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ABSTRACT

Recent point tracking methods have made great strides in recovering the trajecto-
ries of any point (especially key points) in long video sequences associated with
large motions. However, the spatial and temporal granularity of point trajecto-
ries remains constrained by limited motion estimation accuracy and video frame
rate. Leveraging the high temporal resolution motion sensitivity of event cameras,
we introduce event data for the first time to recover spatially dense and tempo-
rally continuous trajectories of any point at any time. Specifically, we define the
dense and continuous point trajectory representation as estimating multiple control
points of curves for each pixel and model the movement of sparse events triggered
along continuous point trajectories. Building on this, we propose a novel multi-
frame iterative streaming framework that first estimates local inter-frame motion
representations from two consecutive frames and inter-frame events, then aggre-
gates them into a global long-term motion representation to utilize input video and
event data with an arbitrary number of frames. Extensive experiments on simu-
lated and real-world data demonstrate the significant improvement of our frame-
work over state-of-the-art methods and the crucial role of introducing events for
modeling continuous point trajectories.

1 INTRODUCTION

Estimating fine-grained motion from input videos is a crucial task in computer vision with
widespread applications in downstream tasks such as video compression (Agustsson et al., 2020),
video frame interpolation (Xu et al., 2019; Jin et al., 2023), motion segmentation (Bielski & Favaro,
2022; Meunier et al., 2023), and dynamic scene reconstruction (Guo et al., 2023). However, most
early studies are based on two-frame optical flow (Ilg et al., 2017; Teed & Deng, 2020). Although
these flow-based methods can model the spatially dense motion of each pixel within adjacent frames,
they suffer from the challenge of capturing the long-term dynamic changes across video sequences.
With the proposal of the tracking any point (TAP) task (Doersch et al., 2022; Harley et al., 2022),
using sparse points as query indexes to estimate pointwise long-term motions also draws attention.
Despite significant progress, these point tracking methods are limited by data acquisition and mo-
tion modeling when dealing with complex dynamics. The sparse and independent representation of
pointwise motion remains inherently incompatible with the spatially dense representation of video,
and the temporally frame rate of input video is constrained by conventional shutter cameras. Conse-
quently, accurate estimation of fine-grained spatio-temporally dense and continuous motion remains
a challenging and worthwhile research problem.

The event camera is a new bio-inspired vision sensor (Gallego et al., 2022). Unlike traditional
shutter cameras that expose the entire image at fixed frame rates, each pixel in an event camera in-
dependently and asynchronously detects brightness changes at the microsecond level. This unique
design makes event cameras inherently sensitive to motion changes in the scene, leading to their
successful application in many motion-related tasks such as optical flow estimation (Zhu et al.,
2019; Hagenaars et al., 2021), motion segmentation (Zhou et al., 2021; Huang et al., 2023), feature
tracking (Messikommer et al., 2023), object tracking (Zhu et al., 2023), and video frame interpo-
lation (Tulyakov et al., 2021). However, events are typically triggered only in regions with motion
contours and rich textures, making it challenging to comprehensively perceive dense spatial motion.
As a result, integrating the advantages of event cameras and traditional image cameras has become a
new direction (Pan et al., 2020; Zhang et al., 2023). In this paper, we propose to adopt event data as
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an auxiliary input to reconstruct point trajectories from input video and event sequences, modeling
the comprehensive fine-grained spatial-temporal dense and continuous motion of the scene.

The introduction of event cameras offers the potential to model continuous motion from the data per-
spective. However, a new representation instead of optical flow is needed to parametrically associate
the temporal dense properties of event data and model continuous long-term motion. BFlow (Gehrig
et al., 2024) proposes to learn trajectories represented by Bézier curves from events, but is limited
to motion between fixed frames and cannot adapt to longer sequences. CPFlow (Luo et al., 2023)
proposes to learn control points represented as B-spline curves from a fixed number of image slices.
Although continuous motion can be successfully modeled using these curve representations in nor-
malized timescales, their fixed number of control points made it hard to handle complex dynamics
and varying lengths of video sequences. Based on the curve representation, we propose a new
streaming pipeline for accumulating multiple local curves to address these limitations.

In this paper, we present the first event-aided point tracking framework for recovering spatially dense
and temporally continuous point trajectories from input videos and event sequences. Specifically,
we first propose a new point trajectory representation with parametric curves that accumulate mul-
tiple local curves by learning offsets to adapt to multi-frame input videos at any length. We then
design a new framework for combining two frames with events to simultaneously estimate dense
point curve trajectories, and extend to multi-frame streaming. In addition, since most of the exist-
ing datasets lack continuous inter-frame motion annotations, we establish the association between
continuous curve trajectory and event triggering as a part of the learning objective for continuous
motion modeling. Extensive experiments on both simulated and real-world data demonstrate that
the proposed framework significantly outperforms state-of-the-art methods. Particularly, our abla-
tion studies illustrate the effectiveness of the proposed global aggregation and highlight the crucial
role of incorporating event data in continuous trajectory modeling.

Our main contributions are summarized as follows:

• We introduce a new setup that, for the first time, enables long-term spatially dense and tempo-
rally continuous point tracking by integrating the strengths of both images and events.

• We present a novel global curve representation of continuous point trajectories through multi-
frame aggregation, establishing a connection between event triggering and continuous motion.

• We propose a novel event-aided iterative streaming framework that accumulates the local tracks
from two frames with inter-frame events, resulting in global, long-term dense and continuous
trajectories through iterative temporal aggregation of global motion representation.

