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Abstract

Recent advances in reinforcement-learning research have demonstrated impressive results in1

building algorithms that can out-perform humans in complex tasks. Nevertheless, creating2

reinforcement-learning systems that can build abstractions of their experience to accelerate3

learning in new contexts still remains an active area of research. Previous work showed that4

reward-predictive state abstractions fulfill this goal, but have only be applied to tabular5

settings. Here, we provide a clustering algorithm that enables the application of such state6

abstractions to deep learning settings, providing compressed representations of an agent’s7

inputs that preserve the ability to predict sequences of reward. A convergence theorem and8

simulations show that the resulting reward-predictive deep network maximally compresses9

the agent’s inputs, significantly speeding up learning in high dimensional visual control10

tasks. Furthermore, we present different generalization experiments and analyze under which11

conditions a pre-trained reward-predictive representation network can be re-used without12

re-training to accelerate learning—a form of systematic out-of-distribution transfer.13

1 Introduction14

Recent advances in reinforcement learning (RL) (Sutton & Barto, 2018) have demonstrated impressive15

results, outperforming humans on a range of different tasks (Silver et al., 2016; 2017b; Mnih et al., 2013).16

Despite these advances, the problem of building systems that can re-use knowledge to accelerate learning—a17

characteristic of human intelligence—still remains elusive. By incorporating previously learned knowledge18

into the process of finding a solution for a novel task, intelligent systems can speed up learning and make19

fewer mistakes. Therefore, efficient knowledge re-use is a central, yet under-developed, topic in RL research.20

We approach this question through the lens of representation learning. Here, an RL agent constructs a21

representation function to compress its high-dimensional observations into a lower-dimensional latent space.22

This representation function allows the system to simplify complex inputs while preserving all information23

relevant for decision-making. By abstracting away irrelevant aspects of task, an RL agent can efficiently24

generalize learned values across distinct observations, leading to faster and more data-efficient learning (Abel25

et al., 2018; Franklin & Frank, 2018; Momennejad et al., 2017). Nevertheless, a representation function can26

become specialized to a specific task, and the information that needs to be retained often differs from task27

to task. In this context, the question of how to compute an efficient and re-usable representation emerges.28

In this article, we introduce a clustering algorithm that computes a reward-predictive representation (Lehnert29

et al., 2020; Lehnert & Littman, 2020) from a fixed data set of interactions—a setting commonly known as30

offline RL (Levine et al., 2020). A reward-predictive representation is a type of function that compresses31

high-dimensional inputs into lower-dimensional latent states. These latent states are constructed such that32

they can be used to predict future rewards without having to refer to the original high dimensional input.33

To compute such a representation, the clustering algorithm processes an interaction data set that is sampled34

from a single training task. First, every state observation is assigned to the same latent state index. Then,35

this single state cluster is iteratively refined by introducting additional latent state indices and re-assigning36

some state observations to them. At the end, the assignment between state observations and latent state37

cluster indices can be used to train a representation network that classifies high-dimensional states into38

one of the computed latent state cluster. Later on, the output of this representation network can be used39

to predict future reward outcomes without referring to the original high-dimensional state. Therefore, the40
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resulting representation network is a reward-predictive representation. The presented clustering algorithm is41

generic: Besides constraining the agent to decide between a finite number of actions, no assumptions about42

rewards or state transitions are made. We demonstrate that these reward-predictive representation networks43

can be used to accelerate learning in test tasks that differ in both transition and reward functions from44

those used in the training task. The algorithm demonstrates a form of out-of-distribution generalization45

because the test tasks require learning a task solution that is novel to the RL agent and does not follow the46

training data’s distribution. The simulation experiments reported below demonstrate that reward-predictive47

representation networks comprise a form of abstract knowledge re-use, accelerating learning to new tasks. To48

unpack how reward-predictive representation networks can be learned and transferred, we first illustrate the49

clustering algorithm using different examples and prove a convergence theorem. Lastly, we present transfer50

experiments illuminating the question of when the learned representation networks generalize to test tasks51

that are distinct from the training task in a number of different properties.52

2 Reward-predictive representations53

Mathematically, a reward-predictive representation is a function φφφ that maps an RL agent’s observations to54

a vector encoding the compressed latent state. Figure 1 illustrates a reward-predictive representation with55

an example. In the Column World task (Figure 1(a)), an RL agent navigates through a grid and receives56

a reward every time a green cell (right column) is entered. Formally, this task is modelled as a Markov57

Decision Process (MDP) M = 〈S,A, p, r〉, where the set of observations or states is denoted with S and the58

finite set of possible actions is denoted with A. The transitions between adjacent grid cells are modelled with59

a transition function p(s, a, s′) specifying the probability or density function of transitioning from state s to60

state s′ after selecting action a. Rewards are specified by the reward function r(s, a, s′) for every possible61

transition.62

To solve this task optimally, the RL agent needs to know which column it is in and can abstract away the row63

information from each grid cell. (For this example we assume that the abstraction is known; the clustering64

algorithm below will show how it can be constructed from data). Figure 1(b) illustrates this abstraction65

as a state colouring: By assigning each column a distinct colour, the 4 × 4 grid can be abstracted into a66

4 × 1 grid. A representation function then maps every state in the state space S to a latent state vector67

(a colour). Consequently, a trajectory (illustrated by the black squares and arrows in Figure 1(b)) is then68

mapped to a trajectory in the abstracted task. The RL agent can then associate colours with decisions or69

reward predictions instead of directly operating on the higher-dimensional 4× 4 grid.70

This colouring is a reward-predictive representation, because for any arbitrary start state and action sequence71

it is possible to predict the resulting reward sequence using only the abstracted task. Formally, this can be72

described by finding a function f that maps a start latent state and action sequence to the expected reward73

sequence:74

f(φφφ(s), a1, ..., an) = Ep [(r1, ..., rn)|s, a1, ..., an] . (1)

The right-hand side of Equation (1) evaluates to the expected reward sequence observed when following the75

action sequence a1, ..., an starting at state s in the original task. The left-hand side of Equation (1) predicts76

this reward sequence using the action sequence a1, ..., an and only the latent state φφφ(s)—the function f does77

not have access to the original state s. This restricted access to latent states constrains the representation78

function φφφ to be reward-predictive in a specific task: Given the representation’s output φφφ(s) and not the full79

state s, it is possible to predict an expected reward sequence for any arbitrary action sequence using a latent80

model f . Furthermore, once an agent has learned how to predict reward-sequences for one state, it can re-use81

the resulting function f to immediately generalize predictions to other states that map to the same latent82

state, resulting in faster learning. Of course, a reward-predictive representation always encodes some abstract83

information about the task in which it was learned; if this information is not relevant in a subsequent task,84

an RL agent would have to access the original high-dimensional state and learn a new representation. We85

will explore the performance benefits of re-using reward-predictive representations empirically in Section 4.86

The colouring in Figure 1(b) satisfies the condition in Equation (1): By associating green with a reward of87

one and all other colours with a reward of zero, one can use only a start colour and action sequence to predict88
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Figure 1: Reward-predictive clustering in the Column World task. (a): In the Column World task the agent
can transition between adjacent grid cells by selecting from one of four available actions: move up, down,
left, or right. A reward of one is given if a green cell is given, otherwise rewards are zero. All transitions
are deterministic in this task. (b): By colouring every column in a distinct colour, every state of the same
column is assigned the same latent state resulting in a 4 × 1 abstracted grid world task. In this example,
an agent only needs to retain which column it is in to predict future rewards and can therefore only use the
abstracted task to predict reward sequences for every possible trajectory. (c): Matrix plot of all SF vectors
ψψψπ(s, a) for the move “move right” action an a policy π that selects actions uniformly at random. Every
row corresponds to the four-dimensional vector for each grid position, as indicated by the y-axis labels. For
this calculation, the colour of a state s is encoded as a colour index c(s) that ranges from one through four
and the state-representation vector is a one-hot bit vector eeec(s) where the entry c(s) is set to one and all
other entries are set to zero. (d): Colour function sequence c0, c1, c2, c3 generated by the reward-predictive
clustering algorithm. Initially, all states are merged into a single partition and this partitioning is refined
until a reward-predictive representation is obtained. The first clustering c1 is obtained by associating states
with equal one-step rewards with the same colour (latent state vector). Then, the SF matrix shown in (c)
is computed for a state representation that associates state with the blue-green colouring as specified by
c1. The row space of this SF matrix is then clustered again leading to the clustering c2. Subsequently, the
SF matrix is computed again for the blue-orange-green colouring and the clustering procedure is repeated.
This method iteratively refines a partitioning of the state space until a reward-predictive representation is
obtained.
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a reward sequence and this example can be repeated for every possible start state and action sequence of89

any length.90

2.1 Improving learning efficiency with successor representations91

To improve an RL agent’s ability to generalize its predictions across states, the Successor Representation (SR)92

was introduced by Dayan (1993). Instead of explicitly planning a series of transitions, the SR summarizes93

the frequencies with which an agent visits different future states as it behaves optimally and maximizes94

rewards. Because the SR models state visitation frequencies, this representation implicitly encodes the task’s95

transition function and optimal policy. Consequently, the SR provides an intermediate between model-based96

