
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Lower-Left Partial AUC: An Effective and Efficient Optimization
Metric for Recommendation

Anonymous Author(s)

ABSTRACT

Optimization metrics are crucial for building recommendation sys-

tems at scale. However, an effective and efficient metric for practi-

cal use remains elusive. While Top-K ranking metrics are the gold

standard for optimization, they suffer from significant computa-

tional overhead. Alternatively, the more efficient accuracy and AUC

metrics often fall short of capturing the true targets of recommen-

dation tasks, leading to suboptimal performance. To overcome this

dilemma, we propose a new optimization metric, Lower-Left Partial

AUC (LLPAUC), which is computationally efficient like AUC but

strongly correlates with Top-K ranking metrics. Compared to AUC,

LLPAUC considers only the partial area under the ROC curve in

the Lower-Left corner to push the optimization focus on Top-K. We

provide theoretical validation of the correlation between LLPAUC

and Top-K ranking metrics and demonstrate its robustness to noisy

user feedback. We further design an efficient point-wise recommen-

dation loss to maximize LLPAUC and evaluate it on three datasets,

validating its effectiveness and robustness. The code is available at

https://anonymous.4open.science/r/LLPAUC-D286.

CCS CONCEPTS

• Information systems→ Collaborative filtering; • Comput-

ing methodologies → Machine learning.

KEYWORDS

Partial AUC; Recommendation System; Optimization Metrics

ACM Reference Format:

Anonymous Author(s). 2018. Lower-Left Partial AUC: An Effective and

Efficient Optimization Metric for Recommendation. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 14 pages. https://doi.

org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Recommender systems, core engines for Web applications, aim to

alleviate Web information overload by recommending the Top-K

most relevant items for each user [30]. They are widely adopted in

large-scale Web applications such as Amazon and TikTok [4], and

typically learned from historical user feedback using optimization

metrics related to item ranking [23]. While Top-K ranking metrics

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

(a) AUC (b) LLPAUC

(c) Intuitive Explanation

Descending Order

Emphasize Top Ranked items

��� = �� [�(�+) > �(�−)]

������ = �� [�(�+
���) > �(�−

���)]

Figure 1: (a) AUC measures the entire area under the ROC

curve; (b) LLPAUC considers the lower-left corner; (c) Com-

pared to AUC, LLPAUC only considers the ranking for top-

ranked items.

such as NDCG@K and Recall@K align well with the goals of recom-

mendation tasks, they are not suitable for practical use at scale due

to their substantial computational cost [23]. There thus remains

a need to explore effective and efficient optimization metrics for

recommender models.

Prior research pursues the target through the trade-off between

efficiency and alignment with the Top-K ranking. One approach

is to frame the recommendation task as a classification problem

and optimize the accuracy metric [5], which inherently deviates

from the Top-K ranking. Another approach optimizes the Area

Under the Receiver Operating Characteristic (ROC) curve (AUC)

metric [24] as shown in Figure 1(a), which quantifies the probability

of ranking a random positive item higher than a negative one. AUC

accounts for item ranking but treats all items equally, which may

not improve the ranking quality for Top-K items when optimized,

leading to suboptimal recommendation performance.

In this work, we propose a new optimization metric, Lower-Left

Partial AUC, designed to be more correlated with Top-K ranking

than the traditional AUCmetric. LLPAUC introduces constraints on

the upper bound of False Positive Rate (FPR) and True Positive Rate

(TPR), i.e., focusing on the partial area under the ROC curve in the

Lower-Left corner as depicted in Figure 1(b). These constraints can

narrow the ranking to only include the top-ranked items as shown

in Figure 1(c), strengthening the correlation with Top-K metrics.

Our theoretical analysis shows that LLPAUC can tighter bound

Top-K ranking metrics. Notably, the constraint on TPR can also

prevent the optimization from overfitting noise user feedback [28],

making LLPAUC more robust than AUC.

1

https://anonymous.4open.science/r/LLPAUC-D286
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Nevertheless, the optimization of LLPAUC is non-trivial due to

the non-differentiable and computationally expensive TPR and FPR

constraint operations. To address these challenges, following [25],

we reformulate the constraint operations using the average Top-

K loss [7] to make it differentiable and amenable to mini-batch

optimization. On top of these efforts, we propose a minimax point-

wise loss function, which efficiently maximizes the LLPAUC metric.

Moreover, both time complexity analysis and empirical results on

real-world datasets verify its efficiency.

The main contributions of the paper are summarized as follows:

• We propose a new optimization metric LLPAUC for recommen-

dation, and provide both theoretical and empirical evidence on

its stronger correlation with Top-K ranking metrics.

• We derive an efficient point-wise loss function for maximizing

the LLPAUC metric, which has comparable complexity as con-

ventional point-wise recommendation losses.

• We conduct extensive experiments on three datasets under both

clean and noisy settings, demonstrating the effectiveness and

robustness of optimizing LLPAUC for recommendation.

2 RELATEDWORK

In this section, we briefly introduce the optimization metrics and

loss functions for the recommendation task and review recent stud-

ies in partial AUC and its optimization.

2.1 Optimization Metrics In Recommendation

In general, there are two common types of loss functions in recom-

mender systems. Point-wise loss functions such as Binary Cross

Entropy (BCE) loss [14] cast the recommendation task into a classi-

fication problem and optimize the accuracy metric. Pair-wise loss

functions such as Bayesian Personalized Ranking (BPR) loss [24]

are optimized to maximize the AUC metric. In addition, softmax

cross-entropy loss [5] is also widely used to maximize the likelihood

estimation of classification. Despite their optimization efficiency,

these loss functions have a significant gap with the ideal Top-K

ranking metrics.

Beyond these typically employed loss functions, some approaches

aim to directly optimize Top-K rankingmetrics, such as NDCG@K [23]

and Recall@K [22, 27]. However, these methods are computation-

ally expensive and are not suitable for large-scale applications. To

tackle this issue, recent studies have proposed the pAp@K metric

[3, 15], which combines partial AUC metric and Precision@K met-

ric. The pAp@K metric represents a specific instance of LLPAUC

and offers better alignment with Top-K metrics, which lacks the-

oretical support. On the contrary, our study introduces the more

generalized LLPAUC metric and conducts theoretical analyses and

simulated experiments to establish the strong relationship between

the LLPAUC metric and Top-K metrics.

2.2 Partial AUC And Its Optimization

The concept of partial AUC was initially introduced by [18]. In

various applications, such as drug discovery and medical diagnosis,

only the partial AUC up to a low false positive rate is of inter-

est [20], which motivates the research on One-way Partial AUC

(OPAUC). [26] first discusses the correlation between OPAUC and

Top-K metrics for recommendation. Later, [31] argues that a practi-

cal classifier must simultaneously have a high TPR and a low FPR.

Hence, they propose a new metric named Two-way Partial AUC

(TPAUC), which pays attention to the upper-left head region under

the ROC curve. Then, [33] first proposes an end-to-end TPAUC op-

timization framework, which has a profound impact on subsequent

work [34]. Nevertheless, TPAUC does not align with the Top-K

ranking metrics in the recommendation. The proposed LLPAUC

metric exhibits a stronger correlation with Top-K ranking metrics.

Beyond that, LLPAUC can additionally alleviate the issue of label

noise in recommender systems.

Regarding the optimization of partial AUC, previous works [6,

16, 19, 21] rely on full-batch optimization and the approximation

of the Top (Bottom)-K ranking, leading to immeasurable biases and

inefficiency. Recently, novel end-to-end mini-batch optimization

frameworks have been proposed [33, 35, 36]. These methods can be

extended to optimize our proposed LLPAUC metric. In this work,

we utilize an unbiased mini-batch optimization scheme [25] due to

its superiority in the previous investigation.

3 PRELIMINARY

In this section, we present our task formulation and partial AUC

formulation for recommendation.

3.1 Task Formulation

The primary objective of a recommender is to learn a score function

𝑓 (𝑢, 𝑖 |𝜃) which is parameterized by 𝜃 and predicts the preference

of a user 𝑢 ∈ U on an item 𝑖 ∈ I. In this work, we only focus

on 𝑓 : U × I → [0, 1]. For convenience, we use 𝑓𝑢,𝑖 to denote

𝑓 (𝑢, 𝑖 |𝜃). This work focuses on the implicit feedback setting [32],

where positive interactions contain all items interacted with by 𝑢

(denoted by I+
𝑢 ⊆ I), and negative interactions correspond to all

non-interacted items (denoted by I−
𝑢 ⊆ I). Typically, the learning

process is formulated as:

min

𝜃

1

|U |
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗 ∈I−

𝑢

1

| I+
𝑢 | · | I−

𝑢 | 𝐿 (𝜃,𝑢, 𝑖, 𝑗), (1)

where 𝐿(𝜃,𝑢, 𝑖, 𝑗) denotes the fitting loss for the the positive item
𝑖 and negative item 𝑗 of user 𝑢. The choice of 𝐿(·) determines the

optimization metrics. For example, the BPR loss [24] can be selected

to optimize AUC, while binary cross-entropy loss [5] can be used

to optimize accuracy metrics. During serving, the recommender

generates a Top-K recommendation list for each user based on the

prediction scores. This work aims to develop optimization metrics

that are better aligned with the Top-K ranking metrics and can be

optimized efficiently.

3.2 AUC And Partial AUC

AUC is a widely considered optimization metric in the recommenda-

tion, which is defined as the region enclosed by the ROC curve [2],

as Figure 1(a) shows. Given a threshold 𝑡 and a score function 𝑓 , we

can define true positive rates (TPR) and false positive rates (FPR) as

TPR𝑢 (𝑡) = Pr(𝑓𝑢,𝑖 > 𝑡 |𝑖 ∈ I+
𝑢) and FPR𝑢 (𝑡) = Pr(𝑓𝑢,𝑗 > 𝑡 | 𝑗 ∈ I−

𝑢),
respectively. For a given value 𝜉 ∈ [0, 1], let TPR−1𝑢 (𝜉) = inf{𝑡 ∈
R,TPR𝑢 (𝑡) < 𝜉} and FPR

−1
𝑢 (𝜉) = inf{𝑡 ∈ R, FPR𝑢 (𝑡) < 𝜉}. Then,

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

according to Figure 1(a), AUC can be formulated as:

AUC =
1

|U |
∑︁
𝑢∈U

∫
1

0

TPR𝑢

[
FPR

−1
𝑢 (𝜉)

]
d𝜉 . (2)

In the recommendation, AUC quantifies the overall ranking quality

with consideration of all items in I, and we can reformulate it to a

pair-wise ranking form [11] as follows:

AUC =
1

|U |
∑︁
𝑢∈U

Pr𝑖∼I+
𝑢 , 𝑗∼I−

𝑢
[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗], (3)

where Pr𝑖∼I+
𝑢 , 𝑗∼I−

𝑢
[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗] represents the probability that a

positive item 𝑖 is ranked higher than a negative item 𝑗 for user 𝑢.