2 RELATED WORKS

2.1 IMAGE-BASED QUERY POINT TRACKING

The goal of point tracking is to recover the corresponding positions of query points in each frame,
which has attracted wide attention with the proposal of the TAP benchmark and the baseline
model TAPNet (Doersch et al., 2022). PIPs (Harley et al., 2022) proposes to extract independent
point representation for 8-frame tracking through occlusion handling, then PIPs++ (Zheng et al.,
2023) extends to long-term trajectories and Sun et al. (2024) extend to self-supervised refinement.
TAPIR (Doersch et al., 2023) proposes a two-stage matching framework that fuses TAPNet and PIPs,
and then BootsTAPIR (Doersch et al., 2024) adds self-supervised training on real data to improve
robustness. Unlike these methods that track only one query at a time, CoTracker (Karaev et al.,
2023) and Context-PIPs (Weikang et al., 2023) use additional tracks and pixel features as context
information to improve global tracking performance. SpatialTracker (Xiao et al., 2024) introduces
the triplane representation with depth prior to group pixels in 3D space. DINOTracker (Tumanyan
et al., 2024) combines test-time self-supervised training based on the powerful pre-trained DINO-
ViT (Oquab et al., 2024) model to achieve fine-grained tracking of a single video. When applying
the above methods of tracking from query points to achieve dense tracking, points need to be pro-
cessed individually or in batches, which brings computational hurdles and limits their downstream
applications (Moing et al., 2024). Therefore, the current trend in point tracking tasks is to track
dense points across the entire image in a single run, aiming to enhance neighborhood relationships
while reducing computational requirements.
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2.2 IMAGE-BASED DENSE POINT TRACKING

Recent studies turn to tracking every point within a frame simultaneously. OmniMotion (Wang et al.,
2023) performs pixel-wise tracking via bijections between local and canonical space to maintain the
global consistency of the motion, and then FastOmniTrack (Song et al., 2024) and DecoMotion (Li
& Liu, 2024) improves from the perspectives of computational efficiency and object motion decom-
position. CPFlow (Luo et al., 2023) proposes to estimate spatio-temporally dense motion curves,
but it can only input 4 images and needs pre-sampling when inputting long-duration videos. Ac-
cFlow (Wu et al., 2023) proposes the forward and backward aggregation pipeline, extending inter-
frame dense optical flow to multi-frame long ranges. MFT (Neoral et al., 2024) select chaining
multi-frame candidates and FlowTrack (Cho et al., 2024) automatically apply error compensation in
instances of tracking inaccuracies. DOT (Moing et al., 2024) unifies point tracking and optical flow,
upgrading a small set of tracks to a dense flow field between arbitrary frames in a video. However,
these methods are limited by the frame rate bottleneck of the input video and struggle to accurately
model challenging dynamics. In this work, we propose to introduce continuous event data into the
input video for spatially dense and temporally continuous point tracking.

2.3 EVENT-BASED MOTION ESTIMATION

Thanks to the motion-sensitive nature of event cameras, extensive motion estimation studies in re-
cent years have highlighted their potential applications to challenging dynamics. The feature track-
ing methods (Gehrig et al., 2020b; Messikommer et al., 2023; Li et al., 2024; Wang et al., 2024)
show the benefits of event cameras for low-latency tracking, but can only track sparse, specific tex-
tured locations. Recently estimating optical flow from events has become mainstream. Using only
sparse event data (Zhu et al., 2019; Gehrig et al., 2021b; Luo et al., 2024) allows to estimate satisfac-
tory dense optical flow, while introducing data from other sensors such as images (Wan et al., 2022;
Zhou et al., 2024a) and point clouds (Wan et al., 2023; Zhou et al., 2024b) achieves significant per-
formance gains. BFlow (Gehrig et al., 2024) and MotionPriorCMax (Hamann et al., 2024) exploits
the continuous property of event data to estimate parametric Bézier trajectories, but can only esti-
mate motion within a fixed consecutive frame interval and cannot be directly adapted to long-term
sequences. Recently, FE-TAP (Liu et al., 2024) proposes to recover high-frame-rate point tracking
from a fixed number of images and events based on TAPVid (Doersch et al., 2022), but does not take
full advantage of the continuous nature of events for continuous trajectory modeling. We propose
to combine the advantages of images and events to enable temporally continuous point tracking by
modeling long-term global motion with an arbitrary number of frames.

3 METHOD

Overview. To the best of our knowledge, we present a first framework that recovers dense and
continuous point trajectories from a video with corresponding event sequences. Our framework
consists of four parts: 1) A parametric multi-frame continuous point trajectories representation;
2) An event triggered along the point trajectories model; 3) A two-frame basis motion estimation
model; 4) A multi-frame motion aggregation and streaming framework.

Problem Formulation. A conventional shutter camera captures a video with Nv frames of images
{Ii}Nv

i=1 at a fixed frame rate. An event camera generates an unbounded event sequence {ei}Ne
i=1

with independent pixels, where Ne is the number of events. Each event ei = {xi, ti, pi} consists
of the pixel position xi = (x, y), timestamp ti with microsecond precision, and the brightness
change polarity pi in logarithmic domain. Our goal is to combine the video and events to recover
the spatially dense and temporally continuous trajectories T1→Nv of all points starting from any
instance of the first frame.

3.1 MOTION MODEL

Trajectory representation. Previous point tracking methods typically estimate some two-channel
motion vectors in the xy directions, which is the optical flow when representing dense point trajec-
tories (Cho et al., 2024; Moing et al., 2024). To learn the curve trajectory from the deep network, we
instead learn the multiple control points of the curve (Luo et al., 2023). Specifically, we choose the
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B-spline curve as our curve representation, which is defined by Nc control points {Pi}Nc
i=1 and basis

functions {Bi,p(t)}Nc
i=1 with degree p. The continuous point trajectory T(t) represented by b-spline

curve in time variable t is a collection of piecewise polynomial functions T(t) =
∑Nc

i=1 Bi,p(t)Pi.
More details are provided in the appendix. Similar to optical flow, each pixel has an independent
curve with estimated control points denoted as P ∈ RNc×2×H×W , where H ×W is the image size.
This realizes the learnable motion modeling purpose of dense and continuous point trajectories T
with parametric curve representation.

Multi-frame global trajectories accumulation. Existing parametric motion modeling methods
are fixed in the number of frames they can handle, e.g., BFlow (Gehrig et al., 2024) is limited to
between two frames, and CPFlow (Luo et al., 2023) struggles to benefit from more than 4 frame
inputs, resulting in suboptimal long-term trajectory modeling. Inspired by the practice of multi-
frame optical flow accumulation (Wu et al., 2023; Neoral et al., 2024), we propose a new multi-frame
curve trajectories accumulation strategy to handle long-term videos with arbitrary frames.

