 1024 (dm), 512 (Atari)
Optimizer Adam

Num demos 10
DDPG exploration schedule linear(1, 0.1, 1000000) (states)

linear(1, 0.1, 500000) (pixels)

OTIL Target encoder update frequency (episodes) 20
Reward scale factor 10 (dm states), 200 (dm pixels), 1000 (Atari)

Top-k 3 (dm states), 1 (dm pixels, Atari)

DAC Gradient penalty coefficient λ 10

Table 2: List of hyperparameters.

15

Under review as submission to TMLR

While the above set of hyperparameters is common to all environments, we found that a buffer size of 1000000
and an exploration schedule of 1000000-length was required for the pixel-based quadruped task. Also for the
state-based quadruped, we used for DAC a learning rate of 5e−5 and a batch size of 512 which improved
stability. Trajectories are of length 500 for Deepmind Control environments, and of variable lenght for Atari
environments due to early stopping. Finally, we note that when computing rewards based on multiple expert
trajectories in Figure 8, we compute statistics using the (single) concatenated trajectory (as in PWIL).

C Algorithmic Framework

Algorithm 1 OT-IL core. Different methods can be instantiated by changing the imitation rewarder function.
Require: Expert demonstrations {µoen }N

n=1, replay buffer D, backbone-specific networks (e.g., for policy,
critic function and encoder for DrQ-v2). For adversarial baselines, also requires a discriminator D.
for t ∈ Ttotal do

if done then
r1:T = rewarderimitation(episode)
Update episode with r1:T and add all quadruples [ot, at, ot+1, rt] to D.
ot = env.reset(), done = False, episode = []

end if
at ∼ π(·|ot) → ot+1, done = env.step(at), episode.append([ot, at, ot+1])
Update backbone-specific networks, and rewarder-specific networks using D.

end for

D Extra Experimental Results

0.0 0.5 1.0
0

500

Ep
iso

de
 R

et
ur

n Cartpole Swingup

agent
POTIL (euclidean)
POTIL (cosine)
Expert

0.0 0.5 1.0
0

500

Cheetah Run

0.0 0.5 1.0
0

200

400

600
Acrobot Swingup

0.0 0.5 1.0
0

500

1000 Quadruped Walk

OTIL variants: Euclidean Cosine

Figure 13: Episodic return of the OTIL agent trained with Euclidean and cosine cost. As expected by Prop. 2
and Prop. 1, the Euclidean cost leads to suboptimal performance compared to the cosine cost.

0.0 0.5 1.0
0

500

Ep
iso

de
 R

et
ur

n Cartpole Swingup

0.0 0.5 1.0
0

500

Cheetah Run

0.0 0.5 1.0
0

200

400

600
Acrobot Swingup

0 1 2
0

500

1000
Quadruped Walk

OTIL variants: no scaler Disc. expert scaling agent scaling

Figure 14: Episodic return of the OTIL agent trained from state observations with different observation
preprocessing strategies. We consider the following strategies: no normalization, adversarial training of a
discriminator, fixed normalization based on expert statistics, and nomalization based on rolling agent states.

16

Under review as submission to TMLR

0.0 0.5 1.0 1.5
0

500

1000

Ep
iso

de
 R

et
ur

n Cartpole Swingup

0.0 0.5 1.0 1.5
0

200

400

600
Acrobot Swingup

0.0 0.5 1.0 1.5
0

500

Cheetah Run

0.0 0.5 1.0 1.5
0

500

1000

Finger Spin

OTIL variants: disc no target net. target net. random encoder

Figure 15: Episodic return of the OTIL agent trained from pixel observations with different observation
encoding strategies. We consider the following strategies: adversarial training of a discriminator, encoding
via RL encoder’s representations, encoding via a target network updated using the RL encoder, and finally a
random encoder.

0.0 0.5 1.0
0

500

Ep
iso

de
 R

et
ur

n Cartpole Swingup

0.0 0.5 1.0
0

500

Cheetah Run

0.0 0.5 1.0
0

200

400

600
Acrobot Swingup

0.0 0.5 1.0
0

500

1000
Quadruped Walk

OTIL variants: Soft-DTW Identity EMD Sinkhorn

Figure 16: Episodic return of the OTIL agent trained from state observations with different OT losses.
We consider the following strategies: Soft-DTW rewards, Identity rewards, EMD rewards (non-entropic
Wasserstein) and Sinkhorn rewards (entropic Wasserstein).

