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Abstract

Diffusion models have demonstrated decent generation quality, yet their deploy-
ment in federated learning scenarios remains challenging. Due to data heterogeneity
and a large number of parameters, conventional parameter averaging schemes of-
ten fail to achieve stable collaborative training of diffusion models. We reframe
collaborative synthetic data generation as a cooperative sampling procedure from
a mixture of decentralized distributions, each encoded by a pre-trained local dif-
fusion model. This leverages the connection between diffusion and energy-based
models, which readily supports compositional generation thereof. Consequently,
we can directly obtain refined synthetic dataset, optionally with differential privacy
guarantee, even without exchanging diffusion model parameters. Our framework
reduces communication overhead while maintaining the generation quality, realized
through an unadjusted Langevin algorithm with a convergence guarantee.

1 Introduction

Federated learning (FL [1]) enables clients (i.e., data owners) to collaboratively train a statistical
model by exchanging locally updated parameters with a central server over iterative communication
rounds, thereby preserving data privacy. While this model-centric FL paradigm is well-established,
sharing public data can substantially enhance FL performance by mitigating statistical heterogeneity
arising from non-independent and identically distributed (non-IID) local data distributions [1–4]. For
instance, public or synthetic datasets can homogenize disparate local distributions and serve as direct
signals for server-side pretraining. This facilitates client-side transfer learning or data augmentation,
both improve the overall utility of FL.

While these data-centric FL scheme offers clear advantages over purely model-centric approaches,
there remain challenges. First, curating public datasets is often infeasible in a real-world FL sys-
tem. Although generation of synthetic data via the collaborative training of generative models is
a viable alternative, it is challenging in FL settings. For example, generative adversarial networks
(GANs [5]) suffer from training instabilities and suboptimal sample quality, which are exacerbated
in FL by statistical heterogeneity [6–8]. Even advanced diffusion models [9–12] incur substantial
computational and communication overheads due to their large parameter sizes and fine-grained
optimization requirements. Thus, effective synthetic data generation methods for FL constitute a
critical yet underexplored research area. Specifically in cross-silo FL settings, clients often have a
limited number of samples (e.g., hospitals or enterprises with small datasets). In this sample-limited
condition, generating synthetic data becomes critical as it can complement scarce and disparate
local dataset with high-fidelity synthetic samples. Thereby, this directly addresses the statistical
heterogeneity problem in federated environments.

In this work, we redefine federated synthetic data generation as a collaborative sampling process from
a mixture of heterogeneous and inaccessible local distributions. By modeling each local distribution
with a client-side diffusion model, we enable efficient compositional sampling from them, leveraging
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energy-based interpretations of diffusion models [13] and the mixture-of-experts paradigm [14].
The sampling is embarrassingly simple, through the unadjusted Langevin algorithm (ULA [15, 16]).
Building on these, we introduce DfD (Diffusion-federated Dataset), a cooperative inference framework
that generates synthetic data through sampling directly from a mixture distribution, eschewing
traditional model averaging. DfD advances federated synthetic data generation as follows:

• We propose a novel view on federated synthetic data generation as cooperative sampling from
individually trained diffusion models, without necessitating the exchange of model parameters.

• Through energy-based parameterization and compatibility of ULA with the diffusion reverse
process, we refine the connections between diffusion models and energy-based models (EBMs [17]).
We also derive the optimal step size and non-asymptotic distributional convergence for DfD.

• We empirically validate fidelity and utility of synthetic dataset from DfD under non-IID conditions,
optionally with formal privacy guarantees, addressing key needs in cross-silo FL scenarios.

2 Related Works

Synthetic Data in FL. FL often struggles with slow convergence when the client’s local private
data sets differ significantly, a common challenge known as statistical heterogeneity or the non-IID
problem [1, 4]. This issue is critical in that the central server cannot directly access or adjust these
heterogeneous local datasets to align their disparate optimization trajectories. Most prior work
has addressed this through model-centric approaches, such as local update regularization [18–21],
modified central aggregation schemes [22–27], or personalization [28–30].

While effective, a complementary data-centric perspective still remains underexplored. These include
sharing additional server-side public data [2, 31–33], using indiscernible auxiliary representations [34–
40], or leveraging a generative model to obtain plausible synthetic data [41–50]. These provide clients
with a proxy for global distribution, which directly mitigates the non-IID problem and improves
convergence [51]. Notably, as studied in [2], sharing only a small portion of public data can
significantly boost FL performance, though acquiring such data is nontrivial in practice.

Hence, synthetic data is widely used with generative models in e.g., healthcare [52–57]. However,
current synthetic data generation methods in FL, including real-world applications, mostly resort to
GANs [58] (optionally with privacy guarantee [59–62]), which suffer from subpar generation quality
and optimization instability due to their adversarial training scheme (e.g., mode collapse [6–8]).

Diffusion Models in FL. Diffusion models [11, 12], such as Denoising Diffusion Probabilistic
Models (DDPMs [9]), have offered a superior generation quality training stability, compared to other
generative models, e.g., GANs. [10]. Although promising, their adoption in FL is challenging and
sometimes even prohibitive due to high computational costs and large model sizes. Thus, current
methods suffer from significant communication overhead [63], poor scalability to high-resolution
data [64], and even require retraining of local models [65] or data sharing [66] due to non-IID problem.
In addition, the inherent loss design of diffusion models, which depend on multiple time-steps, also
requires frequent parameter exchanges during training, making them difficult to adopt in FL [66, 67].

Our framework detours by directly generating samples from an inaccessible mixture of heterogeneous
local distributions, encoded by locally-trained diffusion models. This is rooted in exploiting the
connection of diffusion models to energy-based models (EBMs [17]), which estimate unnormalized
probability densities through their gradients with respect to inputs (i.e., scores [68]). This intriguing
connection enables easy compositional sampling, which can be viewed as sampling from a mixture-
of-experts [14], even without accessing model parameters. As a result, DfD offers an efficient and
scalable solution for adopting diffusion models in federated synthetic data generation.

3 Preliminaries

3.1 Diffusion Models

Diffusion models aim to encode data distribution pdata(x) by learning transition from noise-perturbed
data {xt}Tt=1, where xT ∼ N (0d, Id), into its clean original counterpart, x0 ∼ pdata(x) ≡ q(x0)
through paired forward and backward processes. Specifically, Gaussian diffusion defines a Markov
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chain joint distribution q(x0, ...,xT ) = q(x0)
∏T

t=1 q(xt|xt−1), where the forward process is de-
fined by incrementally adding Gaussian noise over t ∈ [T ] as q(xt|xt−1) = N (xt;

√
αtxt−1, βtId).

Note that d is the data dimension, 0 < βt ≤ 1 and αt = 1 − βt are noise constants. The reverse
process, typically parameterized by a deep network with θ, approximates pθ(xt−1|xt), in order to
progressively denoise from the Gaussian noise xT into the original data x0. With sufficiently small
βt, each transition of reverse process approximately follows Gaussian [11]. This allows:

pθ(xt−1|xt) = N
(
xt−1;

1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)

︸ ︷︷ ︸
=:µθ(xt,t)

, β̃tId

)
, (1)

where ᾱt, β̃t are some transformations of βt,∀t ∈ [T ], following the configurations of [9] (see also
Appendix C.1).

Eventually, the parameterized deep network needs to predict ϵθ(xt, t) as a mapping ϵθ : Rd × [T ] →
Rd. Note that diffusion models ensure the analytic conversion from the original to the perturbed data
at any timestep t ∈ [T ] [9]:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0d, Id). (2)

Using this property, we can optimize with composite loss [9] as L(θ) =
∑T

t=1 L(θ, t), where

L(θ, t) = Ex0∼pdata(x),ϵ∼N (0d,Id)

[
∥ϵ− ϵθ(xt, t)∥22

]
. (3)

By minimizing this objective, diffusion models are capable of generating high-quality samples
by constructing µθ(xt, t) from their prediction ϵθ(xt, t) and progressively denoising from xT ∼
N (0d, Id) to x0 over t = T − 1, ..., 1, using Eq. (1). We refer to Appendix A for detailed derivations.