Recently, One-way Partial AUC (OPAUC) [6] is proposed to

better measure Top-K recommendation quality. Different fromAUC,

OPAUC just focuses on the area with FPR ≤ 𝛽 , which is equivalent

to just focusing on pair-wise ranking between positive items and

highly scored negative items (with prediction scores in [𝜂𝛽 , 1],
where 𝜂𝛽 satisfies Pr𝑗∼I−

𝑢
[𝑓𝑢,𝑗 ≥ 𝜂𝛽] = 𝛽). Formally,

OPAUC(𝛽) = 1

|U |
∑︁
𝑢∈U

Pr𝑖∼I+
𝑢 , 𝑗∼I−

𝑢
[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗 , 𝑓𝑢,𝑗 ≥ 𝜂𝛽] . (4)

Based on the definition, we could write a non-parametric estimator

for OPAUC(𝛽) as follows:

�
OPAUC(𝛽) = 1

|U |
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗 ∈I−

𝑢

I[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗] · I[𝑓𝑢,𝑗 ≥ 𝜂𝛽]
𝑛+𝑢 · 𝑛−𝑢

, (5)

where I(·) denotes the indicator function, 𝑛+𝑢 denotes the size of

I+
𝑢 , and 𝑛−𝑢 denotes the size of I−

𝑢 .

4 WHEN LLPAUC MEETS WITH

RECOMMENDER SYSTEM

In this paper, we introduce a novel metric called Lower-Left Partial

AUC, which differs from OPAUC by imposing constraints on both

FPR and TPR (i.e., TPR≤ 𝛼 , FPR≤ 𝛽) as shown in Figure 1(b). By

placing additional constraints on TPR, LLPAUC can more closely

approach Top-K metrics and effectively address noisy user feedback

issues. We next present the formal definition of LLPAUC and subse-

quently provide theoretical and empirical analyses to demonstrate

its effectiveness in aligning with Top-K metrics.

• LLPAUC Definition. LLPAUC(𝛼 ,𝛽), as illustrated in Figure

1(b), is defined as the area of the ROC space that lies below the
ROC curve with TPR≤ 𝛼 and FPR≤ 𝛽 . Similarly to OPAUC, for

each user 𝑢, the constraint TPR≤ 𝛼 implies only considering posi-

tive items with prediction scores in [𝜂𝛼 , 1], where 𝜂𝛼 satisfies that

Pr𝑖∼I+
𝑢
[𝑓𝑢,𝑖 ≥ 𝜂𝛼] = 𝛼 . The constraint FPR≤ 𝛽 means consider-

ing only negative items with prediction scores in [𝜂𝛽 , 1], where
𝜂𝛽 satisfies that Pr𝑗∼I−

𝑢
[𝑓𝑢,𝑗 ≥ 𝜂𝛽] = 𝛽 . These constraints will

make LLPAUC focus on measuring the ranking quality between

such highly scored positive items and negative items, and we can

accordingly formulate LLPAUC(𝛼 ,𝛽) for model 𝑓 as:

LLPAUC(𝛼, 𝛽) = 1

|U |
∑︁
𝑢∈U

Pr𝑖∼I+
𝑢 , 𝑗∼I−

𝑢
[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗 , 𝑓𝑢,𝑖 ≥ 𝜂𝛼 , 𝑓𝑢,𝑗 ≥ 𝜂𝛽] .

(6)

We can also formulate it in an empirical form as follows:�
LLPAUC(𝛼, 𝛽) = 1

|U|
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗∈I−

𝑢

I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
· I

[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛+𝑢 · 𝑛−𝑢

. (7)

It is apparent that both AUC and OPAUC are special instances of our

proposed LLPAUC metric. Specifically, we have AUC=OPAUC(1,1)

and OPAUC(𝛽) = LLPAUC(1,𝛽).

4.1 Theoretical Analysis

In this subsection, we present theoretical evidence that LLPAUC(𝛼 ,𝛽)

is highly correlated with Top-K metrics such as Recall@K and Pre-

cision@K when 𝛼 and 𝛽 are appropriately set.

Theorem 1. Suppose there are 𝑛+ positive items and 𝑛− negative
items, where 𝑛+ > 𝐾 and 𝑛− > 𝐾 . Ranking all items in descending
order according to the prediction scores obtained from any model f,
we have

1

𝑛+
⌊G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))⌋ ≤

Recall@K ≤ 1

𝑛+
⌈
Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽))

⌉
, (8)

1

𝐾
⌊G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))⌋ ≤

Precision@K ≤ 1

𝐾

⌈
Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽))

⌉
, (9)

where 𝛼 = 𝐾
𝑛+ , 𝛽 = 𝐾

𝑛− , and

G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽)) = 𝐾 −
√︃
𝐾2 − 𝑛+𝑛− × LLPAUC(𝛼, 𝛽),

Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽)) =
√︁
𝑛+𝑛− × LLPAUC(𝛼, 𝛽) .

(10)

Theorem 2. The bounds for Top-K metrics in Eq. (8) and Eq.
(9) are tighter than the bounds obtained with OPAUC in Theorem 3
of [26].

The proof of Theorem 1 and 2 can be found in Appendix A and B,

respectively. Based on the two theorems, we conclude that:

• LLPAUC(𝛼 ,𝛽) exhibits a stronger correlation with Top-𝐾 metrics

like Precision@𝐾 and Recall@𝐾 , when compared to OPAUC(𝛽)

and AUC. Therefore, optimizing LLPAUC is expected to yield

superior performance in the Top-K metrics.

• In the derived bounds, both 𝛼 = 𝐾
𝑛+ and 𝛽 = 𝐾

𝑛− decrease as

𝐾 decreases. This implies that while manipulating the value of

𝐾 , adjustments to 𝛼 and 𝛽 should be made in order to maintain

a robust correlation between LLPAUC and the corresponding

Top-K metrics.

4.2 Empirical Analysis

We now provide empirical evidence to further substantiate the

strong correlation between LLPAUC and Top-K metrics. We per-

formMonte Carlo sampling experiments via simulation. Specifically,

we assume that there are 𝑛+ positive items and 𝑛− negative items,

and take each possible permutation of all items to represent a pos-

sible ranking list. We randomly sample 10,000 permutations and

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

calculate the Pearson correlation coefficient between LLPAUC(𝛼 ,

𝛽) and Recall@K with different 𝛼 , 𝛽 , and 𝐾 . It should be noted that

the trend is consistent across simulations with different numbers

of positive and negative samples (𝑛+ and 𝑛−). Therefore, without
loss of generality, we set 𝑛+ = 1000 and 𝑛− = 50000, where 𝛼 and 𝛽

are logarithmically scaled. It is worth noting that the correlations

between Recall@K and OPAUC(𝛽) (or AUC) can be observed by

examining LLPAUC(1,𝛽) (or LLPAUC(1,1)). From the Figure 2, we

observe that:

(1) The maximum correlation coefficient is obtained when 𝛼 < 1

and 𝛽 < 1, with a value exceeding 0.8. This observation provides

empirical evidence supporting the proposition that LLPAUC(𝛼 ,

𝛽) exhibits a stronger correlation with Top-K metrics compared

to OPAUC and AUC metrics, thus validating Theorem 2.

(2) As 𝐾 decreases, the point that corresponds to the maximum

correlation coefficient shifts towards smaller values of 𝛼 and

𝛽 . This aligns with the conclusion drawn from the conditions

𝛼 = 𝐾
𝑛+ and 𝛽 = 𝐾

𝑛− in the bounds of Eq. (8), further reinforcing

the validity of our Theorem 1.

Furthermore, we observe that using both 𝛼 and 𝛽 to regulate TPR

or FPR could enhance the alignment of LLPAUC with the Top-K

ranking. Additionally, utilizing 𝛼 to regulate TPR can also increase

the robustness against noise, which we next discuss.

• LLPAUC Enhancing Robustness Against Noise. As stated

in [28], noise-positive interactions are harder to fit in the early train-

ing stage for the recommendation, which results in relatively larger

losses (lower predicted score) of noise interactions. This phenome-

non is also confirmed in our experiments detailed in Appendix H.1.

As aforementioned, the constraint TPR≤ 𝛼 implies LLPAUC only

considers positive items with prediction scores 𝑓𝑢,𝑖 ≥ 𝜂𝛼 . In this

way, lots of noise-positive interactions are filtered out, which makes

LLPAUC enhance model robustness against noise.

5 METHOD

In this section, we first introduce the loss function that enables

efficient optimization of LLPAUC. We then describe the learning

algorithm and discuss its time complexity.

5.1 Loss Function

To optimize LLPAUC during model learning, it is necessary to fur-

ther convert the LLPAUC(𝛼 ,𝛽) in Eq. (7) to a loss function that

can be efficiently optimized. This involves transforming the non-

differentiable and computationally expensive terms in Eq. (7), in-

cluding the pair-wise ranking term (I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
) and TPR and

FPR constraint terms (I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
and I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
), into low-

complexity point-wise loss functions. To this end, we replace the

pair-wise ranking termwith a decouplable surrogate loss and design

an Average Top-K Trick inspired by [25] to transform the constraint

terms. Specifically, we follow the four steps to derive our loss:

• Step 1: replacing I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
with surrogate loss function.

