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ABSTRACT

Euclidean geometry presents a compelling testbed for AI reasoning capabili-
ties, requiring seamless integration of diagram understanding, logical deduction,
and algebraic computation. Existing systems have either been narrowly scoped
or struggled with challenging problems. We introduce Euclid-Omni, a unified
neuro-symbolic framework that combines a formal geometry system with Large
(Vision)–Language Models (LLMs and VLMs) to address both calculation- and
proving-style problems across formal and natural languages, up to Olympiad-level
difficulty. At its core, we develop Euclidea, a versatile geometry symbolic solver
that automatically generates human-readable reasoning steps through logical de-
duction and algebraic solving. On top of this, we implement a comprehensive data
generation pipeline that synthesizes symbolic problems, renders diagrams, and
translates problems into natural language, yielding large-scale, diverse datasets for
training LLMs and VLMs in different reasoning settings. Experiments on multi-
ple benchmarks demonstrate that Euclidea can tackle a broader range of problems
than prior symbolic systems. Our trained VLMs achieve superior results on cal-
culation tasks, while combining LLMs with Euclidea remains competitive with
state-of-the-art systems on Olympiad-level theorem proving problems, despite us-
ing orders of magnitude less compute and data.

1 INTRODUCTION

Plane geometry, dating back to Euclid’s Elements, has long been a cornerstone of mathematics
education around the world. More recently, it has become a key testbed for AI and large (vision)-
language models (LLMs and VLMs) in mathematical reasoning (Zhao et al., 2025b; Ma et al.,
2025), particularly for AI to compete in the International Mathematical Olympiad (IMO). State-
of-the-art systems such as AlphaGeometry (Trinh et al., 2024; Chervonyi et al., 2025) and Seed-
Geometry (Chen et al., 2025) have matched the performance of IMO gold medalists, following a
common framework: (i) a symbolic engine that exhaustively derives new propositions, (ii) a lan-
guage model that proposes auxiliary constructions to be combined with the symbolic engine, and
(iii) a data generator that synthesizes large-scale theorems and proofs to train the language model.

Despite their impressive performance in the IMO, these systems face significant limitations in both
scope and accessibility. First, they are narrowly tailored to competition-style theorem proving and
lack support for complex algebraic computations, thereby neglecting calculation-based problems
that are equally common in plane geometry. Moreover, they cannot always produce human-like so-
lution steps or incorporate modalities such as natural language or visual diagrams, limiting their rele-
vance to applications like mathematics education. By contrast, more general-purpose systems cover
only a limited set of geometric theorems and remain far below IMO-level performance (Chen et al.,
2021b; Lu et al., 2021; Chen et al., 2022). Second, existing IMO-level systems impose substan-
tial barriers to accessibility. Their training pipelines demand enormous computational resources—
for example, AlphaGeometry (Trinh et al., 2024) generated 500M training examples using 100K
CPUs—and none has released its data-generation pipeline or datasets. In contrast, lots of publicly
available datasets remain small, limited in diversity, and poorly stratified by difficulty, which makes
them inadequate for training modern LLMs and VLMs (Chen et al., 2021b; Lu et al., 2021; Cao &
Xiao, 2022; Chen et al., 2022). As a result, while current systems mark important progress, they
remain narrow in scope and difficult to extend as foundations for broader research.
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To address these issues, we introduce Euclid-Omni, a unified neuro-symbolic framework that in-
tegrates LLMs and VLMs with a versatile symbolic system for diverse geometric reasoning tasks.
Central to Euclid-Omni is Euclidea, a Python-based symbolic system that unifies the representation
and reasoning of plane geometry problems for both proving and calculation tasks. Euclidea encodes
geometric conditions from text and spatial information from diagrams, and performs reasoning by
integrating a deductive database of human-like inference rules with an advanced algebraic engine for
equation solving. This enables it to automatically solve a problem, up to the level of IMO problems.
Building on Euclidea, we design a comprehensive pipeline generating training data for LLMs and
VLMs: a synthetic problem generator produces problems from scratch, a diagram renderer draws
corresponding visual diagrams, and Euclidea outputs symbolic solutions. These symbolic problems
and solutions are then translated into natural language through a hybrid strategy, where rule-based
templates first map the symbolic semantics into aligned natural-language form, after which off-the-
shelf LLMs refine the text into fluent language. The pipeline is highly configurable, enabling the
creation of datasets tailored to specific goals, such as final numerical answers, stepwise proofs, or
auxiliary constructions, across difficulty levels from elementary to IMO.

We conduct extensive experiments to evaluate Euclid-Omni across diverse task setups. To begin, we
benchmark the symbolic engine, Euclidea, on three widely used datasets: Geometry3K (Lu et al.,
2021), JGEX-AG-231 (Trinh et al., 2024), and IMO-AG-30 (Trinh et al., 2024), which together
span both calculation and proving tasks. Euclidea outperforms existing formal geometry systems
by solving more problems and generating solutions that are not only more accurate but also more
human-readable. Notably, it is the first to directly solve two additional IMO problems that all previ-
ous symbolic solvers failed to handle.

In addition, we train a VLM on our synthetic calculation-oriented dataset and evaluate them on
benchmark problems from GeoQA (Chen et al., 2021b), Geometry3K (Lu et al., 2021), Math-
Vista (Lu et al., 2024), and MathVerse (Zhang et al., 2024c). The model operates directly on natural
language and diagram inputs, without relying on symbolic representations or the symbolic engine.
Despite using less training data than existing approaches, our VLMs achieve comparable or superior
performance across these benchmarks.