3.2 Energy-based Interpretation of Diffusion Models

Diffusion models have an intriguing connection with EBMs [12, 13]. EBMs [17] define an unnormal-
ized probability density as:

pθ(x) =
exp (−λfθ(x))

Zθ
, (4)

where EBMs forgo modeling of the normalizing constant Zθ =
∫
x∈X exp (−λfθ(x)) dx. We

define fθ : Rd → R as an energy function with parameter θ ∈ Rp, scale factor λ ∈ R+ and
∇x log pθ(x) = −λ∇xfθ(x) as a score. Note that we have d ≪ p if we choose deep networks,
which are typically overparameterized.

The abstention of modeling normalizing constant prevents exact likelihood computation. To address
the issues that arise from this design, denoising score matching [69] has been proposed to minimize
the Fisher divergence between the model’s score and that of a noise-perturbed data distribution, i.e.,
q(xσ) =

∫
x∈X qσ(xσ|x)pdata(x)dx. Note here that σ is a noise variance and the perturbation is

given as xσ = x+ σϵ, ϵ ∼ N (0d, Id). Building on these, the denoising score matching objective is:

L(θ, σ) = Exσ∼q(xσ|x),x∼pdata(x)

[
∥∇xσ

log q(xσ|x)−∇xσ
log pθ(xσ)∥2

]
. (5)

This is equivalent (up to a constant) to:

σ2L(θ, σ) = Exσ∼q(xσ|x),ϵ∼N (0d,Id)

[
∥ϵ− σλ∇xσfθ(xσ)∥2

]
. (6)

Interestingly, the objective of diffusion models in Eq. (3) aligns with the scaled objective above [13],
with following connection (along with replacing σ into σt):

∇xσt
log pθ(xσt) = −λ∇xσt

fθ(xσt) ≡ −ϵθ(xt, t)

σt
. (7)

Note that this connection to EBMs can be further concretized for diffusion models by a specific
choice of the energy-based parameterization introduced in following Section 3.4. It should also be
noted that this explicit connection allows using a sampler for diffusion models, e.g., ULA. We defer
all detailed derivations in this section to Appendix B.
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3.3 Federated Synthetic Data Generation by Sampling from a Mixture Distributions

The ULA follows a discretized Langevin diffusion process [15] and enables sampling from a target
distribution p(x) with its score ∇x log p(x), by iteratively updating from xT ∼ N (0d, Id) using:

xt−1 = xt + ηt∇xt
log p(xt) +

√
2ηtzt, zt ∼ N (0d, Id), (8)

where ηt ≥ 0 is a step size, and it ensures x0 ∼ p(x) [70]. We denote the notation of decreasing
timesteps as t = T, ..., 1 for the compatibility with the diffusion reverse process.

In FL setup, we have K clients each having private dataset Di. Then, a target distribution is naturally
defined as a mixture of local distributions: p⋆(x) =

∑K
i=1 wipi(x), where pi(x) represents unknown

local distribution of Di from i-th client and wi ≥ 0 is a mixing coefficient satisfying
∑K

i=1 wi = 1
(e.g., wi = 1/K if uniform weighting). To generate samples from the mixture of local distributions,
what we need to estimate the global score ∇x log p⋆(x) defined as follows:

∇x log p⋆(x) =
∑K

i=1
w̃i∇x log pθi

(x), w̃i =
wi exp(−λfθi(x))∑K
j=1 wj exp(−λfθj

(x))
, (9)

where w̃i is derived from pθi
(x) ∝ exp (−λfθi

(x)) due to Eq. (4). Note that it directly supports
embarrassingly parallel computation across clients, aligning well with FL settings. In detail, the
estimation of the global score ∇x log p⋆(x) is available as long as we have both i) local scores
∇x log pθi

(x) and ii) energies (unnormalized density values) exp(−λfθi
(x)) of each client.

However, diffusion models do not explicitly provide fθi(x) in its inherent design. This can be easily
addressed using energy-based parameterization described in the following section.

3.4 Energy-based Parameterization of Diffusion Models

To implement ULA to directly sample from a mixture of local distributions, we should estimate the
energies pθi

(x) ∝ exp(−λfθi
(x)) for w̃i in Eq. (9). Since diffusion models lack explicit density

function, prior arts proposed to approximate them by defining fθ(x) using an energy-based ℓ2
parameterization trick [13, 71]. (We refer to Section D of [13] for details on other tricks)
Definition 3.1 (energy-based ℓ2 parameterization [13]). The energy function of a diffusion model is
approximated as fθ(xt, t) =

1
2∥ϵθ(xt, t)∥22, where ϵθ(xt, t) is a prediction of a diffusion model.

Having this energy function, we can now define scores of diffusion models and obtain the global
score in Eq. (9), accordingly. Unfortunately, this parameterization requires a modification in training
of diffusion models, and this often yields subpar generation quality [13, 71].

4 Proposed Method

4.1 Refined Energy-based Parameterization

To detour the modification in training, we start from the notion of well-trained diffusion models.
Definition 4.1 (Well-trained diffusion model). A diffusion model is well-trained if, through mini-
mization of the objective in Eq. (3), its noise prediction satisfies ϵθ(xt, t) ≈ ϵ ∼ N (0d, Id).
Remark 4.2. Note that this captures the empirical observation that sufficiently trained diffusion
models accurately predict added noise. In addition, thanks to ϵ = (xt −

√
ᾱtx0)/

√
1− ᾱt from

Eq. (2), a well-trained diffusion model readily satisfies that ∇xt
ϵθ(xt, t) ≈ ∇xt

ϵ = 1√
1−ᾱt

Id.

With these, we can now approximate the score of well-trained diffusion models as follows:

∇xt
log pθ(xt, t) = −λ∇xt

fθ(xt, t)

= −λϵθ(xt, t)
⊺∇xt

ϵθ(xt, t)

≈ − λ√
1− ᾱt

ϵθ(xt, t),

(10)

where the first equality is a direct result from Eq. (4), the second equality is due to Definition 3.1, and
the last approximation is from Definition 4.1. Notably, this matches Eq. (7) if σt =

√
1− ᾱt/λ. To
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summarize, the refined energy-based ℓ2 reparameterization provides an unnormalized density and a
score of well-trained diffusion models as:

pθ(xt, t) ∝ exp

(
−λ

2
∥ϵθ(xt, t)∥22

)
, ∇xt log pθ(xt, t) = − λ√

1− ᾱt
ϵθ(xt, t), (11)

for all timesteps t ∈ [T ]. With these, no modification to the training of diffusion models is required.

4.2 DfD: Cooperative Diffusion Models Inference Framework for Synthetic Dataset

Client 𝑖 = 1, … , 𝐾

Ⓐ Preparation of diffusion models

Ⓑ Initialization of synthetic data

Ⓒ Iterative refinement via cooperative inference

𝒙𝑡
(𝑗)

+ 𝜂𝑡 ∇𝒙𝑡log 𝑝
⋆ 𝒙𝑡 + 2𝜂𝑡𝒛𝑡 → 𝒙𝑡−1

(𝑗)

∼ Random Init.𝒙𝑇
(𝑗)

=

𝒟𝑇
⋆ = ൝

൝

Eq. (10)

Server

Server repeats 𝑡 = 𝑇, … , 1

𝜽𝑖
Eq. (3)

Private Dataset 𝒟𝑖
Diffusion Model

Training

Client 𝑖 = 1, … , 𝐾

𝜽𝑖

Synthetic Samples
𝒙𝑡
(𝑗)
, 𝑗 ∈ 𝑁

𝝐𝜽𝑖 𝒙𝑡
𝑗
, 𝑡

Diffusion Model 
Inference

Eq. (7)

𝝐𝜽1 𝒙𝑡
(𝑗)
, 𝑡

𝝐𝜽2 𝒙𝑡
𝑗
, 𝑡

𝝐𝜽𝐾 𝒙𝑡
𝑗
, 𝑡

,

,

,

…

Eq. (9)

Eq. (9)

Eq. (9)

Eq. (8)

∇
𝒙𝑡
(𝑗)log 𝑝⋆ 𝒙𝑡

𝑗

…

Figure 1: Overview of DfD. A⃝ Clients independently train diffusion models to be well-trained with
Eq. (3). B⃝ The server randomly initializes synthetic dataset per Eq. (12). C⃝ The server requests
( ) inference on synthetic dataset to all clients, receives ( ) predictions ϵθi(x

(j)
t , t),∀i ∈

[K], j ∈ [N ], transforms ( ) into energies ( , , ) and scores ( , , ) using Eq. (11), composes
into global scores using Eq. (9), and refines synthetic dataset using ULA in Eq. (8) over T steps.