The non-continuous and non-differentiable I[𝑓𝑢,𝑖 > 𝑓𝑢,𝑗] in Eq. (7)

is also appeared in AUC and OPAUC formulation. To convert it, we

adopt an approach similar to that used for AUC and OPAUC, which

involves replacing it with a continuous surrogate loss ℓ (𝑓𝑢,𝑖 − 𝑓𝑢,𝑗).
Under the assumptions below, the surrogate ℓ(·) is consistent for

LLPAUC maximization [8].

Assumption 1. We assume ℓ (·) is a convex, differentiable and
monotonically decreasing function when ℓ (·) > 0, and ℓ′ (0) < 0.

Then, maximizing LLPAUC(𝛼, 𝛽) in Eq. (7) is equivalent to mini-

mizing the following loss:

min

𝜃

1

|U |
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗 ∈I−

𝑢

ℓ (𝑓𝑢,𝑖 − 𝑓𝑢,𝑗) · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛+𝑢 · 𝑛−𝑢

.

(11)

• Step 2: decoupling pair-wise loss into point-wise loss. By
setting ℓ (𝑥) = (1 − 𝑥)2, a square loss satisfying Assumption 1,

we could decouple the total loss into positive and negative item

components, resulting in a point-wise loss.

Lemma 1. (Proof in Appendix C) With ℓ (𝑥) = (1 − 𝑥)2, the
LLPAUC(𝛼, 𝛽) optimization problem in Eq. (11) is equal to

min

𝜃,(𝑎,𝑏) ∈ [0,1]2
max

𝛾 ∈[−1,1]
1

|U|
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

ℓ+ (𝑓𝑢,𝑖)I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
𝑛+𝑢

+
∑︁
𝑗∈I−

𝑢

ℓ− (𝑓𝑢,𝑗)I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛−𝑢

− 𝛾2, (12)

where 𝑎, 𝑏 and 𝛾 are learnable parameters, ℓ+ (𝑓𝑢,𝑖) = (𝑓𝑢,𝑖 − 𝑎)2 −
2(1 + 𝛾) 𝑓𝑢,𝑖 , and ℓ− (𝑓𝑢,𝑗) = (𝑓𝑢,𝑗 − 𝑏)2 + 2(1 + 𝛾) 𝑓𝑢,𝑗 .

• Step 3: reformulating TPR and FPR constraint terms using
an average top-K trick. The constraint terms I

[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
and

I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
require selecting highly scored positive and negative

items, which renders the loss in Eq. (12) still non-differentiable

and difficult to optimize. Fortunately, under certain conditions,

ℓ+ (𝑓𝑢,𝑖) is a monotonic decreasing function w.r.t 𝑓𝑢,𝑖 and ℓ− (𝑓𝑢,𝑗) is
a monotonic increasing function w.r.t 𝑓𝑢,𝑗 , as proven in Appendix D.

Then, we could make the item selection process differentiable using

the average Top-K reformulation trick introduced below.

Lemma 2. (Proof in Appendix E) Suppose ℓ+ (𝑓𝑢,𝑖) is monotonic
decreasing w.r.t. 𝑓𝑢,𝑖 and ℓ− (𝑓𝑢,𝑗) is monotonic increasing w.r.t. 𝑓𝑢,𝑗 ,
then we have∑︁
𝑖∈I+

𝑢

[
ℓ+ (𝑓𝑢,𝑖) · I[𝑓𝑢,𝑖 ≥ 𝜂𝛼]

]
= max

𝑠+∈R

∑︁
𝑖∈I+

𝑢

[
−𝛼𝑠+ − [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+

]
,∑︁

𝑗 ∈I−
𝑢

[
ℓ− (𝑓𝑢,𝑗) · I[𝑓𝑢,𝑗 ≥ 𝜂𝛽]

]
= min

𝑠− ∈R

∑︁
𝑗 ∈I−

𝑢

[
𝛽𝑠− + [ℓ− (𝑓𝑢,𝑗) − 𝑠−]+

]
,

where 𝑠+ and 𝑠− are learnable parameters, and [𝑥]+ =𝑚𝑎𝑥 (0, 𝑥).

By leveraging the average Top-K reformulation trick presented in

the lemma, we can reformulate the LLPAUC optimization problem

in Eq. (12) as follows:

min

𝜃,(𝑎,𝑏) ∈ [0,1]2
max

𝛾 ∈Ω𝛾

1

|U|
∑︁
𝑢∈U

{max

𝑠+∈R

∑︁
𝑖∈I+

𝑢

−𝛼𝑠+ − [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+
𝑛+𝑢

+ min

𝑠−∈R

∑︁
𝑗∈I−

𝑢

𝛽𝑠− + [ℓ− (𝑓𝑢,𝑗) − 𝑠−]+
𝑛−𝑢

− 𝛾2}, (13)

where Ω𝛾 = [max(−𝑎, 𝑏 − 1), 1].
• Step 4: swapping min-max operations. Solving Eq. (13)

directly is challenging since it involves a complicated min-max-min

sub-problem (it also contains a manageable min-max-max sub-

problem). However, as done in [25], we could swap the order of

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

0.0010.0050.02 0.1
0.5 0.001

0.005
0.02

0.1
0.5

0.2
0.4
0.6
0.8
1.0

Recall@20

0.0010.0050.02 0.1
0.5 0.001

0.005
0.02

0.1
0.5

0.2
0.4
0.6
0.8
1.0

Recall@100

0.0010.0050.02 0.1
0.5 0.001

0.005
0.02

0.1
0.5 Pe

ar
so

n
Co

rre
la

tio
n

Co
ef

fic
ie

nt

0.2
0.4
0.6
0.8
1.0

Recall@200

Figure 2: Pearson correlation coefficient between Recall@K and LLPAUC(𝛼, 𝛽).

the latter max𝛾 and min𝑠− operations for the min-max-min sub-

problem after applying two preprocessing steps: 1) replacing the

non-smooth function [·]+ with the softplus function [9] and 2)

adding an 𝐿2 regularizer to make Eq. (13) strongly-concave w.r.t.
𝛾 . Finally, according to the min-max theorem [1], we could merge

the consecutive min (or max) operations, converting the overall

optimization problem into a min-max form. Formally, Eq. (13) could

be reformulated as (see Appendix F for the proof):

min

{𝜃,(𝑎,𝑏) ∈ [0,1]2,𝑠−∈R}
max

{𝛾 ∈Ω𝛾 ,𝑠
+∈R}

1

|U|
∑︁
𝑢∈U

{

∑︁
𝑖∈I+

𝑢

−𝛼𝑠+ − 𝑟𝜅 (−ℓ+ (𝑓𝑢,𝑖) − 𝑠+)
𝑛+𝑢

+
∑︁
𝑗∈I−

𝑢

𝛽𝑠− + 𝑟𝜅 (ℓ− (𝑓𝑢,𝑗) − 𝑠−)
𝑛−𝑢

− (𝑤 + 1)𝛾2}, (14)

where Ω𝛾 = [max(−𝑎, 𝑏 − 1), 1], and 𝑟𝜅 denotes the softplus func-

tion. Formally, 𝑟𝜅 (𝑥) = 1

𝜅 log(1 + exp(𝜅 · 𝑥)), where 𝜅 is a hyper-

parameter. It is easy to show that 𝑟𝜅 (𝑥)
𝜅→∞−→ [𝑥]+, which leads to

asymptotically unbiased optimization.

Remark. Our final loss function in Eq. (14) is similar to the
one proposed in [25]. However, it is important to emphasize that
the primary contribution of our work is not the introduction of a
completely new optimization scheme. Rather, our main contribution
lies in extending existing optimization methods to align with our
novel LLPAUC metric while addressing challenges associated with the
coexistence of minima and maxima optimizations.

• Learning Algorithm and Time Complexity Analysis. To

solve the above minimax optimization in Eq. (14), we employ a

stochastic gradient descent ascent (SGDA) method. The detailed

algorithm can be found in Algorithm 1. Concretely, after each up-

date of the gradient, we clip the parameters to ensure that they are

within the constraints of the domain. Based on it, we derive that the

total per-iteration complexity of our method is the same as classical

loss functions such as BPR [24] and BCE [5]. The detailed derivation

process and empirical analysis can be found in Appendix G.1 and

Appendix G.2, respectively.

Algorithm 1 Stochastic Gradient Descent Ascent Algorithm

1: Input: User set U, Item set I, learning parameters

{𝜃, 𝑎, 𝑏, 𝑠+, 𝑠−, 𝛾}
2: Initialize: Randomly select {𝜃, 𝑎, 𝑏, 𝑠+, 𝑠−, 𝛾}. Let 𝜏 =

{𝜃, 𝑎, 𝑏, 𝑠−}, 𝜏 ′ = {𝛾, 𝑠+}
3: for 𝑡 = 0, 1, · · · ,𝑇 do

4: Sample a mini-batch positive interaction B+

5: Uniformly sample a mini-batch B−
𝑢 ∈ I−

𝑢 for each (𝑢, 𝑖) ∈
B+

.

6: Compute F (𝜏, 𝜏 ′) defined in Eq.(14).

7: Update 𝜏𝑡+1 = 𝜏𝑡 − 𝜂 · ∇𝜏F (𝜏, 𝜏 ′);
8: Update 𝜏 ′

𝑡+1 = 𝜏
′
𝑡 + 𝜂 · ∇𝜏 ′F (𝜏, 𝜏 ′);

9: Update 𝜏𝑡+1 = Clip(𝜏𝑡+1);
10: Update 𝜏 ′

𝑡+1 = Clip(𝜏 ′
𝑡+1);

11: end for

12: Return 𝜃𝑇+1

Table 1: The statistics of datasets.

Dataset User Item Interactions Sparsity

Adressa_clean 87,417 2,222 201,128 99.89%

Adressa_noise 122,578 3,371 201,128 99.95%

Yelp_clean 45,542 56,876 1,752,118 99.93%

Yelp_noise 45,549 57,268 1,752,118 99.93%

Amazon_clean 80,452 98,649 3,113,576 99.96%

Amazon_noise 80,458 98,657 3,113,576 99.96%

6 EXPERIMENTS

In this section, we conduct a series of experiments on three datasets

to evaluate the effectiveness and robustness of our proposed opti-

mization metric LLPAUC along with the loss function.

