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ABSTRACT

Federated learning (FL) was initially proposed as a privacy-preserving machine
learning paradigm. However, FL has been shown to be susceptible to a series of
privacy attacks. Recently, there has been concern about the source inference attack
(SIA), where an honest-but-curious central server attempts to identify exactly which
client owns a given data point which was used in the training phase. Alarmingly,
standard gradient obfuscation techniques with differential privacy have been shown
to be ineffective against SIAs, at least without severely diminishing the accuracy.
In this work, we propose a defense against SIAs within the widely studied shuffle
model of FL, where an honest shuffler acts as an intermediary between the clients
and the server. First, we demonstrate that standard naive shuffling alone is insuf-
ficient to prevent SIAs. To effectively defend against SIAs, shuffling needs to be
applied at a more granular level; we propose a novel combination of parameter-level
shuffling with the residue number system (RNS). Our approach provides robust
protection against SIAs without affecting the accuracy of the joint model and can
be seamlessly integrated into other privacy protection mechanisms.
We conduct experiments on a series of models and datasets, confirming that stan-
dard shuffling approaches fail to prevent SIAs and that, in contrast, our proposed
method reduces the attack’s accuracy to the level of random guessing.

1 INTRODUCTION

Federated learning (FL) (55) is a machine learning scheme that trains a global model across multiple
clients without centralizing their data. The clients first update the model using their local datasets and
then send the model updates to a central server, which aggregates them to form the global model W .
The most well-known aggregation function is FedAvg, where W ← 1

n

∑n
i=1 wi, for n clients, each

holding a local model wi.

The initial concept of FL was that it was private by design, as the data of each client was not shared
with anyone. Unfortunately, an honest-but-curious central server can launch a series of privacy
attacks, as it observes the clients’ reported model updates and can use them to infer information.
For instance, the server can launch a membership inference attack (MIA) (58; 7; 11) which aims to
determine if a particular data point exists in the training dataset of any client.

The source inference attack (SIA) (34; 35) has recently been proposed as a natural extension of the
MIA. In an SIA, the adversary (an honest-but-curious central server) tries to determine exactly which
client owns a given data point. To achieve this, the attacker compares the accuracy of the target data
point across the received models before they are aggregated into the global model. This can pose a
severe violation of privacy; consider for example a medical model jointly built by different hospitals
to treat some disease and suppose that a hospital A is specialized in cancer cases. If the central server
learns from a successful SIA that a patient’s data was used by Hospital A, then they can confidently
assume that the patient suffers from cancer.

Defending against SIAs While MIAs exploit model overfitting, SIAs work by exploiting dif-
ferences in model predictions across clients due to their heterogeneous data distributions. Model
obfuscation techniques such as differential privacy (DP) (22; 1) have been shown to be inadequate to
protect against SIAs, at least without severely deteriorating the accuracy of the joint model (34; 35).
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That is because the level of noise is required to be large to successfully make the different local
models indistinguishable from each other.

Another approach is to consider regularization-based defenses, which can be beneficial against MIAs
since they reduce overfitting (40). However, such defenses are insufficient for SIAs as they do
not focus on reducing the distributional differences between clients (35). To verify, we include an
empirical evaluation on all common regularization-based defenses (Appendix F). Our results show
that regularization-based defenses have virtually no impact against SIAs.

Using defenses against Data Reconstruction Attacks (DRAs) (e.g. Instahide (37), FedAdOb (29))
are also ineffective as they focus on preventing gradient inversion. In contrast, SIAs assume that
the attacker already knows that a given data point was used in training. We empirically verify that
such defenses have no effect in Appendix F. Finally, (35) investigated whether knowledge distillation
techniques (e.g. FedMD) can be a means of defense. FedMD was only able to slightly decrease the
SIA success rate; the attack remains well above random guessing.

In this work, we focus on the shuffle model, which assumes the presence of a trusted shuffler. This
approach, which provides additional privacy protection by permuting clients’ data, has been widely
studied in FL. Interestingly, although standard naive shuffling removes the connection between the
data owner and their value, this is not enough to protect against SIAs. To show this, we propose
a series of attacks aimed at defeating the effect of shuffling by remapping the values back to their
original owners (Section 5).

Therefore, a new defense strategy against SIAs is necessary. We aim to satisfy these specifications:

• S.1: Protection: The accuracy of SIAs is reduced to the level of random guessing, even in
the challenging scenario where clients hold datasets with a high level of dissimilarity.

• S.2: Integrability: The solution can be seamlessly integrated as a “module” into existing
shuffle-model FL architectures, and is compatible with other privacy mechanisms, such as
DP, which protect from other kinds of privacy attacks.

• S.3: Communication efficiency: Considering that SIAs are better suited for the cross-silo
setting of FL (cf. Section 4) an increase in the communication cost can be tolerated, as long
as it remains reasonable.

• S.4: Maintains model accuracy: DP does not protect against SIAs unless we pay a high
price in accuracy. Hence, typical approaches based on DP-SGD would not be optimal.

• S.5: Minimal trust assumptions: Each client does not have to trust any additional entity.

Contributions Our contributions are summarized as follows:

• We propose novel reconstruction attacks that defeat standard shuffling in FL by remapping
the shuffled values back to their original owners. We examine three shuffling methods;
model-level, layer-level and parameter-level, and provide a corresponding reconstruction
algorithm for each. These attacks enable SIAs within the standard shuffle model of FL,
making shuffling alone insufficient (Section 5).

• We propose the first robust defense against SIAs in the shuffle model of FL. Our approach
introduces a novel dimension-based shuffling method with higher granularity, using the
residue number system (RNS). The defense reduces attack accuracy to random guessing
without affecting joint model accuracy and can be seamlessly integrated into existing shuffle
mechanisms (Section 6).

• We conduct experiments on the MNIST and CIFAR-10 with CNN and CIFAR-100 with
ResNet-18 which validate our analyses (Section 7).

2 RELATED WORK

FL remains vulnerable to various attacks despite the fact that raw data are not disclosed (68; 24; 34;
35). In (34; 35) the authors introduced the concept of SIAs and empirically showed, by performing
experiments across a variety of datasets, that model overfitting and data distribution (increased
heterogeneity) are the most important factors for making a model susceptible to SIAs.
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Shuffling has been widely explored in the literature as a means to protect privacy. A shuffler can
be implemented distributively using trusted hardware (5; 60), multi-party computation (51; 2; 50),
MixNets (19; 8; 45; 33; 59), which can also be verifiable (43; 42) and DC networks (13; 12). In other
words, the shuffler does not necessarily need to be a single separate server; its functionality could be
performed distributively for instance even by the clients themselves (cf. Section 4).

In DP, the shuffle model was first introduced by (5) and later formalized in (9). This model has been
applied in FL in a variety of ways to amplify the privacy by adding an additional layer of anonymity
(61; 64; 27; 65; 49; 36; 46). Each user perturbs their model updates, then sends them to the shuffler
which randomly permutates them before releasing them to the central server.

As far as we are aware of, no defense for SIAs has been studied in the literature, which is the
motivation for this work. We have previously presented a preliminary shuffle-based approach to
defending against SIAs in a poster (3) (anonymized for reviewing), which was effective but practically
unfeasible due to its high communication cost.

3 PRELIMINARIES

Source inference attacks (SIAs) (34; 35) The adversary (central server) knows that a training
record z = (x, y) (where x is an input vector and y is a class label) is present in the training dataset.
The source status of each record can be represented by an n-th dimensional multinomial vector s
(where n is the number of clients). Only one element of si,j is equal to 1 (indicating that client i
owns the j-th record) and the others are set to 0. For the j-th record zj , the source inference attack
can be defined as follows:

Definition 1 (Source inference attack) (34; 35) Given an local optimized model wi and a training
record zj , source inference aims to infer the posterior probability of zj belonging to the client i:

S(wi, zj) := P (si,j = 1 | wi, zj)

Encoding Schemes In this work, we combine shuffling with the following encoding schemes:

Definition 2 (Unary encoding) If x, k ∈ N, x ≤ k, then x is encoded as:

U(x, k) = {1}x ∪ {0}k−x

Moreover, we employ the residue number system (RNS) (23):

Definition 3 (RNS encoding) If m1,m2, . . . ,mu are pairwise coprime, then x ∈ N is encoded as
{x1, x2, . . . , xu} where xi = x mod mi.