Our proposed framework, DfD, generates synthetic data samples directly from a mixture of local
distributions encoded by local diffusion models, independently trained on private and non-IID client
datasets. An overview of the framework is provided in Figure 1 and the overall procedure of DfD (for
the case of unconditional generation) is described in Algorithm 1.

A key innovation of DfD is its ability to leverage locally trained diffusion models, avoiding repetitive
local updates along with the exchange of model parameters. This is achieved by exchanging the
predictions of well-trained diffusion models instead, and the models are prepared by each client
before cooperative inference begins. These predictions are iteratively collected and transformed into
energies and scores at the server, to construct a global score in Eq. (9).

A⃝ Preparation of diffusion models. Each client i trains its own diffusion model on its private
dataset Di by minimizing Eq. (3), to obtain a well-trained model as in Definition 4.1. The model
can be unconditional, predicting ϵθi(xt, t), or conditional on label y (e.g., attributes or classes),
predicting ϵθi(xt,y, t). Note that the dimension of predictions is equal to that of inputs, which
is significantly smaller than the model parameter size. In addition, local pre-training can occur
asynchronously, and clients may optionally apply differential privacy (DP) mechanisms [72].

B⃝ Initialization of synthetic data. The central server randomly initializes N synthetic data samples
D⋆

T = {x(j)
T }Nj=1 (or D⋆

T = {(x(j)
T ,y(j))}Nj=1) as:

x
(j)
T ∼ N (0d, Id), (if conditional) y(j) ∼ Categorical

(
C−11C

)
, (12)
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Algorithm 1 DfD: Cooperative Diffusion Models Inference Framework for Synthetic Dataset

1: Require: number of clients K, synthetic dataset size N , communication rounds T
2: Procedure:
3: All clients i ∈ [K] prepare a well-trained diffusion model θi ∈ Rp using Di with Eq. (3).
4: Server initializes N samples in Eq. (12) to have D⋆

T .
5: for t = T, ..., 1 the server
6: Requests inference to all clients in parallel on D⋆

t .
7: Receives predictions {ϵθi(x

(j)
t , t) ∈ Rd | i ∈ [K], j ∈ [N ]}.

8: Transforms predictions into energies and scores with Eq. (11).
9: Computes global scores for all samples with Eq. (9).

10: Updates synthetic dataset into D⋆
t−1 using ULA in Eq. (8).

11: end for
12: Return: D⋆

0

where C is the number of conditions (e.g., classes, attributes) encoded by labels. The synthetic dataset
size N is determined based on communication constraints, where N can be set much smaller than
the required parameter size of diffusion models, e.g., N ≪ maxi dim(θi).

C⃝ Iterative refinement via cooperative inference. For each communication round t = T, ..., 1,
the central server sends the current synthetic dataset to all clients and requests predictions from their
diffusion models. With these predictions, the server computes energies and scores of each client
using Eq. (11). The server then constructs global scores using Eq. (9) and refines the server-side
synthetic dataset using ULA, as in Eq. (8). Note that it can be extended to the conditional case by
simply incorporating y(j) in this step. At the end, the server obtains a refined synthetic dataset, D⋆

0 .

4.3 Theoretical Analysis

The ULA is the main workhorse of DfD as it relies on energy-based parameterization to sample from
a mixture of local distributions using global scores in Eq. (9). Hence, we must carefully select the
step size, denoted by ηt, to ensure that the DfD correctly settles at the target mixture distribution. We
theoretically derive the step size guidance in two steps: a⃝ verification of the compatibility of ULA
with diffusion reverse process, and b⃝ analysis of non-asymptotic convergence behavior of ULA to
the target distribution in KL divergence [70]. We defer all proofs in Appendix C.

a⃝ Compatibility of ULA with diffusion reverse process. DfD resort to diffusion models as main
components. Thus, we begin with the successful diffusion reverse process and transplant its key
success factor into the ULA to ensure compatibility. Interestingly, we find that non-expansiveness
w.r.t. ℓ2-norm is inherently encoded in the diffusion reverse process, and perceive it as a key factor.
Lemma 4.3 (Non-expansiveness of diffusion reverse process). The diffusion reverse process in Eq. (1)
preserves the squared ℓ2-norm of resulting iterates to be non-expansive, i.e., E[∥xt−1∥22] ≤ E[∥xt∥22].

Next, we proved that this property can be similarly induced for ULA under following conditions.
This gives an explicit guidance for the choice of scale factor λ in Eq. (4), which is used for the
construction of energies and scores in Eq. (9).
Lemma 4.4 (Non-expansiveness condition of ULA). ULA satisfies the non-expansiveness w.r.t.
squared ℓ2-norm as E[∥xt−1∥22] ≤ E[∥xt∥22], for well-trained diffusion models with energy-based ℓ2
parameterization, if and only if ηt ∈ [0, 1

2 ] and λ = 2.

b⃝ Non-asymptotic convergence of ULA. Though previous work heuristically adopted the naive
resemblance of ULA with the diffusion reverse process to set the step size (i.e., simply setting ηt = βt

while ignoring the scaling factor 1√
αt

) [71], this approach has no theoretical justification. Thus,
we theoretically derive a ULA step size and the convergence guarantee toward a target mixture
distribution under KL divergence, with acceptable assumptions provided in Appendix C.
Theorem 4.5 (Convergence guarantee of DfD). Let p̃t be the evolving distribution of xt ∈ Rd from
ULA and pt be the mixture of distributions encoded by diffusion models. For δ ≥ 18dςηT (1−ᾱT−t)

υ

and ρ ∈ (0,
√
3/6), the iterates xT−t ∼ p̃⋆T−t guarantee DKL(p̃T−t ∥ pT−t) < δ after t ≥

1−ᾱT−t

υ log
(

2DKL(p̃T ∥pT )
δ

)
steps with a step size ηT−t ≤ min

{
υδ

18dς(1−ᾱT−t)
, ρ(1−ᾱT−t)

p

2p

}
.
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Note that this ensures DfD can sample from a mixture of inaccessible and heterogeneous distributions
in a finite number of steps, without access to the local dataset Di and the local model parameters θi.

4.4 Privacy Guarantee

Definition 4.6 ((ϵ, δ)-DP [72]). A mechanism M satisfies (ϵ, δ)-DP if, for any two neighbor-
ing datasets D and D′ differing in one record, and for any output set S, Pr[M(D) ∈ S] ≤
eϵ Pr[M(D′) ∈ S] + δ, where ϵ > 0 is the privacy budget and δ ≥ 0 is the failure probability.

The communicated signals in DfD are client predictions ϵθi
(x

(j)
t , t) from a diffusion model trained

on a private dataset Di. In FL, we typically use DP mechanism to protect sensitive information.
Intriguingly, DfD can inherit DP guarantee as long as each client i already trained its own diffusion
model θi to achieve (ϵi, δi)-DP, e.g., using DP-SGD [73].

Theorem 4.7 (DP guarantee of DfD). Assume all client datasets Di are disjoint. If each client
i ∈ [K] trains a diffusion model θi for (ϵi, δi)-DP given ϵi > 0 and δi ≥ 0, the synthetic dataset D⋆

0
generated by DfD compositely satisfies (maxi ϵi,maxi δi)-DP.

Proof. As the server processes differentially private local predictions, the post-processing property of
DP [74] also ensures that subsequent steps (i.e., global score computation, ULA updates) to preserve
DP. The parallel composition theorem [75] provides a composite DP guarantee across clients with
disjoint datasets with each other, in terms of the maximum privacy budget and failure probability.

5 Experimental Results

5.1 Setup

Datasets. We use three benchmark datasets: MNIST [76], CIFAR-10 [77], and CelebA [78], after
resizing all inputs to have spatial dimension of 32×32. As each dataset has separate train & test folds,
we use the train fold to split into client datasets, and set the test fold aside for server-side evaluation.
We distribute the train fold of each dataset into K = 10 clients with three different non-IID conditions:
i) Dirichlet distribution-based non-IID [79] for MNIST, ii) power-law distribution-based non-IID [21]
for CIFAR-10, and iii) pathological non-IID [1] for CelebA.

To further simulate a convincing scenario in which a synthetic dataset should be procured (i.e.,
data-limited settings), we randomly sample local dataset to have a size of 300 on average, following
the sample size configurations of the curated benchmark for the cross-silo FL setting [80].

