
Non-stationary Bandit Convex Optimization:

A Comprehensive Study

Xiaoqi Liu
→

Dorian Baudry
→†

Julian Zimmert
‡

Patrick Rebeschini
→

Arya Akhavan
→§

Abstract

Bandit Convex Optimization is a fundamental class of sequential decision-making
problems, where the learner selects actions from a continuous domain and observes
a loss (but not its gradient) at only one point per round. We study this problem in
non-stationary environments, and aim to minimize the regret under three standard
measures of non-stationarity: the number of switches S in the comparator sequence,
the total variation ! of the loss functions, and the path-length P of the comparator
sequence. We propose a polynomial-time algorithm, Tilted Exponentially Weighted
Average with Sleeping Experts (TEWA-SE), which adapts the sleeping experts
framework from online convex optimization to the bandit setting. For strongly con-
vex losses, we prove that TEWA-SE is minimax-optimal with respect to known S
and ! by establishing matching upper and lower bounds. By equipping TEWA-SE
with the Bandit-over-Bandit framework, we extend our analysis to environments
with unknown non-stationarity measures. For general convex losses, we intro-
duce a second algorithm, clipped Exploration by Optimization (cExO), based on
exponential weights over a discretized action space. While not polynomial-time
computable, this method achieves minimax-optimal regret with respect to known
S and !, and improves on the best existing bounds with respect to P .

1 Introduction

Many real-world decision-making problems, such as resource allocation, experimental design, or hy-
perparameter tuning require repeatedly selecting an action from a continuous space under uncertainty
and limited feedback. These settings are naturally modeled as Bandit Convex Optimization (see [1] for
an introduction), in which an adversary fixes a sequence of T loss functions f1, f2, . . . , fT : R

d
→ R

beforehand, and a learner sequentially interacts with the adversary for T rounds. At each round t, the
learner selects an action zt from a continuous arm set ” ↑ R

d, assumed to be convex and compact.
The learner then incurs a loss ft(zt) and observes a noisy feedback:

yt = ft(zt) + ωt , (1)

where ωt is a sub-Gaussian noise variable (Definition 1). The goal is to minimize the learner’s
regret with respect to (w.r.t.) a performance benchmark. In the online learning literature [2, 3], the
benchmark is typically the best static action in hindsight, with cumulative loss minz↑!

∑T
t=1 ft(z).

However, non-stationarity arises in many applications where different actions may work well during
different time intervals. Hence, a line of works [4–8] propose to compare the learner’s actions against

→University of Oxford. Correspondence to: {shirley.liu, arya.akhavan}@stats.ox.ac.uk.
†Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France.
‡Google Research.
§École Polytechnique de Paris, IP Paris.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

a sequence of comparators u1, . . . , uT ↓ ”, leading to a regret defined as

R(T, u1:T) :=
T∑

t=1
E [ft(zt) ↔ ft(ut)] , (2)

where u1:T denotes (ut)T
t=1, and the expectation is taken w.r.t. the randomness in the learner’s actions

zt’s and the randomness of the noise variables ωt’s, similarly to the standard notion of pseudo-regret
in the bandit literature, see e.g., [9, Section 4.8]. Choosing the regret-maximizing comparator in (2)
gives rise to the notion of dynamic regret, defined as

Rdyn(T) := max
u1:T ↑!T

R(T, u1:T) . (3)

While addressing non-stationarity through dynamic regret has been extensively studied in multi-
armed bandits (e.g., [10–12]), it remains relatively underexplored in continuum bandits [7, 13, 14].
This work aims to bridge this gap by proposing algorithms for Bandit Convex Optimization that
achieve sublinear dynamic regret. Such a rate is generally unattainable without imposing structural
constraints on the environment, i.e., the comparator sequence and the loss function sequence [6]. For
the comparator sequence, two commonly studied constraints are the number of switches [15] and the
path-length [4], defined respectively as

S(u1:T) := 1 +
T∑

t=2
1 (ut ↗= ut↓1) ↘ S , P (u1:T) :=

T∑

t=2
≃ut ↔ ut↓1≃ ↘ P . (4)

For the loss function sequence, a popular constraint is the total variation [7], defined as

!(f1:T) :=
T∑

t=2
max
z↑!

|ft(z) ↔ ft↓1(z)| ↘ ! . (5)

The constraints that the upper bounds S, P and ! respectively impose on the comparators or on the
loss functions lead to different notions of regret. We call the regret for environments constrained by
S the switching regret, which we define as

Rswi(T, S) := max
u1:T :S(u1:T)↔S

R(T, u1:T) . (6)

Similarly, we call the regret for environments constrained by P the path-length regret, denoted by
Rpath(T, P). We also use Rdyn(T, !) and Rdyn(T, !, S) to denote the dynamic regret, where the
arguments after T specify environment constraints. See (8) for rigorous definitions.

We detail in Section 1.3 conversion results between the different regret definitions that we intro-
duced: a sublinear switching regret Rswi(T, S) implies sublinear Rdyn(T, !), Rdyn(T, !, S) and
Rpath(T, P), as illustrated in Figure 1 (see also [16, 17]). Furthermore, the upper bounds on the
switching regret presented in this work are derived from upper bounds on the adaptive regret [18, 19],
which is defined using an interval length B ↓ [T] as follows,

Rada(B, T) := max
p,q↑[T],

0<q↓p↔B

max
u↑!

q∑

t=p

E [ft(zt) ↔ ft(u)] . (7)

With an appropriate tuning of B depending on S, an adaptive regret sublinear in B implies a switching
regret sublinear in T through a simple reduction, see e.g., discussions in [19]. We illustrate the
relations between these regret notions in Figure 1.

Rada(B, T) Rswi(T, S)
Rdyn(T, !), Rdyn(T, !, S)

Rpath(T, P)

Figure 1: Conversions between regrets: R1 R2 means that if regret R1 is sublinear in T (or B),
then regret R2 is also sublinear in T , see Proposition 1 for precise mathematical statements.

We conclude this section by detailing the main notation and assumptions used throughout the paper.

2

Notation For k ↓ N
+, we denote by [k] the set of positive integers ↘ k. We denote by ≃ · ≃

the Euclidean norm, B
d = {u ↓ R

d : ≃u≃ ↘ 1} the unit Euclidean ball, and #!(x) =
arg minw↑! ≃w ↔ x≃ the Euclidean projection of x to ”. We use a ⇐ b ⇒ max(a, b) and
a ⇑ b ⇒ min(a, b). If A, B depend on T , we use A = O(B) (resp. A = $(B)) when there
exists c > 0 s.t. A ↘ cB (resp. ⇓) with c independent of T, d, S, ! and P . To hide polylogarithmic
factors in T , we use interchangeably A = Õ(B) and A ↭ B (resp. A = $̃(B) and A ↫ B), e.g.,
A ↘ T log T =⇔ A = Õ(T). Moreover, A = o(B) means A/B → 0 as T → ↖.

Assumptions For simplicity, we assume that the time horizon T is known in advance; the case of
unknown T can be handled using the standard doubling trick [20]. For some ε > 0, the noise variables
(ωt)T

t=1 are ε-sub-Gaussian. For all t ↓ [T], maxx↑! |ft(x)| ↘ 1. We consider two cases: (i) general
convex losses ft, where we assume Lipschitz continuity with constant K, and (ii) the special strongly-
convex case, where we assume ϑ-smoothness. The domain ” is assumed to contain a ball of radius r
for some constant r > 0, and has a bounded diameter diam(”) := sup{≃x ↔ w≃ : x, w ↓ ”} ↘ D
for some constant D > 0.

1.1 Main contributions

Existing works on non-stationary Bandit Convex Optimization study different aspects of the problem
in isolation: [7, 14] focus on dynamic regret Rdyn(T, !), while [13, 21] address path-length regret
Rpath(T, P). The present work aims to systematically unify and extend previously scattered results,
establishing a complete picture of the state-of-the-art regret bounds w.r.t. all three non-stationarity
measures S, ! and P .

Our first contribution is a polynomial-time algorithm called Tilted Exponentially Weighted Average
with Sleeping Experts (TEWA-SE), which we design by adapting a series of works from online convex
optimization [22–24] to the bandit setting with zeroth-order feedback. It addresses the absence of
gradient information by employing the randomized perturbation technique from [25, 26] to estimate
gradients, combined with the design of quadratic surrogate loss functions depending on a uniform
upper bound on the norm of the gradient estimates.

Following [22–24], TEWA-SE runs multiple expert algorithms with different learning rates in
parallel, and combines them using a tilted exponentially weighted average. This allows TEWA-SE
to adapt to the curvature of the loss function ft’s without prior knowledge of parameters such as
the strong-convexity parameter. For a given interval length B, an appropriately tuned TEWA-SE
simultaneously achieves an adaptive regret of the order

↙
dB 3

4 for general convex losses and d
↙

B for
strongly-convex losses (Theorem 1). Consequently, for a known S, we prove that an optimal tuning
of TEWA-SE yields a switching regret upper bound of order

↙
dS

1
4 T

3
4 for general convex losses

(Corollary 1). In the same result, we further prove that if the losses are strongly convex, and that
! is known and incorporated in the tuning of TEWA-SE, the algorithm simultaneously satisfies a
min

{
d
↙

ST , d
2
3 ! 1

3 T
2
3
}

dynamic regret bound. Importantly, TEWA-SE does not need to know the
actual strong-convexity parameter, inheriting the adaptivity properties of the framework developed
in [22–24]. We prove that this dynamic regret upper bound is minimax-optimal in T, d, S and ! by
establishing a matching lower bound (Theorem 2). Finally, still for strongly-convex losses, we prove
that TEWA-SE can also achieve a path-length regret of the order d

2
3 P

1
3 T

2
3 when P is known. We

summarize these results in Table 1. To overcome the restriction of knowing S, ! and P to optimally
tune TEWA-SE, we also analyze a variant equipped with the Bandit-over-Bandit framework [27].

Table 1: Regret bounds we obtain for Rswi(T, S), Rdyn(T, !) and Rpath(T, P), respectively, for
algorithms tuned with known S, ! and P (polylogarithmic factors omitted). Straight underlines
indicate minimax-optimal rates. A wavy underline indicates the result is either new to the literature
(strongly-convex case) or improves on the best-known P

1
4 T

3
4 rate [13] (general convex case).

TEWA-SE (Algorithm 1) cExO (Algorithm 3)

Convex
↙

dS
1
4 T

3
4 , d

2
5 ! 1

5 T
4
5 , d

2
5 P

1
5 T

4
5

d
5
2
↙

ST , d
5
3 ! 1

3 T
2
3 , d

5
3 P

1
3 T

2
3

!!!!!

Strongly convex d
↙

ST , d
2
3 ! 1

3 T
2
3 , d

2
3 P

1
3 T

2
3

!!!!!!!

3

For general convex losses with known S, ! and P , TEWA-SE achieves a suboptimal T
3
4 rate

(Corollary 1), matching the rates in similar analysis for the static regret [25, 26]. Thus, the second
contribution of this work is the clipped Exploration by Optimization (cExO) algorithm with improved
guarantees for this setting, which uses exponential weights on a discretized action space ” with
clipping [28]. For a given interval length B, this algorithm with an optimally tuned learning rate w.r.t.
B attains an order d

5
2
↙

B adaptive regret (Theorem 3). When S, ! and P are known beforehand,
this algorithm with an optimally tuned learning rate achieves the minimax-optimal dynamic regret
w.r.t. S and ! simultaneously, and attains a P

1
3 T

2
3 path-length regret (Corollary 2), improving on

the previous best P
1
4 T

3
4 [13]. While this algorithm is not polynomial-time computable and has

suboptimal rates w.r.t. the problem dimension d, it provides insights that may guide future research
toward developing efficient algorithms with optimal guarantees for the convex case.

1.2 Related work

The literature on Bandit Convex Optimization (BCO) has traditionally focused on minimizing the
static regret, see the recent monograph [1] for a comprehensive historical overview. Both convex
and strongly convex objective functions have attracted significant attention, beginning with the
foundational work of [25] and further developed in subsequent studies such as [29–36]. Minimizing
regret in non-stationary environments has only received attention more recently [7, 13, 14, 21], see
also [1, Section 2.4] for an overview for this topic. Among these works, [7, 14] study Rdyn(T, !),
whereas [13, 21] focus on Rpath(T, P). As we explained above (and formalize in Section 1.3), the
switching regret Rswi(T, S) can induce guarantees on both Rdyn(T, !) and Rpath(T, P), but the
reverse does not necessarily hold. Therefore, the results in these works cannot be readily extended to
provide regret guarantees w.r.t. all three measures S, ! and P .

Minimizing regret in environments with non-stationarity measures such as S, ! and P have been
addressed with greater depth in Online Convex Optimization (OCO), where the learner has direct
access to gradient information and can query the gradient or function value at multiple points of
the loss function per round. The state-of-the-art algorithm with optimal adaptive regret guarantees
is MetaGrad with sleeping experts [24], which queries only one gradient per round, and adapts to
curvature information of the loss function such as strong-convexity when available. Our polynomial-
time algorithm TEWA-SE builds upon [24] and its precursors [22, 23], adapting this approach to BCO
by replacing the exact gradient per round with an approximate gradient estimate, and by designing a
quadratic surrogate loss. The approach in [24] follows a long line of successive developments in OCO
from expert tracking methods [15, 20, 37–41] to the study of adaptive regret [18, 19, 42–46], with
recent advances [24, 47–50] reducing the query complexity from O(log T) to O(1) per round, while
achieving optimal adaptive regret or dynamic regret. The adaptivity of [24] directly inherits from
MetaGrad [22] and its extension [23], which themselves build on earlier adaptive methods [51, 52].

For general convex functions, the approach of substituting a one-point gradient estimate for the
exact gradient in each round of an OCO algorithm often yields suboptimal T

3
4 rates, both in static

regret [25, 26] and dynamic regret [13, 21]; see also our Corollary 1. A series of breakthroughs
[28, 32, 53–56] indicate that

↙
T rates (up to logarithms) are attainable for static regret, at the cost of

a higher dependency on d. Our cExO algorithm follows this line of work, using exponential weights
on a discretized action space [28]. By playing inside a clipped domain, we transform the algorithm
from one with

↙
T static regret into one with

↙
B adaptive regret (modulo logarithms) for intervals of

length ↘ B, which in turn leads to regret guarantees w.r.t. S, ! and P .

Finally, we mention that non-stationarity has been widely studied in the Multi-Armed Bandit (MAB)
literature. A substantial body of work has focused on adapting standard policies—such as UCB
[57, 58], EXP3 [59], and Thompson Sampling [60–62]—to perform effectively under non-stationarity.
These adaptations often employ mechanisms to discard outdated information, either actively (e.g.,
change-detection methods [12, 63–67]), or passively (e.g., discounted rewards [10, 68], sliding
windows [69, 70], or scheduled restarts [11]), but are not straightforward to adapt to BCO.

4

1.3 Conversions between different regret definitions

We present the key conversions between different regret notions, illustrated in Figure 1 above. Using
the definition of Rdyn(T) in (3), we overload notation slightly to define

Rdyn(T, !) := sup
f1:T :”(f1:T)↔”

T∑

t=1
E

[
ft(zt) ↔ min

z↑!
ft(z)

]
, (8)

and Rdyn(T, !, S) additionally constrains 1 +
∑T

t=2 min(z→
t ,z→

t↑1)↑(Z→
t ,Z→

t↑1) 1(z→
t ↗= z→

t↓1) ↘ S

where Z
→
t := arg minz↑! ft(z) for all t ↓ [T]. In Proposition 1, we show how the adaptive regret

Rada(B, T) can be used to bound the switching regret Rswi(T, S), which in turn can be used to bound
the dynamic regret Rdyn(T, !, S) and path-length regret Rpath(T, P). Consequently, Rada(B, T)
and Rswi(T, S) are the primary objects to analyze.