RL, which focuses on learning a full model of a task’s transition and reward functions, and model-free RL,97

which focuses on learning a policy to maximize rewards (Momennejad et al., 2017; Russek et al., 2017).98

Barreto et al. (2017) showed that the SR can be generalized to Successor Features (SFs), which compress99

the high dimensional state space into a lower dimensional one that can still be used to predict future state100

occupancies. They demonstrated how SFs can be re-used across tasks with different reward functions to101

speed up learning. Indeed, SFs—like the SR—only reflect the task’s transition function and optimal policy102

but are invariant to any specifics of the reward function itself. Because of this invariance, SFs provide an103

initialization allowing an agent to adapt a previously learned policy to tasks with different reward functions,104

leading to faster learning in a life-long learning setting (Barreto et al., 2018; 2020; Lehnert et al., 2017;105

Nemecek & Parr, 2021).106

However, such transfer requires the optimal policy in the new task to be similar to that of the previous107

tasks (Lehnert & Littman, 2020; Lehnert et al., 2020). For example, even if only the reward function108

changes, but the agent had not typically visited states near the new reward location in the old task, the109

SR/SF is no longer useful and must be relearned from scratch (Lehnert et al., 2017). To further improve110

the invariance properties of SFs, Lehnert & Littman (2020) presented a model that makes use of SFs solely111

for establishing which states are equivalent to each other for the sake of predicting future reward sequences,112

resulting in a reward-predictive representation. Because reward-predictive representations only model state113

equivalences, removing the details of exactly how (i.e., they are invariant to the specifics of transitions,114

rewards, and the optimal policy), they provide a mechanism for a more abstract form of knowledge transfer115

across tasks with different transition and reward functions (Lehnert & Littman, 2020; Lehnert et al., 2020).116

Formally, SFs are defined as the expected discounted sum of future latent state vectors and117

ψψψπ(s, a) = Ea,π

[ ∞∑
t=1

γt−1φφφ(st)
∣∣∣∣∣s1 = s

]
, (2)

where the expectation in Equation (2) is calculated over all infinite length trajectories that start in state s118

with action a and then follow the policy π. The connection between SFs and reward-predictive representations119

is illustrated in Figure 1(c). Every row in the matrix plot in Figure 1(c) shows the SF vector ψψψπ(s, a) for120

each of the 16 states of the Column World task. One can observe that states belonging to the same column121

have equal SFs. Lehnert & Littman (2020) prove that states that are mapped to the same reward-predictive122

latent state (and have therefore equal colour) also have equal SFs. In other words, there exists a bijection123

between two states that are equivalent in terms of their SF vectors and two states belonging to the same124

reward-predictive latent state.125

As such, previous work (Lehnert et al., 2020; Lehnert & Littman, 2020; 2018) computes a reward-predictive126

representation for finite MDPs by optimizing a linear model using a least-squares loss objective. This loss127

objective requires the representation function φφφ to be linear in the SFs and reward function. Furthermore,128

it scores the accuracy of SF predictions using a mean-squared error. These two properties make it difficult129

to directly use this loss objective for complex control tasks, because SFs may become very high dimensional130

and it may be difficult to predict individual SF vectors with near perfect accuracy while also obtaining a131

representation function that is linear in these predictions. This issue is further exacerbated by the fact132

that in practice better results are often obtained by training deep neural networks as classifiers rather than133

regressors of complex or sparse functions. Additionally, in this prior approach the degree of compression was134

specified using a hyper-parameter by a human expert. Here, we present a clustering algorithm that remedies135
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these three limitations by designing a cluster-refinement algorithm instead of optimizing a parameterized136

model with end-to-end gradient descent. Specifically, the refinement algorithm implicitly solves the loss137

objective introduced by Lehnert & Littman (2020) in a manner similar to temporal-difference learning138

or value iteration. Initially, the algorithm starts with a parsimonious representation in which all states139

are merged into a single latent state cluster and then the state representation is iteratively improved by140

minimizing a temporal difference error defined for SF vectors. This is similar to value iteration or temporal-141

difference learning, whereby values are assumed to be all zero initially but then adjusted iteratively, but here142

we apply this idea to refining a state representation (Figure 1(d)). Through this approach, we avoid having143

to optimize a model with a linearity constraint as well as using a least-squared error objective to train a144

neural network. Instead, the clustering algorithm only trains a sequence of state classifiers to compute a145

reward-predictive representation. Furthermore, the degree of compression—the correct number of reward-146

predictive latent states—is automatically discovered. This is accomplished by starting with a parsimonious147

representation in which all states are merged into a single latent state cluster and iteratively improving the148

state representation until a reward-predictive representation is obtained without adding any additional latent149

states in the process. In the following section, Section 3, we will formally outline how this algorithm computes150

a reward-predictive state representation and discuss a convergence proof. Subsequently, we demonstrate151

how the clustering algorithm can be combined with deep learning methods to compute a reward-predictive152

representation for visual control tasks (Section 4). Here, we analyze how approximation errors contort the153

resulting state representation. Lastly, we demonstrate how reward-predictive representation networks can be154

used to accelerate learning in tasks where an agent encounters both novel state observations and transition155

and reward functions.156

3 Iterative partition refinement157

The reward-predictive clustering algorithm receives a fixed trajectory data set158

D = {(si,0, ai,0, ri,0, si,1, ai,1, ..., si,Li)}Di=1 (3)

as input. Each data point in D describes a trajectory of length Li. While we assume that this data set D159

is fixed, we do not make any assumptions about the action-selection strategy used to generate this data set.160

The clustering algorithm then generates a cluster sequence c0, c1, c2, ... that associates every observed state161

si,t in D with a cluster index. This cluster sequence is generated with an initial reward-refinement step and162

subsequent SF refinement steps until two consecutive clustering are equal. These steps are described next.163

3.1 Reward refinement164

To cluster states by their one-step reward values, a function fr is learned to predict one-step rewards. This165

function is obtained through Empirical Risk Minimization (ERM) (Vapnik, 1992) by solving the optimization166

problem167

fr = arg min
f

∑
(s,a,r,s′)∈D

|f(s, a)− r|, (4)

where the summation ranges over all transitions between states in the trajectory data set D. This optimiza-168

tion problem could be implemented by training a deep neural network using any variation of the backprop169

algorithm (Goodfellow et al., 2016). Because rewards are typically sparse in an RL task and because deep170

neural networks often perform better as classifiers rather than regressors, we found it simpler to first bin the171

reward values observed in the transition data set D and train a classifier network that outputs a probability172

vector over the different reward bins. Instead of using the absolute value loss objective stated in Equation (4),173

this network is trained using a cross-entropy loss function (Goodfellow et al., 2016). Algorithm 1 outlines174

how this change is implemented. The resulting function fr is then used to cluster all observed states by175

one-step rewards, leading to a cluster assignment such that, for two arbitrary state observations s and s̃,176

c1(s) = c1(s̃) =⇒
∑
a∈A
|fr(s, a)− fr(s̃, a)| ≤ εr. (5)
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Figure 2: Function approximation is needed to generalize one-step reward predictions and SF predictions for
state-action combinations not observed in the transition data set. In this example, the state space consists of
points in R2 and the action space consists of actions a and b. We assume that a maximally compressed reward-
predictive representation merges all points in the grey square into one latent state. Selecting the action a
from within the grey square results in a transition to the right and generates a reward of 0. Selecting the
action b from within the grey square results in a transition to the top and generates a reward of 1. If the
dataset only contains the two transitions indicated by the blue arrows and the transitions indicated by the
orange arrows are missing, then function approximation is used to predict one-step reward predictions and
SF for the missing state and action combinations (p, b) and (q, a). These function approximators need to be
constrained such that they output the same one-step rewards and SF vectors for points that fall within the
shaded square.