Baselines. We compare with FL methods for generative models: FedGAN [42], FedDiffuse [63]
and PRISM [67]. All clients are taking 10K steps in total for T = 1000 rounds: E = 10 local updates
for all comparison methods, and E = 10× 1, 000 = 10, 000 local updates for DfD as it requires no
update during communication rounds. The mini-batch size is set to B = 32, and the learning rates
are tuned for all methods, and set to c(1− ᾱt)

p for c > 0, p ≥ 1 for DfD.

Evaluation Metrics. We evaluate both fidelity and utility of the generated synthetic dataset. To
evaluate the fidelity of synthetic data, we use the widely-used metrics for generative modeling:
Fréchet Inception Distance (FID [81]), Precision & Recall (P&R [82]), and Density & Coverage
(D&C [83]). To evaluate utility, we use an accuracy evaluated from a classifier trained at the central
server using class-labeled synthetic dataset. We defer the specific experimental setup to Appendix D.

5.2 Results

Quality and Utility. Table 1 summarizes the quality-based results, i.e., FID, Precision (P), Recall
(R), Density (D) and Coverage (D). Our method outperforms other FL methods for generative
modeling in synthetic data fidelity. We provide generation results of each method in Figure 3. Table 2
summarizes the test accuracies as synthetic data utility. Following [84], we train three server-side
classifiers on each generated synthetic dataset: logistic regression (LogReg), multi-layered perceptron
(MLP), and convolution neural network (CNN). We evaluate each classifier on a separate test fold
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Table 1: Results on synthetic dataset quality.
FID ↓ P ↑ R ↑ D ↑ C ↑

MNIST FedGAN [42] 34.8486 0.4189 0.1240 0.1144 0.1378
FedDiffuse [63] 49.5704 0.1842 0.7610 0.1145 0.3428

PRISM [67] 36.7945 0.4223 0.1386 0.1639 0.1481

DfD 37.7354 0.6224 0.3437 0.1816 0.3937

CIFAR-10 FedGAN [42] 145.5668 0.6866 0.0221 0.4800 0.1221
FedDiffuse [63] 78.3845 0.4142 0.2119 0.3731 0.2958

PRISM [67] 330.8488 0.0875 0.0077 0.0334 0.0368

DfD 59.9761 0.5153 0.2492 0.3521 0.3590

CelebA FedGAN [42] 98.1784 0.3469 0.4210 0.1349 0.1929
FedDiffuse [63] 33.3323 0.2986 0.5176 0.2318 0.2793

PRISM [67] 200.1870 0.1479 0.1809 0.0684 0.0769
DfD 29.1832 0.3734 0.4143 0.2229 0.2370

Table 2: Results on synthetic dataset utility.
LogReg MLP CNN

MNIST FedGAN [42] 71.7 72.4 73.6
FedDiffuse [63] 78.2 77.5 78.8

PRISM [67] 43.1 41.4 45.3

DfD 78.5 78.1 78.9

CIFAR-10 FedGAN [42] 19.8 21.1 24.3
FedDiffuse [63] 29.2 31.3 33.0

PRISM [67] 11.5 12.9 13.2

DfD 28.3 32.4 34.1

CelebA FedGAN [42] 42.1 43.4 45.8
FedDiffuse [63] 55.2 58.1 58.2

PRISM [67] 12.2 11.3 13.4
DfD 57.3 56.5 59.3

held in the central server. As a proxy of raw local data samples inaccessible in FL settings, synthetic
dataset from DfD have been shown to offer better utility compared to existing baselines.

Efficiency. The communication costs differ in DfD compared to other methods. Table 3 summarizes
the communication target and computation budget required to generate N samples. During FL, DfD
is faster in computation as it only conducts inferences on samples (i.e., N forward passes for N
samples), whereas other methods require both backward and forward passes N ×E times to update
parameters. Additionally, DfD exchanges predictions of which size is N × d, where the dimension
is far smaller than the size of the model parameters (i.e., d ≪ p. Thus, it can significantly reduce
communication (∵ N × d ≪ p) costs by setting reasonable number of samples, N .

Table 3: Comparison on communication cost & computation complexity.
Communication Computation

FedGAN [42]
θi ∈ Rp O(N × E × p)

(forward & backward E times)FedDiffuse [63]
PRISM [67]

DfD
{
ϵθi(x

(j)
t , t)

}N

j=1
∈ RN×d O(N × p)

(single forward pass)

Privacy. Thanks to Theorem 4.7, DfD readily satisfies DP. Following [85], we let each client train its
diffusion model with DP-SGD [73], under shard-partitioned non-IID setting [1] for K = 10 clients:
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Figure 2: Differentially private synthetic dataset for MNIST from DfD under (ϵ = 10, δ = 10−5))-DP.

each client has samples from only 2 out of 10 classes from MNIST dataset, i.e., digits 0 and 1 for client
0, digits 1 and to for client 1, ... , and digits 9 and 0 for client 9. To achieve (maxi ϵi,maxi δi)-DP for
the resulting synthetic dataset, we set ϵi = 10 and δi = 10−5 for all i ∈ [K] clients. We found that
applying DP is detrimental to sample quality as expected, and subtle tuning of step size is required
to obtain discernible samples. Thereby, improving the quality of ULA sampling from differentially
private diffusion models is a promising future direction for DfD in practice.

6 Limitation and Discussion

DfD gives clients great flexibility under the assumption of credible participation, such as cross-silo
FL settings. In cross-device FL settings, where massive and unreliable clients [4] participate, DfD
may fail, so we only consider cross-silo FL settings where a moderate number of credible clients
participate. This could be relaxed by allowing partial participation through approximation of a global
score at the central server [86].

Currently, the server ends up having synthetic dataset at last, not a generative model. Thus, by
training a server-side amortized sampler [87–89] to emulate the collaborative sampling process,
we can additionally generate samples even after the collaboration. Moreover, the communication
cost can be further reduced by adapting advanced samplers [90–93] or by using model compression
techniques, which we leave for future work.

The success of DfD hinges on the faithful, authorized training of local diffusion models by participating
clients. However, when local diffusion models are overfit or even memorize samples, this would
introduce biased or collapsed sampling, resulting in catastrophic generation results. Therefore, careful
training is required (e.g., earlystopping, weight decay) to acquire literally well-trained diffusion
models. To guarantee trustworthy training, DfD requires a credible consortium of clients. Alternatively,
we can use cryptographic tools, such as zero-knowledge proofs, to certify verified pre-training [94].

Lastly, thanks to the advancement in diffusion models, we expect DfD to be extended to other
modalities than images [95, 96]. We believe the directions discussed thus far could improve the
scalability and practicality of DfD in future works.
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Figure 3: Visualization of synthetic dataset generated under data-limited non-IID setting. Each
row corresponds to FedGAN [42], FedDiffuse [63], PRSIM [67], and DfD. Each column corresponds
to CIFAR-10 [77], MNIST [76], and CelebA [78].

7 Conclusion

We propose a collaborative synthetic data generation framework, DfD, that leverages an energy-based
connection for cooperative inference of diffusion models. DfD offers improvements in generation
quality, communication efficiency, and easy privacy guarantees with theoretically grounded design.
Given wide implications of synthetic data in federated settings, we look forward to exploring
extensions of DfD to diverse modalities and data-intensive domains as a trustworthy framework.
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Broader Impact

The DfD framework enables federated synthetic data generation with privacy guarantees, promoting
secure data sharing in privacy-sensitive domains. It produces high-quality synthetic data that preserves
statistical properties, improving collaborative research and training of models while complying with
e.g., GDPR [97] and HIPAA [98]. However, as synthetic datasets can be possibly misused for
malicious purposes, a robust accounting protocol is required for ethical deployment.
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jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and trends® in machine
learning, 14(1–2):1–210, 2021.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[6] Farzan Farnia and Asuman Ozdaglar. Do gans always have nash equilibria? In International
Conference on Machine Learning, pages 3029–3039. PMLR, 2020.

[7] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
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A Derivation of Gaussian Diffusion Models

Diffusion models are a class of generative models that aim to learn a data distribution pdata(x) ≡ q(x0)
by learning to transform random Gaussian noise into original data through an iterative denoising
process. In other words, the underlying Markov chain from the noise (xT ) to the data (x0) defines
diffusion models, and they are realized by two main processes: a forward process and a reverse
process.

In the forward process, data x0 ∼ q(x0) is gradually perturbed over T timesteps by adding Gaussian
noise as

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtId),

where βt ∈ (0, 1) controls the noise schedule, until xT ∼ N (0d, Id). Other constants satisfy αt =

1− βt and ᾱt =
∏T

τ=1 ατ . Thus, the forward process models q(x1, ...,xT |x0) =
∏T

t=1 q(xt|xt−1).