Proposition 1. Suppose that an algorithm can be calibrated to satisfy Rada(B, T) ↘ CBω
, for any

interval length B ↓ [T], for some factor C > 0 that is at most polynomial in d and log(T), and

ϖ ↓ [0, 1).

Then, for any S, S”, SP ↓ [T], an appropriate choice of B yields the following regret guarantees:

Switching: B =
⌈

T
S

⌉
guarantees that Rswi(T, S) ↘ 21+ωCS1↓ωT ω .

Dynamic: B =
⌈

T
S

⌉
⇐

⌈
T

S!

⌉
yields Rdyn(T, !, S) ↘ Rswi(T, S) ⇑

(
Rswi(T, S”) + !

⌈
T

S!

⌉)
.

Path-length: B =
⌈

T
SP

⌉
ensures that Rpath(T, P) ↘ Rswi(T, SP) + P

r ·

⌈
T

SP

⌉
.

The proof is provided in Appendix B. We note that the reduction from Rpath(T, P) to Rswi(T, S)
in Proposition 1 is new and employs simple geometric arguments (see Lemma 2 in Appendix B).
This reduction simplifies the analysis of Rpath(T, P), though it can yield slightly looser bounds on
Rpath(T, P) than a direct analysis, as discussed in [17].

2 The TEWA-SE algorithm

In this section, we develop a polynomial-time algorithm called Tilted Exponentially Weighted Average
with Sleeping Experts (TEWA-SE, Algorithm 1), building on the two-layer structure of previous
experts-based algorithms [18, 19, 43]. Each expert in TEWA-SE is uniquely defined by its lifetime
and learning rate. We denote the active experts at time t by E1, E2, . . . , Ent , where Ei operates over
interval Ii with learning rate ϱi. In each round t, the active experts each propose an action, denoted
by xεi

t,Ii
, and a meta-algorithm aggregates them into a single meta-action xt by computing their tilted

exponentially weighted average [22, 24], see line 7 in the pseudo-code. Then the algorithm receives
a noisy evaluation of ft at xt and constructs an approximate gradient estimate gt ↓ R

d of ft at xt.
Both xt and gt are shared with all experts, who update their actions via online gradient descent on
their surrogate loss functions defined using xt and gt.

TEWA-SE employs the Geometric Covering scheme from [19, 24] to schedule experts across different
time intervals, and the exponential grid from [22, 24] to assign varied learning rates to the experts.
These deterministic schemes ensure that only a logarithmic number of experts are active per round,
maintaining computational efficiency. Intuitively, the meta-algorithm achieves low adaptive regret on
the original loss function because, for each subinterval of times, there exists at least one individual
expert with low static regret on their surrogate loss functions on this subinterval. This is guaranteed
by the careful design of the exponential grid of learning rates. While full details of TEWA-SE is
deferred to Appendix C.1, we highlight below the distinctions between this paper and prior works.

Construction of one-point gradient estimate For a fixed parameter h ↓ (0, r), we define the
clipped domain ”̃ = {u ↓ ” : u + hB

d
∝ ”}, where h < r ensures ”̃ ↗= ′. In each round t, we

select a meta-action xt ↓ ”̃ and query the function at a perturbed point xt + hωt, receiving noisy
feedback yt = ft(xt + hωt) + ωt, where ωt ↓ R

d is sampled uniformly from the unit sphere ςB
d.

This allows us to construct the gradient estimate gt = (d/h)ytωt. As implied by [25, Lemma 1], the

5

Algorithm 1 Tilted Exponentially Weighted Average with Sleeping Experts (TEWA-SE)

Input: d, T, B, h = min
(↙

dB↓ 1
4 , r

)
, ”̃ = {u ↓ ” : u+hB

d
∝ ”}, G as in (10), expert algorithm

E(I, ϱ) defined in Algorithm 2, and (nt)t↑[T] and (Ii, ϱi)i↑[nt] ∞t ↓ [T]
1: for t = 1, 2, . . . , T do

2: for Ei ⇒ Ei(Ii, ϱi) ↓ {E1, E2, . . . , Ent} do φ nt experts active at t
3: Receive action xεi

t,Ii
from expert Ei

4: if min{↼ : ↼ ↓ Ii} = t then initialize Lεi

t↓1,Ii
= 0, clipped domain ”̃ and parameter G

5: end if

6: end for

7: Set meta-action as xt =
∑nt

i=1 ϱi exp(↔Lεi

t↓1,Ii
)xεi

t,Ii
/

∑nt

j=1 ϱj exp(↔L
εj

t↓1,Ij
)

8: Sample ωt uniformly from ςB
d

9: Query point zt = xt + hωt to obtain yt = ft(zt) + ωt

10: Construct gradient estimate gt = (d/h)ytωt
11: for i = 1, 2, . . . , nt do

12: Send meta-action xt and gt to Ei

13: Increment cumulative loss Lεi

t,Ii
= Lεi

t↓1,Ii
+ ↽εi

t (xεi

t,Ii
) φ ↽εi

t (·) depends on xt and gt

14: end for

15: end for

vector gt is an unbiased gradient estimate of a spherically smoothed version of ft at xt, satisfying

E[gt|xt] = ∈f̂t(xt) , where f̂t(x) = E

ft(x + hω̃)


∞ x ↓ ”̃ , (9)

with ω̃ distributed uniformly on the unit ball B
d. Importantly, f̂t inherits the convexity properties of

ft [71, Lemmas A.2–A.3]. Our approach differs from related works in OCO [22–24, 47, 48] that use
exact gradients in two key ways: i) in each round, we query the perturbed point zt = xt + hωt rather
than xt, accumulating regret at the perturbed point, and ii) we constrain xt inside the clipped domain
”̃ to ensure all perturbed zt remain feasible.

In our setting, under the high probability event %T =
{

|ωt| ↘ 2ε


log(T + 1), ∞t ↓ [T]
}

, we have

≃gt≃ = (d/h)|ft(xt + hωt) + ωt| ↘ (d/h)
(
1 + 2ε


log(T + 1)

)
=: G, ∞t ↓ [T]. (10)

This implies a fundamental tradeoff in selecting the smoothing (and clipping) parameter h: larger
values reduce G (and the variance of gt), but increase both the approximation error between f̂t and
ft and the error due to clipping, while smaller values reduce bias at the cost of a higher variance in
gt. In Theorem 1 and Corollary 1, we establish the optimal h and the resulting regret guarantees.

Algorithm 2 Expert algorithm E(I, ϱ): projected online gradient descent (OGD)
Input: I = [r, s], ϱ, G, clipped domain ”̃, and surrogate loss ↽ε

t (·) defined in (11) ∞t ↓ N
+

Initialize: xε
r,I be any point in ”̃

1: for t = r, r + 1, . . . , s do

2: Send action xε
t,I to Algorithm 1

3: Receive meta-action xt and gt from Algorithm 1
4: Update xε

t+1,I = #!̃
(
xε

t,I ↔ µt∈↽ε
t (xε

t,I)
)
, where µt = 1/(2ϱ2G2(t ↔ r + 1))

5: end for

Design of expert algorithms and surrogate losses We choose projected online gradient descent
(OGD) as the expert algorithms (Algorithm 2), i.e., each expert E(I, ϱ) runs OGD during its lifetime
I . In the full-information setting, where experts observe ft and gradients are evaluated at all of their
actions, each expert could simply run OGD on the true loss functions. In contrast, for the bandit
setting, with only one gradient estimate gt of the smoothed loss f̂t per round, we need to construct
surrogate losses for the experts. The simplest option is the linear surrogate loss ↽t(x) = ↔g↗

t (xt↔x),
but this fails to leverage curvature information and leads to a large Õ(


|I|) static regret for each

expert, ultimately yielding linear adaptive regret.

6

To address these limitations, inspired by [22–24], we design the following strongly-convex surrogate
loss ↽ε

t : R
d

→ R:

↽ε
t (x) = ↔ϱg↗

t (xt ↔ x) + ϱ2G2
≃xt ↔ x≃

2 , ∞x ↓ R
d, (11)

where G is the upper bound (10) on ≃gt≃, and ϱ is the learning rate of the expert. We highlight that
our choice of the quadratic term in (11) differs from the ϱ2

≃gt≃
2
≃xt ↔ x≃

2 and ϱ2(g↗
t (xt ↔ x))2

in [24] and [22]. The latter necessitates an additional condition relating E[≃gt≃] and E[≃gt≃
2] (or

E[gtg
↗
t]) to be satisfied in the analysis, see e.g., [22, Theorem 2], and may yield suboptimal rates in

dimension d for strongly-convex losses, similar to [22]. Our choice of the quadratic term, similar to
[23], eliminates these limitations and simplifies the proof.

For a comparator u ↓ ”, (11) implies that the linearized regret associated with f̂t on interval I can
be bounded as:

∑

t↑I

∋E[gt|xt, %T], xt ↔ u△ ↘
1
ε

∑

t↑I

E

↽ε

t (xt) ↔ ↽ε
t (u) | xt, %T



  
:=A

+ϱG2
∑

t↑I

≃xt ↔ u≃
2 . (12)

Due to the strong-convexity of ↽ε
t , each expert attains only an O(log |I|) static regret under OGD

with an optimally tuned step size µt (see line 4 of Algorithm 2, and Lemma 6 in Appendix C.4). This
ensures term A above is also of O(log |I|). By the convexity of f̂t we have

∑

t↑I

E

f̂t(xt) ↔ f̂t(u) | %T


↘ E

[
1
ε A + (ϱG2

↔
ϑ
2)

∑

t↑I

≃xt ↔ u≃
2  %T

]
, (13)

where ⇀ = 0 for general convex f̂t (and ft), and ⇀ > 0 for strongly-convex. Since both ⇀ and∑
t↑I ≃xt ↔ u≃

2 are unknown a priori, we use a deterministic exponential grid of ϱ values [19, 24],
ensuring at least one expert covering I effectively minimize the RHS of (13), ultimately yielding a
sublinear adaptive regret w.r.t. ft. We present this result in the following theorem.

Theorem 1. For any T ↓ N
+

and B ↓ [T], Algorithm 1 with h = min(
↙

dB↓ 1
4 , r) satisfies

Rada(B, T) ↭
↙

dB 3
4 + d2, (14)

and if ft is ⇀-strongly-convex with arg minx↑Rd ft(x) ↓ ” for all t ↓ [T],1 it furthermore holds that

Rada(B, T) ↭ d
ϑ

↙

B + 1
ϑ d2 , (15)

where ↭ conceals polylogarithmic terms in B and T , independent of d and ⇀.

The proof of Theorem 1 can be found in Appendix C.2. We emphasize that TEWA-SE does not
require knowledge of the strong-convexity parameter ⇀. This parameter is only used in the analysis
and appear in the upper bound (15). Compared to the O(

↙B log T) and O(1
ϑ log T log B) adaptive

regrets in [24] for general convex and strongly-convex losses respectively, our bounds in Theorem 1
reflect the separation between online first-order and zeroth-order optimization. This mirrors the
established gap in static regret analyses, see e.g. [74] vs. [72]. We further note that our bound for the
strongly-convex case has a 1

ϑ dependency, which is suboptimal compared to the 1↘
ϑ

dependency in
[33, 73] for static regret in BCO for ⇀ ↭ 1.

Applying Proposition 1, the adaptive regret bounds in Theorem 1 lead to the following bounds for
Rswi(T, S), Rdyn(T, !, S) and Rpath(T, P). In Corollary 1, for clarity we drop the ▽·̸ operators from
the expressions for B and assume without loss of generality B is an integer (proof in Appendix C.5).

Corollary 1. Consider any horizon T ↓ N
+

and assume that, for all t ↓ [T], the loss ft is convex, or

strongly-convex with arg minx↑Rd ft(x) ↓ ”. We refer to the second scenario as the strongly-convex

(SC) case. Then, Algorithm 1 tuned with parameter B satisfies the following regret guarantees:

1The assumption that loss minimizers lie inside ! is common in zeroth-order optimization, see e.g., [7, 72, 73].
Without it, our upper bound analysis would have an extra term depending on the gradients at the minimizers.

7

Switching. B = T
S =⇔ Rswi(T, S) ↭

↙
dS

1
4 T

3
4 + d2S

d
↙

ST + d2S (SC)

Dynamic.


B = T

S ⇐
(↘

dT
”

) 4
5

⇔ Rdyn(T, !, S) ↭ Rswi(T, S) ⇑ (d 2
5 ! 1

5 T
4
5 + d

8
5 ! 4

5 T
1
5)

B = T
S ⇐

(
dT
”

) 2
3

⇔ Rdyn(T, !, S) ↭ Rswi(T, S) ⇑ (d 2
3 ! 1

3 T
2
3 + d

4
3 ! 2

3 T
1
3) (SC)

Path-length.


B =

(
r

↘
dT

P

) 4
5

⇔ Rpath(T, P) ↭ r↓ 1
5 d

2
5 P

1
5 T

4
5 + r↓ 4

5 d
8
5 P

4
5 T

1
5

B =
(

rdT
P

) 2
3

⇔ Rpath(T, P) ↭ r↓ 1
3 d

2
3 P

1
3 T

2
3 + r↓ 2

3 d
4
3 P

2
3 T

1
3 (SC) .

2.1 Lower bound for strongly-convex loss functions

In this section, we derive a minimax lower bound on the dynamic regret and path-length regret, and
discuss the optimality of TEWA-SE. To derive the lower bound for the dynamic regret, we adopt a
standard minimax approach by constructing a class of hard functions, following [71, Theorem 6.1].
We assume that the adversary either (i) partitions the time horizon into S segments and assigns a
different function from this class to each segment, or (ii) selects a sequence of functions with total
variation bounded by !.
Theorem 2. Let ” = B

d
. For ⇀ > 0 denote by Fϑ the class of ⇀-strongly convex and smooth

functions. Let ⇁ = {zt}
T
t=1 be any randomized algorithm (see Appendix D for a definition). Then

there exists T0 > 0 such that for all T ⇓ T0 it holds that

sup
f1,...,fT ↑Fω

Rdyn(T, !, S) ⇓ c1 ·

(
d
↙

ST ⇑ d
2
3 ! 1

3 T
2
3

)
, (16)

where c1 > 0 is a constant independent of d, T , S and !.

We detail the proof in Appendix D. This lower bound establishes that TEWA-SE achieves the
minimax-optimal dynamic regret (up to logarithms) for strongly convex and smooth functions w.r.t. d,
T , S and !. We note that [7] derives a lower bound only in terms of T and !, matching (16), but it
does not explicitly capture the dependence on d nor does it address the interplay between S and !. In
the special case where S = 1, Theorem 2 recovers the classical minimax static regret of order d

↙
T

[71, 72]. Interestingly, for d = 1 the scaling of the lower bound as function of T, S and ! is the same
as standard lower bounds in the non-stationary MAB literature [10, 11]. The proof of Theorem 2 can
be readily adapted to consider only the measure S with the switching regret, yielding a rate of d

↙
ST

and thereby establishing the minimax optimality of TEWA-SE’s switching regret bound.

We also derive a lower bound for path-length regret analogously to that for dynamic regret. In
Theorem 4 in Appendix D we show that under the same assumptions as in the statement of Theorem 2,

sup
f1,...,fT ↑Fω

Rpath(T, P) ⇓ c2 · (d2P) 2
5 T

3
5 , (17)

where c2 > 0 is a constant independent of d, T and P . Hence, TEWA-SE may not achieve the
optimal regret rate for path-length. Additionally, Eq. (17) improves upon the only existing d

↙
PT

lower bound from [13] in terms of the horizon T , by leveraging a different construction of a hard
instance. This improvement comes from assuming P = o(T), which is necessary for sublinear regret.