Figure 2 illustrates why function approximation is needed to compute the one-step reward clustering in177

line (5). In this example, states are described as positions in R2 and all points lying in the shaded area178

belong to the same partition and latent state. Specifically, selecting action a from within the grey square179

results in a transition to the right and a reward of zero, while selecting action b results in a transition to the180

top and a reward of one. We assume that the transition data set only contains the two transitions indicated181

by the blue arrows. In this case, we have r(p, a) = 0 and r(q, b) = 1, because (p, a) and (q, a) are state-action182

combinations contained in the transition data set and a rewards of zero and one were given, respectively. To183

estimate one-step rewards for the missing state-action combinations (p, b) and (q, a), we solve the function184

approximation problem in line (4) and then use the learned function fr to predict one-step reward values for185

the missing state-action combinations (p, b) and (q, a). For this reward-refinement step to accurately cluster186

states by one-step rewards, the optimization problem in line (4) needs to be constrained, for example by187

picking an appropriate neural network architecture, such that the resulting function fr generalizes the same188

prediction across the shaded area in Figure 2.189

3.2 Successor feature refinement190

After reward refinement, the state partitions are further refined by first computing the SFs, as defined in191

Equation (2), for a state representation that maps individual state observations to a one-hot encoding of the192

existing partitions. Specifically, for a clustering ci the state representation193

φφφi : s 7→ eeeci(s) (6)

is used, where eeeci(s) is a one-hot vector with entry ci(s) set to one. The individual SF vectors ψψψπi (s, a) can194

be approximated by first computing a Linear Successor Feature Model (LSFM) (Lehnert & Littman, 2020).195

The computation results in obtaining a square matrix FFF and196

ψψψπi (s, a) ≈ eeeci(s) + γFFFEp
[
eeeci(s′)

∣∣s, a] . (7)

Appendix A outlines the details of this calculation. Consequently, if a function fff i predicts the expected next197

latent state Ep
[
eeeci(s′)

∣∣s, a], then Equation (7) can be used to predict the SF vector ψψψπi (s, a). Similar to the198
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reward-refinement step, a vector-valued function fff i is obtained by solving1
199

fff i = arg min
fff

∑
(s,a,r,s′)∈D

||fff(s, a)− eeeci(s′)||. (8)

Similar to learning the approximate reward function, we found that it is more practical to train a classifier200

and to replace the mean squared error loss objective stated in line (8) with a cross entropy loss objective201

and train the network fff i to predict a probability vector over next latent states. This change is outlined in202

Algorithm 1. The next clustering ci+1 is then constructed such that for two arbitrary states s and s̃,203

ci+1(s) = ci+1(s̃) =⇒
∑
a∈A
||ψ̂ψψ

π

i (s, a)− ψ̂ψψ
π

i (s̃, a)|| ≤ εψ. (9)

This SF refinement procedure is repeated until two consecutive clusterings ci and ci+1 are identical.204

Algorithm 1 summarizes the outlined method. In the remainder of this section, we will discuss under which205

assumptions this method computes a reward-predictive representation with as few latent states as possible.206

Algorithm 1 Iterative reward-predictive representation learning
1: Input: A trajectory data set D, εr, εψ > 0.
2: Bin reward values and construct a reward vector wwwr(i) = ri.
3: Construct the function i(r) that indexes distinct reward values and wwwr(i(r)) = r.
4: Solve fffr = arg minf

∑
(s,a,r,s′)∈DH(fff(s, a), eeei(r)) via gradient descent

5: Compute reward predictions fr(s, a) = www>r fffr(s, a)
6: Construct c1 such that c1(s) = c1(s̃) =⇒

∑
a∈A |fr(s, a)− fr(s̃, a)| ≤ εr

7: for i = 2, 3, ..., N until ci+1 = ci do
8: Compute FFF a for every action.
9: Construct φφφi : s 7→ eeeci(s)
10: Solve fff i = arg minfff

∑
(s,a,r,s′)∈DH(fff(s, a), eeeci(s′)) via gradient descent

11: Compute ψ̂ψψ
π

i (s, a) = eeeci(s) + γFFFfff i(s, a)
12: Construct ci+1 such that ci+1(s) = ĉi+1(s̃) =⇒

∑
a∈A ||ψ̂ψψ

π

i (s, a)− ψ̂ψψ
π

i (s̃, a)|| ≤ εψ
13: end for
14: return φφφN

3.3 Convergence to maximally compressed reward-predictive representations207

The idea behind Algorithm 1 is similar to the block-splitting method introduced by Givan et al. (2003).208

While Givan et al. focus on the tabular setting and refine partitions using transition and reward tables, our209

clustering algorithm implements a similar refinement method but for data sets sampled from MDPs with210

perhaps (uncountably) infinite state spaces. Instead of assuming access to the complete transition function,211

Algorithm 1 learns SFs and uses them to iteratively refine state partitions. For this refinement operation to212

converge to a correct and maximally-compressed-reward-predictive representation, the algorithm needs to213

consider all possible transitions between individual state partitions. This operation is implicitly implemented214

by clustering SFs, which predict the frequency of future state partitions and therefore implicitly encode the215

partition-to-partition transition table.2216

Convergence to a correct maximally-compressed-reward-predictive representation relies on two properties217

that hold at every iteration (please refer to Appendix B for a formal statement of these properties):218

1. State partitions are refined and states of different partitions are never merged into the same partition.219

2. Two states that lead to equal expected reward sequences are never split into separate partitions.220

1Here, the L2 norm of a vector vvv is denoted with ||vvv||.
2The state-to-state transition table is never computed by our algorithm.
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The first property ensures that Algorithm 1 is a partition refinement algorithm, as illustrated by the tree221

schematic in Figure 1(d) (and does not merge state partitions). If such an algorithm is run on a finite222

trajectory data set with a finite number of state observations, the algorithm is guaranteed to terminate223

and converge to some state representation because one can always assign every observation into a singleton224

cluster. However, the second property ensures that the resulting representation is reward-predictive while225

using as few state partitions as possible: If two states s and s̃ lead to equal expected reward sequences and226

Ep [(r1, ..., rn)|s, a1, ..., an] = Ep [(r1, ..., rn)|s̃, a1, ..., an] (for any arbitrary action sequence a1, ..., an), then227

they will not be split into separate partitions. If Algorithm 1 does not terminate early (which we prove in228

Appendix B), the resulting representation is reward-predictive and uses as few state partitions as possible.229

The reward-refinement step satisfies both properties: The first property holds trivially, because c1 is the first230

partition assignment. The second property holds because two states with different one-step rewards cannot231

be merged into the same partition for any reward-predictive representation.232

To see that both properties are preserved in every subsequent iteration, we consider the partition function c∗233

of a correct maximally compressed reward-predictive representation. Suppose ci is a sub-partitioning of c∗234

and states that are assigned different partitions by ci are also assigned different partitions in c∗. (For example,235

in Figure 1(d) c0, c1, and c3 are all valid sup-partitions of c4.) Because of this sub-partition property, we236

can define a projection matrix ΦΦΦi that associates partitions defined by c∗ with partitions defined by ci.237

Specifically, the entry ΦΦΦi(k, j) is set to one if for the same state s, c∗(s) = j and ci(s) = k. In Appendix B238

we show that this projection matrix can be used to relate latent states induced by c∗ to latent states induced239

by ci and240

ΦΦΦieeec∗(s) = eeeci(s). (10)

Using the identity in line (10), the SFs at an intermediate refinement iteration can be expressed in terms of241

the SFs of the optimal reward-predictive representation and242

ψψψπi (s, a) = Ea,π

[ ∞∑
t=1

γt−1eeeci(st)

∣∣∣∣∣s1 = s, a1 = a

]
(11)

= Ea,π

[ ∞∑
t=1

γt−1ΦΦΦieeec∗(s)

∣∣∣∣∣s1 = s, a1 = a

]
(by substitution with (10)) (12)

= ΦΦΦiEa,π

[ ∞∑
t=1

γt−1eeec∗(s)

∣∣∣∣∣s1 = s, a1 = a

]
(by linearity of expectation) (13)

= ΦΦΦiψψψπ∗ (s, a). (14)

As illustrated in Figure 1(c), Lehnert & Littman (2020) showed that two states s and s̃ that are assigned243

the same partition by a maximally compressed reward-predictive clustering c∗ also have equal SF vectors244

and therefore245

ψψψπi (s, a)−ψψψπi (s̃, a) = ΦΦΦiψψψπ∗ (s, a)−ΦΦΦiψψψπ∗ (s̃, a) = ΦΦΦi (ψψψπ∗ (s, a)−ψψψπ∗ (s̃, a))︸ ︷︷ ︸
=000

= 000. (15)

By line (15), these two states s and s̃ also have equal SFs at any of the refinement iterations in Algorithm 1.246

Consequently, these two states will not be split into two different partitions (up to some approximation error)247

and the second property holds.248

Similarly, if two states are assigned different partitions, then the first term in the discounted summation in249

line (11) contains two different one-hot bit vectors leading to different SFs for small enough discount factor250

and εψ settings. In fact, in Appendix B we prove that this is the case for all possible transition functions if251

γ <
1
2 and 2

3

(
1− γ

1− γ

)
> εψ > 0. (16)

While this property of SFs ensures that Algorithm 1 always refines a given partitioning for any arbitrary252

transition function, we found that significantly higher discount factor settings can be used in our simulations.253

8



Under review as submission to TMLR

≤ε

>>ε

Figure 3: The cluster thresholds εψ and εr must be picked to account for prediction errors while ensuring
that states are not merged into incorrect clusters. For example, suppose the clustered SF vectors are the
three black dots in R2 and the function fff i predicts values close to these dots, as indicated by the colored dots.
For the clustering to be correct (and computable in polynomial time), the prediction errors—the distance
between the predictions and the correct value—has to be εψ/2. At the same time, εψ has to be small enough
to avoid overlaps between the different coloured clusters.