Given the residues x1, x2, . . . xu, one can reconstruct x using the Chinese remainder theorem (we
show an example in Appendix C.1). Also, Definition 3 can be extended for x ∈ Z. If x < 0, the
encoding is first performed for |x|, getting the resulting residues x1, x2, . . . xu. Then, x is encoded
as {m1 − x1,m2 − x2, . . . ,mu − xu}. Furthermore, the addition of two RNS encoded numbers can
be performed directly in the RNS domain by summing their residues. Finally, the range of the RNS
encoding is defined by the choice of the moduli:

Proposition 3.1 x ∈
[
−⌊M2 ⌋, ⌊M−1

2 ⌋
]
∩Z can be losslessly encoded in the RNS, where M =

∏
i mi.

4 SETTING

In this section we clarify the setting on which we will focus and define the attacker.

Cross-Silo setting SIAs were proposed for the so-called cross-silo setting of FL, where the number
of clients is limited (typically 2-100 clients (39)) but each has superior communication/computation
capabilities. For instance, it can be hospitals cooperating to produce a joint model for some disease.
This model is widely applied in real-world scenarios, ranging from medical data (31; 28; 56; 63;
53; 62; 15; 16) to the agricultural domain (21; 18; 32). The opposite setting, known as cross-device,
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involves a larger number of clients, each with limited communication and computational capabilities.
For example, it can be smart watches training a health-monitoring model.

Studying SIAs for the cross-silo setting is more natural, as the attack relies on the fact that each client
has a specific attribute linked to its data points. In other words, a sensitive attribute that the adversary
infers upon identifying which client trained a given data point. For example, a hospital is typically
associated with the medical conditions it specializes in, making it likely that its patients suffer from a
respective disease. Therefore, in this work, we focus on the cross-silo setting, in line with previous
research on SIAs (34; 35).

In previous works (34; 35), SIAs focused on supervised learning for classification tasks, as we do as
well. We also assume that model parameters are clipped in (−1, 1); this can be achieved by clipping
and properly scaling them. Finally, we focus on the FedAvg aggregation function, but our approach
can be generalized to any sum-based aggregation function (cf. Section 8).

Shuffle Model We assume a shuffle model architecture (e.g. a mechanism from (46; 61; 64; 27; 65;
49; 36)) and our goal is to propose a defense mechanism which requires minimal modifications. To
highlight the appealing trust assumption of the shuffle model we give an example implementation
with MixNets. Using Onion Encryption (20) and Zero-Knowledge Proofs (ZKPs), Algorithm 8
requires that only one server in the MixNet be trusted; all the others can be malicious. If we require
each FL client to run their own server in the MixNet (a reasonable design choice given their resources
in the cross-silo setting), then each client only has to trust themselves and no other entity, which
satisfies our design specification S.5.

Attacker We consider an honest-but-curious central server as an adversary who sees the output of
a trusted shuffler (or at least partially trusted with MixNets, i.e. at least one server in the MixNet is
assumed to be trusted). We assume that the shuffler does not collude with the adversary (e.g. using
the aforementioned Algorithm 8). The attacker knows that a particular data point z was used in the
training phase (e.g. from a MIA) and their goal is to find, using an SIA, the client who owns it.

If no other information is known to the adversary then the standard shuffle model is sufficient to
protect against SIAs since shuffling breaks the link between the data owner and their value. However,
assuming that the adversary does not know anything more about the target client is arguably a strong
assumption. In this work, we consider that the attacker knows a small shadow dataset only of the
target client. A shadow dataset Sx of a target user x is a dataset disjoint from the one that x actually
uses for training, which however follows the same distribution. For instance, using once more the
hospital example, if the attacker is a pharmaceutical company it might already know that some of its
patients were treated by the target hospital. Note that a similar assumption is often made in other
privacy attacks like the MIA (58; 7; 11). We clarify that this shadow dataset will only be used to
reverse the shuffling (Section 5); SIAs do not rely on the shadow dataset at all (Definition 1).

5 RECONSTRUCTION ATTACKS AGAINST SHUFFLING

In this section we show how an attacker can remap a shuffled model back to its original owner x
by using their shadow dataset Sx. We begin with model-level shuffling, the standard approach used
in the shuffle model of FL. Then, as illustrated in Figure 5, we expand the granularity to include
layer-level and parameter-level shuffling, showing that in all three cases reconstruction attacks are
possible. The algorithms discussed in the following subsections are placed in the Appendix B.

5.1 MODEL-LEVEL SHUFFLING

The current widely-used approach in shuffle-based FL is shuffling at the level of model updates. In
other words, the shuffler receives the model wi from each user i, chooses a random permutation
π and outputs wπ(1), . . . , wπ(n). However, the adversary can defeat the shuffler by remapping the
model back to the target client x, by comparing the accuracy of each model on the shadow dataset Sx

(Algorithm 2). The model with the highest accuracy on Sx will, most probably, belong to client x.
Observe that this attack is feasible for the adversary; if n is the number of clients and ||Sx|| is the
size of the shadow dataset, then Algorithm 2 has O(n · ||Sx||) complexity (as the adversary needs to
find the accuracy on each of the samples of Sx on each of the clients).
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5.2 LAYER-LEVEL SHUFFLING

Since standard (model-level) shuffling can be reversed, let us explore shuffling per layer of the neural
network (46). For instance, if we consider a simple CNN with a convolutional layer C and 2 FC
layers FC1, FC2, the shuffler releases: {Cπ0(1), . . . , Cπ0(n), FC1π1(1),. . . , FC1π1(n), FC2π2(1),
. . . , FC2π2(n)}. In other words, for each FC and convolutional layer, the shuffler finds a new random
permutation π. This does not affect the accuracy of the joint model because in FedAvg the order of
the received layers is inconsequential.

Observe now that the adversary has to run Algorithm 2 on every possible combination of layers.
Depending however on the model, the number of combinations can be significant, which might make
this approach non-feasible. To counter this, we propose a strategy which focuses only on the final
layer of the neural network (Algorithm 3). Assuming w.l.o.g. that this is a FC layer, say FCL, the
adversary focuses on correctly remapping each FCL back to its original owner. For the remaining
layers, the adversary computes their average (using FedAvg). This reduces the complexity again
back to O(n · ||Sx||), for n clients. The intuition behind this approach is that the final layer of a
model tends to contribute more to overfitting. As a result, it more strongly reflects the distributional
differences of the inputs. This is precisely what SIAs exploit, enabling the adversary to focus on the
final layer, which provides the greatest advantage.

5.3 PARAMETER-LEVEL SHUFFLING

Next, let us consider shuffling per dimension, i.e. for each parameter p of each layer the shuffler
releases pπ(1), . . . , pπ(n), an approach not yet explored in FL, as far as we are aware. Each random
permutation π has to be resampled for each parameter p as otherwise the adversary could target the
most easily distinguishable parameter (in case there are such outliers) to retrieve the permutation 1.
This approach does not affect the accuracy of the joint model; the central server can compute the
aggregated model unimpeded.

This creates an obvious obstacle to the adversary: finding the best accuracy of each possible combina-
tion of parameters requires superior computational capabilities To overcome the hurdle, we follow a
similar approach to Algorithm 3. That is, we once again focus only on reconstructing the final layer
of the neural network (say FCL with k parameters), taking the average of the other ones. However,
now we first compute the average of FCL and change each of its parameters p one by one. For each
one, we select to keep the one out of the n choices (one from each client) that creates a model with
the best accuracy on Sx. To summarize, we copy the global model; each time we change only one
of its parameters from the final layer, examining the possible choices and storing the one with the
highest accuracy (Algorithm 5), which has a complexity of O(k · n · ||Sx||).

6 PROTECTION AGAINST SOURCE INFERENCE ATTACKS

While parameter-level shuffling presents the greatest challenge for an attacker to reconstruct, the
attack still remains feasible especially for heterogeneous datasets, as we show experimentally in
Section 7. In this section, we argue that to effectively defend against SIAs, parameter-level shuffling
should be combined with encoding, which further enhances the granularity of shuffling.