Finally, we train an LLM on our synthetic auxiliary-construction datasets and integrate it with Eu-
clidea to tackle challenging Olympiad-level geometry problems from JGEX-AG-231 (Trinh et al.,
2024) and IMO-AG-30 (Trinh et al., 2024). Our model consistently outperforms existing API-
based baselines and achieves performance comparable to state-of-the-art systems (Trinh et al., 2024)
trained on reduced data budgets—while using orders of magnitude less training data.

In summary, we introduce Euclid-Omni, a unified framework for solving geometry problems. It is
the first system to support diverse modes of geometric reasoning—including both proof and calcula-
tion tasks, as well as formal and natural language inputs—while achieving performance at the IMO
level. We will release the complete framework to facilitate future research and practical applications.

2 RELATED WORK

In this section, we review three areas most relevant to our work: formal plane geometry systems,
geometry datasets and benchmarks, and learning-based approaches for geometric reasoning.

Symbolic Approaches. Classical formal geometry solvers follow two main paradigms (Chou &
Gao, 2001): synthetic deduction and algebraic computation. Synthetic methods, such as the deduc-
tive database approach (Chou et al., 2000; Ye et al., 2011), employ forward chaining to systemat-
ically apply geometric rules and derive new facts, but they falter on problems requiring complex
algebraic manipulation. Algebraic methods, including Gröbner basis (Kutzler & Stifter, 1986) and
Wu’s method (Wu, 1986), encode geometric relations as polynomial equations and solve them alge-
braically, offering strong reasoning power but often producing proofs that are difficult to interpret.
Hybrid systems, such as NGS (Chen et al., 2021b) and Inter-GPS (Lu et al., 2021) for calculation,
LeanEuclid (Murphy et al., 2024) and DD+AR (Trinh et al., 2024) for theorem proving, attempt to
combine deductive and algebraic reasoning, yet remain specialized in certain task types with limited
generality. Other frameworks, including FormalGeo (Zhang et al., 2023b) and PyEuclid (Li et al.,
2025), pursue a unified approach, but still struggle to scale efficiently to Olympiad-level problems.
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Datasets and Benchmarks. Many geometry datasets are derived from textbooks, exercises, and
competitions, where problems are paired with manually constructed symbolic formulations (Cao &
Xiao, 2022; Chen et al., 2022; Zhang et al., 2023a;b). Examples include calculation-oriented datasets
such as GeoQA (Chen et al., 2021b) and Geometry3K (Lu et al., 2021), as well as theorem proving
datasets such as UniGeo (Chen et al., 2022), JGEX-AG-231 (Trinh et al., 2024), and IMO-AG-
30 (Trinh et al., 2024). Due to the high cost of manual annotation, these resources remain relatively
small in scale. To expand coverage, recent work (Gao et al., 2023; Zhang et al., 2024d) has leveraged
LLMs and VLMs to generate larger datasets by augmenting existing problems, though diversity
remains bounded by the underlying sources. In parallel, several synthetic pipelines (Kazemi et al.,
2023; Deng et al., 2024; Pan et al., 2025; Fu et al., 2025; Wu et al., 2025) generate symbolic problems
using basic geometric primitives and predicates, but the resulting problems are generally constrained
in both difficulty and variety. Other benchmarks (Zhang et al., 2024b; Wang et al., 2024; Qiao et al.,
2024; Xu et al., 2025), including MathVista (Lu et al., 2024) and MathVerse (Zhang et al., 2024c),
collect a broad variety of geometry problems in natural language to evaluate the reasoning abilities
of VLMs. Besides solving geometry problems directly, auxiliary datasets have also been introduced
for related tasks such as autoformalization (Murphy et al., 2024), diagram parsing (Hao et al., 2022),
diagram understanding (Huang et al., 2025), and geometric image generation (Cai et al., 2024).

Learning-Based Methods. Recent advances in LLMs and VLMs have spurred a wave of learning-
based approaches to geometric reasoning (Zhao et al., 2025b; Ma et al., 2025). One line of work
adopts neuro-symbolic methods that operate over symbolic representations (Chen et al., 2021b; Lu
et al., 2021; Chen et al., 2022; Peng et al., 2023; Gao et al., 2023; Wu et al., 2024; Trinh et al., 2024;
Zhang et al., 2024a; Duan et al., 2024; Zhao et al., 2025a; Zhang et al., 2025; Ping et al., 2025): these
approaches leverage LLMs or VLMs to generate solution steps in symbolic form and delegate exe-
cution to a solver, ensuring both correctness and interpretability. For example, Inter-GPS (Lu et al.,
2021) predicts program sequences to compute numerical quantities, while AlphaGeometry (Trinh
et al., 2024) predicts auxiliary constructions and integrates them with its inference engine DD+AR
for theorem proving. Such systems enable more faithful reasoning but rely heavily on solver design
and reasoning capabilities. By contrast, purely neural methods attempt to reason directly in natural
language (Gao et al., 2023; Xu et al., 2024; Deng et al., 2024; Wu et al., 2025), typically targeting
calculation-style problems with easily verifiable answers and using chain-of-thought reasoning to
produce step-by-step solutions. While effective on simpler tasks, these approaches often generate
hallucinated reasoning steps and are difficult to verify, limiting their reliability for theorem proving
and more complex scenarios. Some methods (Ning et al., 2023; Li et al., 2023; 2024; Xia et al.,
2024; Cho et al., 2025) also aim to enhance reasoning by aligning VLMs with stronger visual di-
agram understanding. Nevertheless, no unified framework currently exists for training LLMs and
VLMs that can flexibly support diverse geometry tasks across both formal and natural languages.