Our accumulation framework works on a streaming pipeline, where the previous global trajectory
T1→t with (t − 1) × Nc control points has been accumulated from the previous t − 1 local tra-
jectories {Ti→i+1}t−1

i=1 when processing the t-th step. For an estimated t-th local trajectory as
Tt→t+1 with Nc control points from time t to t + 1, a simple approach is to directly accumu-
late the initial current global trajectory Tinit

1→t+1 with t × Nc control points from time 1 to t + 1

by Tinit
1→t+1(x) =

[
T1→t(x),Warp (Tt→t+1,T1→t) (x)

]
. [, ] combines the control points of two

sub-curves and creates a more complex curve. However, there are two problems for the backward
warping operation Warp: 1) It suffers from numerical error as integer sampling with floating-point
coordinates is required, i.e., for warping vectors from b to a, Warp(a,b)(x) = a(x + b(x)), x is
integer coordinates but not x+ b(x). 2) Some points may be occluded at time t, resulting in failing
to find the corresponding points.

Our framework iteratively maintains and learns to integrate from a global motion representation
Mglobal

1→t in the streaming process. For the first numerical problem, we estimate a start point offsets
Ot ∈ R2×H×W learned from Mglobal

1→t and normalized to the range [−1, 1]. Sampling compensation
is achieved by adding this offset directly during warping. For the second occlusion problem, we
introduce an occlusion solving strategy for occluded pixels. We additionally estimate the visibility
map V1→t of each point from the initial frame to the t-th frame as well as the trajectory updates
∆Tt. Aggregation is based on a warp with offset when the point x is visible. When point x is
occluded, a learnable module Fusion is introduced to regress the point’s coarse motion trajectory in
t− > t+ 1 from Mglobal

1→t . Finally, the trajectory updates ∆Tt are used to uniformly refine the final
fine global trajectory. Our aggregation process can be modeled as follows:

T1→t+1(x) =

{[
T1→t(x),Warp (Tt→t+1,T1→t,Ot) (x) + ∆Tt

]
if V1→t(x)=1,[

T1→t(x),Fusion(Tt→t+1,T1→t,M
global
1→t )(x) + ∆Tt

]
if V1→t(x)=0.

(1)

Events along the trajectory. Following the contrast maximization framework (Gallego et al.,
2018), we assume that events are triggered along with the pixel motion trajectories at the mov-
ing boundary. For a motion trajectory T starting from pixel x1 at time t1, the generated events
generated event’s coordinates satisfy the trajectory, i.e., x1 = T(t1),xi − x1 = T(ti)− T(t1). We
can thus use the motion trajectory to transform the following events back to time t1:

ei
.
= {xi, ti, pi} → ei

′ .
= {x′

i = Warp(xi;T(ti)− T(t1)), t1, pi} . (2)

Assuming the trajectory T is accurate, this process transforms the event ei to the starting point
position x1 of the trajectory, i.e., x1 = Warp(xi;T(ti − t1)). Based on the correlated motion
modeling of events and point trajectories, we build additional self-supervised training objectives in
Sec. 3.3 to alleviate the lack of continuous trajectory annotations in the training datasets.

3.2 FRAMEWORK

Two-frame basis model. The two-frame basis model is designed to recover inter-frame short-
term trajectories Tt→t+1 from the encoded features of input two consecutive frames Ft, Ft+1 and

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

iterative updates

global control points 

trajectory
accumulation

global motion
aggregation 

2) global motion accumulation ( times)

local correlation 
construction

local control points 

control points 
estimation

trajectory combinations

1) local motion estimation ( times)

global motion
aggregation 

initial frame

current frame

inter-frame
events

next frame

(visualized as optical flow)
inter-frame local trajectories

(visualized as dense point grids)

…

…

…

(visualized as query point curves)
long-term global trajectories

…

Figure 1: Our proposed event-aided dense and continuous point tracking framework consists of two
main steps. 1) Local motion estimation: estimating short-term curve trajectories with Nc control
points from two consecutive images and inter-frame events, while concurrently updating the local
motion representation. 2) Global motion accumulation: iteratively fusing the latest local motion
representation with the previous global motion representation in a streaming manner for aggregating
the latest global motion representation. Subsequently, the global long-term curve trajectories with
t×Nc control points are optimized on trajectory combinations.

inter-frame events Et→t+1. This process involves three key components: feature extraction, lo-
cal correlation construction, and control points estimation. In the feature extraction phase, we first
convert the raw event data into a dense grid representation (Rebecq et al., 2019), followed by the
feature encoding of the two-frame images and event grid, respectively. Subsequently, we construct
the initial correlations between two frame features by matrix multiplication (Teed & Deng, 2020),
and augment them with event features. By leveraging the local correlations and events, we learn
the local motion representation M local

t→t+1 by a motion extractor which allows recovery of the dense
trajectories Tt→t+1 by a trajectory decoder. Specifically, the trajectory decoder estimates the coor-
dinates of Nc control points Pt→t+1 and a single-channel visibility map {V}t→t+1, which essential
for establishing multi-frame global trajectories accumulation in Eq. 1.

Global motion aggregation module. In the context of processing a video comprising Nv frames,
the two-frame basis model described above needs to be streamed sequentially Nv − 1 times yield-
ing local motion representations and local curve trajectories. To facilitate the accumulation of
global multi-frame trajectories according to Sec. 3.1, the established global motion representation
ht−1

.
= Mglobal

1→t from the previous t-frames is utilized as the query, while the current local motion
representation hl

t
.
= Mlocal

t→t+1 serves as the key and value. We first perform the linear projections
and compute the cross-attention:

CA(ht−1,h
l
t,WQ,K,V )=softmax

(
QKT

√
dk

)
V =softmax

(
(WQ ·ht−1)(WK ·hl

t)
T

√
dk

)
(WV ·hl

t), (3)

where dk is the channel size, · is the linear projection and WQ,K,V are the corresponding
weights. We then conduct iterative fusion based on the gated activation unit (GRU) (Cho et al.,
2014), where the update gate is zt = sigmoid(CA(ht−1,h

l
t,WQ,K,V )), the reset gate is rt =

sigmoid(CA(ht−1,h
l
t,W

′
Q,K,V )), and the hidden state is st = tanh(CA(rt⊙ht−1,h

l
t,W

′′
Q,K,V )),

⊙ is the element-wise multiplication. The superscript of WQ,K,V denotes the different projection
weights taken independently in each attention calculation. Finally, we iteratively update the current
global motion representation in the feature level by:

Mglobal
1→t+1

.
= ht = (1− zt)⊙ ht−1 + zt ⊙ st. (4)

The simple and effective temporal aggregation we take is naturally compatible with the streaming
pipeline, and also verifies its effectiveness in ablation experiments compared to previous solutions.
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Multi-frame iterative streaming framework. As depicted in Fig. 1, our framework iteratively
processes the input video and event data through local motion estimation and global motion ac-
cumulation. We aggregate the local motion representations from each frame interval to the global
motion representation at the feature level through the above global aggregation module in Sec. 3.2.
Subsequently, the multi-frame trajectory accumulation step described in Sec. 3.1 sequentially com-
bines each inter-frame short-term curve into a global long-term motion trajectory at the trajectory
level, providing the dense and continuous point tracking representation as the model output. On the
right side of Fig. 1, local motion is visualized with dense optical flow, and global continuous motion
is represented with deformations of dense point grid and curve trajectories of sparse query points.