To achieve robust protection, we increase the shuffling granularity to bits. We show that this ensures
that only the aggregated result of each parameter is leaked to the central server (which is necessary to
compute the joint model) and not any information about the individual models. First, we compress the
values using the residue number system (RNS) and then encode them into bits, using unary encoding
(Definition 2). An outline of the proposed method is presented below; it is described in detail in
Algorithm 1, with an example shown in Figure 4.

Recall from Section 3 that RNS encodes an integer x by performing a modulo operation with several
pairwise coprime integers (called moduli). Since RNS is designed for integers 2, we consider a
scaling factor 10r, known to both the clients and the server, where the precision r corresponds to the

1We assume clients send all parameters at once, with the shuffler applying distinct permutations using
sufficient metadata. Alternatively, parameters can be sent individually, which increases communication rounds.

2Floating-point RNS (10) is not suitable as summing the values by their shuffled residues is not possible.

5
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number of digits of the fractional part that will be transmitted. Thus, every parameter p ∈ (−1, 1)
becomes ⌊p · 10r⌋ and is then encoded using RNS. Each residue is then unary encoded and submitted
in a separate shuffling round. The server can find the sum of each residue and, using the Chinese
remainder theorem, reconstruct the sum of each parameter (which would need to be descaled by 10r).

Algorithm 1: Parameter-level shuffling with RNS

Input: n clients, precision r, a function RNSenc(·) for RNS encoding and RNSdec(·) for
decoding, a function U(x, k) for unary encoding x in k bits

Output: wglob, the joint model

LetM = {m1,m2, . . . ,mu} be pairwise coprime integers where
∏

m∈M m < n(10r − 1)
Client-side (each client i with model wi):
// Encode each parameter in RNS
for each parameter p in wi do
{p1, p2, . . . pu} ← RNSenc(⌊p · 10r⌋,M)

for each residue pi in {p1, p2, . . . pu} do
Send U(pi,mi) to the shuffler.

Shuffler:
for each parameter p do

Concatenate all the received bit vectors to a vector Bp,j for each residue j.
Shuffle (bit-wise) each Bp,j and send it to the central server.

Server-side:
Receive the permutated bit vectors B′

p for each parameter p.
for each i-th parameter of wglob do

// Sum and decode the residues to get the average of each
parameter

y ← (
∑

B′
p,0,

∑
B′

p,1, . . . ,
∑

B′
p,u)RNS

wglob[i]← (RNSdec(y,M)/10r)/n

Return wglob

Meeting the required specifications Our main insight is that revealing a shuffled bit vector
is privacy-wise equivalent to revealing its sum (Proposition A.1). In other words, we show that
Algorithm 1 releases only the aggregated model, without revealing any information about the
individual local models. Since SIAs work by evaluating the accuracy of the given data point on the
individual local models, this reduces their application to random guess, as there are no distinct models
to compare.

Formally, we show that Algorithm 1 satisfies design specification S.1 (Protection), in Theorem 1:

Theorem 1 Algorithm 1 reduces the accuracy of SIAs to the level of random guessing.

The proof of the above theorem is in Appendix A.

Then, S.2 (Integrability) is also respected since only encoding/decoding operations need to be added.
Regarding the communication cost (S.3), assuming n clients, the moduli m1,m2, . . . ,mu should be
picked such that n · v < ⌊ (M−1)

2 ⌋ (Proposition 3.1) where M =
∏

i mi and v = 10r − 1 (i.e. the
largest integer with r digits). Therefore, assuming u moduli with mu being the largest, the cost is
O(u ·mu). The number of shuffling rounds can be kept reasonably small, as it will be equal to the
number of moduli (Figure 11). In general, small values are usually used for the residues (mi), hence
each user has to send a small number of mi bits in each round, keeping the communication cost
reasonable, as we show in Section 7. Furthermore, S.4 (Accuracy) is preserved with a sufficient r
since RNS encoding is lossless (Claim A.1). Finally, our proposed solution does not require additional
trust assumptions than the ones of the shuffle model. Our proposed defense is fully compatible with
the example implementation of shuffling with MixNets (Algorithm 8), where each user only has to
trust themselves, satisfying S.5.

In summary, the combination of RNS, unary encoding and parameter-level shuffling enables strong
privacy without sacrificing much efficiency. We use Proposition A.1 to introduce a novel approach to
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privacy amplification without adding any noise. By combining it with RNS, we can minimize the
bit vectors and reduce communication cost. With this approach, we provide a novel noise-free yet
optimal privacy protection, along with compression to limit efficiency loss.

Honest shuffler So far we have assumed an implementation where the shuffler is partially trusted,
in the sense that we trust only one server in the MixNet (Section 4). However, the typical assumption
in the literature of the shuffle model is that the shuffler is fully honest (27). In that case, Onion
Encryption and Zero-Knowledge Proofs are not necessary thus the communication can be further
optimized by coupling Algorithm 1 with compression techniques such as Run-Length Encoding
(RLE); we describe the corresponding algorithm in Appendix B.2, which we further evaluate in
Section 7.

6.1 COMPARISON WITH SECURE AGGREGATION

One can view our approach as essentially turning the shuffler into a secure aggregator from the
adversary’s point of view by properly combining shuffling with encoding. Despite the fact that
this work builds upon the shuffle model and a change in the architecture would violate the design
specification S.2, a natural question arises about how our method compares with Secure Aggregation
(SA) (6).

Applying threshold secret-sharing requires t out of n clients to reconstruct a secret, in order to
minimize the cost and the risk of dropouts, where t << n (e.g. t = 0.5 · n + 1 (6)). Therefore,
the protocol is private to any t − 1 malicious coalitions of clients. On the contrary, shuffling with
MixNets requires only 1 out of n servers to be trusted (e.g. Algorithm 8). Thus, the two models
need to be compared under a common denominator, which is a common trust assumption. This can
be achieved by implementing SA with standard threshold secret-sharing with t = n− 1, aligning
with the trust assumption of the shuffle model (and our design specification S.5.). Each user must
send C bits to every other user, where C is the size of each share, increasing the communication cost
to C · (n− 1). Now the liveness constraints become a significant problem since, even if one client
drops out the secret cannot be recovered. In contrast, MixNets can still shuffle and release the output
even if all but one server drops out. In conclusion, SA incurs a stronger trust assumption and liveness
constraints; we compare nevertheless our approach with this setting in Section 7.

7 EVALUATION

This section presents the primary experiments; additional evaluation can be found in Appendix F.

Setting For the SIAs we use the same code as (34; 35) in order to provide comparable results,
which also includes the structures of the neural networks. We use a CNN for MNIST and CIFAR-10
and a ResNet-18 for CIFAR-100 (cf. Appendix D). The success rate of the attack is defined as the
percentage of the correct guesses on the given data points. Training is performed across 20 rounds
for MNIST and across 100 rounds for CIFAR-10 and CIFAR-100 but only the best SIA accuracy is
reported. The number of local epochs is set to 10. As an upper baseline for the experiments we use
the accuracy of the SIA when no shuffling is used (vanilla FL) and as a lower baseline the random
guess (uniform over the clients). We split the dataset among the clients using the Dirichlet distribution
with a parameter α (level of heterogeneity). Finally, we assume that the adversary has a shadow
dataset of 5% the size of the target client’s actual training dataset (in Appendix F.2 we repeat the
experiments for 0.5% and 1% yielding similar conclusions).

7.1 PROTECTION AGAINST SIAS

In this experiment, we test the SIA accuracy on the proposed Algorithm 1 and also on the Algorithms
2, 3 and 5 that remap the shuffled models back to their original owners from Section 5. Figure 1
shows the results relative to the level of heterogeneity (α).