To reiterate, as in Eq. (2), diffusion models have useful property that enables calculation of anytime
marginal distribution in a closed form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)Id)

By training a parameterized deep network, diffusion models can denoise from noise to the data by
approximating the true posterior pθ(xt−1|xt) ≈ q(xt−1|xt,x0), through the reverse process as
defined in Eq. (1). Thus, the reverse process models pθ(x0, ...,xT ) = p(xT )

∏T
t=1 pθ(xt−1|xt).

With these two paired processes, diffusion models maximize the lower bound of log-likelihood
defined as:

log pθ(x0) ≥ Eq(x1,...,xT |x0)

[
log

pθ(x0, ...,xT )

q(x1, ...,xT |x0)

]
= log pθ(x0)−DKL(q(x1, ...,xT |x0) ∥ pθ(x1, ...,xT |x0))

= log pθ(x0)−
∑T

t=1
DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt)),

where the decomposition is due to the Markov property of both forward and reverse processes.

From this, we can maximize the lower bound of log-likelihood by minimizing the sum of KL
divergence terms instead: ∑T

t=1
DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt)).
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Since both q(xt−1|xt,x0) and pθ(xt−1|xt) are Gaussian, the KL divergence simplifies to a mean
squared error between the true noise ϵ and the estimated noise ϵθ(xt, t). Hence, we have∑T

t=1
DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))

=
∑T

t=1
atEx0∼q(x0),ϵ∼N (0d,Id)

[
∥ϵ− ϵθ(xt, t)∥22

]
=:
∑T

t=1
atL(θ, t),

where at is a weight that is typically treated equal as a1 = ... = aT = 1 [9] for all time-dependent
loss L(θ, t), which was defined in Eq. (3).

After the training is completed by optimizing the above composite loss L(θ) =
∑T

t=1 L(θ, t), we
can draw samples through ancestral sampling: starting from xT ∼ N (0d, Id) using µθ(xt, t), due

to the connection xt−1 = µθ(xt, t) +

√
β̃tϵ, ϵ ∼ N (0d, Id) from the reverse process. Note here

that µθ(xt, t) is computed from the estimated noise ϵθ(xt, t).
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B Connection of Energy Based Models and Diffusion Models

EBMs and diffusion models share a profound theoretical connection through denoising score matching
in Eq. (5). This connection not only provides an alternative interpretation of diffusion models but
also enables ULA in Eq. (8).

Again, EBMs model an unnormalized probability density of the form of:

pθ(x) =
exp(−λfθ(x))

Zθ
,

where fθ : Rd → R is the energy function parameterized by θ ∈ Rp, λ ∈ R+ is a scale factor, and
Zθ =

∫
x∈X exp(−λfθ(x)) dx is the normalizing constant, which is typically intractable in practice.

Due to the intractable property of the normalizing constant Zθ, direct computation of the likelihood
is challenging. This necessitates alternative training methods using a score, defined as follows. The
score is the gradient of the log-density as:

∇x log pθ(x) = −λ∇xfθ(x).

To train EBMs, we use denoising score matching objective [69] in Eq. (5) to minimize the Fisher
divergence between the score of a model’s distribution and the score of a noise-perturbed data
distribution:

q(xσ) =

∫
x∈X

qσ(xσ|x)pdata(x) dx,

where the perturbation is realized as:

xσ = x+ σϵ, ϵ ∼ N (0d, Id),

and σ is the noise scale. Hence, the DSM objective is:

L(θ, σ) = Exσ∼q(xσ|x),x∼pdata(x)

[
∥∇xσ log q(xσ|x)−∇xσ log pθ(xσ)∥22

]
Rewriting q(xσ|x) = N (xσ;x, σ

2Id), we can explicitly have that

∇xσ log q(xσ|x) = − (xσ − x)

σ2
= −σϵ.

By substituting the EBM score as ∇xσ log pθ(xσ) = −λ∇xσfθ(xσ), the objective becomes equiva-
lent (up to a constant) to Eq. (6) as:

σ2L(θ, σ) = Exσ∼q(xσ|x),ϵ∼N (0d,Id)

[
∥ϵ− σλ∇xσ

fθ(xσ)∥22
]
.

Diffusion models, as defined in Section A, optimize a similar objective. To reiterate, the objective of
diffusion models is given as:

L(θ, t) = Ex0,ϵ

[
∥ϵ− ϵθ(xt, t)∥22

]
.

From this, we can easily draw an analogy with DSM objective, by replacing the σ with a time-
dependent noise scale σt, with the score interpretation as:

∇xσt
log pθ(xσt) = −λ∇xσt

fθ(xσt) ≡ −ϵθ(xt, t)

σt
.

This connection shows that the noise prediction ϵθ(xt, t) in diffusion models directly corresponds
to the score of an implicit EBM, if scaled by the noise level σt. Thus, diffusion models can be
viewed as learning EBMs implicitly where the score is approximated by the noise prediction network
parameterized by θ. This energy-based interpretation allows for alternative sampling methods in
diffusion models, such as ULA in Eq. (8). Note that for the compositional generation, this requires the
energy-based parameterization tricks of diffusion models, discussed in Section 3.3 and Section 3.4.
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C Proofs

C.1 Proof of Lemma 4.3

Proof. In this proof, we need to show E
[
∥xt−1∥22 − ∥xt∥22

]
≤ 0 from diffusion reverse process in

Eq. (1). First, following [9], we equivalently define for variance schedule constants βt, t ∈ [T ] that
other constants are defined as follows.

αt = 1− βt, ᾱt =
∏t

τ=1
ατ , β̃t = βt

1− ᾱt−1

1− ᾱt
.

Recall that the reverse process in Eq. (1) can be written as

xt−1 = µθ(xt, t) + β̃tz =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)
+ β̃tz, z ∼ N (0d, Id).

From this, we have from the law of total expectation that

E
[
∥xt−1∥22

]
= E

[
∥µθ(xt, t)∥22

]
+ β̃td

For E
[
∥µθ(xt, t)∥22

]
, we have

E
[
∥µθ(xt, t)∥22

]
=

1

αt

(
E
[
∥xt∥22

]
− 2βt√

1− ᾱt
E [⟨xt, ϵθ(xt, t)⟩] +

β2
t

1− ᾱt
E
[
∥ϵθ(xt, t)∥22

] )
≈

Definition 4.1

1

αt

(
E
[
∥xt∥22

]
− 2βt√

1− ᾱt
E [⟨xt, ϵ⟩] +

β2
t

1− ᾱt
E
[
∥ϵ∥22

] )
=

1

αt

(
E
[
∥xt∥22

]
− 2βt√

1− ᾱt
·
√
1− ᾱtd+

β2
t

1− ᾱt
d
)

=
1

αt

(
E
[
∥xt∥22

]
− 2βtd+

β2
t

1− ᾱt
d
)
,

where we used E
[
∥ϵ∥22

]
= d for any ϵ ∼ N (0d, Id) and E [⟨xt, ϵ⟩] =

√
1− ᾱtd from Eq. (2).

Thus, we have

E
[
∥xt−1∥22 − ∥xt∥22

]
=

(
1

αt
− 1

)
E
[
∥xt∥22

]
− 2βtd

αt
+

β2
t d

αt(1− ᾱt)
+ β̃td

From Eq. (2), we have

E[∥xt∥2] = ᾱtE
[
∥x0∥22

]
+ (1− ᾱt)d,

as x0 and ϵ are independent and E
[
∥ϵ∥22

]
= d.
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Using this, we derive
E
[
∥xt−1∥22 − ∥xt∥22

]
=

(
1

αt
− 1

)
(ᾱtE

[
∥x0∥22

]
+ (1− ᾱt)d)−

2βtd

αt
+

β2
t d

αt(1− ᾱt)
+ β̃td

≤
(

1

αt
− 1− 2βt

αt
+

β2
t

αt(1− ᾱt)
+ β̃t

)
d

=

(
1

αt
− 1− 2βt

αt
+

β2
t

αt(1− ᾱt)
+

1− ᾱt−1

1− ᾱt
βt

)
d

=

(
1− αt

αt
− 2βt

αt
+

β2
t

αt(1− ᾱt)
+

1− ᾱt−1

1− ᾱt
βt

)
d

=

(
βt

αt
− 2βt

αt
+

β2
t

αt(1− ᾱt)
+

1− ᾱt−1

1− ᾱt
βt

)
d

=

(
−βt

αt
+

β2
t

αt(1− ᾱt)
+

1− ᾱt−1

1− ᾱt
βt

)
d

=
βt

αt(1− ᾱt)
(−(1− ᾱt) + βt + αt(1− ᾱt−1)) ,

where the first inequality is due to ∥x∥2 ≤
√
d∥x∥∞,∀x ∈ Rd, along with typical assumption in

diffusion models that ∥x0∥∞ = 1 as inputs are normalized into [−1, 1]d [9].