3 EUCLID-OMNI

This section first introduces the proposed formal geometry solver Euclidea, and then presents the
Euclid-Omni pipeline for training LLMs and VLMs across both calculation and proving tasks.

3.1 EUCLIDEA: SYMBOLIC SOLVER FOR PROVING AND CALCULATION PROBLEMS

Euclidea is a Python-based formal plane geometry system that encodes information from both text
and diagrams. Its reasoning engine integrates deductive inference with algebraic computation, en-
abling it to automatically produce human-readable solutions for both numerical calculation and the-
orem proving, up to the level of IMO problems. An overview of Euclidea is shown in Figure 1.

Problem Formalization. Euclidea formalizes plane geometry by unifying two established ap-
proaches to geometric representation (Chou et al., 2000; Avigad et al., 2009). Specifically, it treats
points (e.g., a, b) as basic primitives, while other geometric objects (e.g., lines, triangles) are defined
in terms of points (Chou et al., 2000). Each problem, including its goal and accompanying diagram,
is formalized as a collection of relations, which fall into two categories (Avigad et al., 2009):

• Metric relations encode quantitative properties, such as Perpendicular(a,b,c,d) (line ab
is perpendicular to line cd) or Angle(a,b,c)=π/2 (∠abc = π/2). These can be expressed as
algebraic equations of geometric quantities such as lengths, angles, ratios, and areas.
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1. Length(A,O) = Length(C,O) & Length(A,O) = Length(N,O) 
=> Length(C,O) = Length(N,O)

2. Length(B,O) = Length(C,O) & Length(C,O) = Length(N,O) 
=> Angle(B,C,N) = Angle(B,O,N)/2

3. Length(A,O) = Length(B,O) => IsoscelesTriangle(A,B,O)

4. IsoscelesTriangle(A,B,O) & Length(A,O) = Length(B,O) & 
Midpoint(M,A,B) => Perpendicular(A,B,M,O)

5. Collinear(M,N,O) => Parallel(M,O,N,O)

6. Perpendicular(A,B,M,O) & Parallel(M,O,N,O) => 
Perpendicular(A,B,N,O)

7. IsoscelesTriangle(A,B,O) & Length(A,O) = Length(B,O) & 
Perpendicular(A,B,N,O) => Angle(A,O,N) = Angle(B,O,N)

8. Length(A,O) = Length(C,O) & Length(C,O) = Length(N,O) 
=> Angle(A,C,N) + Angle(A,O,N)/2 = 180

9. Angle(B,C,N) = Angle(B,O,N)/2 & Angle(A,O,N) = 
Angle(B,O,N) & Angle(A,C,N) + Angle(A,O,N)/2 = 180 => 
Angle(A,C,N) + Angle(B,C,N) = 180

Formalization Engine Solution

Angle(A,C,N) + Angle(B,C,N) = 180 

Goal

Midpoint(M,A,B)
Length(O,A) = Length(O, B)

Collinear(N,O,M)
...

Metric
Relation

Between(M,A,B)
SameSide(A,C,O,M)

OppositeSide(A,N,B,C)
…

Diagrammatic
Relation

State

Text

Given a triangle ABC, let M be the midpoint
of side BA, and let O be the center of the
circumcircle passing through points A, B, and
C. A point N lies on the line OM, and N also
lies on the circumcircle centered at O with
radius equal to OA. Prove that the sum of
angles ∠ACN and ∠BCN is 180 degrees.

Diagram

Problem Deductive Database

Length(A,O) = Length(C,O) ˄ Length(C,O) = Length(N,O) ˄ 
OppositeSide(C,O,A,N) => Angle(A,C,N) + Angle(A,O,N)/2 
= 180

IsoscelesTriangle(A,B,O) ˄ Length(A,O) = Length(B,O) ˄ 
Midpoint(M,A,B) => Perpendicular(A,B,M,O)

PropertyOfIsoscelesTriangle(O,A,B,M)

InscribedAngleTheorem(O,A,N,C)

IntersectingChordsTheorem(A,B,C,M,N)

Algebraic System

Angle(A,C,N) + Angle(B,C,N) = 180

Guassian Elimination
Simplify

⎡
⎢⎢⎣

∠BCN ∠BON ∠AON ∠ACN const

1 −1/2 0 0 0
0 1 −1 0 0
0 0 1/2 1 180

⎤
⎥⎥⎦

Figure 1: A working example of Euclidea on a proving problem.

• Diagrammatic relations capture topological configurations observable directly from diagrams,
such as SameSide(a,b,c,d) (points a and b lie on the same side of line cd).

Metric relations are typically explicit in the problem statement or derived via geometric theorems,
while diagrammatic relations are implicit but can be extracted from the diagram. We define the prob-
lem state as the set of current derived metrics and diagrammatic relations together with the goal.
Unlike full-angle formalization (Chou et al., 2000), which represents angles using pairs of lines,
Euclidea encodes them using three points, making the representation closer to human. Moreover, it
incorporates diverse diagrammatic relations, ensuring that the topological structure is faithfully cap-
tured. This design also eliminates the need to explicitly enumerate additional objects such as lines
and circles during formalization (Avigad et al., 2009). Further details are provided in Appendix A.1.