6.1 Experiments Setting

Dateset. We conduct experiments on three real-world datasets:

Adressa, Yelp, and Amazon-book. Our dataset selection was made

intentionally to cover a broad range of recommendation scenarios

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Performance comparison on three datasets with clean training. The best results are highlighted in bold.

MF

Method

Adressa Yelp Amazon

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BCE 0.1573±0.0251 0.0793±0.0181 0.0814±0.0004 0.0448±0.0005 0.0663±0.0006 0.0363±0.0002

BPR 0.1800±0.0204 0.0991±0.0144 0.0647±0.0005 0.0358±0.0002 0.0695±0.0001 0.0384±0.0007

SCE 0.2001±0.0031 0.1057±0.0015 0.0762±0.0007 0.0425±0.0003 0.0894±0.0012 0.0507±0.0009

CCL 0.1956±0.0110 0.0911±0.0028 0.0842±0.0002 0.0486±0.0000 0.0944±0.0001 0.0551±0.0008

DNS(𝑀 , 𝑁) 0.1877±0.0025 0.0965±0.0010 0.0856±0.0005 0.0489±0.0002 0.1012±0.0006 0.0580±0.0003

Softmax_v(𝜌 , 𝑁) 0.1849±0.0105 0.0949±0.0088 0.0824±0.0008 0.0470±0.0004 0.1024±0.0001 0.0592±0.0001

LLPAUC 0.2166±0.0022 0.1214±0.0009 0.0884±0.0005 0.0505±0.0003 0.1076±0.0007 0.0612±0.0004

LightGCN

Method

Adressa Yelp Amazon

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BCE 0.1897±0.0004 0.0935±0.0002 0.0905±0.0003 0.0517±0.0004 0.1149±0.0003 0.0660±0.0003

BPR 0.1737 ±0.0006 0.0923 ±0.0004 0.0802 ±0.0005 0.0453 ±0.0003 0.0922±0.0002 0.0520±0.0001

SCE 0.1729 ±0.0008 0.0960 ±0.0007 0.0890 ±0.0005 0.0506 ±0.0004 0.1115±0.0004 0.0640±0.0002

CCL 0.1926±0.0008 0.1014 ±0.0009 0.0915 ±0.0006 0.0528 ±0.0005 0.1007±0.0000 0.0614±0.0001

DNS(𝑀 , 𝑁) 0.1830±0.0035 0.0952 ±0.0006 0.0962 ±0.0003 0.0550 ±0.0002 0.1056±0.0004 0.0597±0.0002

Softmax_v(𝜌 , 𝑁) 0.1923±0.0107 0.1056±0.0117 0.0975±0.0001 0.0567±0.0000 0.1128±0.0007 0.0724±0.0006

LLPAUC 0.2311 ±0.0004 0.1312 ±0.0002 0.1002 ±0.0003 0.0573 ±0.0004 0.1201±0.0003 0.0684±0.0003

and accommodate different dataset sizes. Adressa is a news read-

ing dataset from Adressavisen [10], where the clicks with dwell

time < 10s are thought of as noisy interactions [28]. Yelp
1
is a

restaurant recommendation dataset with user ratings from one to

five. Amazon-book
2
is from the Amazon-Review [12] datasets,

containing user interaction ratings with extensive books. A rating

score below 3 on Yelp and Amazon-book is regarded as a noisy

interaction. The statistics of three datasets can be found in Table 1.

Training Settings. We employed two training settings, clean

training and noise training, to verify the effectiveness and robust-

ness of our proposed loss. Following [29], clean training filters out

noisy user interactions and divides the remaining data into sepa-

rate training, validation, and testing sets. In contrast, noise training

retains the same testing set as clean training yet adds noisy inter-

actions to the training and validation sets. Note that we keep the

numbers of noisy training and validation interactions on a similar

scale as clean training for a fair comparison.

Evaluation Protocols. Following existing studies [14, 24],

we adopt the full-ranking evaluation setting, where we calculate

the metrics using all negative samples. Meanwhile, we utilize two

popular metrics to evaluate models, Recall@K and NDCG@K with

𝐾 = 20, where higher scores indicate better performance.

Baselines. We compare our LLPAUC surrogate loss function

with the following representative recommender losses. 1) Bayesian

Personalized Ranking (BPR) [24] loss is a pair-wise loss func-

tion, which optimizes the AUC metric. 2) Binary Cross-Entropy

(BCE) [14] loss optimizes accuracy metric. 3) Softmax Cross-

Entropy (SCE) [5] loss is widely used for classification problems

and maximizes likelihood estimation of classification. 4) DNS(𝑀 ,

1
https://www.yelp.com/dataset/challenge.

2
https://jmcauley.ucsd.edu/data/amazon/.

𝑁) and Softmax_v(𝜌 , 𝑁) are state-of-the-art OPAUC-based loss

functions for recommendation system. For clean training, recent 5)

Cosine Contrastive Loss (CCL) [17] is included in the compari-

son. For noise training, we add strong denoising baselines 6) RCE

and TCE [28] for comparison.

Parameter Settings. For a fair comparison, we choose two

representative recommender models, Matrix Factorization (MF)

and graph neural network model LightGCN [13], as the backbones

for all loss functions. All the models are optimized by the Adam

optimizer with a learning rate of 0.001 and a batch size of 128. In the

training process, we adopt widely used negative sampling trick [17]

to improve the training efficiency. The number of negative items for

each positive item is set to 100. For the proposed LLPAUC surrogate

loss function, we tune 𝛼 and 𝛽 within the ranges of {0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9} and { 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 0.9}. All

hyperparameter searches are done relying on the validation set.

6.2 Main Results

Clean Training. Table 2 shows the performance comparison be-

tween the LLPAUC surrogate loss function with various baselines

under the clean training setting with MF and LightGCN backbones.

Several key observations can be made from the results: 1) LLPAUC

consistently achieves the best performance across all three datasets

with different backbones, outperforming the other loss functions

significantly. This demonstrates that LLPAUC strongly correlates

with Top-K metrics compared to other optimization metrics, which

is consistent with our previous theoretical analysis and indepen-

dent of the dataset and the backbones. 2) The performance of BPR is

noticeably inferior to that of DNS(𝑀 , 𝑁) and Softmax_v(𝜌 , 𝑁) on all

datasets with different backbones. Drawing upon the prior knowl-

edge that OPAUC has a stronger correlation with Top-K compared

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Performance comparison on three datasets with noise training. The best results are highlighted in bold.

MF

Method

Adressa Yelp Amazon

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BCE 0.1551±0.0025 0.0762±0.0007 0.0799±0.0014 0.0438±0.0009 0.0911±0.0009 0.0515 ±0.0009

BPR 0.1666±0.0215 0.0880±0.0139 0.0626±0.0014 0.0341±0.0009 0.0663±0.0008 0.0363±0.0006

SCE 0.1938±0.0010 0.1062±0.0007 0.0738±0.0003 0.0406±0.0009 0.0840±0.0010 0.0470±0.0011

TCE 0.1465±0.0022 0.0862±0.0007 0.0826±0.0008 0.0456±0.0005 0.0906±0.0018 0.0514±0.0011

RCE 0.1617±0.0329 0.0819±0.0221 0.0818±0.0009 0.0452±0.0005 0.0965±0.0017 0.0549±0.0015

DNS(𝑀 , 𝑁) 0.1802±0.0125 0.0847±0.0097 0.0844±0.0016 0.0477±0.0008 0.0966±0.0003 0.0543±0.0003

Softmax_v(𝜌 , 𝑁) 0.1801±0.0086 0.0922±0.0054 0.0816±0.00014 0.0452±0.0005 0.0954±0.0002 0.0536±0.0001

LLPAUC 0.2127±0.0014 0.1189±0.0009 0.0847±0.0007 0.0481±0.0001 0.0998±0.0008 0.0566±0.0006

LightGCN

Method

Adressa Yelp Amazon

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BCE 0.1844 ±0.0005 0.0874 ±0.0002 0.0888 ±0.0003 0.0497 ±0.0001 0.1095±0.0003 0.0620±0.0001

BPR 0.1661 ±0.0007 0.0914 ±0.0006 0.0800 ±0.0005 0.0448 ±0.0002 0.0884±0.0005 0.0492±0.0002

SCE 0.1732 ±0.0008 0.0936 ±0.0005 0.0916 ±0.0003 0.0514 ±0.0003 0.1068±0.0003 0.0604±0.0002

TCE 0.2184±0.0005 0.1187±0.0005 0.0923 ±0.0004 0.0522 ±0.0003 0.1085 ±0.0004 0.0611 ±0.0002

RCE 0.2204 ±0.0007 0.1219 ±0.0007 0.0941 ±0.0006 0.0536 ±0.0008 0.1126 ±0.0004 0.0639 ±0.0005

DNS(𝑀 , 𝑁) 0.1701±0.0017 0.0889 ±0.0011 0.0948 ±0.0002 0.0536 ±0.0001 0.1012±0.0002 0.0570±0.0001

Softmax_v(𝜌 , 𝑁) 0.1815±0.0047 0.0939±0.0084 0.0957±0.0002 0.0549±0.0002 0.1076±0.0003 0.0682±0.0004

LLPAUC 0.2228±0.0006 0.1231 ±0.0005 0.0981 ±0.0007 0.0558 ±0.0004 0.1165±0.0007 0.0655±0.0005

Clean Noise
Adressa

0.19
0.20
0.21

Re
ca

ll@
20

Clean Noise
Yelp

0.06

0.08

Clean Noise
Amazon_Book

0.06

0.08

0.10 LLPAUC
OPAUC
AUC

Figure 3: Ablation studies among different AUC metrics with clean training and noise training.