Rearranging, we have
E
[
∥xt−1∥22 − ∥xt∥22

]
≤ βt

αt(1− ᾱt)
(−(1− ᾱt) + βt + αt(1− ᾱt−1))

=
βt

αt(1− ᾱt)
(−(1− βt) + αt + ᾱt − αᾱt−1))

=
βt

αt(1− ᾱt)
(−αt + αt + ᾱt − αᾱt−1))

=
βt

αt(1− ᾱt)
(−αt + αt + ᾱt − ᾱt)

= 0,

where the second last and the third last equalities are due to the definition of ᾱt and βt each.

We finally have E
[
∥xt−1∥22 − ∥xt∥22

]
≤ 0, thus E

[
∥xt−1∥22

]
≤ E

[
∥xt∥22

]
.

C.2 Proof of Lemma 4.4

C.2.1 Proofs

Proof. In this proof, we need to show E
[
∥xt−1∥22 − ∥xt∥22

]
≤ 0 from ULA update in Eq. (8).

With the energy-based ℓ2 parameterization in Eq. (11), denote from ULA update that

∆xt := xt−1 − xt = − ληt√
1− ᾱt

ϵθ(xt, t) +
√

2ηtzt, zt ∼ N (0d, Id).

With this, we have that
∥xt−1∥22 − ∥xt∥22 = ∥xt +∆xt∥22 − ∥xt∥22 = 2⟨xt,∆xt⟩+ ∥∆xt∥22 .

Now, taking expectations over zt and xt|x0, we have that

Ext|x0

[
Ezt

[
∥xt−1∥22 − ∥xt∥22

]]
= Ext|x0

[
Ezt

[
2⟨xt,∆xt⟩+ ∥∆xt∥22

]]
= 2Ext|x0

[⟨xt,Ezt
[∆xt]⟩] + Ext|x0

[
Ezt

[∥∆xt∥22]
]
.

(A1)
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Let us demystify the inner expectation first. Since Ezt [zt] = 0, we have that

Ezt [∆xt] = − ληt√
1− ᾱt

ϵθ(xt, t).

Next, for Ezt [∥∆xt∥22], we have that

Ezt

[
λ2η2t
1− ᾱt

∥ϵθ(xt, t)∥22 −
2ληt

√
2ηt√

1− ᾱt
⟨ϵθ(xt, t), zt⟩+ 2ηt ∥zt∥2

]
=

λ2η2t
1− ᾱt

∥ϵθ(xt, t)∥22 −
2ληt

√
2ηt√

1− ᾱt
⟨ϵθ(xt, t),Ezt

[zt]⟩+ 2ηtEzt
[∥zt∥22]

=
λ2η2t
1− ᾱt

∥ϵθ(xt, t)∥22 + 2ηtd,

where E[∥zt∥22] = d for zt ∼ N (0d, Id).

To sum up, for the inner expectation of Eq. (A1), we have that

Ezt

[
∥xt−1∥22 − ∥xt∥22

]
= − 2ληt√

1− ᾱt
⟨xt, ϵθ(xt, t)⟩+

λ2η2t
1− ᾱt

∥ϵθ(xt, t)∥22 + 2ηtd.

Going on for the outer expectation, we have that

Ext|x0

[
Ezt

[
∥xt−1∥22 − ∥xt∥22

]]
= − 2ληt√

1− ᾱt
Ext|x0

[⟨xt, ϵθ(xt, t)⟩] +
λ2η2t
1− ᾱt

Ext|x0

[
∥ϵθ(xt, t)∥22

]
+ 2ηtd.

Since it is for well-trained diffusion models, we have by using Eq. (2) that

Ext|x0

[
Ezt

[
∥xt−1∥22 − ∥xt∥22

]]
=− 2ληt√

1− ᾱt
Ext|x0

[〈
xt,

xt −
√
ᾱtx0√

1− ᾱt

〉]
+

λ2η2t
1− ᾱt

Ext|x0

[∥∥∥∥xt −
√
ᾱtx0√

1− ᾱt

∥∥∥∥2
2

]
+ 2ηtd.

(A2)

From this, the first conditional expectation becomes that

Ext|x0

[〈
xt,

xt −
√
ᾱtx0√

1− ᾱt

〉]
=

1√
1− ᾱt

Ext|x0

[〈
xt,xt −

√
ᾱtx0

〉]
=

1√
1− ᾱt

Ext|x0

[
∥xt∥22 −

√
ᾱt ⟨xt,x0⟩

]
,

where the former term inside the expectation is that

Ext|x0

[
∥xt∥22

]
= Ext|x0

[
d∑

i=1

(xi)
2

]
=

d∑
i=1

Ext|x0

[
(xi)

2
]

=

d∑
i=1

Ext|x0

[
Var[xt,i|x0] + (E[xt,i|x0])

2
]

=

d∑
i=1

{
(1− ᾱt) +

(√
ᾱtx0,i

)2}
= (1− ᾱt)d+ ᾱt ∥x0∥22 ,

and the second term inside the expectation is that

Ext|x0
[⟨xt,x0⟩] = Ext|x0

[
d∑

i=1

x0,ixt,i

]
=

d∑
i=1

x0,iExt|x0
[xt,i]

=

d∑
i=1

x0,i

(√
ᾱtx0,i

)
=

√
ᾱt

d∑
i=1

x2
0,i =

√
ᾱt∥x0∥22.
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Taken together, we have for the first conditional expectation that

Ext|x0

[〈
xt,

xt −
√
ᾱtx0√

1− ᾱt

〉]
=

1√
1− ᾱt

(
(1− ᾱt)d+ ᾱt ∥x0∥22 −

√
ᾱt ·

√
ᾱt∥x0∥22

)
=

√
1− ᾱtd.

Next, for the second conditional expectation term in Eq. (A2), we have that

Ext|x0

[∥∥∥∥xt −
√
ᾱtx0√

1− ᾱt

∥∥∥∥2
2

]
= Ext|x0

[
∥ϵ∥22

]
= d,

due to Eq. (2) and it is for well-trained diffusion models.

Putting all together, the original expectation in Eq. (A2) becomes that

Ext|x0

[
Ezt

[
∥xt−1∥22 − ∥xt∥22

]]
= − 2ληt√

1− ᾱt
·
√
1− ᾱtd+

λ2η2t
1− ᾱt

· d+ 2ηtd

=

(
−2λ+

λ2ηt
1− ᾱt

+ 2

)
ηtd.

Since we want to guarantee this term to be non-increasing for the non-expansiveness w.r.t. L2 norm
as in Lemma 4.3, we need to have that(

−2λ+
λ2ηt
1− ᾱt

+ 2

)
ηtd ≤ 0

Due to d > 0, ηt ≥ 0 and λ > 0, we have that

−2λ+
λ2ηt
1− ᾱt

+ 2 ≤ 0 ⇔ ηt ≤
2(λ− 1)

λ2
(1− ᾱt) .

To ensure ηt ≥ 0, we should have λ ≥ 1. From maxt
√
1− ᾱt = 1, we can conservatively set

ηt ≤
2(λ− 1)

λ2
.

As g(λ) = 2(λ−1)
λ2 has its maximum in λ ≥ 1 when g(2) = 1

2 , we have ηt ∈ [0, 1
2 ] when λ = 2.

C.3 Proof of Theorem 4.5

In this section, we present materials related to the proof of Theorem 4.5. For the convergence
analysis, we adapt the assumptions and result of [70]. First, we introduce the essential definitions,
then we provide the technical lemmas and present a proof of the main theorem. Note that these proofs
demonstrate the exponential convergence of ULA under the minimal isoperimetric condition (i.e.
the Log-Sobolev inequality), without the need for strict and often impractical assumptions such as
log-concavity or boundedness of higher derivatives [70].