Because function approximation is used to predict the quantities used for clustering, prediction errors can254

corrupt this refinement process. If prediction errors are too high, the clustering steps in Algorithm 1 may255

make incorrect assignments between state observations and partitions. To prevent this, the prediction errors256

of the learned function fr and ψψψπi must be bounded by the thresholds used for clustering, leading to the257

following assumption.258

Assumption 1 (ε-perfect). For εψ, εr > 0, the ERM steps in Algorithm 1 lead to function approximators259

that are near optimal such that for every observed state-action pair (s, a),260 ∣∣∣fr(s, a)− E[r(s, a, s′)|s, a]
∣∣∣ ≤ εr

2 and
∣∣∣∣∣∣ψ̂ψψπi (s, a)−ψψψπi (s, a)

∣∣∣∣∣∣ ≤ εψ
2 . (17)

Figure 3 illustrates why this assumption is necessary and why predictions have to fall to the correct value261

in relation to εψ and εr. In Section 4 we will discuss that this assumption is not particularly restrictive in262

practice and when not adhering to this assumption can still lead to a maximally-compressed-reward-predictive263

representation. Under Assumption 1, Algorithm 1 converges to a maximally compressed reward-predictive264

representation.265

Theorem 1 (Convergence). If Assumption 1 and the matching condition in line (16) hold, then Algorithm 1266

returns an approximate maximally-compressed-reward-predictive representation for a trajectory data set267

sampled from any MDP.268

A formal proof of Theorem 1 is presented in Appendix B.269

In practice, one cannot know if prediction errors are small enough, a principle that is described by Vapnik270

(1992). However, recent advances in deep learning (Belkin et al., 2019) have found that increasing the271

capacity of neural networks often makes it possible to interpolate the training data and still perform almost272

perfectly on independently sampled test data. In the following section we present experiments that illustrate273

how this algorithm can be used to find a maximally compressed reward-predictive representation.274

4 Learning reward-predictive representation networks275

In this section, we first illustrate how the clustering algorithm computes a reward-predictive representa-276

tion on the didactic Column World example. Then, we focus on a more complex visual control task—the277

Combination Lock task, where inputs are a set of MNIST images from pixels—and discuss how function278

approximation errors lead to spurious latent states and how they can be filtered out. Lastly, we present a set279

of experiments highlighting how initializing a DQN agent with a reward-predictive representation network280

9
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Figure 4: Reward-predictive clustering of the Point Observation Column World task. (a): The Point Ob-
servation Column World task is a variant of the Column World task where instead of providing the agent
with a grid cell index it only observes a real valued point (x, y) ∈ (0, 4)2. When the agent is in a grid
cell, for example cell the top left cell, a point is sampled uniformly at random from the corresponding cell,
for example the point (0.83, 3.22). (b): The computed cluster function c3 assigns each state observation (a
point in the shown scatter plot) with a different latent state index (a different color). (c): The box plot
shows the reward sequence prediction error for each trajectory at each iteration (iteration 0 shows the initial
cluster function). At each iteration a different representation network was trained and then evaluated on a
separately sampled 100-trajectory test data set. The full details of this experiment are listed in Appendix C.

improves learning efficiency, demonstrating in which cases reward-predictive representations are suitable for281

out-of-distribution generalization.282

Figure 4 illustrates a reward-predictive clustering for a variant of the Column World task where state283

observations are real-valued points. This variant is a block MDP (Du et al., 2019): Instead of observing a284

grid cell index, the agent observes a real-valued point (x, y) (Figure 4(a)) but still transitions through a 4×4285

grid. This point is sampled uniformly at random from a square that corresponds to the grid cell the agent is286

in, as illustrated in Figure 4(a). Therefore, the agent does not (theoretically) observe the same (x, y) point287

twice and transitions between different states become probabilistic. For this task, a two-layer perceptron288

was used to train a reward and next latent state classifier (Algorithm 1, lines 4 and 10). Figure 4(b)289

illustrates the resulting clustering as colouring of a scatter plot. Each dot in the scatter plot corresponds290

to a state observation point (x, y) in the training data set and the colouring denotes the final latent state291

assignment c3. Figure 4(c) presents a box-plot of the reward-sequence prediction errors as a function of292

each refinement iteration. One can observe that after performing the second refinement step and computing293

the cluster function c2, all reward-sequence prediction errors drop to zero. This is because the clustering294

algorithm initializes the cluster function c0 by first merging all terminal states into a separate partition (and295

our implementation of the clustering algorithm is initialized at the second step in Figure 1(d)). Because the296

cluster functions c2 and c3 are identical in this example, the algorithm is terminated after the third iteration.297

4.1 Clustering with function approximation errors298

As illustrated in Figure 3, for the cluster algorithm to converge to a maximally compressed representation,299

the predictions made by the neural networks must be within some ε of the true prediction target. Depending300

on the task and training data set, this objective may be difficult to satisfy. Belkin et al. (2019) presented301

the double-descent curve, which suggests that it is possible to accurately approximate any function with302

large enough neural network architectures. In this section we test the assumption that all predictions must303

be ε accurate by running the clustering algorithm on a data set sampled from the Combination Lock task304

(Figure 5). In this task, the agent decides which dial to rotate on each step to unlock a numbered combination305

lock (schematic in Figure 5(a)). Here, state observations are assembled using training images from the MNIST306

data set (Lecun et al., 1998) and display three digits visualizing the current number combination of the lock.307

To compute a reward-predictive representation for this task, we adapt our clustering algorithm to process308

images using the ResNet18 architecture (Paszke et al., 2019; He et al., 2016) for approximating one-step309

rewards and next latent states. For all experiments we initialize all network weights randomly and do not310

provide any pre-trained weights. The full details of this experiment are documented in Appendix C.311
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Figure 5: Reward-predictive clustering of the Combination Lock task. (a): In the Combination Lock task,
the agent decides which dial(s) to rotate to move toward a rewarding combination. The agent has to learn
that only the first two dials are relevant for unlocking the combination: a reward is given once the left and
center dials both arrive at the digit nine and the lock matches the pattern (9, 9, ∗). The right (shaded)
dial is “broken” and spins at random when the third action is selected, and thus all digits on it should be
equally reward-predictive. Each state consists of an image that is assembled using the MNIST data set.
The fixed trajectory data set provided to the clustering algorithm uses images from the MNIST training
dataset. The resulting model was evaluated using an independently sampled test trajectory data set using
images from the MNIST test data set. (b): The histogram plots the distribution reward sequence errors
for 1000 test trajectories for five different refinement stages of the clustering algorithm on a log-scale. The
distribution of the 1000 samples is plotted as a rug plot above the histogram. For each trajectory the absolute
difference between predicted and true reward value was computed and averaged along the trajectory. The
predictions where made by training a separate representation network for each cluster function. (c): Matrix
plot illustrating how different number combinations are associated with different latent states. Each row
plots the distribution across latent states of images matching a specific number pattern. Each column of
the matrix plot corresponds to a specific latent state index and which combination is associated with which
index is determined arbitrarily by the clustering algorithm. Terminal states that are observed at the end
of each trajectory are merged into latent state zero by default. The ignore column indicates the fraction
of state images that were identified as belonging to a spurious latent state and are excluded from the final
clustering.
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In this task, a reward-predictive representation network has to not only generalize across variations in312

individual digits, but also learn to ignore the rightmost digit. The matrix plot in Figure 5(c) illustrates313

how the reward-predictive representation network learned by the clustering algorithm generalizes across314

the different state observations. Intuitively, this plot is similar to a confusion matrix: Each row plots the315

distribution over latent states for all images that match a specific combination pattern. For example, the316

first row plots the latent state distribution for all images that match the pattern (0, 0, ∗) (left and middle317

dial are set to zero, the right dial can be any digit), the second row plots the distribution for the pattern318

(0, 1, ∗), and so on. In total the clustering algorithm correctly inferred 100 reward-predictive latent states319

and correctly ignores the rightmost digit, abstracting it away from the state input. Prediction errors can320

contort the clustering in two ways:321

1. If prediction errors are high, then a state observation can be associated with the wrong latent322

state. For example, an image with combination (0, 1, 4) could be associated with the latent state323

corresponding to the pattern (0, 7, ∗).324

2. If prediction errors are low but still larger than the threshold εψ or εr, then some predictions can be325

assigned into their own cluster and a spurious latent state is created. These spurious states appear326

as latent states that are associated with a small number of state observations.327