Model-level shuffling is the least effective choice; Algorithm 2 can reliably reverse shuffling, particu-
larly when α is small. Notably, SIAs demonstrate a high success rate on CIFAR-100 with ResNet-18,
as the increased complexity of the dataset amplifies the differences between the generated local
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(a) MNIST/CNN
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(b) CIFAR-10/CNN
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Figure 1: Success rate of SIA for 10 clients

models. Layer-level shuffling exhibits slightly lower performance on MNIST and CIFAR-10 than
Algorithm 2. On CIFAR-100, however, the difference is larger; for instance, Algorithm 2 achieves
approximately ≈ 78% accuracy, while Algorithm 3 reaches only ≈ 60% for α = 0.1. This larger
gap may be explained by the increased complexity of the ResNet architecture, where overfitting may
also be stored in layers other than the final one, which Algorithm 3 targets. Parameter-level shuffling
is the best choice among the three. Algorithm 5 cannot reconstruct as well the shuffled models;
the accuracy of the SIA is reduced, for instance from 50% to 28% on the CIFAR-10 for α = 0.1.
Still, however, the SIA accuracy remains higher than random guessing. Our proposed solution of
Algorithm 1 offers robust protection in the sense that it always reduces the accuracy to the level of
random guess, validating Theorem 1.

In conclusion, the experiment shows that a straightforward application of shuffling might not be
enough to protect against SIAs, especially in scenarios with high heterogeneity which are arguably
the most relevant cases for SIAs. In contrast, our proposed solution provides an optimal defense. We
also evaluate with more clients and other aggregation functions, such as FedSGD and FedProx, as
well as an MLP network, which are placed in Appendix F, since they lead to similar conclusions.

Protection against DRAs Although our main focus in this paper is on defending against SIAs, we
also empirically demonstrate in Appendix F.3 that Algorithm 1 can also mitigate Data Reconstruction
Attacks (DRAs). DRAs have been shown to depend heavily on the training batch size (67). By
applying Algorithm 1, we shuffle the models at such a fine granularity that only the aggregated model
is exposed, effectively simulating a larger batch size. For example, if the batch size is 1 with n clients,
Algorithm 1 yields an aggregated model similar to having a single client train with a batch size of
n. Specifically, while the reconstruction loss of the original DRA of (69) is 3 · 10−4, it increases
to 0.98 when Algorithm 1 is applied with 10 clients on the CIFAR-10 dataset. Consequently, the
reconstructed images become heavily degraded, containing no recognizable features. We elaborate
further in Appendix F.3, showing additional experiments.

7.2 PERFORMANCE ANALYSIS

Accuracy of the joint model Algorithm 1 only considers the first r digits of the fractional part of
each parameter. In this experiment, we show that r can be kept reasonably small to minimize the
communication cost while preserving the accuracy of the joint model. Figure 3 shows that for the
MNIST, which requires a simpler model, r = 2 suffices to reach a level of accuracy comparable to
vanilla FL and r = 3 scores a similar accuracy. On the other hand, CIFAR-10 and CIFAR-100, which
require more complex models, need r = 3 digits to approach the performance of vanilla FL, and
r = 8 to match it.

Communication Cost In Figure 2, we compare the communication cost of our approach against
the baseline of vanilla FL (standard 32-bit binary encoding), which however transmits the whole
value (whereas Algorithm 1 transmits only the first r digits). As an upper baseline we compare our
approach with Secure Aggegation (SA), implemented with standard secret-sharing, with t = n− 1
(cf. Section 6.1), setting the smallest possible C to avoid overflows (for the first r digits). Moreover,
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we evaluate the combination of Algorithm 1 with RLE compression which further reduces the
communication cost, when the shuffler is fully honest (described in Appendix B.2).

For 10 clients and r = 4 the expansion factor, compared with vanilla FL, is 1.81× on CIFAR-
100/ResNet (Figure 13). This is an arguably manageable additional cost for the cross-silo setting,
considering that the state-of-the-art protocol for SA for the cross-device setting exhibits an expansion
factor of at least 1.73× (6). Note that a direct comparison between the two is not meaningful as (6)
relies on a stronger trust assumption (honest majority), as we explained in Section 6.1. Nevertheless,
if an expansion of 1.73× is deemed acceptable for the cross-device setting, a slightly higher factor
should also be considered reasonable for the cross-silo setting, given the significantly superior
communication capabilities of the clients. Finally, if we follow the literature of shuffle-model FL
and assume a fully honest shuffler, then the expansion factor drops to 1.03×, approaching the cost of
vanilla FL (Figure 13).

Table 5 shows that the proposed technique scales well as the number of clients and r increases (e.g.
for more complex models). For example, even with 104 clients (a rather non-realistic scenario in the
cross-silo setting which we consider) and r = 16, Algorithm 1 needs 440 bits per parameter (or 79
bits with compression under a fully trusted shuffler), compared to 32 bits for vanilla FL and ≈ 83
KBs of SA.

The computation cost of Algorithm 1 for encoding/decoding is negligible as it is based on primitive
operations. For instance, the approximately 11 million parameters of ResNet can be encoded in 19
seconds; we further evaluate this in Appendix F.6.

8 CONCLUSION

In this work, we explored defenses against SIAs in FL by combining shuffling with encoding. Our
proposed mechanism is easily integrable within the shuffle model of FL and fully compatible with
other privacy protection mechanisms, such as DP, as its addition does not affect DP guarantees or
further degrade accuracy. Moreover, we empirically showed that it also offers protection from DRAs.
Another contribution of our work, potentially of independent interest, is the model reconstruction
attacks to defeat a standard shuffler in datasets with a high level of dissimilarity. Future work should
evaluate this attack on the state-of-the-art FL mechanisms of the shuffle model, as it has been shown
that different mechanisms provide varying privacy guarantees when the shuffler is compromised (4).

In this work we focused on the shuffle model of FL. Developing similar defenses in settings where
there is no shuffler remains an interesting step for future research. Moreover, we focused on
FedAvg but our approach can be generalized to any other sum-based aggregation function, such
as (48; 54; 57; 47; 25), where the central server sums the parameters and then performs further
processing. To verify, we performed experiments on FedSGD and FedProx (Appendix F.4). Our
work covers the vital class of sum-based aggregation functions which is widely used, for example in
medical applications (63; 53; 62; 15; 16). We aim to further extend our approach to non sum-based
frameworks, such as median-based, clustering-based and ranking-based (e.g. (66; 26; 38)).

Finally, we did not consider disaggregation attacks (52; 44), where the central server is given only the
joint model and attempts to retrieve the local models. A possible direction for future work would be
to pair disaggregation attacks with SIAs, as similar work has been done for attribute inference (41).
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SUPPLEMENTARY MATERIAL

Ethics statement As discussed in Section 1, SIAs can pose a significant real-world privacy risk.
Our proposed defense offers robust protection, making a positive contribution to user privacy. Notably,
its ease of integration allows clients to implement the defense promptly. On the other hand, the
proposed reconstruction attacks of Section 5 can undermine the privacy guarantees of shuffle-based
FL mechanisms, thereby compromising the privacy of end users. Additional work is needed to verify
their effectiveness across other shuffle-based mechanisms.

Reproducibility statement To make integration easier with current shuffle model mechanisms, we
have implemented Algorithm 1 and placed its code in a public repository. For anonymity reasons,
we do not include a link; yet the code can be found in the supplementary material. Using this same
code, all experiments reported in the main body and appendix can be reproduced; a corresponding
README file is included as guidance.

Use of LLMs We used Grammarly to fix awkward phrasing, grammatical errors and to improve the
overall clarity of sentences.
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APPENDIX

A PROOFS

In this section we include the missing proof of Theorem 1. We will use the notion of Markov chain
in the information-theoretic sense (14). We recall that three random variables X , Y and Z form
a Markov chain, denoted by X → Y → Z, if X and Z are conditionally independent given Y .
Formally, ∀x, y, z, P [Z = z|X = x, Y = y] = P [Z = z|Y = y], where P stands for probability.

We will also use other notions from information theory, namely Shannon entropy H(X) and condi-
tional entropy H(X|Y ), where X and Y are random variables. We recall that H(X) represents the
uncertainty about the value of X , and H(X|Y ) represents the remaining uncertainty about X after
we learn Y .

First, we recall the well-known principle in information theory known as the data processing
inequality (DPI), which states that postprocessing cannot increase the amount of information.

Theorem 2 [Data processing inequality (14)] Let X → Y → Z be a Markov chain. Then the
Shannon conditional mutual entropy H(·|·) satisfies the following property:

H(X|Y ) ≤ H(X|Z).