2.2 Parameter-free guarantees

In Corollary 1, we showed that the knowledge of the non-stationarity measures S, ! and P allows
optimal tuning of TEWA-SE’s parameter B. However, these measures can be hard to estimate. To
obtain guarantees without such knowledge, we further analyze TEWA-SE under the Bandit-over-

Bandit (BoB) framework from [27] (see Appendix C.6 for details), which divides the time horizon
into epochs of suitable length L and uses an adversarial bandit algorithm (e.g., EXP3) to select B
for TEWA-SE in each epoch from the set B = {2i : i = 0, 1, . . . , 7log2 T ∀}. In Corollary 3 in
Appendix C.6, we adapt all the upper bounds in Corollary 1 to this framework, and show that this
procedure costs an additional d

1
3 T

5
6 term for the general convex case and d

1
2 T

3
4 for the strongly-

convex case. Our parameter-free path-length regret bound P
1
5 T

4
5 + T

5
6 for the general convex case

improves on the P
1
2 T

3
4 bound in [13] when P = $(T 1

6).

8

Recent works on MAB [65–67, 75, 76] have proposed algorithms that achieve optimal dynamic
regret without prior knowledge of S and !. However, they use procedures that crucially rely on the
finiteness of the arm set, and are thus ill-suited for BCO. It remains open to determine if the minimax
regret rate can be attained without such knowledge in the settings considered in this paper.

3 Clipped Exploration by Optimization

In this section, we propose a second algorithm (Algorithm 3) to improve upon the suboptimal rates
for Rdyn(T, !, S) and Rpath(T, P) that TEWA-SE achieves for general convex loss functions. For
ease of presentation, we assume in this section that the problem is noiseless, i.e., ωt = 0 for t ↓ [T].
We call this algorithm clipped Exploration by Optimization (cExO), which is built on Algorithm 8.3
(ExO) in [1]. The high level idea of ExO is to run exponential weights over a finite discretization
of the feasible set, denoted by C ∝ ”. We assume the discretization C admits a worst-case error of
ε := supf↑F0 minq↑”(C) Ez↓≃qf(z⇐) ↔ minz↑! f(z), where F0 denotes the class of convex and
Lipschitz functions, and !(C) denotes the (|C| ↔ 1)-dimensional simplex.

With q0 initialized as the uniform distribution, in each round t, given a loss estimate st ↓ R
|C|, ExO

(in its mirror descent formulation) computes qt = arg minq↑”(C) ∋q, st↓1△ + 1
ε KL(q||qt↓1), where

KL is the Kullback-Leibler divergence KL(q||p) =
∑|C|

i=1 qi log(qi/pi) for q, p ↓ !(C). The update
rule in cExO departs from the vanilla ExO in this single step, by taking the minimum over the clipped

simplex !̃ = !(C) ∃ [γ, 1]|C| where γ ↓ (0, 1
|C|) is a constant to be tuned, see line 2 of Algorithm 3.

Clipping is a standard technique in mirror descent to ensure the algorithm does not commit too hard
to any single action, and therefore detect changes in the environments more easily, yielding regret
guarantees w.r.t. non-stationary measures [9, Chapter 31.1].

Given the reference distribution qt, cExO selects a playing distribution pt ↓ !(C) and an estimator
function Et ↓ E which returns an updated loss estimate for each action in C, where E denotes the set
of functions that map C ¬ [↔1, 1] to R

|C|. It does so by solving an intractable optimization problem:2

arg min
p↑”(C),E↑E

%ε(qt, p, E) , (18)

where, with Sq(ϱŝ) = maxq↓↑”(C) ∋q ↔ q⇐, ϱŝ△ ↔ KL(q⇐
||q), the objective function is defined by

%ε(q, p, E) := sup
pε↑”(C)

sup
f↑F0

Ez≃p

[
∋p ↔ pϖ, f△ + ∋pϖ

↔ q, E(z, f(z))△ + 1
ε Sq(ϱE(z, f(z)))

]
.

This optimization problem is intractable due to the large size of E and F0.3 The role of this
optimization problem is to tradeoff the worst-case cost of deviating from the desired distribution qt
versus the gain of improved exploration (hence the name Exploration by Optimization). Finally, cExO
samples an action zt according to pt, observes the feedback f(zt) and constructs a loss estimate
st = Et(zt, f(zt)) to be used in the subsequent round. cExO achieves the adaptive regret guarantee
stated in Theorem 3 below.
Theorem 3. For T ↓ N

+
and B ↓ [T], Algorithm 3 calibrated with ε = 1

T , γ = 1
T |C| , ϱ =


log(γ↓1)/(d4 log(dT)B) and log |C| = O(d log(dT 2)) satisfies

Rada(B, T) ↭ d
5
2
↙

B . (19)

We then use Proposition 1 to convert the bound of Theorem 3 into the following regret guarantees
w.r.t. S, ! and P . Like in Corollary 1, we omit ▽·̸ from the expressions for B for clarity.
Corollary 2. For any horizon T ↓ N

+
, Algorithm 3 calibrated as in Theorem 3 and tuned with

interval size B (which determines ϱ) satisfies the following regret guarantees:

Switching: B = T
S =⇔ Rswi(T, S) ↭ d

5
2
↙

ST ,

Dynamic: B = T
S ⇐ (d 5

2 T/!) 2
3 =⇔ Rdyn(T, !, S) ↭ Rswi(T, S) ⇑ d

5
3 ! 1

3 T
2
3 ,

Path-length: B = (rd
5
2 T/P) 2

3 =⇔ Rpath(T, P) ↭ r↓ 1
3 d

5
3 P

1
3 T

2
3 .

2For detailed discussions about these functions, we refer the reader to [28].
3One can in theory bound the domain of E and discretize E , F0 and ”(C). The optimization problem is

hence computable, though not in polynomial time.

9

Algorithm 3 clipped Exploration by Optimization (cExO)
Input: d, T, B, feasible set ”, a finite covering set C ∝ ” of ”, discretization error ε, learning rate ϱ,
clipping parameter γ ↓ (0, 1

|C|), and !̃ = !(C) ∃ [γ, 1]|C|

Initialize: q0,i = 1
|C| ∞i ↓ [|C|] .

1: for t = 1, . . . , T do

2: Compute qt = arg minq↑”̃∋q, st↓1△ + 1
ε KL(q||qt↓1)

3: Find distribution pt ↓ !(C) and Et ↓ E s.t. %ε(qt, pt, Et) ↘ infp↑”(C),
E↑E

%ε(qt, p, E) + ϱd

4: Sample zt ∅ pt and observe ft(zt)
5: Compute st = Et(zt, ft(zt))
6: end for

The proofs of Theorem 3 and Corollary 2 are presented in Appendix E. By comparing these results
to the lower bounds in Section 2.1, we obtain that for known S, ! and P , cExO achieves minimax-
optimal rates in T, S and !, but remains suboptimal in d (for all measures), and potentially for
the path-length bound (see Eq. (17)). This suboptimal dependence on d is unsurprising since even
the best known static regret bounds of [31] and [34] suffer from similar dimensional dependence.
Moreover, the gap between cExO’s path-length regret bound and our minimax lower bound of order
d

4
5 P

2
5 T

3
5 may stem from either (i) looseness in the lower bound, or (ii) sub-optimality of cExO,

which runs OMD in distribution space rather than directly on the action set. The latter may allow us
to bound path-length regret more directly and sharply.

To adapt to unknown non-stationarity measures, cExO equipped with the BoB framework yields the
upper bounds in Corollary 2 with an additional d

5
4 T

3
4 term (see Corollary 4 in Appendix E). Our

path-length regret of P
1
3 T

2
3 and P

1
3 T

2
3 + T

3
4 for known and unknown P , respectively, improves on

the P
1
4 T

3
4 and P

1
2 T

3
4 rates in [13] in terms of T .

4 Conclusion

In this work, we develop and analyze two approaches for non-stationary Bandit Convex Optimization.
For strongly convex losses, our polynomial-time TEWA-SE algorithm achieves minimax-optimal
dynamic regret w.r.t. S and ! without knowing the strong-convexity parameter, but incurs a sub-
optimal T

3
4 rate for general convex losses. To address this, we propose a second algorithm, cExO,

which achieves minimax-optimality for S and !. However, this algorithm is not polynomial-time
computable and has an increased dimension dependence. Our matching lower bounds confirm the op-
timality results, but also reveal potentially suboptimal guarantees w.r.t. the path-length P . This work
highlights a central open challenge: designing algorithms that are simultaneously minimax-optimal
and computationally efficient for general convex losses in non-stationary environments. A promising
stepstone towards this goal is to incorporate second-order information, akin to the online Newton
methods from [31, 34] that achieve state-of-the-art static regret guarantees for adversarial convex
bandits. In particular, a restart criterion, similar to the one in line 15 of [35, Algorithm 1] or line 11
of [31, Algorithm 1], may enable tracking capabilities and lead to improved regret bounds.

Acknowledgments and Disclosure of Funding

X. Liu, D. Baudry, P. Rebeschini and A. Akhavan were funded by UK Research and Innovation (UKRI)
under the UK government’s Horizon Europe funding guarantee [grant number EP/Y028333/1].

References

[1] Tor Lattimore. Bandit convex optimisation. arXiv:2402.06535, 2024.

[2] Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Opti-

mization, 2(3-4):157–325, 2016.

[3] Francesco Orabona. A modern introduction to online learning. arXiv:1912.13213, 2019.

10

[4] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In International Conference on Machine Learning, pages 928–936, 2003.

[5] Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. Online opti-
mization in dynamic environments: Improved regret rates for strongly convex problems. In
Conference on Decision and Control, pages 7195–7201. IEEE, 2016.

[6] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan. Online optimization: Competing
with dynamic comparators. In Artificial Intelligence and Statistics, pages 398–406. PMLR,
2015.

[7] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Opera-

tions Research, 63(5):1227–1244, 2015.

[8] Eric C Hall and Rebecca M Willett. Online convex optimization in dynamic environments.
IEEE Journal of Selected Topics in Signal Processing, 9(4):647–662, 2015.

[9] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[10] Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In Proceedings of the 22nd International Conference on Algorithmic Learning

Theory, 2011.

[11] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with
non-stationary rewards. Advances in Neural Information Processing Systems, 27, 2014.

[12] Lilian Besson, Emilie Kaufmann, Odalric-Ambrym Maillard, and Julien Seznec. Efficient
change-point detection for tackling piecewise-stationary bandits. Journal of Machine Learning

Research, 23(77):1–40, 2022.

[13] Peng Zhao, Guanghui Wang, Lijun Zhang, and Zhi-Hua Zhou. Bandit convex optimization in
non-stationary environments. Journal of Machine Learning Research, 22(125):1–45, 2021.

[14] Yining Wang. On adaptivity in nonstationary stochastic optimization with bandit feedback.
Operations Research, 73(2):819–828, 2025.

[15] Mark Herbster and Manfred K. Warmuth. Tracking the Best Expert. Machine Learning, 32(2):
151–178, August 1998.

[16] Lijun Zhang, Tianbao Yang, Zhi-Hua Zhou, et al. Dynamic regret of strongly adaptive methods.
In International conference on machine learning, pages 5882–5891. PMLR, 2018.

[17] Lijun Zhang, Shiyin Lu, and Tianbao Yang. Minimizing dynamic regret and adaptive regret
simultaneously. In International Conference on Artificial Intelligence and Statistics, pages
309–319. PMLR, 2020.

[18] Elad Hazan and C. Seshadhri. Efficient learning algorithms for changing environments. In
International Conference on Machine Learning, volume 382 of ACM International Conference

Proceeding Series, pages 393–400. ACM, 2009.

[19] Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In
International Conference on Machine Learning, pages 1405–1411. PMLR, 2015.

[20] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–485, May
1997.

[21] Tianyi Chen and Georgios B Giannakis. Bandit convex optimization for scalable and dynamic
IoT management. IEEE Internet of Things Journal, 6(1):1276–1286, 2018.

[22] Tim van Erven, Wouter M. Koolen, and Dirk van der Hoeven. Metagrad: Adaptation using
multiple learning rates in online learning. Journal of Machine Learning Research, 22(161):
1–61, 2021.

11

[23] Guanghui Wang, Shiyin Lu, and Lijun Zhang. Adaptivity and optimality: A universal algorithm
for online convex optimization. In Proceedings of The 35th Uncertainty in Artificial Intelligence

Conference, volume 115 of Proceedings of Machine Learning Research, pages 659–668. PMLR,
2020.

[24] Lijun Zhang, Guanghui Wang, Wei-Wei Tu, Wei Jiang, and Zhi-Hua Zhou. Dual adaptivity: a
universal algorithm for minimizing the adaptive regret of convex functions. In International

Conference on Neural Information Processing Systems. Curran Associates Inc., 2021.

[25] Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex optimiza-
tion in the bandit setting: gradient descent without a gradient. In Proceedings of the Sixteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 385–394. SIAM, 2005.

[26] Robert Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In International

Conference on Neural Information Processing Systems, page 697–704. MIT Press, 2004.

[27] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Learning to optimize under non-
stationarity. In International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pages 1079–1087. PMLR, 2019.

[28] Tor Lattimore and Andras Gyorgy. Mirror descent and the information ratio. In Conference on

Learning Theory, pages 2965–2992. PMLR, 2021.

[29] Alekh Agarwal, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Alexander Rakhlin. Stochas-
tic convex optimization with bandit feedback. Advances in Neural Information Processing

Systems, 24, 2011.

[30] Ankan Saha and Ambuj Tewari. Improved regret guarantees for online smooth convex optimiza-
tion with bandit feedback. In International conference on artificial intelligence and statistics,
pages 636–642. JMLR Workshop and Conference Proceedings, 2011.

[31] Hidde Fokkema, Dirk van der Hoeven, Tor Lattimore, and Jack J Mayo. Online newton method
for bandit convex optimisation. In Conference on Learning Theory, volume 247 of Proceedings

of Machine Learning Research, pages 1713–1714. PMLR, 2024.

[32] Sébastien Bubeck, Ronen Eldan, and Yin Tat Lee. Kernel-based methods for bandit convex
optimization. Journal of the ACM, 68(4):1–35, 2021.

[33] Elad Hazan and Kfir Levy. Bandit convex optimization: Towards tight bounds. In Advances in

Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[34] Arun Suggala, Y Jennifer Sun, Praneeth Netrapalli, and Elad Hazan. Second order methods for
bandit optimization and control. In The Thirty Seventh Annual Conference on Learning Theory,
pages 4691–4763. PMLR, 2024.

[35] Arun Sai Suggala, Pradeep Ravikumar, and Praneeth Netrapalli. Efficient bandit convex
optimization: Beyond linear losses. In Proceedings of Thirty Fourth Conference on Learning

Theory, volume 134, pages 4008–4067. PMLR, 2021.

[36] Tor Lattimore and András György. A second-order method for stochastic bandit convex
optimisation. In Conference on Learning Theory, pages 2067–2094. PMLR, 2023.

[37] Olivier Bousquet and Manfred K Warmuth. Tracking a small set of experts by mixing past
posteriors. Journal of Machine Learning Research, 3(Nov):363–396, 2002.

[38] N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Compu-

tation, 108(2):212–261, 1994.

[39] V Vovk. A game of prediction with expert advice. Journal of Computer and System Sciences,
56(2):153–173, 1998.

[40] Yoav Freund, Robert Schapire, Yoram Singer, and Manfred Warmuth. Using and combining
predictors that specialize. Conference Proceedings of the Annual ACM Symposium on Theory

of Computing, 01 1997.

12

[41] Wouter M Koolen and Tim Van Erven. Second-order quantile methods for experts and combina-
torial games. In Conference on Learning Theory, pages 1155–1175. PMLR, 2015.

[42] Dmitry Adamskiy, Wouter M. Koolen, Alexey Chernov, and Vladimir Vovk. A closer look at
adaptive regret. Journal of Machine Learning Research, 17(23):1–21, 2016.