0.5
1.0

0.5
1.0

0.00
0.25
0.50
0.75
1.00

Recall@20

0.5
1.0

0.5
1.0

0.00
0.25
0.50
0.75
1.00

Recall@50

0.5
1.0

0.5
1.0

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0.00
0.25
0.50
0.75
1.00

Recall@100

Figure 4: Normalized Recall@K on Adressa dataset under clean training for K=20, 50 and 100.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.6 0.8
alpha

0.08

0.09

0.10

Amazon-Book

Clean
Noise

0.6 0.8
alpha

0.070

0.075

0.080

0.085

Re
ca

ll@
20

Yelp

Clean
Noise

Figure 5: Given a fix 𝛽, the hyperparameter analysis of 𝛼

in LLPAUC(𝛼, 𝛽) on different datasets under clean training

setting and noise training setting.

to AUC, we can infer that optimization metrics closely tied to Top-K

yield superior performance. This finding validates our motivation

for proposing LLPAUC. 3) In contrast to BPR and BCE, other losses

can implicitly pay more attention to hard negative items, resulting

their superior performance. In LLPAUC, we can similarly adjust

the attention to hard negative items by varying the 𝛽 parameter. 4)

LightGCN outperforms MF in most cases, highlighting its superior

strength as a representative graph neural network backbone.

Noise Training. In real-world recommender systems, the user

interactions collected through implicit feedback often contain nat-

ural false-positive interactions. To evaluate the robustness of LL-

PAUC, we compare LLPAUC with other loss functions under the

noise training setting in Table 3. Notably, we have the following

observation: 1) Across all three datasets, the model performance

under the noise training setting drops for all loss functions, when

compared to the clean training setting. This observation makes

sense because it is more challenging to predict user preference

from noisy interactions. 2) Denoising baselines like RCE and TCE

achieve better performance than other baselines across all datasets,

highlighting the importance of noise removal. 3) LLPAUC surpasses

all baselines on all datasets, verifying the strong robustness against

natural noises. The robustness of LLPAUC stems from its emphasis

on higher-ranked positive items, which can be adjusted by hyper-

parameter 𝛼 .

6.3 In-depth Analysis

6.3.1 Ablation Study. We next conduct ablation studies to assess

the significance of the TPR and FPR constraints in LLPAUC(𝛼, 𝛽).

Note that restriction on the upper bound of TPR and FPR represents

the emphasis on high-ranked positive and negative items in LL-

PAUC, respectively. As shown in Eq. (6), OPAUC(𝛽) = LLPAUC(1, 𝛽)
and AUC = LLPAUC(1, 1). Based on it, we obtain ablation loss func-
tions of AUC and OPAUC(𝛽) by setting 𝛼 and 𝛽 in Eq. (14). The

results of ablation studies are summarized in Figure 3, where we

can observe that: 1) Under clean training, LLPAUC outperforms

OPAUC, and OPAUC perform better than AUC. This verifies both

emphases on high-ranked positive items and high-ranked negative

items strengthen the correlation between LLPAUC and Top-K met-

rics. 2) When exposed to noisy interactions, LLPAUC demonstrates

relatively minor performance degradation compared to OPAUC and

AUC, showcasing its robustness against noise. This is attributed to

the emphasis on high-ranked positive items and avoidance of noise

samples with low ranks in LLPAUC.

6.3.2 Hyperparameter Analysis. To verify the impact of the con-

straints introduced by LLPAUC for recommender systems, we

conduct the grid search experiments on hyperparameters 𝛼 and

𝛽 and present the corresponding Recall@K performance in Fig-

ure 4. To facilitate a better comparison, we report the normal-

ized Recall@K metrics. Concretely, we have Normalized_Recall =
Recall−Min_Recall

Max_Recall−Min_Recall
. From the figure, we observe that: 1) The max-

imum performance is obtained with 𝛼 < 1 and 𝛽 < 1. Recall

that AUC=LLPAUC(1,1)) and OPAUC=LLPAUC(1,𝛽). Hence, this

demonstrates both restrictions of 𝛼 and 𝛽 of LLPAUC enhance its

correlation with the Top-K metric, which is consistent with our

Theorem 2 and empirical analysis in Section 4.2. 2) As K in Re-

call@K decreases, we should shift towards a smaller value of 𝛼 and

𝛽 to achieve the best performance, empirically corroborating the

bound conditions in our Theorem 1. This means we could empha-

size different Top-K performances for different K by adjusting 𝛼

and 𝛽 in LLPAUC.

6.3.3 Analysis of Robustness. In this subsection, we conduct exper-

iments to analyze the impact of hyperparameter 𝛼 on the robust-

ness of the model. Given a fix 𝛽 , Figure 5 shows how the LLPAUC

model’s performance changes w.r.t 𝛼 under clean training and noise

training setting. Since the natural noise in the Adressa dataset is

relatively weak, we do not include it in our comparison. From the

figure, we observe that: 1) Since the noisy interactions impede the

model’s ability to learn the true interests of users, the performance

in the noise training setting consistently falls below that of the

clean training setting. This is consistent with our observation in

Table 2. 2) Given a fix 𝛽 , the maximum Recall@20 performance of

LLPAUC is achieved with 𝛼 = 0.9 under clean training settings,

and 𝛼 = 0.8 under noisy training settings. This means under the

noise training setting, we should choose smaller 𝛼 to enhance the

robustness. Since 𝛼 constrains TPR in LLPAUC as stated in Eq. (6),

we conclude that the emphasis on high-ranked positive items could

enhance the model robustness.

7 CONCLUSION AND FUTUREWORK

In this work, we presented a novel optimization metric for recom-

mender systems, LLPAUC, to alleviate the dilemma of balancing

effectiveness and computational efficiency in previous optimization

metrics. In particular, LLPAUC is efficient like AUC while strongly

correlating with Top-K ranking metrics, leading to superior Top-K

recommendation performance. To optimize LLPAUC, we developed

a point-wise loss function and conducted experiments on three

datasets, demonstrating its efficiency, effectiveness, and robustness

under clean and noise settings.

Future work could shed light on the following limitations of

our work: 1) Only focusing on high-ranked positive samples like

LLPAUC is not sufficient to fully mitigate the impact of natural

noise. 2) The TPR and FPR constraint terms in LLPAUC could be

more efficiently reformulated.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge

University Press.

[2] Andrew P Bradley. 1997. The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern recognition 30, 7 (1997),

1145–1159.

[3] Amar Budhiraja, Gaurush Hiranandani, Navya Yarrabelly, Ayush Choure,

Oluwasanmi Koyejo, and Prateek Jain. 2020. Rich-Item Recommendations for

Rich-Users via GCNN: Exploiting Dynamic and Static Side Information. CoRR
abs/2001.10495 (2020).

[4] Jiawei Chen, Hande Dong, XiangWang, Fuli Feng, MengWang, and Xiangnan He.

2020. Bias and Debias in Recommender System: A Survey and Future Directions.

CoRR abs/2010.03240 (2020).

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for

YouTube Recommendations. In RecSys. ACM, 191–198.

[6] Lori E. Dodd and Margaret S. Pepe. 2003. Partial AUC Estimation and Regression.

Biometrics 59, 3 (2003), 614–623.
[7] Yanbo Fan, Siwei Lyu, Yiming Ying, and Bao-Gang Hu. 2017. Learning with

Average Top-k Loss. In NIPS. 497–505.
[8] Wei Gao and Zhi-Hua Zhou. 2015. On the Consistency of AUC Pairwise Opti-

mization. In IJCAI. AAAI Press, 939–945.
[9] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier

Neural Networks. In AISTATS (JMLR Proceedings, Vol. 15). JMLR.org, 315–323.

[10] Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng Su. 2017.

The Adressa dataset for news recommendation. In WI. ACM, 1042–1048.

[11] J.A. Hanley and Barbara Mcneil. 1982. The Meaning and Use of the Area Under a

Receiver Operating Characteristic (ROC) Curve. Radiology 143 (05 1982), 29–36.

https://doi.org/10.1148/radiology.143.1.7063747

[12] Ruining He and Julian J. McAuley. 2016. Ups and Downs: Modeling the Visual

Evolution of Fashion Trends with One-Class Collaborative Filtering. In WWW.

ACM, 507–517.

[13] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. In SIGIR. ACM, 639–648.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In WWW. ACM, 173–182.

[15] Gaurush Hiranandani, Warut Vijitbenjaronk, Sanmi Koyejo, and Prateek Jain.

2020. Optimization and Analysis of the pAp@kMetric for Recommender Systems.

In ICML (Proceedings of Machine Learning Research, Vol. 119). PMLR, 4260–4270.

[16] Abhishek Kumar, Harikrishna Narasimhan, and Andrew Cotter. 2021. Implicit

rate-constrained optimization of non-decomposable objectives. In ICML (Pro-
ceedings of Machine Learning Research, Vol. 139). PMLR, 5861–5871.

[17] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,

and Xiuqiang He. 2021. SimpleX: A Simple and Strong Baseline for Collaborative

Filtering. In CIKM. ACM, 1243–1252.

[18] Donna Katzman McClish. 1989. Analyzing a Portion of the ROC Curve.

Medical Decision Making 9, 3 (1989), 190–195. https://doi.org/10.1177/

0272989X8900900307 PMID: 2668680.

[19] Harikrishna Narasimhan and Shivani Agarwal. 2013. A Structural SVM Based Ap-

proach for Optimizing Partial AUC. In ICML (1) (JMLR Workshop and Conference
Proceedings, Vol. 28). JMLR.org, 516–524.

[20] Harikrishna Narasimhan and Shivani Agarwal. 2013. SVM
pAUC

tight
: a new

support vector method for optimizing partial AUC based on a tight convex upper

bound. In KDD. ACM, 167–175.

[21] Harikrishna Narasimhan and Shivani Agarwal. 2017. Support Vector Algorithms

for Optimizing the Partial Area under the ROC Curve. Neural Computation 29, 7

(07 2017), 1919–1963.

[22] Yash Patel, Giorgos Tolias, and Jirí Matas. 2022. Recall@k Surrogate Loss with

Large Batches and Similarity Mixup. In CVPR. IEEE, 7492–7501.
[23] Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Lijun Zhang, and Tianbao Yang. 2022.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning

with Provable Convergence. In ICML (Proceedings of Machine Learning Research,
Vol. 162). PMLR, 18122–18152.

[24] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback.

In UAI. AUAI Press, 452–461.
[25] Huiyang Shao, Qianqian Xu, Zhiyong Yang, Shilong Bao, and Qingming Huang.