Figure 5(c) indicates that the first prediction error type does not occur because all off-diagonal elements328

are exactly zero. This is because a large enough network architecture is trained to a high enough accuracy.329

However, the second prediction error type does occur. In this case, latent states that are associated with330

very few state observations are masked out of the data set used for training the neural network (line 10331

in Algorithm 1). These states are plotted in the ignore column (right-most column) in Figure 5(c). In332

total, less than 0.5% of the data set are withheld and the clustering algorithm has inferred 100 latent333

states. Consequently, the learned reward-predictive representation uses as few latent states as possible and334

is maximally compressed.335

Figure 5(b) plots the reward-sequence error distribution for a representation network at different refinement336

stages. Here, 1000 independently sampled test trajectories were generated using images from the MNIST337

test set. One can see that initially reward sequence prediction errors are high and then converge towards zero338

as the refinement algorithm progresses. Finally, almost all reward sequences are predicted accurately but339

not perfectly, because a distinct test image set is used and the representation network occasionally predicts340

an incorrect latent state. This is a failure in the vision model—if the convolutional neural network would341

perfectly classify images into the latent states extracted by the clustering algorithm, then the reward sequence342

prediction errors would be exactly zero (similar to the Column World example in Figure 4(c)). Furthermore,343

if the first transition of a 1000-step roll-out is incorrectly predicted, then all subsequent predictions are344

incorrect as well. Consequently, the reward sequence prediction error measure is sensitive to any prediction345

errors that may happen when predicting rewards for a long action sequence. However, the trend of minimizing346

reward sequence prediction errors with every refinement iteration is still plainly visible in Figure 5(b).347

4.2 Improving learning efficiency348

Ultimately, the goal of using reward-predictive representations is to speed up learning by re-using abstract349

task knowledge encoded by a pre-trained representation network. In contrast, established meta-learning350

algorithms such as MAML (Finn et al., 2017) or the SF-based Generalized Policy Improvement (GPI)351

algorithm (Barreto et al., 2018; 2020) rely on extracting either one or multiple network initializations to352

accelerate learning in a test task. To empirically test the differences between re-using a pre-trained reward-353

predictive representation network and using a previously learned network initialization, we now consider354

three variants of the Combination Lock task (Figure 6(a)). All variants vary from the training task in their355

specific transitions, rewards, and optimal policy. Furthermore, the state images are generated using MNIST356

test images to test if a pre-trained agent can generalize what it has seen during pre-training to previously357

unseen variations of digits.3 The three task variants require an agent to process the state images differently358

3This experiment design is similar to using separately sampled training and test data in supervised machine learning.
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Figure 6: Representation transfer in the Combination Lock task. (a): In the swap digits variant, the
transition function is changed such that the first action only swaps the digit between the left and middle dial.
Only the middle dial rotates as before and the right dial also does not have any effect on the obtained rewards.
Furthermore, the rewarding combination is changed to (5, 6, ∗). The reversed dial variant differs from the
training task in that the rotation direction of the middle dial is reversed and the rewarding combination is
changed to (7, 4, ∗). The left dial broken variant is similar to the training task but the left dial is broken
and spins at random instead of the right dial. Here, the transitions and reward association between different
latent states are the same as in the training task with the difference being how different images are associated
with different latent states and different action labels having different effects. The rewarding combination
is (∗, 9, 9). To ensure that the state images of the test tasks are distinct from the training task, all test
tasks construct the state images using the MNIST test image set. (b): The reward-predictive agent replaces
all except the top-most layer with the reward-predictive representation network computed by the clustering
algorithm for the training task. During training in the test task only the top-most layer receives gradient
updates and the representation network’s weights are not changed. (c): Each agent was trained for 20
different seeds in each task. For each repeat, the pre-trained DQN agent was first trained on the training
task and then on the test task. Appendix C lists all details and additional plots of the experiment.
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in order to maximize rewards: In the swap digits and reversed dial variants (center and left schematic in359

Figure 6(a)), an agent has to correctly recognize the left and center digit in order to select actions optimally.360

While the effect of different actions and the rewarding combinations differ from the training task, an agent361

initially processes state images in the same way as in the training task. Specifically, because the right dial362

is still broken and rotates at random, an agent needs to correctly identify the left and center digits and363

then use that information to make a decision. These two transfer tasks test an agent’s ability to adapt to364

different transitions and rewards while preserving which aspects of the state image—namely the left and365

center digits—are relevant for decision-making. The left dial broken variant (right schematic in Figure 6)366

differs in this particular aspect. Here, the center and right digits are relevant for reward-sequence prediction367

and decision-making because the left dial is broken and rotates at random. With this task, we test to what368

extent a pre-trained reward-predictive representation network can be used when state equivalences modelled369

by the representation network differ between training and test tasks.370

To test for positive transfer in a controlled experiment, we train three variants of the DQN algorithm (Mnih371

et al., 2015) and record the average reward per time step spent in each task. Each DQN variant uses372

a different Q-network initialisation but all agents use the same network architecture, number of network373

weights, and hyper-parameters. Hyper-parameters were independently fine tuned on the training task in374

Figure 5(a) so as to not bias the hyper-parameter selection towards the used test tasks (and implicitly using375

information about the test tasks during training). In Figure 6(c), the DQN baseline (shown in blue) initializes376

networks at random (using Glorot initialization (Glorot & Bengio, 2010)) similar to the original DQN agent.377

This agent’s performance is used as a reference value in each task. The pre-trained DQN agent (shown in378

orange) first learns to solve the training task, and the learned Q-network weights are then used to initialize379

the network weights in each test task. By pre-training the Q-network in this way, the DQN agent has to380

adapt the previously learned solution to the test task. Here, the pre-trained DQN agent initially repeats the381

previously learned behaviour—which is not optimal in any of the test tasks—and then has to re-learn the382

optimal policy for each test task. This re-learning seems to negatively impact the overall performance of the383

agent and it would be more efficient to randomly initialize the network weights (Figure 6(c)).384

This approach of adapting a pre-trained Q-network to a test task is used by both MAML and SF-based GPI.385

While these methods rely on extracting information from multiple training tasks, the results in Figure 6(c)386

demonstrate that if training and test tasks differ sufficiently, then re-using a pre-trained Q-network to387

initialize learning may negatively impact performance and a new Q-network or policy may have to be388

learned from scratch (Nemecek & Parr, 2021). Reward-predictive representations enable a more abstract389

form of task knowledge re-use that is more robust in this case. This is illustrated by the reward-predictive390

agent in Figure 6(c) that outperforms the other two agents. The reward-predictive agent (shown in green391

in Figure 6(c)) sets all weights except for the top-most linear layer to the weights of the reward-predictive392

representation network learned by the clustering algorithm for the training task (Figure 6(b)). Furthermore,393

no weight updates are performed on the representation network itself—only the weights of the top-most394

linear layer are updated during learning in the test task. By re-using the pre-trained representation network,395

the reward-predictive agent maps all state images into one of the 100 pre-trained latent states resulting in a396

significant performance improvement. This performance improvement constitutes a form of systematic out-397

of-distribution generalization, because the reward-predictive representation network is not adjusted during398

training and because trajectories observed when interacting with the test task are out-of-distribution of the399

trajectories observed during pre-training.400

Interestingly, in the left dial broken variant the performance improvement of the reward-predictive agent is401

even more significant. This result is unexpected, because in this case the state equivalences modelled by402

the transferred representation function differ between the training and the test tasks: In the training task,403

the right dial is irrelevant for decision-making and can be abstracted away whereas in the test task the left404

dial is irrelevant for decision-making and can be abstracted away instead. Consequently, a representation405

that is reward-predictive in the training task is not reward-predictive in the left dial broken test task and406

an RL agent would have to re-train a previously learned representation for it be reward predictive in the407

test task. Nevertheless, the reward-predictive representation network can still be used to maximize rewards408

in this task variant: The agent first learns to rotate the center dial to the rewarding digit “9”. This is409

possible because the network can still leverage parts of the reward-predictive abstraction that remain useful410
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for the new task. In this case, the center digits are still important as they were in the original task and the411

reward-predictive representation network maps distinct center digits to distinct latent states, although the412

combination (1, 9, ∗) and (2, 9, ∗) are mapped to different latent states given the representation learned in413

the training task. Once the center dial is set to the digit “9”, the agent can simply learn a high Q-value for414

the action associated with rotating the third dial, and it does so until the rewarding combination is received.415