[43] Kwang-Sung Jun, Francesco Orabona, Stephen Wright, and Rebecca Willett. Online learning
for changing environments using coin betting. arXiv preprint arXiv:1711.02545, 2017.

[44] Ashok Cutkosky. Parameter-free, dynamic, and strongly-adaptive online learning. In Interna-

tional Conference on Machine Learning, volume 119, pages 2250–2259. PMLR, 2020.

[45] Zhou Lu, Wenhan Xia, Sanjeev Arora, and Elad Hazan. Adaptive gradient methods with local
guarantees. arXiv preprint arXiv:2203.01400, 2022.

[46] Dheeraj Baby and Yu-Xiang Wang. Optimal dynamic regret in proper online learning with
strongly convex losses and beyond. In International Conference on Artificial Intelligence and

Statistics, pages 1805–1845. PMLR, 2022.

[47] Guanghui Wang, Dakuan Zhao, and Lijun Zhang. Minimizing adaptive regret with one gradient
per iteration. In International Joint Conference on Artificial Intelligence, IJCAI’18, page
2762–2768. AAAI Press, 2018.

[48] Peng Zhao, Yan-Feng Xie, Lijun Zhang, and Zhi-Hua Zhou. Efficient methods for non-stationary
online learning. Advances in Neural Information Processing Systems, 35:11573–11585, 2022.

[49] Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
page 1330–1340. Curran Associates Inc., 2018.

[50] Wenhao Yang, Yibo Wang, Peng Zhao, and Lijun Zhang. Universal online convex optimization
with 1 projection per round. In Advances in Neural Information Processing Systems, volume 37,
pages 31438–31472. Curran Associates, Inc., 2024.

[51] Peter L. Bartlett, Elad Hazan, and Alexander Rakhlin. Adaptive online gradient descent. In
Proceedings of the 21st International Conference on Neural Information Processing Systems,
page 65–72. Curran Associates Inc., 2007.

[52] Chuong B. Do, Quoc V. Le, and Chuan-Sheng Foo. Proximal regularization for online and
batch learning. In International Conference on Machine Learning, page 257–264. Association
for Computing Machinery, 2009.

[53] Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
In Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014.

[54] Sébastien Bubeck, Ofer Dekel, Tomer Koren, and Yuval Peres. Bandit convex optimization:
↙

T regret in one dimension. In Conference on Learning Theory, pages 266–278. PMLR, 2015.

[55] Sébastien Bubeck and Ronen Eldan. Exploratory distributions for convex functions. Mathemat-

ical Statistics and Learning, 1(1):73–100, 2018.

[56] Tor Lattimore. Improved regret for zeroth-order adversarial bandit convex optimisation. Mathe-

matical Statistics and Learning, 2(3):311–334, 2020.

[57] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256, 2002.

[58] Olivier Cappé, Aurélien Garivier, Odalric-Ambrym Maillard, Rémi Munos, and Gilles Stoltz.
Kullback-Leibler upper confidence bounds for optimal sequential allocation. Annals of Statistics,
41(3):1516–1541, 2013.

[59] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

13

[60] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[61] Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed bandit
problem. In Conference on Learning Theory, 2012.

[62] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically
optimal finite-time analysis. In International conference on algorithmic learning theory, pages
199–213. Springer, 2012.

[63] Fang Liu, Joohyun Lee, and Ness B. Shroff. A change-detection based framework for piecewise-
stationary multi-armed bandit problem. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 32, 2018.

[64] Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie. Nearly optimal adaptive procedure
with change detection for piecewise-stationary bandit. In International Conference on Artificial

Intelligence and Statistics, pages 418–427. PMLR, 2019.

[65] Peter Auer, Pratik Gajane, and Ronald Ortner. Adaptively tracking the best bandit arm with
an unknown number of distribution changes. In Conference on Learning Theory, volume 99,
pages 138–158. PMLR, 2019.

[66] Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge:
An optimal black-box approach. In Conference on learning theory, pages 4300–4354. PMLR,
2021.

[67] Joe Suk and Samory Kpotufe. Tracking most significant arm switches in bandits. In Conference

on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pages 2160–
2182, 2022.

[68] Yoan Russac, Claire Vernade, and Olivier Cappé. Weighted linear bandits for non-stationary
environments. Advances in Neural Information Processing Systems, 32, 2019.

[69] Francesco Trovò, Marcello Restelli, and Nicola Gatti. Sliding-window thompson sampling for
non-stationary settings. Journal of Artificial Intelligence Research, 68:311–364, 2020.

[70] Dorian Baudry, Yoan Russac, and Olivier Cappé. On limited-memory subsampling strategies
for bandits. In International Conference on Machine Learning, pages 727–737. PMLR, 2021.

[71] Arya Akhavan, Massimiliano Pontil, and Alexandre Tsybakov. Exploiting higher order smooth-
ness in derivative-free optimization and continuous bandits. Advances in Neural Information

Processing Systems, 33:9017–9027, 2020.

[72] Ohad Shamir. On the complexity of bandit and derivative-free stochastic convex optimization.
In Conference on Learning Theory, pages 3–24. PMLR, 2013.

[73] Shinji Ito. An optimal algorithm for bandit convex optimization with strongly-convex and
smooth loss. In International Conference on Artificial Intelligence and Statistics, pages 2229–
2239. PMLR, 2020.

[74] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2):169–192, December 2007.

[75] Haipeng Luo, Chen-Yu Wei, Alekh Agarwal, and John Langford. Efficient contextual bandits in
non-stationary worlds. In Conference On Learning Theory, pages 1739–1776. PMLR, 2018.

[76] Yifang Chen, Chung-Wei Lee, Haipeng Luo, and Chen-Yu Wei. A new algorithm for non-
stationary contextual bandits: Efficient, optimal and parameter-free. In Conference on Learning

Theory, pages 696–726. PMLR, 2019.

[77] Gilles Stoltz. Incomplete information and internal regret in prediction of individual sequences.
Theses, Université Paris Sud - Paris XI, May 2005.

[78] Arya Akhavan, Karim Lounici, Massimiliano Pontil, and Alexandre B Tsybakov. Contextual
continuum bandits: Static versus dynamic regret. arXiv preprint arXiv:2406.05714, 2024.

14

[79] Alexandre B. Tsybakov. Introduction to nonparametric estimation. Springer Series in Statistics.
Springer, New York, 2009.

15

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Section 1, we define our problem setting, goals of the paper, and assumptions
we make throughout the paper. In Section 1.1 we describe our main contributions and results,
while in Section 1.2 we contextualize our work by discussing related work. The abstract
summarizes these.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the main contributions section (Section 1.1), we describe the limitations of
the work: the polynomial-time algorithm TEWA-SE we develop attains suboptimal regret
bounds for general convex losses, and cExO, the second algorithm we propose, achieves
optimal rates w.r.t. T, S and !, but is not polynomial-time computable and has suboptimal
rates w.r.t. the problem dimension d. These limitations are discussed in detail after we
state each theoretical result, and restated in the conclusion (Section 4). We also discuss
the potential suboptimality of both algorithms w.r.t. the path-length P in our main results
section and in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

16

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We state all assumptions we make in Section 1. Each theoretical result is
followed by a reference to its detailed proof in the appendices. We provide all proofs in
the appendices: definitions (Appendix A), proof of Proposition 1 (Appendix B), proofs
for TEWA-SE (Appendix C), proofs of lower bounds (Appendix D), and proofs for cExO
(Appendix E).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper is theoretical in nature and does not include experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

17

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work has been conducted in a way that fully conforms with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

19

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is theoretical in nature and is not expected to have significant social
impacts, positive or negative.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use such assets.
Guidelines:

20

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

21

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

A Definitions

Definition 1. Let ε > 0. A random variable ω is ε-sub-Gaussian if for any ▷ > 0 we have

E[exp(▷ω)] ↘ exp(ε2▷2/2).

Definition 2. Let ⇀ > 0. A differentiable function f : R
d

→ R is called ⇀-strongly convex, if for

x, z ↓ R
d
, f(z) ⇓ f(x) + ∈f(x)↗(z ↔ x) + ϑ

2 ≃z ↔ x≃
2

.

Definition 3. Let ϑ > 0. Function f : R
d

→ R is called ϑ-smooth, if it is continuously differentiable

and for any x, z ↓ R
d
, ≃∈f(x) ↔ ∈f(z)≃ ↘ ϑ≃x ↔ z≃ .

Definition 4. Let K > 0. Function f : R
d

→ R is called K-Lipschitz if for any x, z ↓ R
d
,

|f(x) ↔ f(z)| ↘ K≃x ↔ z≃.

B Proof of Proposition 1

We start this section by restating the proposition, before detailing its proof.
Proposition 1. Suppose that an algorithm can be calibrated to satisfy Rada(B, T) ↘ CBω

, for any

interval length B ↓ [T], for some factor C > 0 that is at most polynomial in d and log(T), and

ϖ ↓ [0, 1).

Then, for any S, S”, SP ↓ [T], an appropriate choice of B yields the following regret guarantees:

Switching: B =
⌈

T
S

⌉
guarantees that Rswi(T, S) ↘ 21+ωCS1↓ωT ω .

Dynamic: B =
⌈

T
S

⌉
⇐

⌈
T

S!

⌉
yields Rdyn(T, !, S) ↘ Rswi(T, S) ⇑

(
Rswi(T, S”) + !

⌈
T

S!

⌉)
.

Path-length: B =
⌈

T
SP

⌉
ensures that Rpath(T, P) ↘ Rswi(T, SP) + P

r ·

⌈
T

SP

⌉
.

Proof of Proposition 1 . The proof follows two steps. First, we state in Lemma 1 the conversion
between adaptive regret and switching regret. A similar conversion can be found in [19], but we
detail the proof for completeness. Next, we prove in Lemma 2 that switching regret guarantees for
appropriate number of switches convert into dynamic and path-length regret guarantees.

In the remainder of this section, we detail the two supporting lemmas and their proof.
Lemma 1. Consider an algorithm that satisfies the adaptive regret guarantees of Proposition 1, then

this algorithm calibrated with interval size B =
⌈

T
S

⌉
satisfies

Rswi(T, S) ↘ 21+ωCS1↓ωT ω .

Proof of Lemma 1. Consider B = ▽
T
S ̸. Let u1:T ↓ ”T be a sequence of arbitrary comparators with

at most S switches. We divide the horizon into intervals of length B (the last interval may be shorter
than B), and further divide the intervals at the rounds where ut ↗= ut↓1. This ensures each of these
intervals is associated with a constant comparator. By construction, these intervals are of length ↘ B
and the number of intervals is bounded by 2S. Hence, we can apply the adaptive regret bound to each
interval to obtain

Rswi(T, S) ↘ 2S · CBω
↘ 2CS ·


T

S
+ 1

ω

= 2C · S1↓ωT ω
·


1 + S

T

ω

↘ 21+ωC · S1↓ωT ω .

We now prove the conversion between switching regret and dynamic and path-length regrets.
Lemma 2. Consider any fictitious number of switches S⇐

↓ [T]. Then the dynamic regret of

environments constrained by ! satisfies

Rdyn(T, !) ↘ Rswi(T, S⇐) + !
⌈

T
S↓

⌉
, (20)

and the path-length regret satisfies

Rpath(T, P) ↘ Rswi(T, S⇐) + P
r

⌈
T
S↓

⌉
. (21)

23

Proof of Lemma 2. For both upper bounds, the switching regret term comes from dividing the horizon
[T] into S⇐ intervals, denoted by (Is)s↑[S↓], each of length at most

⌈
T
S↓

⌉
(defining them precisely is

not important for the following arguments). Recall the definition of R(T, u1:T) from (2). For any
sequence of actions z1:T ↓ ”T chosen by the given algorithm, and for any arbitrary comparator
sequences u1:T ↓ ”T and v1:S↓ ↓ ”S↓

, it holds that

R(T, u1:T) =
T∑

t=1
E [ft(zt) ↔ ft(ut)]

=
T∑

t=1

S↓∑

s=1
1(t ↓ Is) · (E [ft(zt) ↔ ft(vs)] + (ft(vs) ↔ ft(ut)))

↘ Rswi(T, S⇐) +
S↓∑

s=1

∑

t↑Is

(ft(vs) ↔ ft(ut))
  

=:Vs

, (22)

where the last step holds by the definition of the switching regret. It thus remains to choose a suitable
vs ↓ ” and upper bound the term Vs for s ↓ [S⇐]. We choose a different vs for the proof of the
dynamic regret bound vs. that of the path-length regret bound.

Dynamic regret. Consider the interval Is for s ↓ [S⇐]. Let Ls be its length and !s =∑
t↑Is

maxz↑! |ft(z) ↔ ft↓1(z)| be the total variation over this interval. Then, for any two time
steps t and t⇐ in Is and any z ↓ ”, it holds that ft(z) ↔ ft↓(z) ↘ !s by definition of total variation.
Let f̄s denote the average of the functions over the interval Is and define vs ↓ arg minz↑! f̄s(z),
then we have

∞s ↓ [S⇐], Vs ↘

∑

t↑Is

(ft(vs) ↔ f̄s(ut) + !s) ↘ !sLs .

Taking the sum over all intervals and using Ls ↘
⌈

T
S↓

⌉
completes the proof of (20).

Path-length regret. This proof proceeds similarly as that for the dynamic regret. Consider the
interval Is for some s ↓ [S⇐], and denote by Ls its length and Ps =

∑
t↑Is

≃ut ↔ ut↓1≃ the path-
length of the comparator sequence on this interval. For the proof, we construct vs ↓ ” differently
from that in the proof of the dynamic regret. Before detailing the construction of vs, we first define a
set of comparators (u⇐

t)t↑Is ↓ ”Ls as follows: for some ⇀0 ↓ [0, 1] and any time t ↓ Is, we define
u⇐

t to satisfy vs = ⇀0ut + (1 ↔ ⇀0)u⇐
t. Using this and by the convexity and boundedness of ft, we

can bound that

ft(vs) ↘ ft(ut) + (1 ↔ ⇀0)(ft(u⇐
t) ↔ ft(ut)) ↘ ft(ut) + 2(1 ↔ ⇀0) .

We then proceed by choosing a suitable vs and ⇀0 to make this bound depend on the path-length.
Since the path-length is Ps, there exists an ↽2-ball of radius Ps

2 that contains all the comparators
(ut)t↑Is , and its center cu lies in the feasible domain ”. By assumption (as we stated in Section 1),
there also exists a ball with radius r and center cr within the domain. We can thus construct vs to
satisfy

vs = ⇀0cu + (1 ↔ ⇀0)cr ↓ ” , which yields u⇐
t = cr + ⇀0

1 ↔ ⇀0
(cu ↔ ut) , (23)

where vs ↓ ” due to the convexity of the domain. Our goal is then to choose ⇀0 as large as possible
(to make 1 ↔ ⇀0 small) such that all the comparators (u⇐

t)t↑Is belong to ”. Eq. (23) implies that

≃u⇐
t ↔ cr≃ = ⇀0

1 ↔ ⇀0
≃cu ↔ ut≃ ↘

⇀0
1 ↔ ⇀0

·
Ps

2 = ⇀0Ps

2(1 ↔ ⇀0) ,

which by definition of the r-ball guarantees that u⇐
t ↓ ” as long as ϑ0Ps

2(1↓ϑ0) ↘ r. To satisfy this
condition, we can thus pick ⇀0 = 2r

Ps+2r , which guarantees by construction that

∞t ↓ Is : ft(vs) ↘ ft(ut) + 2Ps

Ps + 2r
↘ ft(ut) + Ps

r
.

The desired bound on Vs in (22) directly follows. The final result (21) then comes by summation over
all intervals (Is)s↑[S↓].

24

C Details and proofs for TEWA-SE

In this appendix, we provide additional details on TEWA-SE in Section C.1 and establish its theoretical
guarantees in Sections C.4–C.6. We present the proof of Theorem 1 in Section C.2, followed by the
supporting lemmas in Sections C.3 and C.4. We then provide the proof of Corollary 1 in Section C.5,
and the parameter-free guarantees in Section C.6.