2022. Asymptotically Unbiased Instance-wise Regularized Partial AUC Optimiza-

tion: Theory and Algorithm. In NeurIPS.
[26] Wentao Shi, Jiawei Chen, Fuli Feng, Jizhi Zhang, Junkang Wu, Chongming Gao,

and Xiangnan He. 2023. On the Theories Behind Hard Negative Sampling for

Recommendation. InWWW. ACM, 812–822.

[27] Yongxiang Tang, Wentao Bai, Guilin Li, Xialong Liu, and Yu Zhang. 2022.

CROLoss: Towards a Customizable Loss for Retrieval Models in Recommender

Systems. In CIKM. ACM, 1916–1924.

[28] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2021.

Denoising Implicit Feedback for Recommendation. In WSDM. ACM, 373–381.

[29] Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua.

2023. Diffusion Recommender Model. CoRR abs/2304.04971 (2023).

[30] Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2023. A Survey

on Accuracy-Oriented Neural Recommendation: From Collaborative Filtering to

Information-Rich Recommendation. IEEE Trans. Knowl. Data Eng. 35, 5 (2023),
4425–4445.

[31] Hanfang Yang, Kun Lu, Xiang Lyu, and Feifang Hu. 2019. Two-way partial AUC

and its properties. Statistical Methods in Medical Research 28, 1 (2019), 184–195.

[32] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.

HOP-rec: high-order proximity for implicit recommendation. In Proceedings of
the 12th ACM conference on recommender systems. 140–144.

[33] Zhiyong Yang, Qianqian Xu, Shilong Bao, Yuan He, Xiaochun Cao, and Qingming

Huang. 2021. When All We Need is a Piece of the Pie: A Generic Framework

for Optimizing Two-way Partial AUC. In ICML (Proceedings of Machine Learning
Research, Vol. 139). PMLR, 11820–11829.

[34] Zhiyong Yang, Qianqian Xu, Shilong Bao, Yuan He, Xiaochun Cao, and Qingming

Huang. 2023. Optimizing Two-Way Partial AUCWith an End-to-End Framework.

IEEE Trans. Pattern Anal. Mach. Intell. 45, 8 (2023), 10228–10246.
[35] Yao Yao, Qihang Lin, and Tianbao Yang. 2022. Large-scale Optimization of Partial

AUC in a Range of False Positive Rates. In NeurIPS.
[36] Dixian Zhu, Gang Li, BokunWang, XiaodongWu, and Tianbao Yang. 2022. When

AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex

Convergence Guarantee. In ICML (Proceedings of Machine Learning Research,
Vol. 162). PMLR, 27548–27573.

9

https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1177/0272989X8900900307
https://doi.org/10.1177/0272989X8900900307

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A PROOF OF THEOREM 1

Reminder of Theorem 1 Suppose there are 𝑛+ positive items and

𝑛− negative items, where 𝑛+ > 𝐾 and 𝑛− > 𝐾 . Ranking all items in

descending order according to the prediction scores obtained from

any model f, we have

1

𝑛+
⌊G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))⌋ ≤

Recall@K ≤ 1

𝑛+
⌈
Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽))

⌉
, (15)

1

𝐾
⌊G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))⌋ ≤

Precision@K ≤ 1

𝐾

⌈
Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽))

⌉
, (16)

where 𝛼 = 𝐾
𝑛+ , 𝛽 = 𝐾

𝑛− , and

G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽)) = 𝐾 −
√︃
𝐾2 − 𝑛+𝑛− × LLPAUC(𝛼, 𝛽),

Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽)) =
√︁
𝑛+𝑛− × LLPAUC(𝛼, 𝛽) .

(17)

Proof. For any given model 𝑓 , we suppose there are 𝑖 (𝑖 < 𝐾)
positive items among the Top-K items ranked according to 𝑓 . Then

we have Recall@𝐾 = 𝑖/𝑛+. Under this condition, easily, we can

find out the case which has the maximum value of LLPAUC(𝛼, 𝛽),
where 𝛼 = 𝐾

𝑛+ and 𝛽 = 𝐾
𝑛− :

+ · · · +︸ ︷︷ ︸
𝑖

− · · · −︸ ︷︷ ︸
𝐾−𝑖

| + · · · +︸ ︷︷ ︸
𝐾−𝑖

− · · · −︸ ︷︷ ︸
𝑖

.

Hence, as stated in Eq. (7), the maximum value of LLPAUC(𝛼, 𝛽) is
−𝑖2+2𝐾𝑖
𝑛+𝑛− . Given this, we can deduce themaximumvalue of Recall@𝐾

when LLPAUC(𝛼, 𝛽) takes a certain value. Note that 𝑖 can only be

integers, we derive that:

1

𝑛+

⌊
𝐾 −

√︃
𝐾2 − 𝑛+𝑛− × LLPAUC(𝛼, 𝛽)

⌋
≤ Recall@𝐾.

Similarly, the case that has the minimum value of LLPAUC(𝛼, 𝛽) is
:

− · · · −︸ ︷︷ ︸
𝐾−𝑖

+ · · · +︸ ︷︷ ︸
𝑖

| − · · · −︸ ︷︷ ︸
𝑖

+ · · · +︸ ︷︷ ︸
𝐾−𝑖

.

Based on Eq. (7), the minimum value of LLAUC(𝛼, 𝛽) is 𝑖2

𝑛+𝑛− . Simi-

larly, we derive theminimumvalue of Recall@𝐾 when LLPAUC(𝛼, 𝛽)
takes a certain value:

Recall@𝐾 ≤ 1

𝑛+

⌈√︁
𝑛+𝑛− × LLPAUC(𝛼, 𝛽)

⌉
.

These complete the proof of Eq. (8). Noticing that for a given per-

mutation, Precision@𝐾 = 𝑛+
𝐾

· Recall@𝐾 , where 𝑛+
𝐾

is a constant.

Hence, we can easily derive the Eq. (9). □

B PROOF OF THEOREM 2

Reminder of Theorem 2 The bounds for Top-K metrics in Eq. (8)

and Eq. (9) are tighter than the bounds obtained with OPAUC in

Theorem 3 of [26].

Proof. Note that the bounds obtained with OPAUC(𝛽) in [26]

is:

1

𝑛+
⌊H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽))⌋ ≤

Recall@𝐾 ≤ 1

𝑛+
⌈
Hℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽))

⌉
, , (18)

1

𝐾
⌊H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽))⌋ ≤

Precision@𝐾 ≤ 1

𝐾

⌈
Hℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽))

⌉
, (19)

where 𝛽 = 𝐾
𝑛− and

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) =
𝑛+ +𝐾 −

√︁
(𝑛+ +𝐾)2 − 4𝑛+𝑛− × OPAUC(𝛽)

2

,

Hℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽)) =
√︁
𝑛+𝑛− × OPAUC(𝛽) .

(20)

Without loss of generality, we consider the bounds of Recall@𝐾

first. To prove that Eq. (8) is a tighter bound than Eq. (18), we

need prove that H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) ≤ G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))
andHℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽)) ≥ Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽)).

Step 1: Proof ofHℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽)) ≥ Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽))
For any ranking list ranked by model 𝑓 , we calculate LLPAUC(𝛼, 𝛽)
and OPAUC(𝛽) as following:

LLPAUC(𝛼, 𝛽) =
∑︁
𝑖∈I+

𝑢

∑︁
𝑗∈I−

𝑢

I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
· I

[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛+ · 𝑛− ,

OPAUC(𝛽) =
∑︁
𝑖∈I+

𝑢

∑︁
𝑗∈I−

𝑢

I
[
𝑓𝑢,𝑖 > 𝑓𝑢,𝑗

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛+ · 𝑛− .

where

𝜂𝛼 = argmin𝜂∈R
[
E𝑖∼I+

𝑢
[I(𝑓𝑢,𝑖 ≥ 𝜂)] = 𝛼

]
,

and

𝜂𝛽 = argmin𝜂∈R
[
E𝑗∼I−

𝑢
[I(𝑓𝑢,𝑗 ≥ 𝜂)] = 𝛽

]
.

When 𝛼 = 𝐾
𝑛+ and 𝛽 = 𝐾

𝑛− , LLPAUC(𝛼, 𝛽) and OPAUC(𝛽) can be

reformulated as:

LLPAUC(𝛼, 𝛽) =
𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=1

I
[
𝑓𝑢,[𝑖] > 𝑓𝑢,[𝑗]

]
𝑛+𝑛−

,

OPAUC(𝛽) =
𝑛+𝑢∑︁
𝑖=1

𝐾∑︁
𝑗=1

I
[
𝑓𝑢,𝑖 > 𝑓𝑢,[𝑗]

]
𝑛+𝑛−

,

where 𝑓𝑢,[𝑖] denotes the 𝑖-th largest score among positive items

and 𝑓𝑢,[𝑗] denotes the 𝑗-th largest score among negative items.

This means LLPAUC(𝛼, 𝛽) only considers K positive items with

the largest prediction scores and K negative items with the largest

prediction scores. And OPAUC(𝛽) considers all positive items and

K negative items with the largest prediction scores.

We categorize and discuss the possible scenarios of the ranking

list. In the first scenario, the number of positive samples appearing

in descending order reaches K first:

· · · +︸︷︷︸
𝐾 positive ,𝑆 negative

| · · ·︸︷︷︸
(𝑛+−𝐾) positive,(𝑛−−𝑆) negative

,

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

where 𝑆 < 𝐾 . Andwe could observe that LLPAUC(𝛼, 𝛽) ≤ OPAUC(𝛽).
Whenwe keep LLPAUC(𝛼, 𝛽) fixed, themaximumvalue of OPAUC(𝛽)
can be achieved as following:

· · · +︸︷︷︸
𝐾 positive ,𝑆 negative

| + · · · +︸ ︷︷ ︸
(𝑛+−𝐾) positive

− · · · −︸ ︷︷ ︸
(𝑛−−𝑆) negative

,

Hence, in the first scenario, we can conclude that

LLPAUC(𝛼, 𝛽) ≤ OPAUC(𝛽) ≤ LLPAUC(𝛼, 𝛽)+ (𝑛
+ − 𝐾) · (𝑛− − 𝑆)

𝑛+𝑛−
.