3.3 OBJECTIVE

Temporal discrete trajectory supervision. The available point tracking datasets provide only
temporally discrete point tracks with no ground truth for continuous inter-frame trajectories. Fol-
lowing DOT (Moing et al., 2024), we first adopt supervised losses based on the temporal discrete
ground-truth point tracks provided by the dataset, which consists of the L1 loss Ltraj for sampled
discrete trajectory prediction and the binary cross-entropy loss Lvis for visibility map.

We then randomly select different frame intervals for augmented training. Local correlation is not
constructed when the frames are skipped, therefore the corresponding event features are taken into
streaming for iteratively updating the global motion representation. There are cases where some
images are not used as input when the frame interval is greater than 1, but the corresponding input
events and ground-truth tracks can be regarded as inter-frame motion contributing to curve trajectory
learning. Such sampling-based augmented training ensures the model learning through diverse long-
and short-term motions, capitalizing on the continuity of events to estimate continuous trajectories.

Event consistency with continuous trajectory. Since events are usually generated along motion
trajectories, we propose to leverage the continuous property of events for self-supervised continuous
trajectory learning in conjunction with discrete supervision of point trajectories. However, events
are computationally intensive to process one by one and are generally accompanied by noise. We
thus first introduce event temporal chunking to process events in batches within a fixed duration to
reduce the noise impact and computation. For the b-th interval of B chunks, we isolate the events
within that b-th chunk and aggregate them after warping them to tb as Eq. 2. For each chunk,
the events then are summed into an image of warped events (IWE) (Gallego et al., 2018), i.e.,
EB(xi, b)

.
=

∑Ne

i=1 N (xi;x
′
i, σ

2), where tb ≤ ti < tb+1 and σ is the neighboring range which is
usually chosen as 1 pixel. This IWE essentially counts the number of warped events e′i per pixel and
per chunk. The chunking intervals are chosen randomly to exploit the continuous nature of events.
Thus we can establish consistent connections between event chunks and continuous trajectories:

Lec =

Ω∑
x

B∑
b1 ̸=b2

ρ
(
EB(x, b1),Warp

(
EB(x, b2);T(tb2)−T(tb1)

))
, (5)

where ρ is the consistency measure by L1 norm. Since events are spatially sparse, we only establish
connections with the dense trajectories at locations with valid events, which are denoted as Ω.

Image consistency with discrete trajectory. Similar to the unsupervised optical flow task (Liu
et al., 2020), we can also establish the discrete consistency of the motion trajectory with the images
at discrete times, to compensate for the spatial sparsity issue of ground-truth point tracks in the
training data. In addition, in our sampling-based augmented training, skipped images can be used
as additional continuity training objectives.

For the accumulated continuous global trajectory T1→t, we sample the the discrete optical flow
Fi→j from Ii to Ij via timestamps. Similar to Eq. 5, the consistency of images can be modeled as:

Lic =
∑
x

Nv∑
i ̸=j

ρ
(
Ii(x),Warp

(
Ik(x);Fi→j(x)

))
. (6)

Total objective. The total training objective is the weighted combination of the above objectives,
i.e., L = Ltraj + λ1Lvis + λ2Lec + λ3Lic, λ are manually hyperparameters. Our ablations verify
that joint self-supervised training can compensate training for the temporal continuity of trajectories.
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Table 1: Quantitative results of dense evaluation on the CVO test and extended set (Wu et al., 2023).

Method CVO (Clean) CVO (Final) CVO (Extended)
EPEall/vis/occ ↓ OA ↑ EPEall/vis/occ ↓ OA ↑ EPEall/vis/occ ↓ OA ↑

Q
ue

ry PIPs++ 9.05 / 6.62 / 21.5 33.3 9.49 / 7.06 / 22.0 32.7 18.4 / 10.0 / 32.1 58.7
TAPIR 3.80 / 1.49 / 14.7 73.5 4.19 / 1.86 / 15.3 72.4 19.8 / 4.74 / 42.5 68.4

CoTracker 1.51 / 0.88 / 4.57 75.5 1.52 / 0.93 / 4.38 75.3 5.20 / 3.84 / 7.70 70.4

D
en

se

GMA 2.42 / 1.38 / 7.14 60.5 2.57 / 1.52 / 7.22 59.7 21.8 / 15.7 / 32.8 65.6
MFT 2.91 / 1.39 / 9.93 19.4 3.16 / 1.56 / 10.3 19.5 21.4 / 9.20 / 41.8 37.6

AccFlow 1.69 / 1.08 / 4.70 48.1 1.73 / 1.15 / 4.63 47.5 36.7 / 28.1 / 52.9 36.5
DOT 1.32 / 0.74 / 4.12 80.4 1.38 / 0.82 / 4.10 80.2 5.07 / 3.67 / 7.34 71.0

EDCPT (Ours) 1.23 / 0.71 / 3.83 82.1 1.31 / 0.76 / 3.86 81.9 4.88 / 3.44 / 7.46 71.9

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets. We follow the common evaluation practices in CoTracker (Karaev et al., 2023) and
DOT (Moing et al., 2024). The training set MOVI-F (Greff et al., 2022) contains over 10,000 videos
with 7 frames each. The CVO test (Wu et al., 2023) and extended (Moing et al., 2024) sets contain
∼500 videos with 7 and 48 frames respectively. The real test TAP-DAVIS benchmark (Doersch
et al., 2022) includes 30 videos with ∼100 frames each. We simulate events for these two using the
vid2e (Gehrig et al., 2020a) simulator. For the dense CVO dataset, we report the dense absolute error
EPEall/vis/occ for all, visible and occluded points, as well as occlusion accuracy OA for estimated
visible mask computed with IoU metric. For the sparse TAP-DAVIS dataset, we follow TAPNet (Do-
ersch et al., 2022) by reporting average Jaccard AJ, position accuracy <δxavg, and occlusion accuracy
OA. Additionally, we adopt the real-captured event-based optical flow dataset DSEC (Gehrig et al.,
2021a;b) to verify the adaptation capacity, which contains 18 videos with ∼700 frames each.