C.1 Additional details on TEWA-SE

As we described in Section 2, TEWA-SE handles non-stationary environments by employing the
Geometric Covering (GC) scheme from [19] to schedule experts across different time intervals.
Additionally, TEWA-SE assigns an exponential grid of learning rates to the multiple experts covering
each GC interval, to adapt to the curvature of the loss functions. We first invoke the definition of GC
intervals from [19].
Definition 5 (Geometric Covering (GC) intervals [19]). For k ↓ N, define the set of intervals

Ik =
{

[i · 2k, (i + 1) · 2k
↔ 1] : i ↓ N

+}
, (24)

that is, Ik is a partition of N
+

\ [2k
↔ 1] into intervals of length 2k

. Then we call I =


k↑N Ik the

set of Geometric Covering (GC) intervals.

For any interval length L ↓ N
+, we also define the exponential grid of learning rates as

S(L) =
 2↓i

5GD
: i ↓

{
0, 1, . . . ,

⌈ 1
2 log2 L

⌉}
, (25)

where G is the uniform upper bound (10) on ≃gt≃, and D is the diameter of the feasible set ”. For
each given GC interval I = [r, s] ↓ I, TEWA-SE instantiates multiple experts in round r, each
assigned a distinct learning rate ϱ ↓ S(|I|) and surrogate loss ↽ε

t as defined in (11). It removes these
experts after round s. This scheduling scheme ensures at least one expert covering I effectively
minimizes the linearized regret

∑
t↑I ∋E[gt|xt, %T], xt ↔ u△ associated with f̂t on the interval I

(Lemma 5), ultimately yielding the regret guarantees in Theorem 1 and Corollary 1.

Polylogarithmic computational complexity For t ↓ N
+, we use Ct = {I ↓ I : t ↓ I} to denote

the set of GC intervals covering time t. From Definition 5 it is easy to verify that |Ct| = 1 + 7log2 t∀.
The longest interval in Ct has length at most t, which is associated with at most |S(t)| = 1+

⌈ 1
2 log2 t

⌉

experts. With At = {E(I, ϱ) : t ↓ I} representing the set of experts active in round t, the number of
active experts in round t, denoted by nt = |At| in Algorithm 1, satisfies

nt ↘ (1 + 7log2 t∀) ·
(
1 +

⌈ 1
2 log2 t

⌉)
. (26)

This ensures that the computational complexity of TEWA-SE is only O(log2 T) per round.

Tilted Exponentially Weighted Average In each round t, TEWA-SE aggregates the actions
proposed by the active experts E(I, ϱ) ↓ At using exponential weights, tilted by their respective
learning rates, by computing

xt =
∑

E(I,ε)↑At
ϱ exp(↔Lε

t↓1,I)xε
t,I∑

E(Ĩ,ε̃)↑At
ϱ̃ exp(↔Lε̃

t↓1,Ĩ
)

, (27)

where for I = [r, s] and t ↓ [r + 1, s], Lε
t↓1,I =

∑t↓1
ϱ=r ↽ε

ϱ (xε
ϱ,I) represents the cumulative surrogate

loss accrued by expert E(I, ϱ) over the interval [r, t ↔ 1]. Note that (27) is equivalent to line 7 of
Algorithm 1, rewritten with notation better suited for our proof.

In what follows, we prove some theoretical guarantees for TEWA-SE.

C.2 Proof of Theorem 1

In this section, we first restate Theorem 1 and provide its complete proof, which relies on several
supporting lemmas. For clarity of exposition, we defer the statements and proofs of these supporting
lemmas to the following sections.

25

Theorem 1. For any T ↓ N
+

and B ↓ [T], Algorithm 1 with h = min(
↙

dB↓ 1
4 , r) satisfies

Rada(B, T) ↭
↙

dB 3
4 + d2, (14)

and if ft is ⇀-strongly-convex with arg minx↑Rd ft(x) ↓ ” for all t ↓ [T],4 it furthermore holds that

Rada(B, T) ↭ d
ϑ

↙

B + 1
ϑ d2 , (15)

where ↭ conceals polylogarithmic terms in B and T , independent of d and ⇀.

Proof of Theorem 1. We prove (14) for the general convex case and (15) for the strongly-convex
case similarly. To bound Rada(B, T), we will uniformly bound

∑q
t=p E[ft(zt) ↔ ft(u)] across all

comparators u ↓ ” and intervals [p, q] shorter than B.
Common setup: Invoking the event %T =

{
|ωt| ↘ 2ε


log(T + 1), ∞t ↓ [T]

}
defined above (10),

since {ωt}
T
t=1 are ε-sub-Gaussian, we have

P(%c
T) ↘

T∑

t=1
P

(
|ωt| > 2ε


log(T + 1)

)
↘ 2

T +1∑

t=2
T ↓2 = 2T ↓1. (28)

By the law of total expectation we can write for any u ↓ ”,
q∑

t=p

E[ft(zt) ↔ ft(u)] =
q∑

t=p

E[ft(zt) ↔ ft(u) | %T]P(%T) +
q∑

t=p

E[ft(zt) ↔ ft(u)  
↔2

| %c
T] P(%c

T)  
↔2T ↑1

↘

q∑

t=p

E[ft(zt) ↔ ft(u) | %T] + 4 . (29)

To bound the first term in the last display, we consider the following decomposition
q∑

t=p

E[ft(zt) ↔ ft(u) | %T]

=
q∑

t=p

E[ft(zt) ↔ ft(xt) | %T]
  

term I

+
q∑

t=p

E[ft(xt) ↔ f̂t(xt) | %T]
  

term II

+

q∑

t=p

E[f̂t(xt) ↔ f̂t(u) | %T]
  

term III

+
q∑

t=p

E[f̂t(u) ↔ ft(u) | %T]
  

term IV

. (30)

Since ft is convex, by Jensen’s inequality we obtain that term II is negative (c.f. [71, Lemma A.2
(ii)]). In what follows, we bound terms I, III and IV in this decomposition separately for the general
convex case and the strongly-convex case.

General convex and Lipschitz case: Recall that (ωt)T
t=1 denote uniform samples from the unit sphere

ςB
d, and ω̃ denotes a uniform sample from the unit ball B

d, while f̂t(x) = E[ft(x + hω̃)] ∞x ↓ ”̃.
Since (ft)T

t=1 are K-Lipschitz, ≃ωt≃ = 1, and E[≃ω̃≃] ↘ 1, we can bound term I and term IV by

term I =
q∑

t=p

E
[
E[ft(xt + hωt)|xt] ↔ ft(xt) | %T

]
↘ K(q ↔ p + 1)h, (31)

term IV =
q∑

t=p

E
[
E[ft(u + hω̃)] ↔ ft(u) | %T

]
↘ K(q ↔ p + 1)h. (32)

4The assumption that loss minimizers lie inside ! is common in zeroth-order optimization, see e.g., [7, 72, 73].
Without it, our upper bound analysis would have an extra term depending on the gradients at the minimizers.

26

To bound term III, recall that gt denotes the gradient estimate of f̂t at xt. We use the convexity of f̂t

and apply Lemma 3 to obtain that for any u ↓ ”,

term III ↘ E


q∑

t=p

∋E[gt|xt, %T], xt ↔ u△
 %T



↘ E


10GDap,qbp,q + 3G


ap,qbp,q


q∑

t=p

≃xt ↔ u≃2
 %T



↘ 10GDap,qbp,q + 3GD


ap,qbp,q


q ↔ p + 1 , (33)

where all constants are explicit in the statement of the lemma. By combining the bounds for all
four terms in (30) with (29), and using h = min

(↙
dB↓ 1

4 , r
)
, G = d

h (1 + 2ε


log(T + 1)), ap,q =
1
2 + 2 log(2q) + 1

2 log(q ↔ p + 1) ↘ 6 log(T + 1), and bp,q = 2 ▽log2(q ↔ p + 2)̸ ↘ 6 log(B + 1),
we establish that

Rada(B, T) ↘ 10GDap,qbp,q + 3GD


ap,qbp,q


q ↔ p + 1 + 2K(q ↔ p + 1)h + 4

↘


C

↙
dB 3

4 + 4 if h =
↙

dB↓ 1
4

C1d2 + C2d + 4 if h = r

↘ C
↙

dB 3
4 + C1d2 + C2d + 4 , (34)

where C, C1, C2 > 0 are polylogarithmic in T , independent of d, defined with MT = 1 +
2ε


log(T + 1) and NT,B = log(T + 1) log(B + 1) as

C = 18DMT

(
NT,B + 20NT,BB↓ 1

2
)

+ 2K (35)

C1 =
(
18DMT


NT,B + 2K

)
/r3 (36)

C2 = 360DMT NT,B/r . (37)

This concludes the proof of (14).

Strongly-convex and smooth case: Due to the ϑ-smoothness of ft and the fact that E[ωt] = E[ω̃] =
0 and E[≃ω̃≃

2] ↘ E[≃ωt≃
2] = 1, we can bound term I and term IV each by ς

2 (q ↔ p + 1)h2. When
the ft’s are strongly-convex, we can derive a tighter bound on term III than that in (33) by restricting
the comparator u to the clipped domain ”̃ and using the fact that when ft is ⇀-strongly convex on ”,
f̂t is ⇀-strongly convex on ”̃ (c.f. [71, Lemma A.3]). That is, we have for any u ↓ ”̃,

term III ↘ E


q∑

t=p

∋E[gt|xt, %T], xt ↔ u△ ↔
⇀

2

q∑

t=p

≃xt ↔ u≃
2  %T



↘ E


10GDap,qbp,q + 3G


ap,qbp,q


q∑

t=p

≃xt ↔ u≃2 ↔
⇀

2

q∑

t=p

≃xt ↔ u≃
2

  
=:φ

%T



↘
(
10GD + 18

ϑ G2)
ap,qbp,q , (38)

where the last inequality holds because term ◁ is uniformly bounded as follows:

◁ ↘


18
ϑ G2ap,qbp,q if

√∑q
t=p ≃xt ↔ u≃2 ↘

6
ϑ G


ap,qbp,q ,

0 otherwise.

Combining (38) with (29)–(30) and simplifying yields for any u ↓ ”̃,
q∑

t=p

E[ft(zt) ↔ ft(u)] ↘
(
10GD + 18

ϑ G2)
ap,qbp,q + ϑ(q ↔ p + 1)h2 + 4 . (39)

The final step is to handle the case where the comparator u ↓ ” \ ”̃. Consider the worst case
when the comparator is u→

↓ arg minu↑!
∑q

t=p ft(u) with u→
↓ ” \ ”̃. Let ũ→ = #!̃(u→). If

27

arg minx↑Rd ft(x) ↓ ” ∞t ↓ [T], then by the ϑ-smoothness of the ft’s we have

q∑

t=p

ft(ũ→) ↔ ft(u→) ↘

q∑

t=p

[〈
∈ft(u→)  

=0

, ũ→
↔ u→

〉
+ ϑ

2 ≃ũ→
↔ u→

≃
2

  
↔h2

]
= ϑ

2 (q ↔ p + 1)h2. (40)

Combining (39) with (40) yields

Rada(B, T) ↘
(
10GD + 18

ϑ G2)
ap,qbp,q + 3

2 ϑ(q ↔ p + 1)h2 + 4

↘


C ⇐d

↙
B + 4 if h =

↙
dB↓ 1

4

C ⇐
1d2 + C ⇐

2d + 4 if h = r

↘ C ⇐ d
ϑ

↙

B + C ⇐
1

1
ϑ d2 + C ⇐

2d + 4 , (41)

where C ⇐, C ⇐
1, C ⇐

2 > 0 are polylogarithmic in T and B, independent of d, defined as

C ⇐ = 72
(

9MT + 5⇀DB↓ 1
4

)
MT NT,B + 3

2 ϑ⇀ (42)

C ⇐
1 =

(
648M2

T NT,B + ϑ⇀
)
/r2 (43)

C ⇐
2 = 360DMT NT,B/r . (44)

This concludes the proof of (15).

The proof above crucially relies on Lemma 3, which we state and prove in the following section.

C.3 Upper bounds on linearized regret

Lemma 3 establishes an upper bound on the linearized regret associated with the smoothed loss f̂t

for any arbitrary interval I = [p, q] ↑ [1, T]. This result builds on two key components: Lemma 4,
which characterizes how a given arbitrary interval is covered by a sequence of GC intervals, and
Lemma 5, which provides an upper bound on the linearized regret for each GC interval I ↓ I. For
clarity, we first present and prove Lemma 3, then proceed to detail the supporting Lemmas 4 and 5.

Lemma 3 (Linearized regret on an arbitrary interval). For an arbitrary interval I = [p, q] ↑ [1, T],
Algorithm 1 satisfies for all u ↓ ”,

q∑

t=p

∋E[gt|xt, %T], xt ↔ u△ ↘ 10GDap,qbp,q + 3G


ap,qbp,q


q∑

t=p

≃xt ↔ u≃2, (45)

where ap,q = 1
2 + 2 log(2q) + 1

2 log(q ↔ p + 1) and bp,q = 2 ▽log2(q ↔ p + 2)̸.

Proof of Lemma 3. This proof follows similar arguments to those used in proving the first part of
[24, Theorem 2]. To begin, according to Lemma 4, any arbitrary interval I = [p, q] ↑ [1, T] can be
covered by two sequences of consecutive and disjoint GC intervals, denoted by I↓m, . . . , I0 ↓ I and
I1, . . . , In ↓ I, where n, m ↓ N

+ with n ↘ ▽log2(q ↔ p + 2)̸ and m + 1 ↘ ▽log2(q ↔ p + 2)̸.
Note that negative indices correspond to GC intervals that precede I0, while positive indices cor-
respond to intervals that follow it. The indices indicate temporal ordering and are unrelated to the
length of the intervals.

By applying the linearized regret bound from Lemma 5 to each GC interval, and noticing that
ar,s ↘ ap,q for any subinterval [r, s] ↑ [p, q] (as evident from the definition of ap,q in (45)), we

28

establish for all u ↓ ”,

q∑

t=p

∋E[gt|xt, %T], xt ↔ u△ =
n∑

i=↓m

∑

t↑Ii

∋E[gt|xt, %T], xt ↔ u△

↘

n∑

i=↓m



3G

√
ap,q

∑

t↑Ii

≃xt ↔ u≃2 + 10GDap,q





= 10GDap,q(n + m + 1) + 3G
↙

ap,q

n∑

i=↓m

√∑

t↑Ii

≃xt ↔ u≃2

↘ 10GDap,q(n + m + 1) + 3G
↙

ap,q

(n + m + 1)
n∑

i=↓m

∑

t↑Ii

≃xt ↔ u≃2

↘ 10GDap,qbp,q + 3G


ap,qbp,q


q∑

t=p

≃xt ↔ u≃2 , (46)

where the last step uses n + m + 1 ↘ 2 ▽log2(q ↔ p + 2)̸ =: bp,q .

We now present Lemmas 4 and 5 which we used to prove Lemma 3 above.

Lemma 4 (Covering property of GC intervals). Any arbitrary interval I = [p, q] ↑ N
+

can be parti-

tioned into two finite sequences of consecutive and disjoint GC intervals, denoted by I↓m, . . . , I0 ↓ I

and I1, . . . , In ↓ I, where I =
n

i=↓m Ii , such that

|I↓i|

|I↓i+1|
↘

1
2 ∞i ⇓ 1, and

|Ii|

|Ii↓1|
↘

1
2 , ∞i ⇓ 2 , (47)

with

n ↘ ▽log2(q ↔ p + 2)̸ , and m + 1 ↘ ▽log2(q ↔ p + 2)̸ . (48)

Proof of Lemma 4. Eq. (47) directly comes from [19, Lemma 1.2]. To prove (48), suppose for
contradiction n > ▽log2(q ↔ p + 2)̸, then we have

n∑

i=1
|Ii| ⇓

n∑

i=1
2i↓1 = 2n

↔ 1 > q ↔ p + 1 = |I| , (49)

contradicting the fact that
n

i=↓m Ii = I . By the same reasoning, we have m + 1 ↘

▽log2(q ↔ p + 2)̸.