Reasoning Engine. Given the current state, Euclidea combines a deductive database with an alge-
braic system to calculate or prove the target goal. The deductive component extends existing ap-
proaches (Chou et al., 2000; Ye et al., 2011; Trinh et al., 2024) with a richer and more fine-grained
set of inference rules defined over our formal representations, which are systematically enumerated
to identify applicable theorems. For example, the Angle Bisector Theorem can be formalized as:

AngleBisectorTheorem(a,b,c,d): Angle(d,a,b) = Angle(d,a,c) ∧
Collinear(d,b,c) ∧ Between(d,b,c) ∧ Not(Collinear(a,b,c)) ⇒
Length(d,b)/Length(d,c) = Length(a,b)/Length(a,c)

where point d lies on line bc and on the angle bisector of ∠bac. To mimic human-like reasoning,
inference rules are categorized as intuitive, basic, or complex according to predefined difficulty. Enu-
meration follows this order, ensures that straightforward relations are derived with simpler rules be-
fore resorting to more sophisticated reasoning. To avoid redundant permutations of equivalent rules
(e.g., AngleBisectorTheorem(a,b,c,d) vs. AngleBisectorTheorem(a,c,b,d)),
we impose a lexical partial order over the variable assignment. An SQL database (Gaffney et al.,
2022) is used to efficiently encode and enumerates applicable rules, after which all newly derived
relations and equations are added to the state. This design enables seamless extension of the system
with new inference rules, without the need to manually implement or optimize dedicated enumera-
tors for each theorem. Additional implementation details can be found in Appendix A.3.

Complementing the deductive database, Euclidea integrates a symbolic algebraic system built on
SymPy (Meurer et al., 2017) to simplify equations and solve for unknown quantities. Inspired by
DD+AR (Trinh et al., 2024), equations are categorized into four types: (i) angle-based (fixed angle,
angle sum, and angle ratio), (ii) length-based (fixed length, length sum, and length ratio), (iii) length-
ratio-based (fixed length, length ratio, and equalities between ratios or between an area and the
product of two lengths), and (iv) complex (e.g., trigonometric or higher-order polynomial relations).
The first two types can be transformed into a linear system Ax = b, where x is a vector of geometric
quantities and A and b denote the corresponding coefficients and constants, which is then solved
via Gaussian elimination. The third type can be reduced to a log-linear form and solved in the same
way after transformation. Simplified results from these three types are merged into a unified system,
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Formal Data

A: (9.692, -14.515)
B: (10.352, 15.478)

…

Point Coordinates

1.Perpendicular(B, F, D, F) => Angle(B, F, D) = 90
2.Length(D, F) = 20 & Length(A, D) = 20 
=> Length(A, D) = Length(D, F)
…
7. 4*Variable_z + 2 = Length(B, F) & Length(A,
B) = 30 & Length(A, B)=Length(B, F) 
=> Variable_z = 7

Solution

A, B, C, D = construct_rectangle_q(30, 20)
F = construct_on_dia(D, B)
F = construct_point_on_circle(D, 20)
4 * Vairable_z + 2 = Length(B, F)

Problem

Variable_z

Goal

A,B,C,D = construct_rectangle_q(30,20)
E = construct_angle_bisector(B,A,C)
E = construct_point_on_circle(C,30)
F = construct_on_dia(D,B)
F = construct_point_on_circle(D,20)
…

Constructions

Euclidea

Sample

Input

construct_free, construct_circumcenter,
construct_circle, construct_eq_triangle,
…

Construction Rule Set

Filter

Sample

Sample

Generate

Apply 
template

LLM 
refine

Render

Diagram

In the rectangle ABCD, AB = 30 and AD = 20. Point F lies
on a circle centered at D with a radius of 20. In triangle
FDB, ∠F = 90°. The length BF is given by the equation 4z +
2 = BF. Solve for z.

Problem

Point F lies on a circle centered at D with radius 20, so DF =
20. Since AB = 30 and angle F = 90° in triangle FDB,
triangle FDB is a right triangle with the right angle at F. By
the Pythagorean theorem: BF² + DF² = DB² … Given BF =
4z + 2, we solve for z: 4z + 2 = 30, 4z = 28, z = \boxed{7}.

Solution

Natural Language Data

Figure 2: A working example of Euclid-Omni generating data for a calculation problem.

and all newly derived equations of these types are added back into the state. For complex equations,
Euclidea leverages the results of the first three types for simplification and substitution, reducing
many cases to single- or double-variable equations that can be further simplified into new relations
and directly solved for unknown quantities. Some examples are provided in the Appendix A.4.
Euclidea iteratively invokes the deductive database and the algebraic system in tandem, with each
component reinforcing the other, thereby incrementally expanding the state with new relations. A
problem is solved once the goal is either derived in the relations or computed to a numerical value.

Solution Generation. To generate human-readable reasoning traces, each relation produced by the
deductive database is labeled with its originating inference rule and associated conditions. For each
equation e solved via Gaussian elimination, we cast the tracking process as an optimization problem:

min
z

∥z∥t, s.t. [A | b]⊤z = c,

where [A | b] is the augmented coefficient matrix of the linear system Ax = b, c is the coefficient
vector of the query equation e, z denotes the coefficients for equations contributing to the query,
and t specifies the chosen norm (0 or 1) to promote sparsity and ensure minimal traced equations.
Numerical optimization is performed using PySCIPOpt (Maher et al., 2016). For quantities derived
from complex equations, Euclidea records the original complex equation together with the substi-
tuted equations from the previous linear systems. Starting from the goal, Euclidea recursively traces
its dependencies until all are grounded in the initial relations. This process yields a dependency
graph whose root represents the goal and whose leaf nodes correspond to the original conditions. A
post-order traversal of this graph then produces a structured sequence of reasoning steps, formatted
into a human-readable solution to enhance interpretability.