Implementation details. We implement our model with PyTorch, train it on MOVI-F and directly
evaluate it on CVO and TAP-DAVIS datasets. Following DOT (Moing et al., 2024), our model is
trained for 500k steps on 4 × NVIDIA L40 48G GPUs, using the Adam optimizer and OneCy-
cle learning rate decay with a maximum of 10−4. We also adopt the strategy of upgrading from
multi-frame sparse to dense tracking in DOT to ensure temporal consistency. Unless specifically
mentioned, we evaluate our models and competitors on the same PC with a single RTX 3090 GPU.
We choose 3 frames as training samples, along with the random selection of up to 10 frames in
different frame intervals. The loss hyperparameters are set to 1.0, 0.1, 0.1.

4.2 EXPERIMENTS WITH STANDARD SPATIALLY DENSE POINT TRACKING

Performance on CVO and TAP-DAVIS benchmarks. We first conduct a comprehensive evalu-
ation of two commonly used datasets for point tracking tasks. Consistent with DOT (Moing et al.,
2024), we report the quantitative results of the spatially dense optical flow from the last to the first
frame of CVO (Wu et al., 2023) dataset in Table 1. Our proposed new EDCPT framework archives
significant performance improvements, whether comparing methods that only predict the partial
Query points or directly estimating spatially Dense trajectories within a single inference. Particu-
larly, we achieve 0.19 EPEall and 0.9 OA improvements on the extended set of 476 videos with 48
frames when compared to the recent SOTA method DOT (Moing et al., 2024).

In contrast, the real TAP-DAVIS dataset (Doersch et al., 2022) only provides ground-truth trajecto-
ries for selected query points. As a result, we only sparsely evaluate these points for a fair compari-
son despite the output trajectories of our model and some compared methods are spatially dense. The
quantitative results in Table 2 demonstrate the superiority of our framework, as evidenced by out-
performing the existing state-of-the-art methods DOT (Moing et al., 2024) and SpatialTracker (Xiao
et al., 2024) with up to 2.7 AJ and 1.1 OA. We also perform qualitative visual comparisons in Fig. 2
and in the Appendix. Combining the above quantitative and qualitative comparisons with previ-
ous image-based methods, the new attempts of incorporating events by our framework significantly
improve the accuracy of standard dense point tracking tasks.
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Input images with GT query points: frame 0, 7, 19, 27

DOT: frame 7, 19, 27Init Coords

CoTracker: frame 7, 19, 27

Ours: frame 7, 19, 27

Input events: frame 0, 3, 7, 13, 19, 23, 27

Figure 2: Visual comparisons of long-term dense point tracking on the motocross-jump sequence of
TAP-DAVIS (Doersch et al., 2022), with the ground-truth sparse query points of input images.

Table 2: Quantitative results on the TAP-DAVIS (Doersch et al., 2022) point tracking benchmark.

Method Source DAVIS (First) DAVIS (Strided)
AJ ↑ <δxavg ↑ OA ↑ AJ ↑ <δxavg ↑ OA ↑

Q
ue

ry

TAP-Net NeurIPS’22 33.0 48.6 78.8 38.4 53.1 82.3
Context-PIPs NeurIPS’23 42.7 60.3 79.5 48.9 64.0 83.4

TAPIR ICCV’23 56.2 70.0 86.5 61.3 73.6 88.8
CoTracker arXiv’23 61.1 74.6 89.1 63.5 79.8 87.8

SpatialTracker CVPR’24 61.1 76.3 89.5 - - -

D
en

se

CPFlow NeurIPS’23 9.6 14.6 - - - -
MFT WACV’24 47.3 66.8 77.8 56.1 70.8 86.9

DecoMotion ECCV’24 53.0 69.9 84.2 60.2 74.4 87.2
DinoTracker ECCV’24 - - - 62.3 78.2 87.5
FlowTrack CVPR’24 - - - 63.2 76.3 89.2

DOT CVPR’24 61.6 75.5 89.5 66.7 80.6 90.4
EDCPT (Ours) - 63.8 76.3 90.6 67.5 80.5 91.1

Table 3: Quantitative results on the DSEC optical flow leaderboard (Gehrig et al., 2021a). SSL
denotes self-supervised learning and SL denotes supervised learning.

Type Method Input Source EPE ↓ AE ↓ %Out ↓

SSL
EV-FlowNet (Zhu et al., 2019) Events CVPR’19 3.86 - 31.45

Taming (Paredes-Vallés et al., 2023) Events ICCV’23 2.33 10.56 17.77
MPCMax (Hamann et al., 2024) Events ECCV’24 3.20 8.53 15.21

SL

E-RAFT (Gehrig et al., 2021b) Events 3DV’21 0.79 2.85 2.68
TMA (Liu et al., 2023) Events ICCV’23 0.74 2.68 2.30
IDNet (Wu et al., 2024) Events ICRA’24 0.72 2.72 2.04

BFlow (Gehrig et al., 2024) Events TPAMI’24 0.75 2.68 2.44
BFlow (Gehrig et al., 2024) Images + Events TPAMI’24 0.69 2.42 1.88

EDCPT (Ours) Images + Events - 0.64 2.17 1.64

Performance on DSEC benchmark. We further conduct experiments on the DSEC bench-
mark (Gehrig et al., 2021b) with real captured event data. Unlike the long-term global tracking goal
of the point tracking task, the DSEC online leaderboard1 only measures the optical flow between
two consecutive frames. We therefore finetune the local motion estimation on the DSEC training

1https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark
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Table 4: Continuous point tracking evaluation results on the CVO extended set (Moing et al., 2024)
and TAP-DAVIS dataset (Doersch et al., 2022).