(21)

Easily, we could further obtain that

LLPAUC(𝛼, 𝛽) ≥ 𝐾 (𝑛− − 𝑆)
𝑛+𝑛−

. (22)

In the second scenario, the number of negative samples appearing

in descending order reaches K first:

· · · −︸︷︷︸
𝑆 ′ positive ,𝐾 negative

| · · ·︸︷︷︸
(𝑛+−𝑆 ′) positive,(𝑛−−𝐾) negative

.

And we could find that:

OPAUC(𝛽) = LLPAUC(𝛼, 𝛽). (23)

Taking into account the two scenarios discussed above, we can

easily conclude that OPAUC(𝛽) ≥ LLPAUC(𝛼, 𝛽), which results in

Hℎ𝑖𝑔ℎ𝑒𝑟 (OPAUC(𝛽)) ≥ Gℎ𝑖𝑔ℎ𝑒𝑟 (LLPAUC(𝛼, 𝛽)).
Step 2: Proof ofH𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) ≤ G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))

First, we have

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) − G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))

=
𝑛+ + 𝐾 −

√︁
(𝑛+ + 𝐾)2 − 4𝑛+𝑛−OPAUC(𝛽)

2

−

(𝐾 −
√︃
𝐾2 − 𝑛+𝑛−LLPAUC(𝛼, 𝛽))

=
1

2

[(𝑛+ − 𝐾) − (
√︃
(𝑛+ + 𝐾)2 − 4𝑛+𝑛−OPAUC(𝛽)−

2

√︃
𝐾2 − 𝑛+𝑛−LLPAUC(𝛼, 𝛽))] (24)

Similar to Step 1, we consider two scenarios. In the first scenario,

using Eq. (21), we have:

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) − G𝑙𝑜𝑤𝑒𝑟 (LLPAUC(𝛼, 𝛽))

≤ 1

2

{(𝑛+ − 𝐾) + [4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽)]
1

2 − [(𝑛+ − 𝐾)2+

4𝐾 (𝑛+ − 𝐾) + 4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽) − 4(𝑛+ − 𝐾) · (𝑛− − 𝑆)]
1

2 }
(25)

It’s notable that when

√
𝐴2 +

√
𝐶2 −

√
𝐴2 + 𝐵2 +𝐶2 ≤ 0, we have

2

√
𝐴2𝐶2 − 𝐵2 ≤ 0. Hence, when 𝐴2 = (𝑁 + − 𝐾)2, 𝐵2 = 4𝐾 (𝑛+ −

𝐾) −4(𝑛+−𝐾) · (𝑛− −𝑆),𝐶2 = 4𝐾2−4𝑛+𝑛−LLPAUC(𝛼, 𝛽), to prove

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) − G𝑙𝑜𝑤𝑒𝑟 (LLPAUC) ≤ 0, (26)

we need to prove that

2

√︃
(𝑛+ − 𝐾)2 · (4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽))

− 4(𝑛+ − 𝐾) (𝑛− − 𝑆 − 𝐾) ≤ 0. (27)

It’s equal to prove that:

𝐾2 − 𝑛+𝑛−LLPAUC(𝛼, 𝛽) − (𝑛− − 𝑆 − 𝐾)2 ≤ 0. (28)

⇐⇒ 𝑛+𝑛−LLPAUC(𝛼, 𝛽) ≥ −(𝑛− − 𝑆)2 + 2(𝑛− − 𝑆)𝐾 (29)

Since we already have LLPAUC(𝛼, 𝛽) ≥ 𝐾 (𝑛−𝑢 −𝑆)
𝑛+𝑛− in Eq. (22), we

can easily complete the proof in the first scenario.

For the second scenario, Eq. (24) can be reformulated as

1

2

{(𝑛+ − 𝐾) +
√︃
4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽)

−
√︃
(𝑛+ − 𝐾)2 + 4𝐾 (𝑛+ − 𝐾) + 4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽)

(30)

Similarly, to prove

H𝑙𝑜𝑤𝑒𝑟 (OPAUC(𝛽)) − G𝑙𝑜𝑤𝑒𝑟 (LLPAUC) ≤ 0, (31)

we need to prove that

2

√︃
(𝑛+ − 𝐾)2 · (4𝐾2 − 4𝑛+𝑛−LLPAUC(𝛼, 𝛽)) + 4(𝑛+ − 𝐾)𝐾 ≤ 0.

(32)

It’s equal to prove that:

𝐾2 − 𝑛+𝑛−LLPAUC(𝛼, 𝛽) + 𝐾2 ≤ 0. (33)

⇐⇒ LLPAUC(𝛼, 𝛽) ≥ 0 (34)

This is trivially true, thus we have completed the proof for the

second scenario. □

C PROOF OF LEMMA 1

Reminder of Lemma 1With ℓ (𝑥) = (1 − 𝑥)2, the LLPAUC(𝛼, 𝛽)
optimization problem in Eq. (11) is equal to

min

𝜃,(𝑎,𝑏) ∈ [0,1]2
max

𝛾 ∈[−1,1]
1

|U|
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

ℓ+ (𝑓𝑢,𝑖)I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼 (𝑓)

]
𝑛+𝑢

+
∑︁
𝑗∈I−

𝑢

ℓ− (𝑓𝑢,𝑗)I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽 (𝑓)

]
𝑛−𝑢

− 𝛾2, (35)

where 𝑎, 𝑏 and 𝛾 are learnable parameters, ℓ+ (𝑓𝑢,𝑖) = (𝑓𝑢,𝑖 − 𝑎)2 −
2(1 + 𝛾) 𝑓𝑢,𝑖 , and ℓ− (𝑓𝑢,𝑗) = (𝑓𝑢,𝑗 − 𝑏)2 + 2(1 + 𝛾) 𝑓𝑢,𝑗 .

Proof. We extend the proof of Theorem 7 in [25] to LLPAUC.

Given ℓ (𝑥) = (1 − 𝑥)2, we could reformulate Eq. (11) as:

min

𝜃

1

|U|
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗∈I−

𝑢

(1 − 𝑓𝑢,𝑖 + 𝑓𝑢,𝑗)2 · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
𝑛+𝑢 · 𝑛−𝑢

=min

𝜃

1

|U|
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

∑︁
𝑗∈I−

𝑢

1

𝑛+𝑢𝑛
−
𝑢

{I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
+ 𝑓 2𝑢,𝑖 · I

[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
+ 𝑓 2𝑢,𝑗 · I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
− 2𝑓𝑢,𝑖 I

[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
+ 2𝑓𝑢,𝑗 I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
− 2𝑓𝑢,𝑖 𝑓𝑢,𝑗 I

[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
}.

(36)

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Note that

1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

𝑓 2𝑢,𝑖 · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
− { 1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

𝑓𝑢,𝑖 · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
}2

= min

𝑎∈[0,1]
1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

(𝑓𝑢,𝑖 − 𝑎)2 ·
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
, (37)

where the optimal value of a is:

𝑎∗ =
1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

𝑓𝑢,𝑖 I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
. (38)

Likewise,

1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

𝑓 2𝑢,𝑗 · I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
− { 1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

𝑓𝑢,𝑗 · I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
}2

= min

𝑏∈[0,1]
1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

(𝑓𝑢,𝑗 − 𝑏)2 ·
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
, (39)

where the optimal value of b is:

𝑏∗ =
1

𝑛−𝑢

∑︁
𝑖∈I−

𝑢

𝑓𝑢,𝑗 I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
. (40)

Then, We can substitute Eq. (37) and Eq. (39) into Eq. (36) to obtain:

min

𝜃,𝑎,𝑏∈[0,1]2
1

|U|
∑︁
𝑢∈U

{𝛼𝛽 + 1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

(𝑓𝑢,𝑖 − 𝑎)2 ·
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
+

1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

𝑓𝑢,𝑖 · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
2

+ 1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

(𝑓𝑢,𝑗 − 𝑏)2 ·
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
+

1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

𝑓𝑢,𝑗 · I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
2

− 1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

2𝑓𝑢,𝑖 I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
+ 1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

2𝑓𝑢,𝑗 I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
− 1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

2𝑓𝑢,𝑖 𝑓𝑢,𝑗 I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
}. (41)

It’s notable that
1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

𝑓𝑢,𝑖 · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
2

+

1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

𝑓𝑢,𝑗 · I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
2

− 1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

2𝑓𝑢,𝑖 𝑓𝑢,𝑗 I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
· I

[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
=


1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

𝑓𝑢,𝑖 · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
− 1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

𝑓𝑢,𝑗 · I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]
2

=max

𝛾

2𝛾 ©­«
1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

𝑓𝑢,𝑖 · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
− 1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

𝑓𝑢,𝑗 · I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽

]ª®¬ − 𝛾2
 ,

(42)

where the maximization is achieved by:

𝛾∗ =
1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

𝑓𝑢,𝑖 · I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼

]
. (43)

Easily, 𝛾∗ = 𝑏∗ − 𝑎∗. Then we can constrain 𝛾 with range [−1, 1]
and get equivalent formulation of Eq. (11):

min

𝜃,(𝑎,𝑏) ∈ [0,1]2
max

𝛾 ∈[−1,1]
1

|U|
∑︁
𝑢∈U

∑︁
𝑖∈I+

𝑢

ℓ+ (𝑓𝑢,𝑖)I
[
𝑓𝑢,𝑖 ≥ 𝜂𝛼 (𝑓)

]
𝑛+𝑢

+
∑︁
𝑗∈I−

𝑢

ℓ− (𝑓𝑢,𝑗)I
[
𝑓𝑢,𝑗 ≥ 𝜂𝛽 (𝑓)

]
𝑛−𝑢

− 𝛾2, (44)

where 𝑎, 𝑏 and 𝛾 are learnable parameters, ℓ+ (𝑓𝑢,𝑖) = (𝑓𝑢,𝑖 − 𝑎)2 −
2(1 + 𝛾) 𝑓𝑢,𝑖 , and ℓ− (𝑓𝑢,𝑗) = (𝑓𝑢,𝑗 − 𝑏)2 + 2(1 + 𝛾) 𝑓𝑢,𝑗 .