3.2 SYNTHETIC DATA GENERATION AND MODEL TRAINING

Based on the geometric formalization and reasoning of Euclidea, Euclid-Omni provides a unified
framework that integrates a synthetic problem generator, diagram renderer, and natural language
translator to produce large-scale, diverse training data with flexible configurations for different ge-
ometry tasks. An overview of Euclid-Omni is shown in Figure 2.

Synthetic Problem Generation. To create diverse instances, Euclid-Omni synthesizes geometry
problems from scratch with full control over their structure. Inspired by AlphaGeometry (Trinh
et al., 2024), we extend and enrich a library of artificial construction rules, each corresponding
to a ruler-and-compass operation that bundles a set of condition and conclusion relations, thereby
enabling efficient problem generation. For example, the rule x = construct foot(a,b,c),
which constructs the foot of the perpendicular from point a to line bc, is formalized as:

∃ x, Not(Collinear(a,b,c)) ⇒ Perpendicular(x,a,b,c) ∧ Collinear(x,b,c)

We categorize construction rules into four types: independent, deterministic, non-deterministic, and
diagrammatic. An independent rule has no conditions (e.g., constructing an isolated square). A
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deterministic rule uniquely determines point coordinates (e.g., constructing the foot of a perpen-
dicular). A non-deterministic rule admits multiple valid placements (e.g., constructing a point on
an angle bisector). Diagrammatic rules impose additional topological constraints (e.g., requiring
two points to lie on the same side of a line). In problem generation, we begin with independent
rules and then sample either deterministic or non-deterministic rules, optionally augmented with
diagrammatic constraints. For non-deterministic rules, we allow at most two such constructions
if the resulting points can be resolved by their intersection. For each applied construction rule,
we first sample exact numerical point coordinates that satisfy its conditions, and add the corre-
sponding conclusions to Euclidea. To support calculation-style problems, we further parameterize
a subset of rules with explicit quantities such as lengths or angles. For example, a,b,c,d =
construct square q(l) constructs a square abcd with side length l, represented as:

∃ a,b,c,d, True ⇒ Square(a,b,c,d) ∧ Length(a,b) = l

It is worth noting that even when applying the same sequence of construction rules, the randomly
sampled initial points can yield different coordinates and diagrammatic relations across runs. An
illustrative example is provided in Appendix A.2.

Given a sampled problem in the form of construction rules, we derive additional diagrammatic
relations from the sampled point coordinates and combine them with the conclusions of each rule
as input to Euclidea. Euclidea then infers all possible new relations and produces the corresponding
solution steps. From this expanded set of relations, we can filter and select specific ones as target
goals according to the requirements of different tasks. For each selected goal, we also trace back
to its minimal set of construction rules from the associated solution, ensuring that no redundant
constructions remain and avoiding unnecessary complexity in the problem.

Diagram Rendering. We implement a diagram visualizer that renders geometric objects such as
segments and circles to illustrate each sampled problem given its numerical point coordinates. For
every construction rule, we specify the required objects and quantities, which are then drawn on a
canvas using Matplotlib (Hunter, 2007). For example, the rule x = construct foot(a,b,c)
produces segments bc, xa, xb, and xc, along with the right angle ∠axb.

Natural Language Translation. To train models to perform geometric reasoning in natural lan-
guage, Euclid-Omni translates symbolic problems and solutions into fluent text. Our preliminary
studies show that directly prompting off-the-shelf LLMs for this task requires specifying the entire
geometric formalization and its semantics, leading to lengthy prompts and no guarantee of correct-
ness or validation. To address this, we adopt a hybrid strategy (Huang et al., 2025). We first build a
library of manually verified natural language templates for each construction rule in the problem and
relation in the solution step. Given a symbolic problem and solution, we parse them and instantiate
an appropriate template to obtain an aligned natural language version. An LLM is then employed to
refine these outputs into diverse and fluent problem statements and solutions. Examples of templates
and prompts are provided in the Appendix B.1.

Task Configuration. With Euclid-Omni, we can generate both formal and natural language prob-
lems, solutions, and corresponding diagrams. The pipeline allows users to flexibly configure each
component to produce data tailored to different tasks. In this paper, we focus on two representative
settings for geometry problem solving: (i) solving calculation-style problems in natural language
with VLMs, (ii) predicting auxiliary constructions in formal language with LLMs, which can then
be combined with symbolic solvers to address Olympiad-level problems.

For the first task, the problem generator samples construction rules with or without quantitative
parameterization, filtering target goals to those involving lengths, angles, or areas. Variable-
based formulations are also supported by defining linear equations over lengths or angles, such
as x + 10◦ = ∠abc, and treating the variable as the goal. Each problem is synthesized us-
ing 3–5 construction rules sampled uniformly. Angles are drawn from the ranges [10◦, 80◦]
and [100◦, 170◦], with special emphasis on notable values such as 15◦, 30◦, 45◦, 60◦, 90◦, and
120◦. Lengths are sampled from the interval [1, 15], with an additional random scaling factor
from [1, 10]. To support multiple-choice formats in existing benchmarks, we adapt LLM prompts
during natural language translation to generate plausible distractors of comparable scale to the
correct answer. For training, we retain the generated natural language problem, its correspond-
ing diagram, the step-by-step solution, and its final answer/choice. The supervised fine-tuning
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Table 1: Number of solved problems by different formal geometry systems. – indicates that a solver
does not support the given task or formalization. † indicates results taken directly from prior works.