0.0 0.5 1.0 1.5
0

500

Ep
iso

de
 R

et
ur

n Cartpole Swingup

0.0 0.5 1.0 1.5
0

500

Cheetah Run

0.0 0.5 1.0 1.5
0

200

400

600
Acrobot Swingup

0.0 0.5 1.0 1.5
0

500

1000
Quadruped Walk

OTIL variants: k = 1 k = 3 k = 5

Figure 17: Episodic return of the OTIL agent trained from state observations with various values of k in
the Top-k operator. For most tasks, k = 1 is sufficient, but on Acrobot higher ones are required to avoid
converging to low-return expert trajectories, and to benefit from a more accurate estimate of the stationary
expert trajectory.

E Proofs

Proposition 4. Assume oe and oa have length T . Then the Wasserstein with cosine cost between oe and oa

is a semi-metric up to scale invariance.

Proof. We first show it is well-defined and positive.

−1 ≤ ⟨ oa
t

∥oa
t ∥

,
oe

t′

∥oe
t′∥

⟩ ≤ 1 (24)

Hence

17

Under review as submission to TMLR

0 ≤
[
1 − ⟨oa

t , oe
t′⟩

∥oa
t ∥ ∥oe

t′∥

]
≤ 2. (25)

And as a result W is well defined and positive. Since µt,t′ ≥ 0 it holds that

W(oa, oe) =

√√√√ T∑
t,t′=1

[
1 −

⟨oa
t , oe

t′⟩
∥oa

t ∥ ∥oe
t′∥

]
µ⋆

t,t′ ≥ 0. (26)

We continue by showing it is symmetric.

W(oa, oe) =

√√√√ T∑
t,t′=1

[
1 −

⟨oa
t , oe

t′⟩
∥oa

t ∥ ∥oe
t′∥

]
µ⋆

t,t′ =

√√√√ T∑
t,t′=1

[
1 −

⟨oe
t , oa

t′⟩
∥oe

t ∥ ∥oa
t′∥

]
µ⋆

t,t′ = W(oe, oa). (27)

We now discuss minimizers of W. Define the relation o1 ∼ o2 if and only if ∃k ∈ RT
+, such that o1 =

(k1o2
1, . . . , kT o2

T). We show W(oa, oe) = 0 if and only if oa ∼ oe. Assume W(oa, oe) = 0. By the Birkhoff–von
Neumann theorem, there exists a permutation coupling induced by the permutation map σ that is optimal
for the Wasserstein with cosine cost. Hence for each oa

t , ∃ a single t′ = σ(t) such that oa
t and oe

t are aligned.
The squared Wasserstein hence equals

T∑
t=1

1 − ⟨oa
t , oe

t′⟩
∥oa

t ∥ ∥oe
t′∥

, (28)

which is 0 if and only if oa
t = kto

e
t′ for all t, which shows the if direction.

We finally show that for any oa ∼ oe, W(oa, oe) = 0. Let the coupling be the identity coupling (the coupling
that follows the ordering of the trajectories).

T∑
t,t′

[
1 − ⟨oa

t , oe
t′⟩

∥oa
t ∥ ∥oe

t′∥

]
µId

t,t′ =
T∑
t

[
1 − ⟨oa

t , oe
t ⟩

∥oa
t ∥ ∥oe

t ∥

]
=

T∑
t

[
1 − ⟨kto

e
t , oe

t ⟩
∥ktoe

t ∥ ∥oe
t ∥

]
= 0. (29)

Therefore the identity coupling is optimal (µId = µ⋆) and W(oa, oe) = 0.

18

	1 Introduction
	2 Background
	2.1 Reinforcement Learning (RL)
	2.2 Optimal Transport
	2.3 Imitation Learning via Inverse RL

	3 Key Components of Optimal Transport-based Imitation Learning
	3.1 The OTIL instantiation
	3.2 Theoretical Analysis

	4 Main Experiments
	4.1 Experimental Setup
	4.2 State-Based Continuous Control (DMC)
	4.3 Pixel-Based Continuous Control (DMC)
	4.4 Pixel-Based Discrete Control (Atari)
	4.5 Ablations

	5 Conclusion
	A RL Backbones
	B Hyperparameters and further experimental details.
	C Algorithmic Framework
	D Extra Experimental Results
	E Proofs