Lemma 5 (Linearized regret on a GC interval). For any GC interval I = [r, s] ↓ I, Algorithm 1

satisfies for all u ↓ ”,

s∑

t=r

∋E[gt|xt, %T], xt ↔ u△ ↘ 3G

ar,s

s∑

t=r

≃xt ↔ u≃2 + 10GDar,s, (50)

where ar,s = 1
2 + 2 log(2s) + 1

2 log(s ↔ r + 1).

Proof of Lemma 5. This proof is similar to that of [24, Lemma 12]. For any GC interval I = [r, s] ↓

I and learning rate ϱ ↓ S(s ↔ r + 1), we can apply the definition of surrogate loss ↽ε
t from (11),

29

noticing that ↽ε
t (xt) = 0, to obtain for all u ↓ ”,

s∑

t=r

ϱ ∋E[gt|xt, %T], xt ↔ u△ ↔

s∑

t=r

ϱ2G2
≃xt ↔ u≃

2

=
s∑

t=r

E[↔↽ε
t (u) | xt, %T]

=
s∑

t=r

E
[
↽ε

t (xt) ↔ ↽ε
t (xε

t,I) | xt, %T

]

  
meta-regret↔2 log(2s)

+
s∑

t=r

E
[
↽ε

t (xε
t,I) ↔ ↽ε

t (u) | xt, %T

]

  
expert-regret↔ 1

2 + 1
2 log(s↓r+1)

↘ 2 log(2s) + 1
2 + 1

2 log(s ↔ r + 1) =: ar,s , (51)

where the last step applies the upper bound on the expert-regret established in Lemma 6 and the
upper bound on the meta-regret in Lemma 7, both of which we defer to Section C.4. Eq. (51) can be
rearranged into

s∑

t=r

∋E[gt|xt, %T], xt ↔ u△ ↘
ar,s

ϱ
+ ϱG2

s∑

t=r

≃xt ↔ u≃
2 . (52)

The optimal value of ϱ that minimizes the RHS of (52) is

ϱ→ =
√

ar,s

G2 ∑s
t=r ≃xt ↔ u≃2 . (53)

Note that since ar,s ⇓
1
2 , ϱ→

⇓
1

GD
↙

2(s↓r+1)
for all x ↓ ”. The next step is to select a value ϱ

from the set S(s ↔ r + 1) =
{

2↑i

5GD : i ↓
{

0, 1, . . . ,
⌈ 1

2 log2(s ↔ r + 1)
⌉ }}

that best approximates
ϱ→. Two cases arises:

i) If ϱ→
↘

1
5GD , there must exist an ϱ ↓ S(s ↔ r + 1) such that ε→

2 ↘ ϱ ↘ ϱ→. Substituting
this choice of ϱ into (52) gives

s∑

t=r

∋E[gt|xt, %T], xt ↔ u△ ↘
2ar,s

ϱ→ + ϱ→G2
s∑

t=r

≃xt ↔ u≃
2 = 3G

ar,s

s∑

t=r

≃xt ↔ u≃2.

(54)

ii) If ϱ→ > 1
5GD , then the best choice of ϱ ↓ S(s ↔ r + 1) is ϱ = 1

5GD , which leads to

s∑

t=r

∋E[gt|xt, %T], xt ↔ u△ ↘ ar,s · 5GD · 2 = 10GDar,s . (55)

Combining (54)–(55) concludes the proof.

The proof of Lemma 5 above relied on the upper bounds on the expert-regret and meta-regret from
Lemmas 6 and 7. We present and prove these lemmas in the following section.

C.4 Upper bounds on expert-regret and meta-regret

Lemma 6 (Expert-regret). For any GC interval I = [r, s] ↓ I and learning rate ϱ ↓ S(s ↔ r + 1),

Algorithm 1 satisfies for all u ↓ ”̃,

s∑

t=r

E
[
↽ε

t (xε
t,I) ↔ ↽ε

t (u) | xt, xε
t,I , %T

]
↘

1
2 + 1

2 log(s ↔ r + 1) . (56)

30

Proof of Lemma 6. The proof follows standard convergence analysis of projected online gradient
descent for strongly convex objective functions, see e.g., [74, Theorem 1]. For any time step t ↓ I ,
the surrogate loss ↽ε

t associated with the expert with learning rate ϱ and lifetime I = [r, s] serves as
our strongly-convex objective function. By applying the definition of ↽ε

t , we have for all x ↓ ”,

E

≃∈↽ε

t (x)≃2
| xt, %T


= E


≃ϱgt + 2ϱ2G2(x ↔ xt)≃2

| xt, %T



↘ E
[(

≃ϱgt≃ + ≃2ϱ2G2(x ↔ xt)≃
)2

| xt, %T

]
↘ (G⇐)2 , (57)

where we introduced G⇐ = ϱG + 2ϱ2G2D. By the update rule of our projected online gradient
descent with step size µt (line 4 of Algorithm 2), we have for all u ↓ ”̃,

≃xε
t+1,I ↔ u≃

2 =
∥∥#!̃

(
xε

t,I ↔ µt∈↽ε
t (xε

t,I)
)

↔ u
∥∥2

↘
∥∥xε

t,I ↔ µt∈↽ε
t (xε

t,I) ↔ u
∥∥2

= ≃xε
t,I ↔ u≃

2 + µ2
t ≃∈↽ε

t (xε
t,I)≃2

↔ 2µt(xε
t,I ↔ u)↗

∈↽ε
t (xε

t,I) ,

which can be rearranged into

2(xε
t,I ↔ u)↗

∈↽ε
t (xε

t,I) ↘
≃xε

t,I ↔ u≃
2

↔ ≃xε
t+1,I ↔ u≃

2

µt
+ µt≃∈↽ε

t (xε
t,I)≃2 . (58)

Define shorthand ▷ ⇒ 2ϱ2G2 and recall µt = 1/(▷(t ↔ r + 1)), then Eq. (58) implies that

2
s∑

t=r

(xε
t,I ↔ u)↗

∈↽ε
t (xε

t,I) ↔ ▷
s∑

t=r

≃xε
t,I ↔ u≃

2

↘

s∑

t=r

≃xε
t,I ↔ u≃

2
↔ ≃xε

t+1,I ↔ u≃
2

µt
+

s∑

t=r

µt≃∈↽ε
t (xε

t,I)≃2
↔ ▷

s∑

t=r

≃xε
t,I ↔ u≃

2

=
s∑

t=r+1
≃xε

t,I ↔ u≃
2

 1
µt

↔
1

µt↓1
↔ ▷



  
=0

+≃xε
r,I ↔ u≃

2
 1

µr
↔ ▷



  
=0

↔
≃xε

s+1,I ↔ u≃
2

µs  
⇒0

+
s∑

t=r

µt≃∈↽ε
t (xε

t,I)≃2
↘

s∑

t=r

µt≃∈↽ε
t (xε

t,I)≃2 . (59)

Noticing that with any given xt ↓ R
d, ↽ε

t is ▷-strongly-convex, we apply (59) to obtain that for all
u ↓ ”̃,

2
s∑

t=r

E
[
↽ε

t (xε
t,I) ↔ ↽ε

t (u) | xt, xε
t,I , %T

]

↘ E
[
2

s∑

t=r

(xε
t,I ↔ u)↗

∈↽ε
t (xε

t,I) ↔ ▷
s∑

t=r

≃xε
t,I ↔ u≃

2
 {xt, xε

t,I}
s
t=r, %T

]

↘

s∑

t=r

µtE
[
≃∈↽ε

t (xε
t,I)≃2

| xt, xε
t,I , %T

]

(i)
↘ (G⇐)2

s∑

t=r

µt

(ii)
↘

(G⇐)2

▷
(1 + log(s ↔ r + 1))

(iii)
↘ 1 + log(s ↔ r + 1) , (60)

where (i) is a result of (57), (ii) uses the bound
∑n

k=1
1
k ↘ 1 + log n for any n ↓ N

+, and (iii) uses
the fact that given ϱ ↘

1
5GD it holds that

(G⇐)2 =
(
ϱG + 2ϱ2G2D

)2 = ϱ2G2 + 4ϱ3G3D + 4ϱ4G4D2
↘ ϱ2G2 + 4

5 ϱ2G2 + 4
25 ϱ2G2

↘ ▷.

Lemma 7 (Meta-regret). For any GC interval I = [r, s] ↓ I and learning rate ϱ ↓ S(s ↔ r + 1),

Algorithm 1 satisfies

s∑

t=r

E
[
↽ε

t (xt) ↔ ↽ε
t (xε

t,I) | xt, xε
t,I , %T

]
= ↔

s∑

t=r

E
[
↽ε

t (xε
t,I) | xt, xε

t,I , %T

]
↘ 2 log(2s). (61)

31

Proof of Lemma 7. The proof is similar to that of [24, Lemma 6]. By Jensen’s inequality and the
convexity of norms, we have for all x ↓ ”,

| ∋E[gt|xt, %T], xt ↔ x△ | ↘ ≃E[gt|xt, %T]≃≃xt ↔ x≃

↘ E [≃gt≃ | xt, %T] ≃xt ↔ x≃ ↘ GD , (62)

which, given ϱ ↘
1

5GD , implies that

ϱ ∋E[gt|xt, %T], xt ↔ x△ ⇓ ↔ϱGD ⇓ ↔
1
5 . (63)

Using (62)–(63) and applying the inequality ln(1 + z) ⇓ z ↔ z2 for any z ⇓ ↔
2
3 with z =

ϱ ∋E[gt|xt, %T], xt ↔ x△, we obtain for all x ↓ ”,
exp (↔E[↽ε

t (x) | xt, %T]) = exp
(
ϱ ∋E[gt|xt, %T], xt ↔ x△ ↔ ϱ2G2

≃xt ↔ x≃
2)

↘ exp
(

ϱ ∋E[gt|xt, %T], xt ↔ x△ ↔ ϱ2
∋E[gt|xt, %T], xt ↔ x△

2
)

↘ 1 + ϱ ∋E[gt|xt, %T], xt ↔ x△ . (64)
Define shorthand F

ε
t,I = {xt, xε

t,I , %T }, and H
ε
t,I = ℜϱ↑[t]F

ε
ϱ,I for t ↓ [T]. Using (64), we can

write for every t ↓ [T],
∑

E(I,ε)↑At

exp
(

↔E[Lε
t,I | H

ε
t,I]

)

=
∑

E(I,ε)↑At

exp
(

↔E[Lε
t↓1,I | H

ε
t↓1,I]

)
exp

(
↔E[↽ε

t (xε
t,I) | F

ε
t,I]

)

↘

∑

E(I,ε)↑At

exp
(

↔E[Lε
t↓1,I | H

ε
t↓1,I]

) [
1 + ϱ

〈
E[gt|xt, %T], xt ↔ xε

t,I

〉]
. (65)

The second term on the RHS can be bounded as follows:∑

E(I,ε)↑At

exp(↔E[Lε
t↓1,I | H

ε
t↓1,I])

[
ϱ

〈
E[gt|xt, %T], xt ↔ xε

t,I

〉]

=
〈

E[gt|xt, %T],
∑

E(I,ε)↑At

ϱ exp(↔E[Lε
t↓1,I | H

ε
t↓1,I])(xt ↔ xε

t,I)
〉

(i)
↘

〈
E[gt|xt, %T],

∑

E(I,ε)↑At

ϱE
[
exp(↔Lε

t↓1,I) | H
ε
t↓1,I

]
(xt ↔ xε

t,I)
〉

=
〈

E[gt|xt, %T], E
[∑

E(I,ε)↑At

ϱ exp(↔Lε
t↓1,I)(xt ↔ xε

t,I)

  
=0

Hε
t↓1,I

]〉
(ii)= 0 , (66)

where (i) applies Jensen’s inequality, and (ii) is due to the update rule of xt in (27). Combining
(65)–(66) yields

∑

E(I,ε)↑At

exp
(

↔E[Lε
t,I | H

ε
t,I]

)
↘

∑

E(I,ε)↑At

exp
(

↔E[Lε
t↓1,I | H

ε
t↓1,I]

)
. (67)

By summing both sides of (67) over t = 1, . . . , s and rewriting, we obtain
∑

E(I,ε)↑As

exp
(

↔E[Lε
s,I | H

ε
s,I]

)
+

s↓1∑

t=1

∑

E(I,ε)↑At\At+1

exp
(

↔E[Lε
t,I | H

ε
t,I]

)
+

s↓1∑

t=1

∑

E(I,ε)↑At⇑At+1

exp
(

↔E[Lε
t,I | H

ε
t,I]

)

↘

∑

E(I,ε)↑A1

exp
(

↔ E[Lε
0,I]

)
+

s∑

t=2

∑

E(I,ε)↑At\At↑1

exp
(

↔E[Lε
t↓1,I | H

ε
t↓1,I]

)
+

s∑

t=2

∑

E(I,ε)↑At⇑At↑1

exp
(

↔E[Lε
t↓1,I | H

ε
t↓1,I]

)
. (68)

32

Canceling the equivalent last terms on both sides of (68) and noting that Lε
ϱ,I = 0 for ↼ = min{t :

t ↓ I} ↔ 1 by construction (see line 4 of Algorithm 1), we obtain for s ⇓ 1,

∑

E(I,ε)↑As

exp
(

↔E[Lε
s,I | H

ε
s,I]

)
+

s↓1∑

t=1

[∑

E(I,ε)↑At\At+1

exp
(

↔E[Lε
t,I | H

ε
t,I]

)]

↘

∑

E(I,ε)↑A1

exp
(

E[Lε
0,I

=0

]
)

+
s∑

t=2

[∑

E(I,ε)↑At\At↑1

exp
(

↔ E[Lε
t↓1,I  
=0

| H
ε
t↓1,I]

)]

=
∑

E(I,ε)↑A1

exp(0) +
s∑

t=2

∑

E(I,ε)↑At\At↑1

exp(0)

= |A1| +
s∑

t=2
|At \ At↓1| ↘

s∑

t=1

At



(i)
↘

s∑

t=1
(1 + 7log2 t∀) ·

(
1 +

⌈ 1
2 log2 t

⌉)
↘

s∑

t=1
(1 + log2 t)2 (ii)

↘ 4s2 , (69)

where (i) applies (26), and (ii) is due to 1 + log2 t ↘ 2
↙

t ∞t ⇓ 1. Since exp(x) > 0 for x ↓ R,
Eq. (69) implies that for any GC interval I = [r, s] ↓ I and learning rate ϱ ↓ S(|I|),

exp
(

↔E[Lε
s,I | H

ε
s,I]

)
= exp

(
↔

s∑

t=r

E[↽ε
t (xε

t,I) | F
ε
t,I]

)
↘ 4s2. (70)

Taking the logarithm of both sides completes the proof.

C.5 Proof of Corollary 1

We first restate Corollary 1 and then provide the proof. Recall that for clarity we drop the ▽·̸ operators
from the expressions for B and assume without loss of generality the expressions take integer values.
Corollary 1. Consider any horizon T ↓ N

+
and assume that, for all t ↓ [T], the loss ft is convex, or

strongly-convex with arg minx↑Rd ft(x) ↓ ”. We refer to the second scenario as the strongly-convex

(SC) case. Then, Algorithm 1 tuned with parameter B satisfies the following regret guarantees:

Switching. B = T
S =⇔ Rswi(T, S) ↭

↙
dS

1
4 T

3
4 + d2S

d
↙

ST + d2S (SC)

Dynamic.