Task Dataset #Problems Formal Geometry System

Inter-GPS† PyEuclid† DD+AR† Newclid Euclidea

Calculation Geometry3K 601 426 567 – – 595

Proving JGEX-AG-231 231 – 202 198 188 207
IMO-AG-30 30 – – 14 14 16

template is: Inputs: <diagram> <natural language problem> Outputs:
<natural language solution> \boxed{<final answer/choice>}
For the second task, the problem generator invokes Euclidea after each applied construction rule to
check whether it can derive relations not involving the newly constructed points. If such a relation
is derived, the corresponding rule is marked as an auxiliary construction necessary for establishing
that relation. For example, suppose we add the construction g = construct foot(d,e,f)
and then derive the relation be = ef. Since this relation involves only the points b,e,f and
does not depend on the construction of g, this step is identified as an auxiliary construction for the
goal be = ef. The derived relation is then set as the goal, and Euclidea is rerun to generate a
more concise proof and identify a minimal set of both necessary and auxiliary construction rules.
For this setting, we sample 8–10 construction rules and filter goals to common Olympiad-style
targets such as midpoint, collinearity, similarity, congruence, concyclicity, and equality of lengths
or angles. Following prior work (Zhang et al., 2024a), only the formal problem statement and the
auxiliary constructions are retained for training. The training template for this task is: Inputs:
<formal problem> Outputs: <formal auxiliary constructions>

We provide several examples of synthetic instances of these two tasks in Appendix B.2. Note that
the Euclid-Omni pipeline can also be configured to generate data for other useful tasks such as
autoformalization, diagram parsing, and diagram understanding. We discuss some of these potential
applications in Section 5 and leave them as future directions for the community to explore.

4 EXPERIMENTS

In this section, we conduct a series of experiments to evaluate Euclidea and Euclid-Omni on both
calculation- and proof-oriented geometry tasks in formal and natural language settings.

4.1 EVALUATION OF EUCLIDEA AGAINST FORMAL GEOMETRY SYSTEMS

Setup. We evaluate Euclidea against open-source formal geometry systems on three datasets: (i)
Geometry3K (Lu et al., 2021), a collection of SAT-style problems for calculation tasks; (ii) JGEX-
AG-30 (Trinh et al., 2024), which includes well-known theorems and Olympiad-level problems from
textbooks; and (iii) IMO-AG-30 (Trinh et al., 2024), which consists of IMO problems from 2000–
2022. For Geometry3K, we adopt the formalization introduced in PyEuclid (Li et al., 2025) with
minor modifications, and we additionally correct several manually labeled errors in the original logi-
cal forms. For the other two datasets, we use the original formalization almost without modification.
We compare Euclidea with four open-source symbolic systems: Inter-GPS (Lu et al., 2021) and
PyEuclid (Li et al., 2025) for calculation tasks, DD+AR (Trinh et al., 2024), Newclid (Sicca et al.,
2024), and PyEuclid for proving tasks. Following the evaluation protocol of PyEuclid, a numerical
answer is considered correct if it differs by less than 2% from the labeled solution, since the ground
truth may contain rounding inaccuracies. For proving tasks, the system must successfully generate
a valid proof. A time limit of 600s is applied to all problems.

Results. Table 1 summarizes the performance of different formal geometry solvers across three
datasets. Euclidea consistently outperforms all existing systems across all benchmarks. Remarkably,
it solves 99% of problems in Geometry3K and successfully tackles two additional challenging IMO
problems compared to prior work. The few remaining unsolved problems fall into three categories:
(i) problems that cannot be formalized within Euclidea, (ii) problems with more than 15 points that
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Table 2: Performance of different VLMs on four benchmarks, reported as the percentage (%) of
correctly solved problems. Baseline results are taken directly from prior works when available.

Model #Train GeoQA Geometry3K MathVista MathVerse

G-LLaVA-7B 117K 64.2 - 53.4 -
MAVIS-7B 834K - - 64.1 27.9
Qwen2.5-VL-7B - 69.4 56.4 72.2 44.1
Qwen2.5-VL-7B + NeSyGeo 100K 71.8 - - 46.7
Qwen2.5-VL-7B + GeoGen 224K 77.6 58.4 74.0 -
Qwen2.5-VL-7B + TR-COT 183K 79.2 - 74.5 -

Ours 20K 76.6 61.0 74.7 51.0

yield prohibitively large search spaces and cause timeouts, and (iii) problems requiring auxiliary
constructions. Beyond raw performance gains, Euclidea also produces higher-quality proofs. As
detailed in the Appendix C.1, our generated proofs are more human-readable and better aligned
with visual diagrams than the full-angle-based proofs (Chou et al., 1996) produced by DD+AR and
Newclid, while remaining significantly more compact than those generated by PyEuclid.