Equality holds if and only if X → Z → Y also is a Markov chain.

Since H(X|Y ) represents the remaining uncertainty about X after we learn Y , the above formula
H(X|Y ) ≤ H(X|Z) means that the amount of information that Y carries about X is less than the
amount of information that Z (the result of postprocessing Y ) carries about X .

We first prove that releasing a shuffled unary vector carries the same amount of information about the
initial vector as releasing its sum:

Proposition A.1 Let the random variable V range over vectors of bits of fixed length k, namely over
{0, 1}k, let S(V ) represent the shuffling of V , and let ΣV represent the sum of all elements of V .
Assume that the shuffler is a probabilistic function that depends only on the number of 1’s in the
vector. Then, the information that S(V ) carries about V is the same as the information that ΣV
carries about V . Namely:

H(V |S(V )) = H(V |ΣV ).

Since the sum of the elements of V is the same as the sum of the elements of any shuffling of V , we
have that V , S(V ) and ΣV form a Markov chain. Namely:

V → S(V )→ ΣV

Therefore, by Theorem 2, we have:

H(V |S(V )) ≤ H(V |ΣV ) (1)

On the other hand, since we are assuming that the result of the shuffling of V (i.e., the probability
distribution over the shuffled vectors) depends only on the number of 1’s in V , we have that also V ,
ΣV and S(V ) form a Markov chain:

V → ΣV → S(V )

From which we derive, applying again Theorem 2, that

H(V |ΣV ) ≤ H(V |S(V )). (2)

Finally, from Equations (1) and (2), we can conclude.

We note that a related result, formulated in terms of probabilities, was shown in (9; 4) in the context
of differential privacy.

Let us now prove the following property of Markov chains:
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Proposition A.2 Consider the following Markov chains:
X → Y → Z (3)
X → Y →W (4)

where Y = f(X) is a deterministic function.

If H(Y |Z) = H(Y |W ), then:
H(X|Z) = H(X|W ).

From the first Markov chain in Equation (3), we deduce:
H(X|Z) = H(X,Y |Z) [X → Y is deterministic]

= H(X|Y, Z) +H(Y |Z) [Chain rule]
= H(X|Y ) +H(Y |Z) [Markov chain definition]

By applying the same reasoning to the second Markov chain in Equation (4), we obtain:
H(X|W ) = H(X|Y ) +H(Y |W ).

Since H(Y |Z) = H(Y |W ), we conclude that H(X|Z) = H(X|W ).

Now we are ready to prove our main theorem about the protection of our mechanism.

Theorem 1 Algorithm 1 reduces the accuracy of SIAs to the level of random guessing.

We will show that Algorithm 1 reveals no more information than the aggregated result (i.e. the joint
model), thereby reducing the SIA accuracy to that of a random guess by definition, as there are no
distinct models to compare. We assume r is large enough so that the whole value is transmitted,
which is the setting which leaks the most information.

Let Xj be the random variable ranging over the set of values that the users hold for some parameter
j. Define for each residue mu

Yj
u := {x mod mu : x ∈ Xj}

and let Y j
u be the corresponding random variable. The shuffler in Algorithm 1 receives the unary

encoded values, concatenates them to a single vector and shuffles them altogether, outputting S(Y)
where

Y :=
⋃

y∈Yj
u

U(y,mu)

Let Y be the random variable that ranges over Y . Note that Y depends only on Y j
u . Hence the

correlation between Xj , Y j
u , and S(Y ) (the latter being the vector observed by the central server),

can be described by the following Markov chain:
Xj → Y j

u → S(Y ) (5)

Now, let us consider a scenario where the central server observes the aggregation (i.e., the summation)
of Y j

u , that we denote by ΣY j
u , rather than its shuffled version. This is illustrated by the following

Markov chain:
Xj → Y j

u → ΣY j
u (6)

Now note that S(Y ) = S(
⋃U(Y j

u ,mu)) (where
⋃U(Y j

u ,mu) represents the concatenation of the
unary encoding of the elements of Y j

u ), and therefore Y j
u , S(Y ) and ΣY j

u satisfy the hypotheses of
Proposition A.1, from which we derive

H(Y j
u |S(Y )) = H(Y j

u |ΣY j
u ).

Given the avove equality, and Equations (5) and (6), we can apply Proposition A.2 and conclude that,
for each parameter j and residue u:

H
(
Xj |S(Y )

)
= H

(
Xj |ΣY j

u

)
.

The proof of Theorem 1 relied on the information which the central server first observes, since
post-processing cannot increase the amount of information (data processing inequality).

However, recall that Algorithm 1 instructs the adversary to decode the result. Therefore, the adversary
can still recover the aggregated model using RNS addition (Section 3). The only potential loss of
information may arise from the parameter r (precision i.e. the digits transmitted after the decimal
point). Since RNS encoding is lossless, we arrive at the following claim:
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Claim A.1 Assuming a sufficiently large r, Algorithm 1 does not impact the accuracy of the joint
model.

B ALGORITHMS

B.1 RECONSTRUCTION ATTACKS OF SECTION 5

We begin with Algorithm 2 which reverses model-level shuffling by remapping the models back to
their original owners using the accuracy on the shadow dataset Sx of the target client x.

Then, for defeating layer-based shuffling, we assume w.l.o.g. 2 convolutional layers and 2 FC layers,
presenting Algorithm 3. Note that for notational convenience, we use the FedAvg function to average
layers (of neural networks) rather than entire models; the definition of the function remains similar.

Finally, Algorithm 5 shows a possible implementation of remapping parameter-level shuffling,
assuming again w.l.o.g. 2 convolutional layers and 2 FC layers. Note that FC2,0 notates the shuffled
set of the first parameters of the final FC layer FC2. Recall that each shuffle set has size n, if n is the
number of clients. We assume that FC2 has k parameters.

Algorithm 2:RM
Reconstruction attack against Model-level shuffling
Input :w′

1, . . . , w
′
n, randomly permutated clients’ models,

Sx shadow dataset of target user x,
A(w,D), accuracy of model w on the dataset D

Output :wx, the model of user x
best← w′

1
for each model wj in w′

2, . . . , w
′
n do

if A(wj , Sx) > A(best, Sx) then
best← wj

Return best

Algorithm 3:RL
Reconstruction attack against Layer-level shuffling
Input :C1, C2, randomly permutated convolutional layers, FC1,FC2, randomly permutated FC

layers,
Sx, shadow dataset of target user x,
A(w,D), accuracy of model w on the dataset D

Output :wx, a model with FC2 of user x and the average of the rest layers
// For FC2 find the one with best accuracy; take the FedAvg for

the rest
for each layer Li in FC2 do

w ← CON(FedAvg(C1), FedAvg(C2), FedAvg(FC1), Li)
Append w in wmodels

ReturnRM(wmodels, Sx, A)

Algorithm 4: CON
Construct a model with given layers (used in Alg. 3)
Input : C1, C2, FC1, FC2 , layers of the model
Output :w, a model with the given layers
wC1 ← C1

wC2 ← C2

wFC1 ← FC1

wFC2 ← FC2

Return w
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Algorithm 5:RP
Reconstruction attack against Parameter-level shuffling
Input : wglob , the global model

FC2,0, . . . ,FC2,k, randomly permutated parameters of the final layer
Sx, shadow dataset of target user x,
A(w,D), accuracy of model w on the dataset D

Output :wx, a model with FC2 of user x and the average of the rest layers
wx ← wglob

for each i-th set of parameters zi in FC2,i do
wbest ← REP (wglob, i, zi,0)
best← zi,0
for each parameter j in zi do

if A(REP (wglob, i, j), Sx) > A(wbest, Sx) then
wbest ← REP (wglob, i, j)
best← j

wx ← REP (wx, i, best)

Return wx

Algorithm 6: REP
Replace the i-th parameter of FC2 with p (used in Alg. 5)
Input : w, a model

i, the i− th parameter of FC2

p, parameter to replace
Output :w′, the output model
w′ ← w
w′

FC2
[i]← p

Return w′

B.2 COMMUNICATION IMPROVEMENT FROM SECTION 6

If we assume that the shuffler is fully honest, following the literature (27), then Onion Encryption
is not necessary to hide the secrets (i.e. parameters) from the MixNet servers. Similarly, Zero-
Knowledge Proofs are not required to verify that each server did not tamper with the data. In
both cases, since the shuffler is honest, we assume it will follow the protocol and will not leak the
secret values to an adversary. Thus, we can further improve the communication cost by adding a
compression step after the unary encoding.