Because the reward predictive agent is a variant of DQN and initializes Q-values to be close to zero, the416

moment the algorithm increases a Q-value through a temporal-difference update, the agent keeps repeating417

this action with every greedy action selection step and does not explore all possible states, resulting in a418

significant performance improvement.4 While the reward-predictive representation network cannot be used419

to predict reward-sequences or event Q-values accurately, the Q-value predictions learned by the agent are420

sufficient to still find an optimal policy quickly in this test task. Of course, one could imagine test tasks421

where this is not the case and the agent would have to learn a new policy from scratch.422

This experiment highlights how reward-predictive representation networks can be used for systematic out-of-423

distribution generalization. Because the representation network only encodes state equivalences, the network424

can be used across tasks with different transitions and rewards. However, if different state equivalences are425

necessary for reward prediction in a test task, then it may or may not be possible to learn an optimal policy426

without modifying the representation network. The left dial broken test task in Figure 5 presents a case427

where state equivalences differ from the training task but it is still possible to accelerate learning of an428

optimal policy significantly.429

5 Discussion430

In this article, we present a clustering algorithm to compute reward-predictive representations that use as few431

latent states as possible. Unlike prior work (Lehnert & Littman, 2020; 2018), which learns reward-predictive432

representations through end-to-end gradient descent, our approach is similar to the block splitting method433

presented by Givan et al. (2003) for learning which two states are bisimilar in an MDP. By starting with a434

single latent state and then iteratively introducing additional latent states to minimize SF prediction errors435

where necessary, the final number of latent states is minimized. Intuitively, this refinement is similar to436

temporal-difference learning, where values are first updated where rewards occur and subsequently value437

updates are bootstrapped at other states. The clustering algorithm computes a reward-predictive repre-438

sentation in a similar way, by first refining a state representation around changes in one-step rewards and439

subsequently bootstrapping from this representation to further refine the state clustering. This leads to a440

maximally compressed latent state space, which is important for abstracting away information from the state441

input and enabling an agent to efficiently generalize across states (as demonstrated by the generalization442

experiments in Section 4.2). Such latent state space compression cannot be accomplished by auto-encoder443

based architectures (Ha & Schmidhuber, 2018) or frame prediction architectures (Oh et al., 2015; Leibfried444

et al., 2016; Weber et al., 2017) because a decoder network requires the latent state to be predictive of the445

entire task state. Therefore, these methods encode the entire task state in a latent state without abstracting446

any part of the task state information away.447

Prior work (Ferns et al., 2004; Comanici et al., 2015; Gelada et al., 2019; Zhang et al., 2021b;a) has focused448

on using the Wasserstein metric to measure how bisimilar two states are. Computing the Wasserstein metric449

between two states is often difficult in practice, because it requires solving an optimization problem for450

every distance calculation and it assumes a measurable state space—an assumption that is difficult to satisfy451

when working with visual control tasks for example. Here, approximations of the Wasserstein metric are452

often used but these methods introduce other assumptions instead, such as a normally distributed next453

latent states (Zhang et al., 2021a) or a Lipschitz continuous transition function where the Lipschitz factor is454

1/γ (Gelada et al., 2019)5. The presented refinement method does not require such assumptions, because the455

presented algorithm directly clusters one-step rewards and SFs for arbitrary transition and reward functions.456

SFs, which encode the frequencies of future states, provide a different avenue to computing which two states457

are bisimilar without requiring a distance function on probability distributions such as the Wasserstein458

4For all experiments we use a ε-greedy action selection strategy that initially selects actions uniformly at random but becomes
greedy with respect to the predicted Q-values within the first 10 episodes.

5Here, γ ∈ (0, 1) is the discount factor.

15



Under review as submission to TMLR

metric. Nonetheless, using the Wasserstein metric to determine state bisimilarity may provide an avenue459

for over-compressing the latent state space at the expense of increasing prediction errors (Ferns et al., 2004;460

Comanici et al., 2015) (for example, compressing the Combination Lock task into 90 latent states instead of461

100).462

A key challenge in scaling model-based RL algorithms is the fact that these agents are evaluated on their463

predictive performance. Consequently, any approximation errors (caused by not adhering to the ε-perfection464

assumption illustrated in Figure 3) impact the resulting model’s predictive performance—a property common465

to model-based RL algorithms (Talvitie, 2017; 2018; Asadi et al., 2018). Evaluating a model’s predictive466

performance is more stringent than what is typically used for model-free RL algorithms such as DQN.467

Typically, model-free RL algorithms are evaluated on the learned optimal policy’s performance and are468

not evaluated on their predictive performance. For example, while DQN can learn an optimal policy for469

a task, the learned Q-network’s prediction errors may still be high for some inputs (Witty et al., 2018).470

Prediction errors of this type are often tolerated, because model-free RL algorithms are benchmarked based471

on the learned policy’s ability to maximize rewards and not their accuracy of predicting quantities such as472

Q-values or rewards. This is the case for most existing deep RL algorithms that are effectively model-based473

and model-free hybrid architectures (Oh et al., 2017; Silver et al., 2017a; Gelada et al., 2019; Schrittwieser474

et al., 2019; Zhang et al., 2021a)—these models predict reward-sequences only over very short horizons (for475

example, Oh et al. (2017) use 10 time steps). In contrast, reward-predictive representations are evaluated476

for their prediction accuracy. To achieve low prediction errors, the presented results suggest that finding477

ε-perfect approximations becomes important. Furthermore, the simulations on the MNIST combination-lock478

task demonstrate that this goal can be accomplished by using a larger neural network architecture.479

To compute a maximally compressed representation, the presented clustering algorithm needs to have access480

to the entire trajectory training data set at once. How to implement this algorithm in an online learning481

setting—a setting where the agent observes the different transitions and rewards of a task as a data stream—482

is not clear at this point. To implement an online learning algorithm, an agent would need to assign incoming483

state observations to already existing state partitions. Without such an operation it would not be possible484

to compute a reward-predictive representation that still abstracts away certain aspects from the state itself.485

Because the presented clustering method is based on the idea of refining state partitions, it is currently486

difficult to design an online learning agent that does not always re-run the full clustering algorithm on the487

history of all transitions the agent observed.488

One assumption made in the presented experiments is that a task’s state space can always be compressed489

into a small enough finite latent space. This assumption is not restrictive, because any (discrete time) RL490

agent only observes a finite number of transitions and states at any given time point. Consequently, all state491

observations can always be compressed into a finite number of latent states, similar to block MDPs (Du492

et al., 2019). Furthermore, the presented method always learns a fully conjunctive representation. In the493

combination-lock examples, the reward-predictive representation associates a different latent state (one-hot494

vector) with each relevant combination pattern. This representation is conjunctive because it does not model495

the fact that the dials rotate independently. A disjunctive or factored representation could map each of the496

three dials independently into three separate latent state vectors and a concatenation of these vectors could497

be used to describe the task’s latent state. Such a latent representation is similar to factored representations498

used in prior work (Guestrin et al., 2003; Diuk et al., 2008) and these factored representations permit a more499

compositional form of generalization across different tasks (Kansky et al., 2017; Battaglia et al., 2016; Chang500

et al., 2016). How to extract such factored representations from unstructured state spaces such as images501

still remains a challenging problem. We leave such an extension to future work.502

Prior work on (Deep) SF transfer (Barreto et al., 2018; 2020; Kulkarni et al., 2016; Zhang et al., 2017), meta-503

learning (Finn et al., 2017), or multi-task learning (Rusu et al., 2015; D’Eramo et al., 2020) has focused on504

extracting an inductive bias from a set of tasks to accelerate learning in subsequent tasks. These methods505

transfer a value function or policy model to initialize and accelerate learning. Because these methods transfer506

a model of a task’s policy, these models have to be adapted to each transfer task, if the transfer task’s optimal507

policy differs from the previously learned policies. Reward-predictive representations overcome this limitation508

by only modelling how to generalize across different states. Because reward-predictive representations do509

not encode the specifics of how to transition between different latent states or how latent states are tied to510
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rewards, these representations are robust to changes in transitions and rewards. Furthermore, the reward-511

predictive representation network is learned using a single task and the resulting network is sufficient to512

demonstrate positive transfer across different transitions and rewards. This form of transfer is also different513

from the method presented by Zhang et al. (2021b), where the focus is on extracting a common task514

structure from a set of tasks instead of learning a representation from a single task and transferring it to515

different test tasks. Still, in a lifelong learning scenario, re-using the same reward-predictive representation516

network to solve every task may not be possible because an agent may have to generalize across different517

states (as demonstrated by the left dial broken combination lock variant in Section 4.2). In this article, we518

analyze the generalization properties of reward-predictive representations through A-B transfer experiments.519