4.2 EVALUATION OF EUCLID-OMNI ON NATURAL-LANGUAGE CALCULATION PROBLEMS

Setup. We use Euclid-Omni to synthesize 10K problem instances for training. These problems
are translated into natural language using Gemini 2.5 Flash (Comanici et al., 2025) as the LLM
component of Euclid-Omni. We then train Qwen2.5-VL (Bai et al., 2025) on this dataset for one
epoch with 4×H100 GPUs, implemented via LLaMA-Factory (Zheng et al., 2024). Following prior
works (Pan et al., 2025; Deng et al., 2024), to better match the out-of-distribution diagrams present
in existing benchmarks, we augment our training data by incorporating 10K random samples from
the Geo170K dataset (Gao et al., 2023). We then train our model on the combined set of 20K
samples, ensuring better alignment with the benchmark diagram distribution.

For evaluation, we compare our trained VLM against existing baselines: G-LLaVA (Gao et al.,
2023), MAVIS (Zhang et al., 2024d), Qwen2.5-VL (Bai et al., 2025), with a line of works which
employ Qwen2.5-VL as the base model, namely GeoGen (Pan et al., 2025), TR-COT (Deng et al.,
2024), and NeSyGeo (Wu et al., 2025). All of them are trained solely via supervised fine-tuning on
synthesized datasets. Experiments are conducted on four benchmarks: GeoQA (Chen et al., 2021b),
Geometry3K (Lu et al., 2021), the plane-geometry subsets of MathVista (testmini split) (Lu et al.,
2024) and MathVerse (vision-intensive split) (Zhang et al., 2024c). Following prior work, we report
accuracy as multiple-choice accuracy when answer options are available, and otherwise evaluate by
checking whether the predicted result matches the ground-truth numerical value.

Results. Table 2 summarizes the performance of various VLMs across the evaluated datasets. Our
trained model achieves state-of-the-art results on three out of four benchmarks and surpasses the
base model by an average margin of 5.3%, while remaining competitive on the GeoQA dataset. Im-
portantly, our approach requires orders of magnitude less training data than existing baselines. In
addition, synthetic data, particularly diagrams, differ substantially from those in evaluation bench-
marks, highlighting the strong generalization ability enabled by our synthetic data. For additional
insights, Appendix C.2 presents qualitative comparisons between solutions produced by our models
and those from the base model.

4.3 COMPARISON OF THE HYBRID SYSTEM ON FORMAL OLYMPIAD-LEVEL PROBLEMS

Setup. We generate 100K training samples involving auxiliary constructions and train Qwen2.5-
Math-7B Yang et al. (2024) as the base model. During inference, we employ beam search to propose
auxiliary constructions, ranking candidates by log probability and iteratively expanding the search
whenever the solver fails to reach the goal. The search is configured with a branching factor of 32,
a beam size of 128, and a maximum depth of 4. For baselines, we compare against AlphaGeom-
etry (Trinh et al., 2024) as well as two API-based models, GPT-4o and Gemini 2.5 Flash, selected
for their strong reasoning capabilities and cost efficiency under the high query volume induced
by beam search. Both GPT-4o and Gemini 2.5 Flash are prompted with the formal semantics of
DD+AR (Trinh et al., 2024) and Euclidea to generate auxiliary constructions. Experiments are con-
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ducted on two established benchmarks: JGEX-AG-231 (Trinh et al., 2024) and IMO-AG-30 (Trinh
et al., 2024), with a timeout of 90 minutes per problem, consistent with the standard time in IMO.

Table 3: Number of solved problems across two
benchmarks.

Engine Method #Train JGEX-AG-231 IMO-AG-30

DD+AR
GPT-4o - 213 17
Gemini 2.5 Flash - 216 17
AlphaGeometry 100M 228 25
AlphaGeometry 20M - 21

Euclidea
GPT-4o - 213 17
Gemini 2.5 Flash - 213 17
Ours 100K 223 22

Results. Table 3 reports the results on
Olympiad-level benchmarks. Existing API-
based models provide only marginal gains, typ-
ically solving relatively simple problems that
require a single auxiliary construction. In con-
trast, our hybrid system solves 223 problems
on JGEX-AG-231 and 22 on IMO-AG-30. Re-
markably, while AlphaGeometry is trained on
100M problems, our system achieves competi-
tive performance with only 100K training sam-
ples, and surpasses AlphaGeometry when trained on 20M samples. This highlights both the ef-
ficiency and data-effectiveness of our approach. Furthermore, our solver often discovers auxiliary
constructions distinct from those of AlphaGeometry and may require fewer steps to reach a solution.
Detailed examples are provided in Appendix C.3.

5 LIMITATIONS AND FUTURE WORK

While Euclidea and Euclid-Omni represent a promising unified approach to automated geometry
problem solving across diverse settings, several avenues remain open for further improvement.

Toward More Expressive and Human-Like Euclidea. Although the current design of Euclidea
aims to mimic human reasoning and produce human-interpretable solutions, the resulting proofs can
be lengthy, particularly for Olympiad-level problems, and differ substantially from those written by
IMO contestants. A natural extension is to enrich the deductive database with more sophisticated
rules (e.g., well-known theorems) such as Menelaus’ or Desargues’ theorem. This could yield more
compact proofs while broadening the range of solvable problems. Another direction is to enhance
the algebraic system by incorporating projective or inversive geometry, thereby increasing expres-
sivity. Finally, since the formalization underlying Euclidea closely resembles LeanEuclid (Murphy
et al., 2024), a compelling avenue is to ground its representations in Lean. This would allow Euclidea
to function as an automatic tactic and integrate with existing libraries (Mathlib community, 2020;
Song et al., 2025), bridging automated geometry solvers with general-purpose proof assistants.