B = T

S ⇐
(↘

dT
”

) 4
5

⇔ Rdyn(T, !, S) ↭ Rswi(T, S) ⇑ (d 2
5 ! 1

5 T
4
5 + d

8
5 ! 4

5 T
1
5)

B = T
S ⇐

(
dT
”

) 2
3

⇔ Rdyn(T, !, S) ↭ Rswi(T, S) ⇑ (d 2
3 ! 1

3 T
2
3 + d

4
3 ! 2

3 T
1
3) (SC)

Path-length.


B =

(
r

↘
dT

P

) 4
5

⇔ Rpath(T, P) ↭ r↓ 1
5 d

2
5 P

1
5 T

4
5 + r↓ 4

5 d
8
5 P

4
5 T

1
5

B =
(

rdT
P

) 2
3

⇔ Rpath(T, P) ↭ r↓ 1
3 d

2
3 P

1
3 T

2
3 + r↓ 2

3 d
4
3 P

2
3 T

1
3 (SC) .

Proof of Corollary 1. We begin by applying the first result in Proposition 1 with the adaptive regret
guarantees in Theorem 1 to obtain switching regret guarantees. For known S, Algorithm 1 with
parameter B = T

S achieves in the general convex case,

Rswi(T, S) ↘ 2C
↙

dS
1
4 T

3
4 + 2(C1 + C2

d + 4
d2)d2S , (71)

and in the case where ft is ⇀-strongly-convex and arg minx↑Rd ft(x) ↓ ” for all t ↓ [T],

Rswi(T, S) ↘ 2C ⇐d
↙

ST + 2(C ⇐
1 + C↓

2
d + 4

d2)d2S , (72)

where C, C1, C2, C ⇐, C ⇐
1, C ⇐

2 > 0 are the terms defined in (35)–(37) and (42)–(44) which are polylog-
arithmic in T and B. When S and ! are both known, we use (71)–(72) and apply the second result
in Proposition 1 to bound Rdyn(T, !, S). Specifically, for general convex losses, Algorithm 1 with
B = T

S ⇐
(↘

dT
”

) 4
5 yields

Rdyn(T, !, S) ↘ Rswi(T, S) ⇑ F dyn(T, !) ,

33

where F dyn(T, !) := (2C + 1)d 2
5 ! 1

5 T
4
5 + 2(C1 + C2

d + 4
d2)d 8

5 ! 4
5 T

1
5 . For strongly-convex losses

with minimizers inside ”, Algorithm 1 with B = T
S ⇐

(
dT
”

) 2
3 gives

Rdyn(T, !, S) ↘ Rswi(T, S) ⇑ F dyn
sc (T, !) .

where F dyn
sc (T, !) := (2C ⇐ + 1)d 2

3 ! 1
3 T

2
3 + 2(C ⇐

1 + C↓
2

d + 4
d2)d 4

3 ! 2
3 T

1
3 . Finally, for known P

we use (71)–(72) and apply the third result in Proposition 1 to bound Rpath(T, P). For the general
convex case, taking B =

(
r

↘
dT

P

) 4
5 gives

Rpath(T, P) ↘ (2C + 1)r↓ 1
5 d

2
5 P

1
5 T

4
5 + 2(C1 + C2

d + 4
d2)r↓ 4

5 d
8
5 P

4
5 T

1
5 .

For strongly-convex losses with minimizers inside ”, taking B =
(

rdT
P

) 2
3 yields

Rpath(T, P) ↘ (2C ⇐ + 1)r↓ 1
3 d

2
3 P

1
3 T

2
3 + 2(C ⇐

1 + C↓
2

d + 4
d2)r↓ 2

3 d
4
3 P

2
3 T

1
3 .

C.6 Parameter-free upper bounds

Corollary 1 presents the optimal choice of parameter B for TEWA-SE when S, ! and P are known.
When the non-stationarity measures are unknown, the optimal B cannot be directly computed, and
we therefore employ the Bandit-over-Bandit (BoB) framework from [27] to adaptively select B from
a prespecified set B = {2i : i = 0, 1, . . . , 7log2 T ∀}. BoB has been used in [66] in a similar fashion
to obtain parameter-free algorithms. Specifically, BoB divides the time horizon into E = ▽T/L̸

epochs each with length L, denoted by (Ie)E
e=1 (where the last epoch may be shorter than L). In

the first epoch, it runs TEWA-SE with B = B1 which is randomly selected from B. For subsequent
epochs, it uses the cumulative empirical loss on the current epoch e ↔ 1 to select Be ↓ B for the next
epoch via EXP3 [59]. That is, BoB computes

pe,i = (1 ↔ γ) se,i∑
i↓↑[|B|] se,i↓

+ γ

|B|
∞i ↓ [|B|], with γ = 1 ⇑

√
|B| ln(|B|)
(e ↔ 1)E , (73)

where e denotes the base of the exponential function, and then samples ie = i with probability pe,i

yielding Be = 2ie↓1.5 For i ↓ [|B|], initialized with s0,i = 1, the quantity se,i for e ↓ N
+ is updated

by computing

se+1,i = se,i exp
(γ

|B|
re,i

)
, (74)

where with MT = 1 + 2ε


log(T + 1), the importance-weighted reward re,i takes the form

re,i =
(

1
2 + 1

2LMT

∑
t↑Ie

(1 ↔ yt)
)

/pe,i if i = ie

0 otherwise .
(75)

Note that conditioned on the event %T =
{

|ωt| ↘ 2ε


log(T + 1), ∞t ↓ [T]
}

defined above (10),
the absolute total reward in each epoch is bounded by Q := maxe↑[E]

 ∑
t↑Ie

(1 ↔ yt)
 ↘ LMT ,

which ensures the rescaled reward 1
2 + 1

2LMT

∑
t↑Ie

(1 ↔ yt) in (75) remains bounded within [0, 1].
The pseudo-code for TEWA-SE equipped with BoB is provided in Algorithm 4, with theoretical
guarantees detailed in Corollary 3.
Corollary 3 (TEWA-SE with BoB). Consider any horizon T ↓ N

+
and assume that, for all

t ↓ [T], the loss ft is convex, or strongly-convex with arg minx↑Rd ft(x) ↓ ” (referred to as the

strongly-convex (SC) case).

Then, for the general convex case, Algorithm 4 with epoch size L = (dT) 2
3 attains all the regret

bounds from Corollary 1 plus an additional term of d
1
3 T

5
6 + d

4
3 T

1
3 . For the SC case, Algorithm 4

with epoch size L = d
↙

T satisfies all the regret bounds from Corollary 1 plus an additional term of

d
1
2 T

3
4 + d

↙
T . Both results omitted polylogarithmic factors.

5We adopt clipping (by ω) following [27, 59], though ω = 0 suffices as discussed in [77] and [9, Section
11.6].

34

Algorithm 4 TEWA equipped with Bandit-over-Bandit (BoB)
Input: d, T, L, E = ▽T/L̸ , (Ie)E

e=1, B = {2i : i = 0, 1, . . . , 7log2 T ∀}, and γ ↓ (0, 1) as defined
in (73)
Initialize: s0,i = 1 ∞i ↓ [|B|]

1: for e = 1, 2, . . . , E do

2: Compute pe,i according to (73) ∞i ↓ [|B|]
3: Sample ie = i with probability pe,i , and select Be = 2ie↓1

↓ B

4: for t ↓ Ie do

5: Run TEWA-SE with B = Be to select action zt and observe losses yt = ft(zt) + ωt

6: end for

7: Update se+1,i according to (74) ∞i ↓ [|B|]
8: end for

Proof of Corollary 3. For brevity, we suppress terms that are polylogarithmic in T using ↭ in this
proof. For all B†

↓ B, we have

Rdyn(T) =
T∑

t=1
E

[
ft(zt) ↔ min

z↑!
ft(z)

]

=
T∑

t=1
E

[
ft(zt) ↔ ft

(
zt(B†)

)]
+

T∑

t=1
E

[
ft

(
zt(B†)

)
↔ min

z↑!
ft(z)

]

=
E∑

e=1

∑

t↑Ie

E
[
ft (zt(Be)) ↔ ft

(
zt(B†)

)]

  
term I

+
E∑

e=1

∑

t↑Ie

E
[
ft

(
zt(B†)

)
↔ min

z↑!
ft(z)

]

  
term II

,

(76)

where zt(Be) represents the actual action taken by TEWA-SE in round t of epoch e, and zt(B†)
denotes the hypothetical action that TEWA-SE would have chosen had its B parameter been set to B†.
Term I in (76) can be bounded by applying the classical analysis of EXP3 from [59, Corollary 3.2],
combined with (28), as follows

∞B†
↓ B : term I ↘ 4

↙
e ↔ 1


E|B| log |B| · E [Q]

↭
↙

E · (P(%T)E [Q | %T] + P(%c
T)E [Q | %c

T])
↭


T/L · (LMT + 2

T · L) ↭
↙

TL . (77)

To bound term II, we introduce shorthand F ada(B, T) to refer to the upper bound on Rada(B, T)
in Theorem 1, and F swi(T, S), F dyn(T, !, S) and F path(T, P) to refer to the upper bounds on
Rswi(T, S), Rdyn(T, !, S) and Rpath(T, P) in Corollary 1 for known S, ! and P . We also use
Se = 1+

∑
t↑Ie

1(ft ↗= ft↓1). By choosing B† = 2i†
in the analysis with i† =

⌊
log2

T
S

⌋
⇑7log2 L∀,

term II can be bounded in terms of the number of switches S by

term II ↘

E∑

e=1

(⌈
L
B†

⌉
+ Se

)
Rada(B†, L) ↘

(
T
B† + S + E

)
Rada(B†, L)

↘ F swi(T, S) + T
L F ada(L, L) . (78)

Combining (77) and (78), we obtain

Rswi(T, S) ↭ F swi(T, S) +
[

T
L F ada(L, L) +

↙

TL
]

↭ F swi(T, S) +


d
1
3 T

5
6 + d

4
3 T

1
3

d
1
2 T

3
4 + d

↙
T (SC) ,

(79)

where we used L = (dT) 2
3 for the general convex case, and L = d

↙
T for the strongly-convex case.

Following similar steps, by choosing B† = 2i†
in the analysis with i† = (

⌊
log2

T
S

⌋
⇐ 7log2(B”)∀) ⇑

35

7log2 L∀ where B” =
(↘

dT
”

) 4
5 for the general convex case or B” =

(
dT
”

) 2
3 for the strongly-convex

case, we obtain

Rdyn(T, !, S) ↭ F dyn(T, !, S) +


d
1
3 T

5
6 + d

4
3 T

1
3

d
1
2 T

3
4 + d

↙
T (SC) .

(80)

The bound on Rpath(T, P) can be established analogously.

D Proofs of lower bounds

We call ⇁ = {zt}
⇓
t=1 a randomized procedure if zt = &t({zk}

t↓1
k=1, {yk}

t↓1
k=1) where &t are Borel

functions, and z1 ↓ R
d is deterministic. We emphasize that, throughout this section, we assume

the noise variables {ωt}
T
t=1 are independent with cumulative distribution function F satisfying the

condition
∫

log (dF (u) / dF (u + v)) dF (u) ↘ I0v2, |v| < v0, (81)

for some 0 < I0 < ↖, 0 < v0 ↘ ↖. This condition holds, for instance, if F has a sufficiently
smooth density with finite Fisher information. In the special case where F is Gaussian, the inequality
(81) holds with v0 = ↖. Note that Gaussian noise also satisfies our sub-Gaussian noise assumption
in Section 1, which is used in the proof of the upper bounds.

We first restate and prove Theorem 2, which establishes a lower bound on Rdyn(T, !, S), and then
present and prove Theorem 4, which establishes a lower bound on Rpath(T, P).
Theorem 2. Let ” = B

d
. For ⇀ > 0 denote by Fϑ the class of ⇀-strongly convex and smooth

functions. Let ⇁ = {zt}
T
t=1 be any randomized algorithm (see Appendix D for a definition). Then

there exists T0 > 0 such that for all T ⇓ T0 it holds that

sup
f1,...,fT ↑Fω

Rdyn(T, !, S) ⇓ c1 ·

(
d
↙

ST ⇑ d
2
3 ! 1

3 T
2
3

)
, (16)

where c1 > 0 is a constant independent of d, T , S and !.

Proof of Theorem 2. Let ϱ0 : R → R be an infinitely many times differentiable function that satisfies

ϱ0(x)






= 1 if |x| ↘ 1/4 ,
↓ (0, 1) if 1/4 < |x| < 1 ,
= 0 if |x| ⇓ 1 .

Denote by $ = {↔1, 1}
d the set of binary sequences of length d, and let ϱ(x) =

∫ x
↓⇓ ϱ0(u) du.

Consider the set of functions fω : R
d

→ R with ε = (01, . . . , 0d) ↓ {↔1, 1}
d such that:

fω(x) = ⇀ ≃x≃
2 + 1h2

(
d∑

i=1
0iϱ

(xi

h

))
, x = (x1, . . . , xd), (82)

where h = min
(

d↓ 1
2 ,

(
T
S

)↓ 1
4 , (dT

”)↓ 1
6

)
, and 1 > 0 is to be assigned later. Let L⇐ =

maxx↑R |ϱ⇐⇐ (x) |. By [78, Lemma 10] we have that if 1 ↘ min (1/2ϱ(1), ⇀/L⇐) then fω ↓ Fϑ.
Moreover, if 1 ↘ ⇀/2, the equation ∈fω(x) = 0 has the solution

x→(ε) = (x→
1(ε), . . . , x→

d(ε)) , with x→
i (ε) = ↔

h10i

2⇀
for 1 ↘ i ↘ d . (83)

This is the unique minimizer of fω and belongs to x→(ε) ↓ ” = B
d because

≃x→(ε)≃2
↘

h212d

4⇀2 ↘
1
16 .

We consider the following adversarial protocol. At the beginning of the game, the adversary selects
Nc = min(S, (T!2/d2) 1

3) points from $, sampled uniformly at random with replacement. Here

36

without loss of generality we assumed that (T!2) 1
3 is a positive integer. Denote these points by

{εk}
Nc
k=1, and then for each k = 1, 2, . . . , Nc, let

f(k↓1)T/Nc+1 = · · · = fkT/Nc
= fωk .

For any ε, ε⇐
↓ $ let 2(ε, ε⇐) =

∑d
i=1 1 (0i ↗= 0⇐

i) be the Hamming distance between ε and ε⇐,
with ε = (01, . . . , 0d) and ε⇐ = (0⇐

1, . . . , 0⇐
d). By construction, Nc ↘ S and

Nc∑

k=2
max
x↑!

|fωk↑1(x) ↔ fωk (x)| ↘ 21h2ϱ(1)
Nc∑

k=2
2(εk↓1, εk) ↘ ! .

For any fixed ε1, . . . , εNc ↓ $, and 1 ↘ t ↘ T , denote ’ = [ε1 | . . . | εNc] as the matrix whose
columns are the εk’s. Denote by P#,t the probability measure corresponding to the joint distribution
of {zk, yk}

t
k=1 where yk = fk(zk) + ωk with independent identically distributed ωk’s such that (81)

holds and zk’s are chosen by the algorithm ⇁. We have

dP#,t (z1:t, y1:t) = dF (y1 ↔ f1 (z1))
t∏

ϱ=2
dF (yϱ ↔ fϱ (&ϱ (z1:ϱ↓1, y1:ϱ↓1)))

= dF (y1 ↔ fω1 (z1))
t∏

ϱ=2
dF

(
yϱ ↔ fωkϑ

(&ϱ (z1:ϱ↓1, y1:ϱ↓1))
)

, (84)

where kϱ = 7(↼ ↔ 1)Nc/T ∀ + 1. (We omit explicit mention of the dependence of P#,t and &ϱ on
z2, . . . , zϱ↓1, since zϱ for ↼ ⇓ 2 is a Borel function of z1, y1, . . . , zϱ↓1, yϱ↓1.) Let E#,t denote the
expectation w.r.t. P#,t.