While Lehnert et al. (2020) already present a (non-parametric) meta-learning model that uses reward-520

predictive representations to accelerate learning in finite MDPs, we leave how to integrate the presented521

clustering algorithm into existing meta-learning frameworks commonly used in deep RL—such as Barreto522

et al. (2018) or Finn et al. (2017)—for future work.523

6 Conclusion524

We presented a clustering algorithm to compute reward-predictive representations that introduces as few525

latent states as possible. The algorithm works by iteratively refining a state representation using a temporal526

difference error that is defined on state features. Furthermore, we analyze under which assumptions the527

resulting representation networks are suitable for systematic out-of-distribution generalization and demon-528

strate that reward-predictive representation networks enable RL agents to re-use abstract task knowledge to529

improve their learning efficiency.530
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Appendix A Linear Successor Feature Models687

Lehnert & Littman define LSFMs as a set of real-valued vectors {wwwa}a∈A and real-valued square matrices688

{FFF a}a∈A that are indexed by the different actions a ∈ M of an MDP. Furthermore, LSFMs can be used689

to identify a reward-predictive representation function φφφ : S → Rn. Specifically, if a state-representation690

function φφφ satisfies for all state-action pairs (s, a)691

www>a φφφ(s) = Ep[r(s, a, s′)|s, a] (18)

and FFF>a φφφ(s) = φφφ(s) + γFFF
>Ep[φφφ(s′)|s, a] where FFF = 1

|A|
∑
a′∈A

FFF a′ , (19)

then the state-representation function φφφ is reward-predictive.692

Given a partition function c and the trajectory data set D, a LSFM can be computed. For a partition i the693

ith entry of the weight vector wwwa equals the one-step rewards averaged across all state observations and694

wwwa(i) = 1
|{(s, a, r, s′)|c(s) = i}|

∑
(s,a,r,s′)|c(s)=i

r, (20)

where the summation Equation 20 ranges over all transitions in D that start in partition i. Similarly,695

the empirical partition-to-partition transition probabilities can be calculated and stored in a row-stochastic696

transition matrix MMMa. Each entry of this matrix is set to the empirical probability of transitioning from a697

partition i to a partition j and698

MMMa(i, j) = |{(s, a, r, s
′)|c(s) = i, c(s′) = j}|

|{(s, a, r, s′)|c(s) = i}|
. (21)

Using this partition-to-partition transition matrix, the matrices {FFF a}a∈A can be calculated as outlined699

by Lehnert & Littman and700

FFF a = III + γMMMaFFF and FFF = (III − γMMM)−1, (22)

where MMM = 1
|A|
∑
a∈AMMMa.701

This calculation is used to compute the SF targets used for function approximation in Algorithm 1.702

Appendix B Convergence proof703

Definition 1 (Sub-clustering). A clustering c is a sub-clustering of c∗ if the following property holds:704

∀s, s̃, c(s) 6= c(s̃) =⇒ c∗(s) 6= c∗(s̃). (23)

Definition 2 (Maximally-Compressed-Reward-Predictive Clustering). A maximally-compressed-reward-705

predictive representation is a function c∗ assigning every state s ∈ S to an index such that for all state-action706

pairs (s, a)707 ∣∣www>a eeec∗(s) − Ep[r(s, a, s′)|s, a]
∣∣ ≤ εr (24)

and
∣∣FFF>a eeec∗(s) −ψψψπ∗ (s, a)

∣∣ ≤ εψ, (25)

where ψψψπ∗ (s, a) are the SFs calculated for a state-representation function mapping a state s to a one-hot bit708

vector c∗(s). Furthermore, this representation uses as few indices as possible.709

Definition 2 implicitly makes the assumption that the state space of an arbitrary MDP can be partitioned710

into finitely many reward-predictive partitions. While this may not be the case for all possible MDPs, this711

assumption is not restrictive when using the presented clustering algorithm. Because the trajectory data set712

is finite, any algorithm only processes a finite subset of all possible states (even if state spaces are uncountable713

infinite) and therefore can always partition these state observations into a finite number of partitions.714
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Property 1 (Refinement Property). In Algorithm 1, every iteration refines the existing partitions until the715

termination condition is reached. Specifically, for every iteration ci is a sub-clustering of ci+1 and for any716

two distinct states s and s̃,717

ci(s) 6= ci(s̃) =⇒ ci+1(s) 6= ci+1(s̃). (26)
Property 2 (Reward-predictive Splitting Property). Consider a maximally-compressed-reward-predictive718

representation encoded by the clustering c∗ and the cluster sequence c1, c2, ... generated by Algorithm 1. For719

any two distinct states s and s̃,720

ci(s) 6= ci(s̃) =⇒ c∗(s) 6= c∗(s̃) (27)
Lemma 1 (SF Separation). For a cluster function ci and any arbitrary MDP, if721

γ <
1
2 and 2

3

(
1− γ

1− γ

)
> εψ > 0, (28)

then722

||ψψψπi (s, a)−ψψψπi (s̃, a)|| ≥ 3εψ (29)
for two states s and s̃ that are assigned to two different partitions and ci(s) 6= ci(s̃).723

Proof of SF Separation Lemma 1. First, we observe that the norm of a SF vector can be bounded with724 ∣∣∣∣∣
∣∣∣∣∣ψψψπi (s, a)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣Eπ

[ ∞∑
t=1

γt−1eeeci(st)

∣∣∣∣∣s = s1, a

]∣∣∣∣∣
∣∣∣∣∣ (30)

=
∣∣∣∣∣
∣∣∣∣∣
∞∑
t=1

γt−1Eπ
[
eeeci(st)

∣∣s = s1, a
] ∣∣∣∣∣
∣∣∣∣∣ (by linearity of expectation) (31)

≤
∞∑
t=1

γt−1

∣∣∣∣∣
∣∣∣∣∣Eπ [eeeci(st)∣∣s = s1, a

] ∣∣∣∣∣
∣∣∣∣∣︸ ︷︷ ︸

≤1

(32)

=
∞∑
t=1

γt−1 (33)

= 1
1− γ . (34)

The transformation to line (33) uses the fact that expected values of one-hot vectors are always probability725

vectors.726

Furthermore, we note that727

0 ≤ γ < 1
2 =⇒ 2γ

1− γ < 2. (35)

The norm of the difference of SF vectors for two states s and s̃ that start in different partitions can be728

bounded with729 ∣∣∣∣ψψψπi (s, a)−ψψψπi (s̃, a)
∣∣∣∣ =

∣∣∣∣(eeek + γE[ψψψπi (s′, a′)|s, a])− (eeel + γE[ψψψπi (s′, a′)|s̃, a])
∣∣∣∣ (36)

=
∣∣∣∣(eeek − eeel) + γ(E[ψψψπi (s′, a′)|s, a]− E[ψψψπi (s′, a′)|s̃, a])

∣∣∣∣ (37)
=
∣∣∣∣(eeek − eeel)− γ(E[ψψψπi (s′, a′)|s̃, a]− E[ψψψπi (s′, a′)|s, a])

∣∣∣∣ (38)

≥
∣∣∣ ∣∣∣∣eeek − eeel∣∣∣∣︸ ︷︷ ︸

=2

−γ
∣∣∣∣E[ψψψπi (s′, a′)|s̃, a]− E[ψψψπi (s′, a′)|s, a]

∣∣∣∣∣∣∣ (39)

=
∣∣∣2− γ∣∣∣∣E[ψψψπi (s′, a′)|s̃, a]− E[ψψψπi (s′, a′)|s, a]

∣∣∣∣︸ ︷︷ ︸
∈ [0, 2γ

1−γ ] by (34) and < 2 by (35)

∣∣∣ (40)

= 2− γ
∣∣∣∣E[ψψψπi (s′, a′)|s̃, a]− E[ψψψπi (s′, a′)|s, a]

∣∣∣∣ (41)

≥ 2− 2γ
1− γ (42)
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The transformation to line (40) holds because s and s̃ start in different partitions and therefore ci(s) = k 6=730

ci(s̃) = l. The transformation to line (41) holds, because the norm of the difference of two SF vectors is731

bounded by 2
1−γ . The term inside the absolute value calculation cannot possibly become negative because732

the discount factor γ is set to be below 1
2 and the bound in line (35) holds.733

Using the condition on the discount factor in line (28), we have734

2
3

(
1− γ

1− γ

)
≥ εψ =⇒ 2− 2γ

1− γ ≥ 3εψ (by (28)) (43)

=⇒ ||ψψψπi (s, a)−ψψψπi (s̃, a)|| ≥ 3εψ. (by (42)) (44)

735

Definition 3 (Representation Projection Matrix). For a maximally-compressed-reward-predictive clustering736

c∗ and a sub-clustering ci, we define a projection matrix ΦΦΦi such that every entry737

ΦΦΦi(k, l) =
{

1 ∃s such that ci(s) = k and c∗(s) = l

0 otherwise.
(45)