C.3.1 Definitions

Definition C.1 (Kullback-Leibler (KL) divergence). The Kullback-Leibler (KL) divergence of p with
respect to q is defined as

DKL(p ∥ q) =

∫
x∈X⊆Rd

p(x) log
p(x)

q(x)
dx.

Definition C.2 (Log-Sobolev Inequality (LSI)). A probability distribution p satisfies the log-Sobolev
inequality with a constant γ > 0 if for all smooth function g : Rd → R with Ep[g

2] < ∞, and

Ep[g
2 log g2]− Ep[g

2] logEp[g
2] ≤ 2

γ
Ep[∥∇g∥2].
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C.3.2 Technical Lemmas

In this section, we introduce the essential lemmas and corollaries required to prove the main theorem,
i.e., Theorem 4.5. Note that we omit the proofs of adapted lemmas and refer to the original paper
cited, i.e., Lemma C.3, Lemma C.7, and Lemma C.8 (for the adapted intermediate result).
Lemma C.3 (Strong convexity and LSI; Corollary 5.11 of [110]). Let µ be a probability measure on
Rd of the form dµ = exp(−h(x))dx. If h satisfies ∇2

xh(x) ≥ γId for some γ > 0 then µ satisfies
the LSI with a constant γ.
Corollary C.4 (LSI of well-trained diffusion models with non-expansiveness guarantee). A well-
trained diffusion model with L2 norm-driven energy-based reparameterization as in Eq. (11) and
Lemma 4.4 satisfies LSI with constant 2

1−ᾱt
.

Proof. For a well-trained diffusion model, we have pθ(xt, t) ∝ exp(−λ
2 ∥ϵθ(xt, t)∥22) from Eq. (11).

With the property of well-trained diffusion models stated in Remark 4.2, we have that

∇2
xt

(
λ

2
∥ϵθ(xt, t)∥22

)
= ∇xt

(
λ

2
∇xt

∥ϵθ(xt, t)∥22
)

= ∇xt
(λϵθ(xt, t)

⊺∇xt
ϵθ(xt, t)) = ∇xt

(
λ√

1− ᾱt
ϵθ(xt, t)

)
=

λ√
1− ᾱt

∇xt
ϵθ(xt, t) =

λ√
1− ᾱt

· 1√
1− ᾱt

Id =
λ

1− ᾱt
Id.

Due to Lemma 4.4 and Lemma C.3, the LSI constant γ of well-trained diffusion models with L2
norm-driven energy-based reparameterization that guarantees non-expansiveness w.r.t. L2 norm is
given as γ = 2

1−ᾱt
since λ = 2.

Corollary C.5 (Lipschitz smoothness of an energy function of well-trained diffusion models with
non-expansiveness guarantee). A well-trained diffusion model with L2 norm-driven energy-based
reparameterization is 2

1−ᾱt
-Lipschitz smooth.

Proof. It is directly implied from Corollary C.4.

Assumption C.6 (Bounded dissimilarity). The pairwise chi-squared divergence between two different
local distributions is uniformly bounded by κ, supi ̸=j∈[K] χ

2 (pi ∥ pj) < κ < ∞.

Lemma C.7 (LSI constant of a mixture of distributions; Theorem 1 of [111]). Denote a mixture of
distributions p⋆ :=

∑K
i=1 wipi for wi ≥ 0,

∑K
i=1 wi = 1, where each pi satisfies the LSI with γi. If

Assumption C.6 holds, then p⋆ also satisfies LSI with a constant of

γ⋆ =
mini∈[K] γi

3(1 + κ)(1 + log(1 + κ))

Lemma C.8 (One-step contraction of ULA; Lemma 3 of [70]). Let xt ∼ p̃t be the output iterate
one-step ULA. In one step, ULA can sample from a distribution pt ≡ pθ(·, t) encoded by a single
well-trained diffusion model, satisfying

DKL (p̃t+1 ∥ pt+1) ≤ exp

((
8ς2 − 3

2

)
γtηt

)
DKL (p̃t ∥ pt) + 6dςηt, (A3)

with step size 0 < ηt ≤ ςγt

Lp+1
t

, where Lt is Lipschitz smoothness constant, γt is LSI constant, p ≥ 1

and 0 < ς <
√
3
4 .

Proof. Consider the continuous interpolation p̃τ , where τ ∈ [0, ηt] with

p̃τ=0 = p̃t, p̃τ=ηt
= p̃t+1. (A4)

Denote the LSI constant of a distribution encoded by well-trained diffusion models as γt and the
Lipschitz smoothness constant as Lt. For all τ ∈ [0, ηt], we can directly adapt the intermediate result
of Lemma 3 of [70] as

d

dτ
DKL (p̃τ ∥ pτ ) ≤ −3γτ

2
DKL (p̃τ ∥ pτ ) +

4τ2L4
τ

γτ
DKL (p̃0 ∥ p0) + 2dτ2L3

τ + 2dτL2
τ .
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Denote

Aτ :=
4τ2L4

τ

γτ
DKL (p̃0 ∥ p0) + 2dτ2L3

τ + 2dτL2
τ ,

and introduce the integrating factor as

µ(τ) = exp

(
3

2

∫ τ

0

γsds

)
.

We wish to integrate over τ = 0 to τ = ηt, thus we have τ ≤ ηt. Further assume that for any
τ ∈ [0, ηt] we have

γt ≤ γτ ≤ Lτ ≤ Lt (A5)
Then, we can upper bound as

Aτ ≤ 4η2tL
4
t

γt
DKL (p̃0 ∥ p0) + 2dη2tL

3
t + 2dηtL

2
t := At, (A6)

as it becomes irrelevant to τ .

Then, we can rewrite the inequality as

d

dτ
(µ(τ)DKL (p̃τ ∥ pτ )) ≤ µ(τ)At.

Integrating this inequality from τ = 0 to τ = ηt, we have that

µ(ηt)DKL (p̃ηt
∥ pηt

)−DKL (p̃0 ∥ p0)

≤ At

∫ ηt

0

µ(τ)dτ = At

∫ ηt

0

exp

(
3

2

∫ τ

0

γsds

)
dτ

Rearranging, we have that

DKL (p̃ηt
∥ pηt

) ≤ exp

(
−3

2

∫ ηt

0

γτdτ

)
DKL (p̃0 ∥ p0)

+At exp

(
−3

2

∫ ηt

0

γτdτ

)∫ ηt

0

exp

(
3

2

∫ τ

0

γsds

)
dτ

≤ exp

(
−3

2
γt

∫ ηt

0

dτ

)
DKL (p̃0 ∥ p0)

+At exp

(
−3

2
γt

∫ ηt

0

dτ

)∫ ηt

0

exp

(
3

2
Ltτ

)
dτ

=exp

(
−3

2
γtηt

)
DKL (p̃0 ∥ p0)

+At exp

(
−3

2
γtηt

)
2

3Lt

(
exp

(
3

2
Ltηt

)
− 1

)
,

where the second inequality is due to Eq. (A5).

Using the inequality that ec ≤ 1 + 2c for 0 < c = 3
2Ltηt ≤ 1 (which holds due to the assumption

that ηt ≤ ς
Lp

t
≤ 2

3Lt
) along with Eq. (A6) we have that

DKL (p̃ηt
∥ pηt

)

≤ exp

(
−3

2
γtηt

)
DKL (p̃0 ∥ p0) +At exp

(
−3

2
γtηt

)
· 2ηt

= exp

(
−3

2
γtηt

)(
1 +

8η3tL
4
t

γt

)
DKL (p̃0 ∥ p0)

+ exp

(
−3

2
γtηt

)(
4dη3tL

3
t + 4dη2tL

2
t

)
≤ exp

(
−3

2
γtηt

)(
1 +

8η3tL
4
t

γt

)
DKL (p̃0 ∥ p0) +

(
4dη3tL

3
t + 4dη2tL

2
t

)
,
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where the last inequality is due to exp
(
− 3

2γtηt
)
≤ 1.

Using the assumption that ηt ≤ ςγt

Lp+1
t

≤ ς
Lp

t
, we have

1 +
8η3tL

4
t

γt
≤ 1 +

8ςη2tL
4−p
t

γt
≤ 1 + 8ς2γtηt ≤ exp

(
8ς2γtηt

)
.