Method CVO (Final) – EPEall/vis/occ ↓ DAVIS (First) – AJ / <δxavg ↑
full half third full half quarter

RAFT 2.09 / 0.81 / 8.02 2.44 / 0.95 / 9.07 3.02 / 1.16 / 11.42 33.9 / 46.6 28.6 / 40.1 22.4 / 34.2
GMA 1.99 / 0.77 / 7.57 2.35 / 0.89 / 8.45 2.92 / 1.09 / 10.97 39.3 / 52.5 31.7 / 44.3 26.5 / 38.3

AccFlow∗ 2.28 / 0.60 / 11.18 2.39 / 0.80 / 10.74 2.79 / 1.02 / 11.37 47.2 / 62.3 37.5 / 49.2 30.9 / 42.4
CoTracker 1.89 / 0.63 / 7.05 2.11 / 0.82 / 8.02 3.17 / 1.65 / 11.13 61.1 / 74.6 54.3 / 68.8 48.9 / 63.9

DOT 1.83 / 0.59 / 6.95 2.10 / 0.73 / 7.88 2.69 / 0.97 / 10.84 61.6 / 75.5 55.6 / 70.1 50.4 / 65.3
EDCPT (Ours) 1.76 / 0.55 / 6.73 1.97 / 0.66 / 7.61 2.16 / 0.73 / 8.76 63.8 / 76.3 59.7 / 73.1 56.2 / 70.9

CoTracker OursDOT

Figure 3: Visual comparisons of dense and continuous point trajectories on horsejump-high and
parkour sequences of TAP-DAVIS (Doersch et al., 2022). Zoom in for detailed curve trajectories.

set from the pre-trained full model, and the submission results are shown in Table 3. Notably, while
BFlow (Gehrig et al., 2024) can estimate inter-frame curve trajectories, they only submitted the op-
tical flow version to the leaderboard. Our framework fuses images and events as well, yielding 1st
rank with performance improvements of 0.05 endpoint error (EPE) and 0.25 angular error (AE).

4.3 EXPERIMENTS WITH TEMPORALLY CONTINUOUS POINT TRACKING

We adapt the above standard procedure to input only a portion of the full video frames into the
model to evaluate the temporal continuity with the ground truths of skipped frames. For the CVO
final set with 7 frames per video, we skip 1-frame (half ) and 2-frames (one-third) as model inputs,
because the longer extended set lacks multi-frame ground-truth tracks. For the DAVIS dataset with
∼100 frames, we report half at 1-frame and quarter at 3-frame intervals. The compared image-
based methods lack the ability to model inter-frame motion, thus we take linear motion interpolation
to generate trajectory when frames are skipped. We retrain AccFlow (Wu et al., 2023) and marked
with ∗ as its public version for backward motion estimation does not support forward point tracking.

As reported in Table 4, our proposed new framework with global continuous trajectory accumulation
significantly outperforms existing methods. Especially in nonlinear motion scenarios of DAVIS
datasets, the larger frame intervals lead to greater performance gaps. In addition to the ablation
of different motion assumptions in Table 6, the B-spline representation we adopt achieves better
performance. We also provide a demo video2 of continuous trajectory visualization in the Appendix,
that includes visual comparisons of four sequences of simulated events from TAP-DAVIS and real
captured events from ERF-X170FPS (Kim et al., 2023). Together with Fig. 3, we fully validate the
capability of the proposed global motion accumulation in modeling continuous complex trajectories.

4.4 ABLATION EXPERIMENTS AND DISCUSSIONS

To perform progressive ablations in Table 5, 6, and 7, the underlined components are those utilized
in the previous table, and the bolded ones represent the choices for our final framework. To validate
the capability for continuous point tracking, the metrics for the ablation experiments are reported on
the CVO third and DAVIS quarter settings in Sec. 4.3 and Table 4.

2Demo video: https://figshare.com/s/f96b1f1698adf2525fc0
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Table 5: Ablations on global
motion aggregation.

EPEall/vis/occ ↓ AJ / <δxavg ↑
N/A 2.54 / 0.89 / 10.33 51.9 / 66.4
post 2.49 / 0.85 / 9.73 52.5 / 66.9
solo 2.45 / 0.82 / 9.89 52.7 / 67.0

−offsets 2.43 / 0.82 / 9.73 53.0 / 67.2
stream 2.42 / 0.80 / 9.68 53.3 / 67.4

Table 6: Ablations on curve rep-
resentation.

EPEall/vis/occ ↓ AJ / <δxavg ↑
linear 2.42 / 0.80 / 9.68 53.3 / 67.4
quad 2.49 / 0.84 / 9.46 54.2 / 68.1

Nc = 3 2.32 / 0.79 / 9.33 54.4 / 68.6
Nc = 4 2.23 / 0.76 / 8.97 55.4 / 69.7
Nc = 5 2.26 / 0.75 / 9.20 55.0 / 69.3

Table 7: Ablations on input data
and supervision.

EPEall/vis/occ ↓ AJ / <δxavg ↑
Images 2.50 / 0.86 / 9.92 52.5 / 66.7
+Events 2.23 / 0.76 / 8.97 55.4 / 69.7
+Lic 2.20 / 0.75 / 8.90 55.8 / 70.2
+Lec 2.16 / 0.73 / 8.76 56.2 / 70.9

Global motion aggregation. One of our key contributions is the global aggregation of local mo-
tion representations in the streaming pipeline. Unlike direct process multi-frame optical flows (Wu
et al., 2023), we aggregate motion representations at the feature level instead of dealing directly
with motion vectors. Unlike temporal fusion with a fixed number of frames (Park et al., 2023), we
adopt sequential modeling for temporal fusion with an unspecified number of frames in a streaming
pipeline. In Table 5, N/A indicates that we do not explicitly model sequential motion as in DOT (Mo-
ing et al., 2024), post is the post-processing forward aggregation in AccFlow (Wu et al., 2023), and
solo is the short and long term fusion module in SOLOFusion (Park et al., 2023). Our proposed
motion aggregation framework, which fuses image correspondence and event features from local to
global streaming, achieves optimal performance. In addition, we also verified that removing the ad-
ditional offset estimation to address the numerical problem in Warping leads to a slight performance
degradation, as this would require the subsequent refinement to handle it simultaneously.

Curve representation. Based on the streaming aggregation framework, in Table 6 we compare
the performance improvement of taking the B-spline curve representation compared to interpolating
with linear and quadratic motion assumptions. Based on experiments with different numbers of
control points for B-spline curves, we chose Nc = 4, since further increasing the number of control
points does not improve the performance under CVO third and DAVIS quarter settings.