Run-Length Encoding (RLE) compresses a string by replacing consecutive repeated values with just
a single value and a count of its repetitions. For example, AABAA will be represented as (2A,1B,2A).
In our case we have bits; more specifically Unary Encoding (Definition 2) creates a bit-string by first
placing the ones and then appending the zeroes. Since the size of the bit-string is known (i.e. r) we
can send only the number of ones. For example, if we have [1, 1, 1, 0, 0, 0, 0, 0, 0, 0] we can just send
the number 3. The shuffler can create a bit-string with 3 ones and r − 3 = 7 zeroes. Algorithm 7
illustrates this idea.

C EXAMPLE IMPLEMENTATIONS

This section discusses an example of the Chinese remainder theorem and gives an example imple-
mentation of shuffling with MixNets. It also includes the figures that are missing from the main-body
due to space constraints. Figure 5 shows the different shuffling granularities which we examined in
Section 5 and Figure 4 illustrates a simple example of Algorithm 1.

C.1 EXAMPLE OF THE CHINESE REMAINDER THEOREM

We show how the Chinese remainder theorem can be applied to reconstruct the secret value from the
residues, using the example of Figure 4.
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Algorithm 7: Parameter-level shuffling with RNS combined with RLE

Input: n clients, precision r, a function RNSenc(·) for RNS encoding and RNSdec(·) for
decoding, a function U(x, k) for unary encoding x in k bits

Output: wglob, the joint model

LetM = {m1,m2, . . . ,mu} be pairwise coprime integers where
∏

m∈M m < n(10r − 1)
Client-side (each client i with model wi):
// Encode each parameter in RNS
for each parameter p in wi do
{p1, p2, . . . pu} ← RNSenc(⌊p · 10r⌋,M)

for each residue pi in {p1, p2, . . . pu} do
Send pi to the shuffler. // Send the number of ones to the shuffler

Shuffler:
for each parameter p do
B ← U(pi,mi) for each RNS moduli mi and each received residue pi. // Decompress
Concatenate all the decompressed received bit vectors B to a vector Bp,j for each residue j.
Shuffle (bit-wise) each Bp,j and send it to the central server.

Server-side:
Receive the permutated bit vectors B′

p for each parameter p.
for each i-th parameter of wglob do

// Sum and decode the residues to get the average of each
parameter

y ← (
∑

B′
p,0,

∑
B′

p,1, . . . ,
∑

B′
p,u)RNS

wglob[i]← (RNSdec(y,M)/10r)/n

Return wglob

Client-side

Client 1

: 0.55/2 = 0.275p′ 

0100000

1111034

100Round 1:

1111110

Round 2:

Round 3:

Round 1: 1 % 3 = 1

0111…110Round 2:

011011…11Round 3:

(1,4,6)

 : 0.21p
10000

21
000Round 1:

0000000

Round 2:

Round 3:

(0,1,0)

5 % 5 = 0

6 % 7 = 6

(1,0,6)RNS
RNS

RNS
 : 0.34p

Shuffler

Server-side

Client 2

Figure 4: Example of Algorithm 1 with moduli 3, 5, 7, for a parameter p, where r = 2 and n = 2.

Consider the following system of congruences, where 3, 5, and 7 are pairwise coprime:
x ≡ 1 mod 3

x ≡ 0 mod 5

x ≡ 6 mod 7

We begin by computing the product of the moduli:

M = 3× 5× 7 = 105.

For each congruence, we define Mi = M/mi, where mi is the modulus of the i-th equation:

M1 = 105/3 = 35, M2 = 105/5 = 21, M3 = 105/7 = 15.

Next, we compute the modular inverse yi such that Mi · yi ≡ 1 mod mi:

35 · y1 ≡ 1 mod 3⇒ y1 = 2,

21 · y2 ≡ 1 mod 5⇒ y2 = 1
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15 · y3 ≡ 1 mod 7⇒ y3 = 1.

We now apply the Chinese remainder theorem formula:

x ≡ a1M1y1 + a2M2y2 + a3M3y3 mod M,

where a1 = 1, a2 = 0, a3 = 6.

By substituting the values we have:

x ≡ 1 · 35 · 2 + 0 · 21 · 1 + 6 · 15 · 1 = 70 + 0 + 90 = 160 mod 105.

Thus, the solution is:
x ≡ 55 mod 105.

Observe that x = 55 indeed satisfies all original congruences:

55 mod 3 = 1, 55 mod 5 = 0, 55 mod 7 = 6.

C.2 SHUFFLING

Client2

P1 P2L1

L2

M1

Client 1

P1 P2

P1 P2L1

L2

M2

P1 P2

Client-side Server-side

Model-level shuffling

Layer-level shuffling

Parameter-level shuffling

Shuffler

per  
model

per  
layer

per  
parameter

Figure 5: Shuffling methods in FL with different granularity

Algorithm 8 uses Onion Encryption (20) to ensure that no server can view the messages and Zero-
Knowledge Proofs (ZKPs) (17) to assert that no server can change the messages. Each server decrypts
the outermost layer of onion encryption, verifies that no tampering has occurred with a ZKP, shuffles
and sends the shuffled vector to the next server. Since an honest shuffling (i.e. the fact that the
previous server chose a uniformly random permutation) cannot be proved via ZKPs, at least one
server of the MixNet needs to be trusted.

In scenarios where the clients cannot run their own MixNet server, they can instead choose more
servers from the network to shuffle. For instance, they can decide to always select 100 servers out
of all the available ones (a different set of servers for each parameter), meaning that the adversary
must control all 100 servers to compromise the defense for each parameter. However, this requires an
omnipotent adversary that controls a significant part of the MixNet network (even hacking honest
servers like those run by the honest clients). This attacker is arguably unrealistic; often, anonymity
systems, like Tor (20), assume that an attacker can only control parts of the network.

D MODELS AND HYPERPARAMETERS

This section describes the models which we used in the experiments of Section 7. For MNIST and
CIFAR-10 we used exactly the same models as in (34; 35) 3, as we used their code for evaluating the
SIAs. For CIFAR-100 we used the ResNet-18, in order to illustrate that the proposed mechanism
works even on more complex models.

3https://github.com/HongshengHu/SIAs-Beyond_MIAs_in_Federated_Learning
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Algorithm 8: Shuffling with MixNet
Input :Mi: Message client i wishes to send, n number of clients, P : List of participating mix

servers, OnionEnc(M, pk) and OnionDec(M, sk) for onion encryption/decryption
Output :Shuffled messages M ′

// client-side
for each client i in parallel do

Ci ←Mi

// onion-encryption
for each mix server j in reverse order of P do

Ci ← OnionEnc(Ci, pkj)

Send Ci to P1

// MixNet-side
for each mix server j in P do

// First server receives the messages (no ZKP to verify)
if j = 1 then

C = [Ci]
n
i=1

π ← None
// Last server outputs the messages
if j = |P | then

Return MixVerify(C, j, π).
C, π ←MixVerify(C, j, π)

Algorithm 9: MixVerify(C,j,π)
Input :C: Message from previous server, j: Current mix server, πj−1 ZKP from previous

server, VerifyZKP(C, π) and GenerateZKP(C,C′) to verify and generate ZKPs.
Output :Partially decrypted and shuffled message C′

M ← OnionDec(C, skj)
if j > 1 and ¬ VerifyZKP(M,πj−1) then

reject and abort
M ′ ← Shuffle(M)
πj ← GenerateZKP(M,M ′)
Return M ′, πj

D.1 MNIST

We use a CNN which consists of two convolutional layers with 5×5 kernels, followed by two
max-pooling layers, and three fully connected layers. Specifically, the architecture is as follows:

• Conv2D layer: 32 filters with a kernel size of 5× 5. Activation: ReLU. Input shape: (1, 28,
28).