Thus, the inequality above becomes that

DKL (p̃ηt
∥ pηt

) ≤ exp

(
−3

2
γtηt

)
exp

(
8ς2γtηt

)
DKL (p̃0 ∥ p0) + 4dη3tL

3
t + 4dη2tL

2
t

= exp

(
−3

2
γtηt

)
exp

(
8ς2γtηt

)
DKL (p̃0 ∥ p0) + 4dη2tL

2
t (ηtLt + 1)

= exp
(
(8ς2 − γt)ηt

)
DKL (p̃0 ∥ p0) + 4dη2tL

2
t (ηtLt + 1)

As ηt ≤ ς
Lp

t
≤ 1

2Lt
for p ≥ 1, we have ηtLt ≤ 1

2 and ηtL
2
t ≤ ς

DKL (p̃ηt
∥ pηt

) ≤ exp

((
8ς2 − 3

2

)
γtηt

)
DKL (p̃0 ∥ p0) + 4dη2tL

2
t (ηtLt + 1)

≤ exp

((
8ς2 − 3

2

)
γtηt

)
DKL (p̃0 ∥ p0) + 6dςηt.

Finally, replacing with Eq. (A4), we finally have that

DKL (p̃t+1 ∥ pt+1) ≤ exp

((
8ς2 − 3

2

)
γtηt

)
DKL (p̃t ∥ pt) + 6dςηt. (A7)

Lemma C.9 (Convergence of ULA in KL divergence). Let pt ≡ pθ(·, t) be the probability distri-
bution defined by a single well-trained diffusion model and let Bς =

3
2 − 8ς2 > 0. Assume that the

iterates xt ∼ p̃t are generated by the Unadjusted Langevin Algorithm (ULA) in Eq. (8), and that
DKL(p̃0 ∥ p0) < ∞. Then, for all t ≥ 0, we have

DKL(p̃t ∥ pt) ≤ exp (−Bςtγtη0)DKL(p̃0 ∥ p0) +
9dςηt
Bςγtη0

. (A8)

Hence, for any δ ≥ 18dς
Bςγt

, it suffices to run ULA for

t ≥ 1

Bςγtη0
log

(
2DKL(p̃0 ∥ p0)

δ

)
steps with step size

ηt ≤ min

{
Bςγtη0δ

18dς
,
ςγt

Lp+1
t

}
,

for p ≥ 1 and LSI constant γt, in order to guarantee DKL(p̃t ∥ pt) ≤ δ.

Proof. From Lemma C.8, recursively applying Eq. (A7) gives

DKL(p̃t ∥ pt) ≤ exp

(
−Bς

t−1∑
s=0

γsηs

)
DKL(p̃0 ∥ p0) + 6dς

t−1∑
r=0

ηr exp

(
−Bς

t−1∑
s=r+1

γsηs

)
.

Since we have ηt ≥ · · · ≥ η0 and γ0 ≥ · · · ≥ γt, we can bound that

t−1∑
s=0

γsηs ≥ tγtη0,

t−1∑
s=r+1

γsηs ≥ (t− r − 1)γtη0.
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Because Bς > 0, we get:

DKL(p̃t ∥ pt) ≤ exp(−Bςtγtη0)DKL(p̃0 ∥ p0) + 6dς

t∑
r=1

ηt exp(−Bςrγtη0).

The remaining sum is for a geometric series, thus
t∑

r=1

exp(−Bςrγtη0) = exp(−Bςγtη0) ·
1− exp(−Bςγtη0t)

1− exp(−Bςγtη0)

≤ 1

1− exp(−Bςγtη0)
≤ 3

2Bςγtη0
,

where the last inequality uses

2c

3
≤ 1− e−c, 0 < c = Bςγtη0 ≤ ς <

√
3
4 ,

from Lemma C.8.

Thus,

DKL(p̃t ∥ pt) ≤ exp(−Bςtγtη0)DKL(p̃0 ∥ p0) +
9dςηt
Bςγtη0

.

To ensure DKL(p̃t ∥ pt) ≤ δ, it suffices to assume:

9dςηt
Bςγtη0

≤ δ
2 , exp(−Bςtγtη0)DKL(p̃0 ∥ p0) ≤ δ

2 ,

which hold when

ηt ≤
Bςγtη0δ

18dς
and t ≥ 1

Bςγtη0
log

(
2DKL(p̃0 ∥ p0)

δ

)
.

C.3.3 Proof of Theorem 4.5

Denote pti ≡ pθi(·, t) as a distribution encoded by a locally-trained diffusion model of client i.
For the mixture of distribution p⋆t =

∑K
i=1 wipti, it is trivial that the energy function of p⋆t is

L⋆
t = 2

1−ᾱt
-Lipschitz smooth since each local distribution is Lipschitz smooth due to Corollary C.5.

From the result of Lemma C.7, the LSI constant of the mixture is γ⋆ =
mini∈[K] γi

3(1+κ)(1+log(1+κ)) . As each
local distribution has LSI constant γti = 2

1−ᾱt
, we can further refine as

γ⋆
t =

2

3(1− ᾱt)(1 + κ)(1 + log(1 + κ))
.

Denote 0 < κ̃ = 2
3(1+κ)(1+log(1+κ)) <

2
3 , we set the LSI constant as γ⋆

t = κ̃
1−ᾱt

.

From the result of Lemma C.9, we finally have that

DKL(p̃
⋆
t ∥ p⋆t ) ≤ exp (−Bςtγ

⋆
t η0)DKL(p̃

⋆
0 ∥ p⋆0) +

9dςηt
Bςγ⋆

t η0

= exp

(
−Bς κ̃η0t

1− ᾱt

)
DKL(p̃

⋆
0 ∥ p⋆0) +

9dςηt(1− ᾱt)

Bς κ̃η0

with step size

ηt ≤ min

{
Bςγ

⋆
t η0δ

18dς
,

ςγ⋆
t

(L⋆
t )

p+1

}
= min

{
Bς κ̃η0δ

18dς(1− ᾱt)
,
ςκ̃(1− ᾱt)

p

2p

}
.

In practice, however, we cannot directly quantify κ̄. Thus, we instead manually adjust a constant
ρ := ςκ̄ <

√
3
6 . Further denote υ := Bς κ̃η0.
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Finally, we have that

DKL(p̃
⋆
t ∥ p⋆t ) ≤ exp

(
− υt

1− ᾱt

)
DKL(p̃

⋆
0 ∥ p⋆0) +

9dςηt(1− ᾱt)

υ
,

with step size

ηt ≤ min

{
υδ

18dς(1− ᾱt)
,
ρ(1− ᾱt)

p

2p

}
,

for any δ ≥ 18dςη0(1−ᾱt)
υ in t ≥ 1−ᾱt

υ log
(

2DKL(p̃0∥p0)
δ

)
steps. Finally, replacing 0 → T and

t → T − t for the compatibility with ULA reaches the theorem statement.

36



D Experimental Details

Specification. We conduct all experiments in a single server with Intel® Xeon® Gold 6226R
CPU (@ 2.90GHz) and a single NVIDIA® Ampere® A100 GPU (w/ 40GB VRAM). For the
implementation of diffusion models, we resort to diffusers [112] library using PyTorch [113].

Simulation of Statistical Heterogeneity. For the faithful evaluation of practical FL setting, we
simulate non-IID data split to K = 10 clients for all benchmark datasets.

For MNIST dataset, we use Dirichlet distribution with concentration parameter α = 0.1, following
the setting of [79].

Figure A1: Non-IID local distributions of MNIST dataset

For CIFAR-10 dataset, we follow the setting of [21] using log-normal distribution with location=0
and scale=2.

Figure A2: Non-IID local distributions of CIFAR-10 dataset

For CelebA dataset, which has 40 different attributes, we first construct classes by combining gender
(male/female), smiling (0/1), and eyeglasses (0/1) attributes, i.e., 8 classes as a result. We randomly
distribute samples to clients so that they have only three distinct classes.

Figure A3: Non-IID local distributions of CelebA dataset
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Model and Training Hyperparameters. We summarize detailed configurations of models used
for experiments in Table A1.

Table A1: Model and Training Configurations.
MNIST CIFAR-10 CelebA

Model Configuration
Spatial dimension 32× 32
Attention resolution 8× 8
Base channels 128
Channel multipliers 1, 1, 1, 1 1, 2, 2, 2
Model size 44.77MB 136.38MB 136.38MB
Base architecture DDPM [9]
Scheduling scheme linear scheduling [9]

Training Configuration
Optimizer Adam [114]
Learning rate 2× 10−4
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