Input data and supervision. Since previous methods usually use only image data, we evaluate
the advantages of incorporating event data for high-precision continuous point tracking by removing
events from our framework, as depicted in Table 7. Moreover, the comparison results between our
image-only setting and DOT Moing et al. (2024) in Table 4 demonstrates that the proposed streaming
aggregation and curve representation are beneficial even in the absence of event data. Furthermore,
we validate that training using the proposed image and event-to-point trajectory consistencies as
additional supervision complements the lack of continuous inter-frame tracks in the training data
and can further improve performance.

Limitations. Our framework processes a 48-frame, 512x512 resolution video in 12.6 seconds,
significantly faster than CoTracker, which takes 11 minutes while handling only partial query points
in a single run. However, it is slower than the two-frame optical flow method GMA, which requires
only 2.1 seconds, and slightly slower than the multi-frame method DOT, which takes 9.5 seconds.
Due to the lack of real captured event-based point tracking datasets and challenges in obtaining
long-term tracking labels, we evaluate point tracking on standard video benchmarks with simulated
events and assess optical flow estimation quantitatively and point tracking qualitatively on real event
datasets. Our future work plans to improve on model efficiency and evaluation dataset.

5 CONCLUSION

In this paper, we propose a new framework for integrating image and event data to estimate con-
tinuous motion trajectories for the emerging task of long-term dense point tracking. Specifically,
we process the current two-frame images and inter-frame events in a streaming pipeline to estimate
local motion representations, and combine previously established representations through global
motion accumulation at the feature level to produce new global trajectories at the trajectory level.
We utilize multi-frame parametric curve accumulation to represent continuous motion trajectories
with any number of frames, complemented by image and event-to-trajectory consistency to enhance
model training. We believe this work provides new insights into the point tracking task from the
perspective of event-aided and continuous global curve representations.
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A APPENDIX

In this appendix, we provide additional details of our methodology and experiments, the former
including B-spline curve modeling and multi-frame trajectories aggregation, and the latter providing
additional visualization results as well as a demo video on multiple datasets.

A.1 METHOD DETAILS

B-spline dense and continuous point trajectories. Given Nc control points {Pi}Nc and basis
functions {Bi,p(t)}Nc with degree p, the continuous point trajectory T(t) represented by b-spline
curve in time variable t is a collection of piecewise polynomial functions:

T(t) =

Nc∑
i=1

Bi,p(t)Pi. (7)

Based on the Cox–de Boor recursion, the detailed derivation of basis functions is:

Bc,0(t) =

{
1 ki ≤ t < ki+1

0 otherwise
, (8)

Bc,p(t) =
t− ki

kc+p − ki
Bc,p−1(t) +

kc+p+1 − t

kc+p+1 − kc+1
Bc+1,p−1(t), (9)

where k1, k2, k3, . . . , km are m = Nc + p + 1 knots of the curve with a non-decreasing or-
der that represent the times when the pieces polynomials meet. The internal Nc − p + 1 knots
kp+1, kp+2, . . . , km−p constitute the deformation of the curve. The beginning and the ending re-
maining knots k1, k2, . . . , kp and km−p+1, km−p+2, . . . , km are usually specified as duplicates of
kp+1 and km−p, in order to ensure the curve is tangent to the edges of the first and last control points
so that the curve is clamped.

In experiments, we fixed the internal knots to evenly spaced numbers over a specified interval from
0 to 1, and the model only needs to learn the coordinates of control points {P}Nc ∈ R2×Nc×H×W

to model the continuous trajectory T of every pixel, where H ×W is the image size. The head and
tail of the modeled trajectory coincide with the start and end control points P1 and PNc .

Multi-frame optical flow and trajectories accumulation. Existing parametric motion modeling
methods are fixed in the number of frames they can handle, e.g., BFlow (Gehrig et al., 2024) is
limited to between two frames, and CPFlow Luo et al. (2023) hard to get benefit for more than
4 frame inputs, resulting in suboptimal long-term trajectory modeling. Inspired by the practice of
multi-frame optical flow aggregation Wu et al. (2023); Neoral et al. (2024), we propose a new multi-
frame curve trajectories accumulation strategy to handle long-term videos with arbitrary frames.

In optical flow-based frameworks such as AccFlow (Wu et al., 2023) and MFT (Neoral et al., 2024),
multi-frame optical flows are usually combined based on warping operations. Given the the previous
global flow F1→t and local flow Ft→t+1, representing the motion displacements from time 1 to t
and t to t + 1, respectively, the aggregated current global flow F1→t+1 = [F1→t ⊕ Ft→t+1] from
time 1 to t+ 1 can be computed as follows:

F1→t+1(x) =

{
F1→t(x) +Warp (Ft→t+1,F1→t) (x) if V1→t(x) = 1,

F1→t(x) + Fusion (Ft→t+1,F1→t) (x) if V1→t(x) = 0,
(10)

where V1→t(x) indicates whether the point x from time 1 is visible at time t. [, ] denotes the ag-
gregation operation, Warp is the backward warping operation. Fusion is the additional occlusion
solving by fusing the residual flow if pixels are occluded and cannot be directly aggregated. No-
tably, the warping operation has an inherent error as it requires integer sampling with floating-point
coordinates, i.e., Warp(a,b)(x) = a(x + b(x)). Therefore, an additional post-refinement is still
necessary even in unoccluded areas.

In contrast, multi-frame curve aggregation also considers how to keep the shape of the subcurves
while aggregating the curves. Denote the previous global curve as T1→t with (t− 1)×Nc control
points, which represents the aggregation of t − 1 sub-curves T1→2, ...,Tt−1→t from time 1 to t.
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If we get the local sub-curve piece as Tt→t+1 with Nc control points from time t to t + 1, we can
propagate the current global trajectory T1→t+1 = [T1→t ⊕Tt→t+1] with t × Nc control points
from time 1 to t+ 1 by:

T1→t+1(x) =

{
Aggreg

(
T1→t(x),Warp (Tt→t+1,T1→t) (x)

)
if V1→t(x) = 1,

Aggreg
(
T1→t(x),Fusion (Tt→t+1,T1→t) (x)

)
if V1→t(x) = 0,

(11)

where Aggreg aggregates the control points of two sub-curves to create a more complex smooth
curve.