• MaxPooling2D((2, 2)).
• Conv2D layer: 64 filters with a kernel size of 5× 5. Activation: ReLU.
• MaxPooling2D((2, 2)).
• Flatten layer: Flattens the feature maps into a 1D tensor of size 64× 4× 4.
• Dense layer: 512 neurons. Activation: ReLU.
• Dense layer: 128 neurons. Activation: ReLU.
• Output: Dense layer: 10 neurons. Activation: none (logits).

D.2 CIFAR-10

The CNN consists of two convolutional layers with 5×5 kernels (the first convolutional layer takes
input images with three color channels (RGB)), followed by two max-pooling layers, and three fully
connected layers. Specifically, the architecture is as follows:
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• Conv2D layer: 32 filters with a kernel size of 5× 5. Activation: ReLU. Input shape: (3, 32,
32).

• MaxPooling2D((2, 2)).

• Conv2D layer: 64 filters with a kernel size of 5× 5. Activation: ReLU.

• MaxPooling2D((2, 2)).

• Flatten layer: Flattens the feature maps into a 1D tensor of size 64× 5× 5.

• Dense layer: 512 neurons. Activation: ReLU.

• Dense layer: 128 neurons. Activation: ReLU.

• Output: Dense layer: 10 neurons. Activation: none (logits).

D.3 CIFAR-100

We use a standard ResNet-18 architecture (30) for CIFAR-100. Specifically, we use the implementa-
tion provided by the PyTorch library, initialized without pretrained weights (pretrained=False). The
architecture is as follows:

• Conv2D layer: 64 filters with a kernel size of 7× 7, stride 2, padding 3. Activation: ReLU.
Input shape: (3, 224, 224).

• MaxPooling2D((3, 3)), stride 2.

• Residual Block (x2): Two convolutional layers with 64 filters, kernel size 3 × 3, batch
normalization, and skip connections.

• Residual Block (x2): Two convolutional layers with 128 filters. The first block includes
downsampling via stride 2.

• Residual Block (x2): Two convolutional layers with 256 filters. Includes downsampling.

• Residual Block (x2): Two convolutional layers with 512 filters. Includes downsampling.

• Global Average Pooling: Output size reduced to a 512-dimensional vector.

• Fully Connected Layer: Output size 100 (number of classes). Activation: none (logits).

D.4 HYPERPARAMETERS

For training, we used stochastic gradient descent (SGD) as the optimizer with a learning rate of 0.01
and a momentum of 0.9. Each client trained the model using a local batch size of 64, while the testing
batch size was set to 128. These hyperparameters were selected following standard practice in FL
literature and remained fixed across all experiments.

E RESOURCES

To compute each point in Figure 1, Algorithm 2 and Algorithm 3 take approximately 1/2/7 hours for
the MNIST/CIFAR-10/CIFAR-100 datasets, respectively. For the parameter reconstruction attack of
Algorithm 5, the time required is approximately 20/40/70 hours for MNIST/CIFAR-10/CIFAR-100,
respectively. Our proposed method (Algorithm 1) takes around 0.5/1/3 hours for MNIST/CIFAR-
10/CIFAR-100, respectively, with nearly all of that time spent on training. We limit training to the
first 10 epochs to reduce unnecessary computational cost, as SIA accuracy tends to be higher in early
rounds when client models are more diverse. The experiments were conducted on a server equipped
with two NVIDIA RTX 6000 GPUs (24 GB each), two AMD EPYC 7302 16-core processors, 512
GB of RAM, and 10 Gbps Ethernet connectivity.

The other experiments that do not necessitate the use of a GPU (i.e. Table 6 and Figure 2) were
computed on a Mac M1 Laptop with a Apple Mac M1 Max chip and 64 GB of memory.
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F ADDITIONAL EVALUATION

F.1 OTHER DEFENSES AGAINST SIAS

(35) discusses that regulaziration-based defences are insufficient against SIAs. In this section we
verify this claim by performing experiments on MNIST and CIFAR10 datasets with 10 clients and
α = 0.1 (the level of heterogeneity). Table 1 shows that all standard regularization approaches fail to
address SIAs; rather, they may make the model even slightly more susceptible to them, as they might
increase the distributional differences between clients.

Furthermore, we also test Instahide (37), which was designed for Data Reconstruction Attacks
(DRAs). Instahide works by having each client blend their images with some k (a parameter of the
mechanism) random, publicly accessible ones. This forms a layer of obfuscation which prohibits
the adversary from reconstructing the images. Table 2 shows that this defense is ineffective against
SIAs. Instahide focuses on preventing the adversary from reconstructing a particular image, but SIAs
consider that the adversary does know that the image exists in the dataset. If the images are blended,
with Instahide, then this means that the adversary already knows the blended image. Since this blend
is not happening between clients (e.g. shuffling their images) but between each client and a public
dataset, the distributional differences are not affected. Note that k in Instahide is small, meaning that
only a small portion of the image is altered, to retain model accuracy.

Table 1: Regularization-based defenses against SIAs with 10 clients

Experiment Parameter Dataset Model Acc. Model Acc.
(vanilla FL) SIA Acc. SIA Acc.

(vanilla FL)

Random cropping

Crop=24 MNIST 92.56 97.22 50.24 45.01
Crop=20 MNIST 83.30 97.22 53.17 45.01
Crop=16 MNIST 62.15 97.22 56.10 45.01
Crop=28 CIFAR10 58.78 61.07 52.50 51.57
Crop=24 CIFAR10 53.66 61.07 53.07 51.57
Crop=20 CIFAR10 44.81 61.07 59.20 51.57

Dropout

p=0.2 MNIST 96.45 97.22 55.70 45.01
p=0.5 MNIST 96.28 97.22 50.92 45.01
p=0.8 MNIST 96.42 97.22 45.17 45.01
p=0.2 CIFAR10 60.76 61.07 57.77 51.57
p=0.5 CIFAR10 60.38 61.07 55.20 51.57
p=0.8 CIFAR10 60.52 61.07 54.54 51.57

Weight decay

e=0.5 MNIST 97.34 97.22 50.94 45.01
e=0.4 MNIST 97.32 97.22 52.87 45.01
e=0.3 MNIST 97.00 97.22 55.27 45.01
e=0.5 CIFAR10 61.01 61.07 56.89 51.57
e=0.4 CIFAR10 61.02 61.07 57.70 51.57
e=0.3 CIFAR10 60.59 61.07 61.97 51.57

Table 2: Instahide against SIAs with α = 0.1, 10 clients on the MNIST dataset. SIA accuracy on
vanilla FL is 45.01% and vanilla model accuracy is 97.22%

k Model Accuracy SIA Accuracy
1 97.48 50.3
2 86.65 49.9
3 81.52 50.9
4 78.65 50.45
5 78.37 52.71
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F.2 PROTECTION FROM SIAS

Figure 6 shows the success rate of SIA for Algorithm 1 and the reconstruction Algorithms 2, 3 and
5 with varying number of clients when α is fixed to 0.1 with 10 local epochs. We observe that the
success rate depends on the number of clients which clarifies the reason why SIAs are more of a
threat in the cross-silo setting. In all cases, model-level and layer-level shuffling offer insufficient
protection, while parameter-level shuffling performs better but the SIA accuracy is still better than
random guessing. In contrast our proposed method of Algorithm 1 offers robust protection.

Moreover, we conduct an experiment where we vary the number of local epochs (Figure 7), which
does not yield notably different results because of the small α (i.e. datasets are already easily
distinguishable).