Note that by ⇀-strong convexity of fω and the fact that x→(ε) ↓ arg minx↑Rd fω(x) from (83), we
have

T∑

t=1
E#,t

[
fωkt

(zt) ↔ min
x↑!

fωkt
(x)

]
⇓

⇀

2

T∑

t=1
E#,t

[
≃zt ↔ x→(εkt)≃

2
]

. (85)

Define the nearest-neighbour estimator

ε̂t ↓ arg min
ω↑$

≃zt ↔ x→(ε)≃ .

Using this combined with the triangle inequality, we have ≃x→(ε̂t) ↔ x→(εkt)≃ ↘ ≃zt ↔ x→(ε̂t)≃ +
≃zt ↔ x→(εkt)≃ ↘ 2 ≃zt ↔ x→(εkt)≃. Together with (83) this implies that

E#,t

[
≃zt ↔ x→(εkt)≃

2
]

⇓
1
4E#,t

[
≃x→(ε̂t) ↔ x→(εkt)≃

2
]

= h212

4⇀2 E#,t [2(ε̂t, εkt)] .

Summing over 1, . . . , T , then taking the maximum over ’ = [ε1| . . . |εNc] and then the minimum
over all estimators ε̂1, . . . , ε̂T with values in $, we get

max
#↑$Nc

T∑

t=1
E#,t

[
≃zt ↔ x→(εkt)≃

2
]

⇓
h212

4⇀2 min
ω̂1,...,ω̂T ↑$

max
#↑$Nc

T∑

t=1

d∑

i=1
E#,t [1 (0̂t,i ↗= 0kt,i)]

  
term I

.

(86)

For term I, lower bounding the maximum with the average we can write

term I ⇓ 2↓dNc min
ω̂1,...,ω̂T ↑$

T∑

t=1

∑

#↑$Nc

d∑

i=1
E#,t [1 (0̂t,i ↗= 0kt,i)]

⇓ 2↓dNc

T∑

t=1

∑

#↑$Nc

d∑

i=1
min

↼̂t,i↑{↓1,1}
E#,t [1 (0̂t,i ↗= 0kt,i)] .

37

Next, for each i = 1, . . . , d, define ’kt
i = {[ε1| . . . |εNc] : ε1, . . . , εNc ↓ $, 0kt,i = 1}. Given

any ’ ↓ ’kt
i , let ’̄ = [ε̄1| . . . |ε̄Nc] such that 0̄k,j = 0k,j for any k ↗= kt, and let 0̄kt,i = ↔1 and

0̄kt,j = 0kt,j for j ↗= i. Hence,

term I ⇓ 2↓dNc

T∑

t=1

∑

#↑$Nc

d∑

i=1
min

↼̂t,i↑{↓1,1}

(
E#,t [1 (0̂t,i ↗= 1)] + E#̄,t [1 (0̂t,i ↗= ↔1)]

)

⇓
1
2

T∑

t=1

d∑

i=1
min

#↑#kt
i

min
↼̂t,i↑{↓1,1}

(
E#,t [1 (0̂t,i ↗= 1)] + E#̄,t [1 (0̂t,i ↗= ↔1)]

)
.

Thus, we can write

KL
(
P#,t||P#̄,t

)
=

∫
log

(
dP#,t

dP#̄,t

)
dP#,t

=
∫ [

log
 dF (y1 ↔ fω1(z1))

dF (y1 ↔ fω̄1(z1))


+

+
t∑

ϱ=2
log

 dF (yϱ ↔ fωkϑ
(&ϱ (z1:ϱ↓1, y1:ϱ↓1)))

dF (yϱ ↔ fω̄kϑ
(&ϱ (z1:ϱ↓1, y1:ϱ↓1)))

]

dF (y1 ↔ fω1 (z1))
t∏

ϱ=2
dF

(
yϱ ↔ fωkϑ

(&ϱ (z1:ϱ↓1, y1:ϱ↓1))
)

↘ I0

t∑

ϱ=1
max
x↑!

|fωkϑ
(x) ↔ fω̄kϑ

(x)|2 ↘ 4TN↓1
c I012h4ϱ2(1).

Since h ↘ min(
(

S
T

) 1
4 , (”

dT) 1
6), and by choosing 1 ↘


log(2)/(4I0ϱ2(1)), we have

KL(P#,t||P#̄,t) ↘ log(2). Hence, Theorem 2.12 of [79] gives

term I ⇓
Td

4 exp(↔ log(2)) = Td

8 .

Substituting this into (86) and our overall bound (85) yields

max
#↑$Nc

T∑

t=1
E#,t

[
fωkt

(zt) ↔ min
x↑!

fωkt
(x)

]
⇓

⇀

2 ·
h212

4⇀2 ·
Td

8 = h212Td

64⇀
.

Finally, substituting the definition of h and noting that 1 is independent of d, T, S and ! completes
the proof.

Theorem 4. Let ” = B
d
. For ⇀ > 0 denote by Fϑ the class of ⇀-strongly convex and smooth

functions. Let ⇁ = {zt}
T
t=1 be any randomized algorithm. Then there exists T0 > 0 such that for all

T ⇓ T0 it holds that

sup
f1,...,fT ↑Fω

Rpath(T, P) ⇓ c2 · (d2P) 2
5 T

3
5 ,

where c2 > 0 is a constant indepedent of d, T and P .

Proof of Theorem 4. The proof uses the same notation and follows the same steps as in the proof
of Theorem 2, but with different choices for the parameters h and Nc. Define the set of functions
fω : R

d
→ R with ε ↓ {↔1, 1}

d as they are defined in (82), and choose h = min(d↓ 1
2 , P

Nc

↘
d
) and

Nc = 7P
4
5 T

1
5 d↓ 2

5 ∀. Then we have that

Nc∑

k=2
≃x→(εk↓1) ↔ x→(εk)≃ = h1

⇀

Nc∑

k=2


2(εk↓1, εk) ↘

h1

⇀

↙

dNc ↘ P , (87)

38

for any 1 ↘
ϑ
2 . Following similar steps as in the proof of Theorem 2 for large enough T (when

h = P
Nc

↘
d

) we get

max
#↑$Nc

T∑

t=1
E#,t

[
fωkt

(zt) ↔ min
x↑!

fωkt
(x)

]
⇓

h212Td

64⇀
⇓ c2(d2P) 2

5 T
3
5 ,

where c2 > 0 is independent of d, T and P .

E Proofs for clipped Exploration by Optimization

We restate and prove Theorem 3 which establishes an adaptive regret guarantee for cExO. In this
section, we use ∋p, ft△ = Ez≃p[ft(z)] where p belongs to a probability simplex.

Theorem 3. For T ↓ N
+

and B ↓ [T], Algorithm 3 calibrated with ε = 1
T , γ = 1

T |C| , ϱ =


log(γ↓1)/(d4 log(dT)B) and log |C| = O(d log(dT 2)) satisfies

Rada(B, T) ↭ d
5
2
↙

B . (19)

Proof of Theorem 3. Consider an arbitrary interval [a, b] of length b ↔ a + 1 ↘ B, and notice that for
any qϖ

↓ !̃,

max
u↑!

b∑

t=a

E[ft(zt) ↔ ft(u)] =
b∑

t=a

∋pt ↔ qϖ, ft△

  
term I

+
b∑

t=a

Ez≃qε [ft(z)] ↔ min
u↑!

b∑

t=a

ft(u)
  

term II

. (88)

In what follows, we choose a suitable qϖ and bound term I and term II separately.

Recall that the covering set C is assumed in Section 3 to have a discretization error of ε, implying
that there exists a uC ↓ C such that

∑b
t=a ft(uC) ↔ minu↑!

∑b
t=a ft(u) ↘ εB. Define qϖ

↓ !̃ to
be the distribution with probability mass given by

qϖ(z) =


1 ↔ γ(|C| ↔ 1) if z = uC
γ otherwise .

(89)

This construction ensures that

term II ↘ (ε + 2γ|C|)B . (90)

To bound term I, we first apply Lemma 8 to the sequence of Online Mirror Descent (OMD) updates
qt ↓ !̃ and the sequence of loss estimates st to obtain

b∑

t=a

∋qt ↔ qϖ, st△ ↘
1
ϱ

(
KL(qϖ

||qa) +
b∑

t=a

Sqt
(ϱst)

)
, (91)

where by the definition of qϖ(·) in (89), we have

KL(qϖ
||qa) =

∑

z↑C
qϖ(z) log


qϖ(z)
qa(z)



= (1 ↔ γ(|C| ↔ 1)) log
1 ↔ γ(|C| ↔ 1)

qa(uC)


+

∑

z↑C\{uC}

γ log


γ

qa(z)



↘ log(γ↓1) . (92)

39

Then applying (91) and (92), we have

term I =
b∑

t=a

[∋qt ↔ qϖ, st△ + ∋pt ↔ qϖ, ft△ + ∋qϖ
↔ qt, st△]

↘
log(γ↓1)

ϱ
+

b∑

t=a

[
∋pt ↔ qϖ, ft△ + ∋qϖ

↔ qt, st△ + 1
ϱ

Sqt
(ϱst)

]

(i)
↘

log(γ↓1)
ϱ

+ B



 inf
p↑”(C),

E↑E

%ε(qt, p, E) + ϱd





(ii)
↘

log(γ↓1)
ϱ

+ B
(
ϱϖd4 log(dT) + ϱd

)
, (93)

where (i) follows from the update rule (18) and the precision level assumed for solving the mini-
mization problem (18) (see line 3 of Algorithm 3), and (ii) uses [1, Theorems 8.19 and 8.21] which
establish that there exists a universal constant ϖ such that

sup
q↑”̃

inf
p↑”(C),

E↑E

1
ϱ

%ε(q, p, E) ↘ ϖd4 log(dT) .

Finally, combining (90) and (93) we obtain

max
u↑!

b∑

t=a

E[ft(zt) ↔ ft(u)] =
b∑

t=a

∋pt ↔ qϖ, ft△ +
b∑

t=a

Ez≃qε [ft(z)] ↔ min
u↑!

b∑

t=a

ft(u)

↘ (ε + 2γ|C|)B + log(γ↓1)
ϱ

+ B
(
ϱϖd4 log(dT) + ϱd

)

↭ B
T

+


Bd4 log(dT) log(T |C|) ↭ d
5
2
↙

B ,

where (i) applies ε = 1
T , γ = 1

T |C| and ϱ =


log(γ↓1)/(d4 log(dT)B), and (ii) is by selecting
the covering set C such that log |C| ↘ d log(1 + 16dT 2) (existence given by [1, Definition 8.12 and
Exercise 8.13]).

The proof of Theorem 3 above relied on Lemma 8, which we present and prove below.
Lemma 8. Consider Online Mirror Descent (OMD) with KL divergence regularization and fixed

learning rate ϱ > 0 applied to a sequence of loss estimates st ↓ R
n

for t ↓ N
+

. When run over a

convex and complete domain !̃ ↑ !n↓1
, the algorithm produces a sequence of updates qt ↓ !̃ for

t ↓ N
+

. For any comparator in qϖ
↓ !̃ and time interval {t ↓ N

+ : a ↘ t ↘ b}, it holds that

b∑

t=a

∋qt ↔ qϖ, st△ ↘
1
ϱ

(
KL(qϖ

||qa) +
b∑

t=a

Sqt
(ϱst)

)
,

where Sq(ϱs) = maxq↓↑”(C) ∋q ↔ q⇐, ϱs△ ↔ KL(q⇐
||q).

Proof of Lemma 8. The proof is standard and included for completeness. Let F denote the neg-
entropy F (q) =

∑n
i=1 qi log(qi) for q ↓ !n↓1, and note that

KL(p||q) = F (p) ↔ ∋p ↔ q, ∈F (q)△ ↔ F (q) ∞ p, q ↓ !n↓1 . (94)

Consider the update rule of the OMD defined in the lemma:

qt+1 = arg min
q↑”̃

∋q, ϱst△ + KL(q||qt) = arg min
q↑”̃

∋q, ϱst△ + F (q) ↔ q∈F (qt) ,

which implies by the first order optimality condition [9, Proposition 26.14] that, for any qϖ
↓ !̃ and

time t,
〈
qϖ

↔ qt+1, ϱst + ∈F (qt+1) ↔ ∈F (qt)
〉

⇓ 0 . (95)

40

Rearranging (95) and applying (94) we obtain
〈
qt+1 ↔ qϖ, st

〉
↘

1
ϱ

〈
qϖ

↔ qt+1, ∈F (qt+1) ↔ ∈F (qt)
〉

= 1
ϱ

(
KL(qϖ

||qt) ↔ KL(qϖ
||qt+1) ↔ KL(qt+1||qt)

)

↘ ↔
〈
qt ↔ qt+1, st

〉
+ 1

ϱ
Sqt

(ϱst) + 1
ϱ

(
KL(qϖ

||qt) ↔ KL(qϖ
||qt+1)

)
. (96)

Rearranging (96) and summing over t ↓ [a, b] yields

b∑

t=a

∋qt ↔ qϖ, st△ =
b∑

t=a

(〈
qt+1 ↔ qϖ, st

〉
+

〈
qt ↔ qt+1, st

〉)

↘
1
ϱ

b∑

t=a

(
KL(qϖ

||qt) ↔ KL(qϖ
||qt+1) + Sqt

(ϱst)
)

= 1
ϱ

(
KL(qϖ

||qa) ↔ KL(qϖ
||qb+1) +

b∑

t=a

Sqt
(ϱst)

)
,

which combined with non-negativity of the KL divergence completes the proof.

Finally, we apply Theorem 3 to prove the bounds on Rswi(T, S), Rdyn(T, !, S) and Rpath(T, P) in
Corollary 2, as well as the parameter-free guarantees in Corollary 4.
Corollary 2. For any horizon T ↓ N

+
, Algorithm 3 calibrated as in Theorem 3 and tuned with

interval size B (which determines ϱ) satisfies the following regret guarantees:

Switching: B = T
S =⇔ Rswi(T, S) ↭ d

5
2
↙

ST ,

Dynamic: B = T
S ⇐ (d 5

2 T/!) 2
3 =⇔ Rdyn(T, !, S) ↭ Rswi(T, S) ⇑ d

5
3 ! 1

3 T
2
3 ,

Path-length: B = (rd
5
2 T/P) 2

3 =⇔ Rpath(T, P) ↭ r↓ 1
3 d

5
3 P

1
3 T

2
3 .

Proof of Corollary 2. We prove these results by applying the adaptive regret guarantee from Theo-
rem 3 and the conversions results from Proposition 1, similarly to the proof of Corollary 1.

Corollary 4 (cExO with BoB). Let T ↓ N
+

. By partitioning the time horizon [T] into epochs

of length L = d
5
2
↙

T , and employing Bandit-over-Bandit to select cExO’s parameter B for each

epoch from the set B = {2i : i = 0, 1, . . . , 7log2 T ∀}, this algorithm achieves all regret bounds in

Corollary 2 with an additional term of d
5
4 T

3
4 (up to polylogarithmic factors).

Proof of Corollary 4. The proof is similar to that of Corollary 3 and is therefore omitted.

41

	Introduction
	Main contributions
	Related work
	Conversions between different regret definitions

	The TEWA-SE algorithm
	Lower bound for strongly-convex loss functions
	Parameter-free guarantees

	Clipped Exploration by Optimization
	Conclusion
	Definitions
	Proof of Proposition 1
	Details and proofs for TEWA-SE
	Additional details on TEWA-SE
	Proof of Theorem 1
	Upper bounds on linearized regret
	Upper bounds on expert-regret and meta-regret
	Proof of Corollary 1
	Parameter-free upper bounds

	Proofs of lower bounds
	Proofs for clipped Exploration by Optimization