Lemma 2 (SF Projection). For every state-action pair (s, a), ψψψπi (s, a) = ΦΦΦiψψψπ∗ (s, a).738

Proof of SF Projection Lemma 2. The proof is by the derivation in lines (11) through (14).739

Proof of Convergence Theorem 1. The convergence proof argues by induction on the number of refinement740

iterations and first establishes that the Refinement Property 1 and Reward-predictive Splitting Property 2741

hold at every iteration. Then we provide an argument that the returned cluster function is a maximally-742

compressed-reward-predictive representation.743

Base case: The first clustering c1 merges two state observations into the same cluster if they lead to equal744

one-step rewards for every action. The reward-condition in Equation (24) can be satisfied by constructing a745

vector wwwa such that every entry equals the average predicted one-step reward for each partition and746

wwwa(i) = 1
|{s : c1(s) = i}|

∑
s:c1(s)=i

fr(s, a) (46)

By Assumption 1, all predictions made by fr are at most εr
2 apart from the correct value and therefore747

|eee>c1(s)wwwa − Ep[r(s, a, s′)|s, a]| ≤ εr (47)

Consequently, the reward condition in Equation (24) is met and for any two states s and s̃748

c1(s) 6= c1(s̃) =⇒ c∗(s) 6= c∗(s̃) (48)

and Property 2 holds. Property 1 holds trivially because c1 is the first constructed clustering.749

Induction Hypothesis: For a clustering ci both Property 1 and Property 2 hold.750

Induction Step: To see why Property 1 and 2 hold for a clustering ci+1, we first denote prediction errors751

with a vector δδδi and752

ψ̂ψψ
π

i (s, a) = ψψψπi (s, a) + δδδi(s, a). (49)

23



Under review as submission to TMLR

If two states s and s̃ are merged into the same partition by a maximally-compressed-reward-predictive753

representation (and have equal SFs ψψψπ∗ ), then754

||ψ̂ψψ
π

i (s, a)− ψ̂ψψ
π

i (s̃, a)|| (50)
≤ ||ψψψπi (s, a)−ψψψπi (s̃, a)||+ ||δδδi(s, a)− δδδi(s̃, a)|| (by substituting (49) and triangle ineq.) (51)
= ||ΦΦΦiψψψπ∗ (s, a)−ΦΦΦiψψψπ∗ (s̃, a)||+ ||δδδi(s, a)− δδδi(s̃, a)||︸ ︷︷ ︸

≤
εψ
2 +

εψ
2 by Assmpt. 1

(by Lemma 2) (52)

≤ ||ΦΦΦi|| · ||ψψψπ∗ (s, a)−ψψψπ∗ (s̃, a)||︸ ︷︷ ︸
= 000 by choice of s and s̃

+εψ (53)

= εψ. (54)

Consequently,755

c∗(s) = c∗(s̃) =⇒ ||fff i(s, a)− fff i(s̃, a)|| ≤ εψ =⇒ ci+1(s) = ci+1(s̃). (55)
By inversion of the implication in line (55), the Reward-predictive Splitting Property 2 holds. Furthermore,756

because the matching condition in line (16) holds, we have for any two states757

ci(s) 6= ci(s̃) =⇒ ||ψψψπi (s, a)−ψψψπi (s̃, a)|| > 3εψ. (56)

Consequently,758

||fff i(s, a)− fff i(s̃, a)|| = ||(ψψψπi (s, a)−ψψψπi (s̃, a))− (δδδi(s̃, a)− δδδi(s, a))|| (57)
≥
∣∣ ||ψψψπi (s, a)−ψψψπi (s̃, a)||︸ ︷︷ ︸

>3εψ

− ||δδδi(s̃, a)− δδδi(s, a)||︸ ︷︷ ︸
≤2εψ

∣∣ (by inverse triangle ineq.) (58)

> 3εψ − 2εψ = εψ. (59)

Therefore, ci+1(s) 6= ci+1(s̃) and the Refinement Property 1 holds as well.759

Lastly, the clustering cT returned by Algorithm 1 satisfies the conditions outlined in Definition 2. Because760

the Refinement Property 1 holds at every iteration, we have by line (47) that761 ∣∣eee>cT (s)wwwa − Ep[r(s, a, s′)|s, a]
∣∣ ≤ εr (60)

and therefore cT satisfies the bound in line (24). Furthermore, because Algorithm 1 terminates when cT and762

cT−1 are identical, we have that763

cT (s) = cT (s̃) ⇐⇒
∣∣∣∣ψ̂ψψπT (s, a)− ψ̂ψψ

π

T (s̃, a)
∣∣∣∣ ≤ εψ. (61)

For this clustering, we can construct a set of matrices {F̂FF a}a∈A by averaging the predicted SFs such that764

every row765

F̂FF a(i) = 1
|{s : cT (s) = i}|

∑
s:cT (s)=i

ψ̂ψψ
π

T (s, a). (62)

For every observed state-action pair (s, a)766 ∣∣∣∣eee>cT (s)F̂FF a −ψψψ
π
T (s, a)

∣∣∣∣ =
∣∣∣∣eee>cT (s)F̂FF a − ψ̂ψψ

π

i (s, a) + δδδi(s, a)
∣∣∣∣ (by line (49)) (63)

≤
∣∣∣∣eee>cT (s)F̂FF a − ψ̂ψψ

π

i (s, a)
∣∣∣∣︸ ︷︷ ︸

≤ εψ by (62)

+
∣∣∣∣δδδi(s, a)

∣∣∣∣︸ ︷︷ ︸
≤

εψ
2 by Assmpt 1

(64)

≤ 3
2εψ (65)

and therefore the SF condition in line (25) holds as well (up to a rescaling of the εψ hyper-parameter).767

768
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Appendix C Experiments769

C.1 Reward-predictive clustering experiments770

In Section 4, the clustering algorithm was run on a fixed trajectory dataset that was generated by selecting771

actions uniformly at random. In the Column World task, a start state was sampled uniformly at random772

from the right column. In the Combination Lock task the start state was always the combination (0, 0, 0).773

MNIST images were always sampled uniformly at random from the training or test sets (depending on the774

experiment phase).775

For the Column World experiment a three layer fully connected neural network was used with ReLU acti-776

vation functions. The two hidden layers have a dimension of 1000 (the output dimension depends on the777

number of latent states and actions). In the Combination Lock experiment the ResNet18 architecture was778

used by first reshaping the state image into a stack of three digit images and then feeding this image into the779

ResNet18 model. For all experiments the weights of the ResNet18 model were initialized at random (we did780

not use a pre-trained model). The 1000 dimensional output of this model was then passed through a ReLU781

activation function and then through a linear layer. The output dimension varied depending on the quantity782

the network is trained to predict during clustering. Only the top-most linear layer was re-trained between783

different refinement iterations, the weights of the lower layers (e.g. the ResNet18 model) were re-used across784

different refinement iterations. All experiments were implemented in PyTorch (Paszke et al., 2019) and all785

neural networks were optimized using the Adam optimizer (Kingma & Ba, 2014). We always used PyTorch’s786

default network weight initialization heuristics and default values for the optimizer and only varied the learn-787

ing rate. Mini-batches were sampled by shuffling the data set at the beginning of every epoch. Table 1 lists788

the used hyper-parameter.789

Table 1: Hyper-parameter settings for both clustering algorithms

Parameter Column World Combination Lock
Batch size 32 256
Epochs, reward refinement 5 10
Epochs, SF refinement 5 20
Epochs, representation network training 5 20
Learning rate 0.005 0.001
εr 0.5 0.4
εψ 1.0 0.8
Spurious latent state filter fraction 0.01 0.0025
Number of training trajectories 1000 10000

C.2 DQN experiments790

All experiments in Figure 6 were repeated 20 times and each agent spent 100 episodes in each task. To select791

actions, an ε-greedy exploration strategy was used that selects actions with ε probability greedily (with792

respect to the Q-value predictions) and with 1 − ε actions are selected uniformly at random. During the793

first episode in each training and test task, ε = 0 and the ε was linearly increase to 1 within 10 time steps.794

The DQN agent always used a Q-network architecture consisting of the ResNet18 architecture (with random795

weight initialization), a ReLU activation function, and then a fully connected layer to predict Q-values for796

each action (as illustrated in Figure 6(b)). Table 2 outlines the hyper-parameters that were fine tuned for797

the combination lock training task. These hyper-parameters were then re-used for all DQN variants used in798

Section 4.2.799
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Table 2: Hyper-parameter sweep results for DQN on the combination lock training task.

Parameter Tested Values Best Setting (highest reward-per-step score)
Learning rate 10−4, 10−3, 10−2, 10−1 10−3

Batch size 100, 200, 500 200
Buffer size 100, 1000, 10000 10000
Exploration episodes 5, 10, 20, 50, 80 10
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