3 5 8 10 15 20

Number of Clients

10

20

30

40

50

60

70

80

S
IA

su
cc

es
s

ra
te

(%
)

(a) MNIST/CNN

3 5 8 10 15 20

Number of Clients

10

20

30

40

50

60

70

80

S
IA

su
cc

es
s

ra
te

(%
)

(b) CIFAR-10/CNN

3 5 8 10 15 20

Number of Clients

20

40

60

80

S
IA

su
cc

es
s

ra
te

(%
)

(c) CIFAR-100/ResNet0.1 0.2 0.3 0.5 0.7 1.0

α (level of heterogeneity)

10

15

20

25

30

35

40

45

S
IA

su
cc

es
s

ra
te

(%
)

Vanilla FL (no shuffling) Model-level shuffling (Alg. 2) Layer-level shuffling (Alg. 3) Parameter-level shuffling (Alg. 5) Alg. 1 Baseline (random guess)

Figure 6: Success rate of SIA for varying number of clients when α = 0.1 with 10 local epochs
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Figure 7: SIA success rate across different number of local epochs with 10 clients and α = 0.1

Furthermore, we conduct experiments the Synthetic tabular dataset of (35), using the same MLP
architecture as (35) for a fair comparison. Table 3 shows results consistent with the previous
experiments, supporting the generality of SIAs. We observe that model-level, layer-level and
parameter-level shuffling reduce the success rate of SIAs but fail to completely mitigate the attack.
However, the proposed Algorithm 1 shows the same SIA accuracy as random guessing.

Table 3: SIA success rate on the synthetic dataset of (34) with MLP

Method Success Rate (%)
Vanilla FL 46.2
Model-level shuffling (Alg. 2) 39.3
Layer-level shuffling (Alg. 3 ) 37.0
Parameter-level shuffling (Alg. 5 ) 21.1
Proposed Solution (Alg. 1) 10.0
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In the experiments of the main body we assumed that the adversary holds a shadow dataset that is 5%
of the one actually used. Table 4 shows that even when this percentage is smaller, the adversary still
has an accuracy greater than random guessing (which is 10%).

Table 4: SIA success rate for a smaller shadow dataset (CIFAR-10/CNN, n = 10, α = 0.1)

Method 0.5% shadow db 1% shadow db
Vanilla FL 51.57 51.57
Model-level shuffling (Alg. 2) 21.2 25.4
Layer-level shuffling (Alg. 3) 20.24 23.5
Parameter-level shuffling (Alg. 5) 16.2 19.1
Proposed Solution (Alg. 1) 10 10

F.3 PROTECTION AGAINST DATA RECONSTRUCTION ATTACKS

In this section we discuss how our proposed method can effectively defend against DRA. One of the
earliest works on DRA, Deep Leakage from Gradients (DLG) (69), assumes that each client uses
a very small batch size for local training (at most 8 samples). However, in our approach, all client
gradients (or model parameters) are mixed before being transmitted to the server (using Algorithm 1).
Thus, even if each client employs a batch size of 1, the aggregated gradient reflects n data points,
where n is the number of clients.

We conducted experiments against the DLG attack of (69), which show that our approach can
substantially reduce its effectiveness. Specifically, while the reconstruction loss of the original attack
is 0.0003, it increases to 0.98 when Algorithm 1 is applied (even with as few as five clients). Thus the
reconstructed images under Algorithm 1 become severely degraded, with no recognizable features
Figure 8. Other DRA techniques are capable of operating with larger batch sizes (e.g., (67) employs
up to 48 samples per client). However, (67) also shows that the success rate of the attack decreases as
the batch size increases. This suggests that our method, by effectively conveying larger batch sizes,
can further help mitigate DRA.

(a) 2 clients

(b) 10 clients

Figure 8: DLG attack on Algorithm 1 (CIFAR-10 with batch size 1)

F.4 OTHER AGGREGATION FUNCTIONS

Federated Proximal (FedProx) (48) adds a proximal term as a regularization penalty during local
model optimization. The global model is then computed as the average of the local models. In
Federated Stochastic Gradient Descent (FedSGD) (54) clients compute gradients over their data just
once per round. The central server collects all local models and averages them.

Figure 9 shows that for both cases SIAs have higher success rate than random guessing for all standard
shuffling approaches. In contrast, the proposed framework reduces the accuracy of the attacks to
random guessing. This indicates that our approach can be extended to other sum-based aggregation
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functions. Figure 10 shows that r = 3 suffices to reach an accuracy comparable to vanilla FL and
r = 5 to match it.
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Figure 9: Success rate of SIA for 10 clients on FedProx and FedSGD
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Figure 10: Model Accuracy (top-1) on CIFAR-10/CNN of Alg. 1 with precision r compared to
vanilla FL (10 clients).

F.5 COMMUNICATION COST

Figure 11 shows that RNS can encode even large numbers using a small set of moduli, minimizing
the number of shuffling rounds. Moreover, Figure 12 presents a zoomed-in view of Figure 2 for up to
20 clients. For r = 4, we observe that Algorithm 1 requires approximately 23 extra bits per parameter
compared to vanilla FL, increasing to around 78 additional bits when r = 8. The communication
cost of SA is slightly lower only when r = 8 and the number of clients is small (i.e. fewer than 5).

Note that Figure 12 shows that Alg. 1 with compression can even surpass standard vanilla FL.
However, recall that Alg. 1 transmits only the first r digits of the parameter whereas vanilla FL
transmits the whole value. Conversely, if one wants to use the standard binary compression of vanilla
FL to transmit only the first r digits, they might be able to use less bits. For example if r = 3 than a
12-bit binary encoding is sufficient. In any case, we want to note that the proposed technique does
not outperform vanilla FL in terms of communication cost, as it transmits less information.

Table 5 evaluates the proposed technique for more clients and more complex models (necessitating
larger r). We observe that for both parameters Secure Aggregation scales poorly; in contrast
the proposed technique offers reasonable communication cost, especially when combined with
compression.

Finally, Figure 13 shows the expansion factor, that is the ratio of the encoded model size to the size
of the initial vanilla FL model (i.e. using standard 32-bit binary encoding). The plot shows that for
10 clients, an expansion factor of 1.81× is sufficient to achieve nearly the same accuracy as vanilla
FL, and 2.4× is needed to fully match it. If RLE compression is used, the expansion factor is 1.03×,
which is a negligible overhead.
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Table 5: Communication cost for larger parameters (bits per user per parameter)

Clients r SA Alg. 1 Alg. 1
+ Compress. Vanilla FL

1000 8 36926 160 43 32
10000 8 399920 160 42 32
1000 12 49900 281 61 32
10000 12 539892 328 67 32
1000 16 63872 381 73 32
10000 16 669866 440 79 32

101 102 103 104 105 106 107 108

Number of Clients

11

12

13

14

15

16

S
hu

ffl
in

g
R

ou
n

d
s

(a) r = 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r

4

6

8

10

12

14

16

18

S
hu

ffl
in

g
R

ou
n

d
s

(b) 10 clients

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r

10

12

14

16

18

20

S
hu

ffl
in

g
R

ou
n

d
s

(c) 106 clients

Figure 11: Number of shuffling rounds in Algorithm 1
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Figure 12: Communication Cost (bits per user per parameter).
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F.6 COMPUTATION COST

The encoding overhead of Algorithm 1 is negligible for the clients since it relies on fast and primitive
operations (modulo and unary encoding). As shown in Table 6, even ResNet can be encoded in just
19.1 seconds, which is negligible compared to the total training time. Similarly, decoding (performed
by the central server) is slightly slower but still remains efficient (e.g. slightly less than a minute for
ResNet).

Table 6: Computation Time in seconds

DB/Model # of Parameters Encoding Decoding
MNIST/CNN 643850 1.16 3.8
CIFAR-10/CNN 940362 1.6 5.6
CIFAR-100/ResNet 11237432 19.1 57

F.7 SIA SUCCESS RATE WITH SUBSAMPLING

Figure 14 illustrates the accuracy of SIA when subsampling is applied. In the case of MNIST, the
SIA accuracy drops significantly when the number of clients increases from 10 to 50 (from 45% to
10.2%), but rises again when client sampling is applied (44.1% at a 20% sampling rate). Similar
trends are observed for CIFAR-10 and CIFAR-100, where SIA accuracy decreases with more clients
(from 51% to 16% in CIFAR-10, and from 77% to 26% in CIFAR-100), but increases when only a
subset of clients is sampled (up to 50.33% and 72.5%, respectively). This experiment highlights that
SIAs can be generalized to settings with more clients, if subsampling is applied.
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Figure 14: SIA accuracy on MNIST (blue), CIFAR-10 (orange) and CIFAR-100 (green) under client
sampling with α = 0.1 and 10 local epochs.
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