Taking two curves T1 and T2 with N1 and N2 control points {Pi}N1 and {Qi}N2 respectively as
an example, the aggregation process smoothly connects the two curves while ensuring the resulting
curve goes through the endpoints of the sub-curves, i.e., the first start point P1, the first endpoint
PN1 (overlapped with the second start point Q1), and the end point of QN2 . To achieve this, we
need to ensure that both the position, tangent and curvature (0th, 1st, 2nd order derivatives) are
continuous at the position of the connected points, i.e., Q′

1 = PN1
, Q′

2−Q′
1 = s1(PN1

−PN1−1),
and Q′

3 − Q′
1 = s2(PN1

− 2PN1−1 + PN1−2), where s1, s2 are the scaling factors usually set
to 1, Q′ represent the updated control points of the second curve. This process is included in the
Update operation along with the trajectory updates ∆T prediction. In addition, since the modeled
curves usually end in floating-point coordinates but start at integers on the image grid, we need
to take bilinear interpolation in neighborhoods δ to establish the aggregation, denoted as Interp.
Altogether, the aggregation process can be expressed as:

Aggreg(T1,T2) = Concat
(
{Pi}N1 ,Update

(
Interp({Qi}N2)

))
. (12)

where the control points of the original first curve and the control points of the updated second curve
are concatenated together to get N1 +N2 control points. Then the corresponding modifications get
N1 +N2 + p+ 1 knots, which gives the aggregated long-term global trajectory.

We simplify the expression of the above procedure in Eq. 1, i.e., the Aggreg process corresponds
to the combination operation [, ], and Update consists of the third-order alignment and residual ∆T
update from two sub-curves to a global curve.

A.2 EXPERIMENTAL DETAILS

Qualitative visual comparisons. Due to the length limitation, we provide more visualization re-
sults of point tracking in this appendix. Fig. 4 and Fig. 5 show the results on the TAP-DAVIS and
CVO datasets, where we achieve better point tracking performance compared to recent competitive
methods It is worth noting that the TAP-DAVIS dataset Doersch et al. (2022) only provides sparse
query point trajectories for each frame, so we plot the positions of the ground-truth query points
directly on the input image, while initial point coordinates (Init Coords) represent the initial coordi-
nates of dense point tracking. In contrast, the CVO extended set Moing et al. (2024) has only the last
frame of the dense point motion vectors, so we provide the visualization of the ground-truth points
(GT points) from the Init Coords of the first frame to last frame.

Images with GT query points: frame 0, 11, 34, 56

DOT: frame 11, 34, 56Init Coords

CoTracker: frame 11, 34, 56

Ours: frame 11, 34, 56

Figure 4: Visual comparisons of long-term dense point tracking on the pigs sequence of TAP-
DAVIS (Doersch et al., 2022), with the ground-truth sparse query points of input images.
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Image frames 0, 20, 30, 47

DOT: frame 20, 30, 47GT Points

AccFlow: frame 20, 30, 47

Ours: frame 20, 30, 47

Image frames 0, 20, 30, 47

DOT: frame 20, 30, 47GT Points

AccFlow: frame 20, 30, 47

Ours: frame 20, 30, 47

Figure 5: Visual comparisons of dense point tracking on the CVO extended set (Moing et al., 2024)
with the ground-truth dense point coordinates at the last (48-th) frame.

Figure 6: Screenshot of the DSEC optical flow leaderboard (Gehrig et al., 2021a) on Sept. 30, 2024
from https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark.
Our proposed EDCPT achieves the current first rank in the DSEC optical flow benchmark.

Experimental result on the DSEC benchmark. To qualitatively validate the applicability of our
scheme on real captured events data, we conduct experiments on DSEC (Gehrig et al., 2021a) , a
widely used benchmark for optical flow estimation, and submit the results on the test set to DSEC
online leaderboard. In Table 3, we compare the performance of various SOTA methods under dif-
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ferent training and input settings, here we also provide a screenshot of the DSEC online leaderboard
in Fig. 6. Our proposed EDCPT achieves the current first rank in the DSEC optical flow benchmark.

Demo video. The demo video is uploaded anonymously to https://figshare.com/s/
f96b1f1698adf2525fc0. We recommend accessing the high-resolution version of video
1295 demo video.mp4 from the Supplementary Material. In this appendix, we provide screen-
shots of the demo videos. Fig. 7 shows the video screenshots for the comparison results of dense
and continuous point tracking in four scenes, including the horsejump-high and parkou sequences
on the TAP-DAVIS dataset Doersch et al. (2022), and the test 0005 and test 0033 sequences on the
real-captured ERF-X170FPS dataset Kim et al. (2023). We chose to compare with two recent SOTA
methods, CoTracker Karaev et al. (2023) and DOT Moing et al. (2024). The visualization of dense
and continuous point tracking trajectories is shown in three separate forms: query point trajectories,
grid trajectories, and dense point coordinate shifts.

In particular, the ERF-X170FPS dataset is proposed in CBMNet Kim et al. (2023) originally for
video frame interpolation in highly dynamic scenarios. Since both its image and event data are real-
captured and of high quality, we utilize it to further validate the applicability of our framework on
real-world data. Since this dataset lacks motion annotations and query point coordinates, we only
show grid trajectories and dense point coordinate shifts. As shown in the demo video and screenshots
in Fig. 7, our framework achieves better point tracking performance compared to Cotracker and DOT
for small objects (soccer ball in test 0005) and curve motion (camera rotation in test 0033).
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Input low-FPS video and events; GT query points CoTracker

DOT EDCPT (Ours)

TAP-DAVIS: horsejump-high

Input low-FPS video and events; GT query points CoTracker

DOT EDCPT (Ours)

TAP-DAVIS: parkour 

ERF-X170FPS: test_0005 

CoTracker

DOT EDCPT (Ours)

Input low-FPS video and events

ERF-X170FPS: test_0033 

CoTracker

DOT EDCPT (Ours)

Input low-FPS video and events

Figure 7: Screenshots from our demo video, including comparisons of dense and continuous point
tracking trajectories on the commonly used TAP-DAVIS benchmark (Doersch et al., 2022) and the
real-world ERF-X170FPS dataset (Kim et al., 2023).
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