□

D PROOF OF FUNCTION

In this subsection, we utilize the following lemmas to substantiate

our argument.

Lemma 3. If 𝛾 ∈ [𝑏 − 1, 1], ℓ− (𝑓𝑢,𝑗) = (𝑓𝑢,𝑗 − 𝑏)2 + 2(1 + 𝛾) 𝑓𝑢,𝑗
is an increasing function w.r.t 𝑓𝑢,𝑗 , when 𝑗 ∈ I−

𝑢 and 𝑓𝑢,𝑗 ∈ [0, 1].

The proof can be found in Appendix F.2.2 in [25].

Lemma 4. If 𝛾 ∈ [max{𝑏 − 1,−𝑎}, 1], ℓ+ (𝑓𝑢,𝑖) = (𝑓𝑢,𝑖 − 𝑎)2 −
2(1 + 𝛾) 𝑓𝑢,𝑖 is an increasing function w.r.t 𝑓𝑢,𝑖 , when 𝑖 ∈ I+

𝑢 and
𝑓𝑢,𝑖 ∈ [0, 1].

The proof can be found in Appendix F.3.2 in [25].

E PROOF OF LEMMA 2

Reminder of Lemma 2 Suppose ℓ+ (𝑓𝑢,𝑖) is monotonic decreasing

w.r.t. 𝑓𝑢,𝑖 and ℓ− (𝑓𝑢,𝑗) is monotonic increasing w.r.t. 𝑓𝑢,𝑗 , then we

have∑︁
𝑖∈I+

𝑢

[
ℓ+ (𝑓𝑢,𝑖) · I[𝑓𝑢,𝑖 ≥ 𝜂𝛼]

]
= max

𝑠+∈R

∑︁
𝑖∈I+

𝑢

[
−𝛼𝑠+ − [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+

]
,

(45)∑︁
𝑗∈I−

𝑢

[
ℓ− (𝑓𝑢,𝑗) · I[𝑓𝑢,𝑗 ≥ 𝜂𝛽]

]
= min

𝑠−∈R

∑︁
𝑗∈I−

𝑢

[
𝛽𝑠− + [ℓ− (𝑓𝑢,𝑗) − 𝑠−]+

]
,

(46)

where 𝑠+ and 𝑠− are learnable parameters, and [𝑥]+ = 𝑚𝑎𝑥 (0, 𝑥)
for any 𝑥 .

Proof. For Eq. (46), the proof can be found in Lemma 1 in [7].

To prove Eq. (45), we first denote that (−ℓ+ (𝑓𝑢,𝑖)) is monotonic

increasing w.r.t 𝑓𝑢,𝑖 and then obtain:∑︁
𝑖∈I+

𝑢

[
ℓ+ (𝑓𝑢,𝑖) · I[𝑓𝑢,𝑖 ≥ 𝜂𝛼]

]
= −

∑︁
𝑖∈I+

𝑢

[
(−ℓ+ (𝑓𝑢,𝑖)) · I[𝑓𝑢,𝑖 ≥ 𝜂𝛼]

]
= − min

𝑠+∈R

∑︁
𝑖∈I+

𝑢

[
𝛼𝑠+ + [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+

]
=max

𝑠+∈R

∑︁
𝑖∈I+

𝑢

[
−𝛼𝑠+ − [−ℓ+ (𝑓𝑢,𝑖) − 𝑠+]+

]
.

(47)

This completes our proof of Eq. (45). Notably that in the final line

of derivation, we employ −min 𝑓 (𝑥) = max−𝑓 (𝑥). □

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

F PROOF OF MIN-MAX SWAP

Proof. To swap max𝛾 and min𝑠− , according to the min-max

theorem [1], we need to check the second part of Eq. (13) strongly-

concave w.r.t. 𝛾 . Concretely, the function is:

F2 =
∑︁
𝑗∈I−

𝑢

𝛽𝑠− + 1

𝜅 (log(1 + exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))))
𝑛−𝑢

− (𝑤 +1)𝛾2,

(48)

where ℓ− (𝑓𝑢,𝑗) = (𝑓𝑢,𝑗 − 𝑏)2 + 2(1 + 𝛾) 𝑓𝑢,𝑗 . Hence,
𝜕F2
𝜕𝛾

=
1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))
1 + exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))

· 2𝑓𝑢,𝑗 − 2𝑤𝛾, (49)

𝜕2F2
𝜕𝛾2

=
1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))[
1 + exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))

]
2
· 4𝜅𝑓 2𝑢,𝑗 − 2𝑤.

(50)

Since 𝑓𝑢,𝑗 ∈ [0, 1] and exp(𝜅 · (ℓ− (𝑓𝑢,𝑗)−𝑠−))
[1+exp(𝜅 · (ℓ− (𝑓𝑢,𝑗)−𝑠−))]2

∈ (0, 1), with suffi-

ciently large𝑤 > 4𝜅 , we have
𝜕2F2
𝜕𝛾2

< 0. Therefore, with sufficiently

large𝑤 , Eq. (13) is strongly-concave w.r.t. 𝛾 . □

G METHOD

G.1 Time Complexity

For time complexity analysis, we need to consider both forward

and backward computational complexity. As stated in Eq. (14), the

function is:

F =
1

|U|
∑︁
𝑢∈U

{
∑︁
𝑖∈I+

𝑢

−𝛼𝑠+ − 𝑟𝜅 (−ℓ+ (𝑓𝑢,𝑖) − 𝑠+)
𝑛+𝑢

+
∑︁
𝑗∈I−

𝑢

𝛽𝑠− + 𝑟𝜅 (ℓ− (𝑓𝑢,𝑗) − 𝑠−)
𝑛−𝑢

− (𝑤 + 1)𝛾2}. (51)

Hence, the complexity of forward propagation is 𝑂 (|B+ | |B− |𝑑2),
where 𝑑 is the embedding size of user and item, B+

and B+
is the

mini batch size defined in Algorithm 1. For backward propagation,

we first derive the gradient of the function F :

𝜕F
𝜕𝜃

=
1

|U|
∑︁
𝑢∈U

{ 1

𝑛+𝑢

∑︁
𝑖∈I+

𝑢

exp(𝜅 · (−ℓ+ (𝑓𝑢,𝑖) − 𝑠+))
1 + exp(𝜅 · (−ℓ+ (𝑓𝑢,𝑖) − 𝑠+))

·
𝜕ℓ+ (𝑓𝑢,𝑖)
𝜕𝜃

+ 1

𝑛−𝑢

∑︁
𝑗∈I−

𝑢

exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))
1 + exp(𝜅 · (ℓ− (𝑓𝑢,𝑗) − 𝑠−))

·
𝜕ℓ− (𝑓𝑢,𝑗)

𝜕𝜃
}.

(52)

Easily, we obtain the complexity of Eq. (52) is 𝑂 (|B+ | |B− |𝑑2). The
partial derivatives of the function with respect to other parameters

have a similar form and the same computational complexity. Hence,

the total complexity per iteration is 𝑂 (|B+ | |B− |𝑑2), which is the

same with other baseline models such as BPR loss and BCE loss.

G.2 Experiments Analysis

In this subsection, we show the plots of training convergence on

three different datasets under clean training setting in Figure 6. We

compare the proposed LLPAUC with three representative baselines:

BPR, BCE, and SCE. Easily, we could observe our approach shows

a comparable or even faster convergence rate compared to the

baseline methods.

H EXPERIMENTS

The statistics of three public datasets under clean training and noise

training are shown in Table 1, which vary in scale and sparsity.

Note that we keep the numbers of noise training and validation

interactions on a similar scale as clean training for a fair comparison.

Therefore, in the noise training setting, the datasets have more

users and items compared to clean training but have the same

interactions.

H.1 Noise Interaction Loss Analysis

In this subsection, we analyze the changes in the average loss of

noisy interactions and clean interactions w.r.t iterations during the

training process of BPR model under noisy training settings. As

shown in Figure 7, we observe that during the early stages of model

training, the mean loss for noisy interactions is consistently greater

than the mean loss for clean interactions. Hence, the emphasis on

high-ranked positive items could filter out noise interactions, which

makes LLPAUC enhance model robustness against noise.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

0 5 10 15
Epoch

0.05

0.10

0.15

0.20

0.25

Re
ca

ll@
20

Adressa

BPR
SCE
BCE
LLPAUC

0 10 20 30 40 50
Epoch

0.025

0.050

0.075

0.100

0.125
Yelp

BPR
SCE
BCE
LLPAUC

0 10 20 30 40 50
Epoch

0.02

0.04

0.06

0.08

0.10

Amazon-Book

BPR
Softmax
BCE
TPAUC

Figure 6: Convergence of different models on three datasets under clean training setting.

0 1000
Iteration

0.0

0.2

0.4

0.6

Lo
ss

Adressa
mean_loss_clean
mean_loss_noise

0 5000 10000 15000
Iteration

0.2

0.4

0.6

Yelp
mean_loss_clean
mean_loss_noise

0 10000 20000 30000
Iteration

0.2

0.4

0.6

Amazon-Book
mean_loss_clean
mean_loss_noise

Figure 7: Under noise training setting, the mean loss of noisy interactions and clean interactions w.r.t iterations on three

datasets.

14

	Abstract
	1 Introduction
	2 Related Work
	2.1 Optimization Metrics In Recommendation
	2.2 Partial AUC And Its Optimization

	3 Preliminary
	3.1 Task Formulation
	3.2 AUC And Partial AUC

	4 When LLPAUC Meets with Recommender System
	4.1 Theoretical Analysis
	4.2 Empirical Analysis

	5 Method
	5.1 Loss Function

	6 Experiments
	6.1 Experiments Setting
	6.2 Main Results
	6.3 In-depth Analysis

	7 Conclusion and Future Work
	References
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Lemma 1
	D Proof of Function
	E Proof of Lemma 2
	F Proof of Min-Max Swap
	G Method
	G.1 Time Complexity
	G.2 Experiments Analysis

	H Experiments
	H.1 Noise Interaction Loss Analysis