Toward Better Design and Broader Usage of Euclid-Omni. Several opportunities remain to refine
the design of Euclid-Omni and expand its applications. Currently, construction rules are sampled
uniformly, without leveraging human priors or distributions observed in existing problems. Future
work could incorporate statistics from existing problems (Zhang et al., 2024a) or exploit structural
priors such as diagram symmetries to better align generated problems with downstream tasks. With
greater computational resources, scaling Euclid-Omni may also produce larger problem sets closer
in complexity to IMO-level benchmarks (Trinh et al., 2024; Zhang et al., 2024a; Chervonyi et al.,
2025). In addition, while current Euclid-Omni trains LLMs and VLMs via supervised finetuning
on synthetic data, there is significant potential to explore reinforcement learning, using Euclidea to
provide verifiable feedback during training. Beyond the tasks studied here, Euclid-Omni has broader
potential: it could support autoformalization and problem solving to produce verifiable solutions
from natural-language descriptions (useful for pedagogy), serve as a pretraining resource for VLMs
to improve vision–language alignment and diagram understanding, or enable training models that
learn to generate code for diagram generation directly from natural-language problems.

6 CONCLUSION

We introduced Euclid-Omni, a unified neuro-symbolic framework that integrates a novel formal
system Euclidea with LLMs and VLMs for geometric reasoning. The pipeline unifies symbolic
problem and solution generation, diagram construction, and natural language translation, and can be
flexibly configured for a wide range of geometry tasks. Experiments demonstrate that Euclidea and
Euclid-Omni achieve strong performance across multiple datasets, underscoring their effectiveness
for automated geometry problem solving. Looking forward, we hope this work will serve as a foun-
dation for extending the capabilities of LLMs and VLMs beyond geometry to broader applications.
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A MORE DETAILS OF EUCLIDEA

A.1 PROBLEM FORMALIZATION

Following System-E (Avigad et al., 2009), all relations in Euclidea fall into two categories: met-
ric conditions and diagrammatic conditions. A diagrammatic condition asserts certain topo-
logical configurations of the diagram, which are encoded as predicate propositions, such as
Between(a,b,c), SameSide(a,b,c,d). These conditions are directly obtained from di-
agrams and are never used as goals for proving problems. A metric condition is encoded ei-
ther as a predicate proposition (e.g., Perpendicular(x,a,b,c)) or as an equation (e.g.,
Angle(a,x,b) = π/2).

Here are some exmaples of metric relations:

Collinear(a,b,c)

Parallel(a,b,c,d)

Midpoint(a,b,c)

Perpendicular(a,b,c,d)

Congruent3(a,b,c,d,e,f)

Similar3(a,b,c,d,e,f)

Here are some examples of diagrammatic relations:

Between(a,b,c)

SameSide(a,b,c,d)

OppositeSide(a,b,c,d)

The catalog of metric relations is intentionally extensible: new relations can be introduced by spec-
ifying their rules of introduction and elimination. For example, we define

Square(a,b,c,d) := Rectangle(a,b,c,d) ∧ Length(a,b)=Length(a,d)

to provide succinct definitions and proofs involving specific shapes.

We find it necessary to introduce diagrammatic relations in order to reason about angles in a human-
like way. Two angles are considered equal if and only if they have the same cosine value. Con-
sider the inscribed angle theorem (Figure 3a). If points A,B,C,D lie on the same circle, then
Angle(A,C,B) is either equal or supplementary to Angle(A,D,B), depending on whether A
and D lie on the same side or on opposite sides of line AB.

Without diagrammatic relations, systems like AlphaGeometry (Trinh et al., 2024) and SeedGeom-
etry (Chen et al., 2025) cannot distinguish these two scenarios. Alternatively, they employ the
full-angle notation (Chou et al., 1996), where two angles are considered equal if and only if they
have the same sine value.

For instance, in Figure 3b, under the usual definition of angles:

Angle(A,O,C) = Angle(C,O,A), Angle(A,O,C)+ Angle(A,O,D) = π

However, in full-angle notation:

Angle(A,O,C) = Angle(A,O,D), Angle(A,O,C) = −Angle(C,O,A)
This misalignment makes it impossible to faithfully translate problems between natural language
and the formal language of AlphaGeometry (Trinh et al., 2024). In proving problems, the goal
of establishing equality of two angles must instead be formulated as “equal or supplementary.”
This issue becomes more problematic for calculation problems, where the solution cannot uniquely
determine the value of an angle.

Since diagrammatic inferences (Figure 3c) are almost always absent in human geometric literature
(except in the context of formal logic), we directly extract them from diagrams as initial condi-
tions. Incorporating diagrammatic inference rules into the deduction system would not only make
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it more complex (requiring proof by contradiction and disjunctions), but would also render proofs
unnecessarily verbose and less focused.

Unlike System-E (Avigad et al., 2009), which distinguishes three types of geometric ob-
jects—points, lines, and circles—we treat points as the only first-class citizens, and assume all
points are implicitly connected. For example, our assertion

Collinear(a,b,c)

is equivalent to the System-E formulation:

a,b,c: Point, l: Line, on(a,l), on(b,l), on(c,l)

This simplification reduces the complexity of our rule-based deduction system and avoids trivial
auxiliary constructions such as “Connect point a and point b.”

C

D2

A B

D1

(a) The inscribed angle theorem:
Angle(A,C,B) is equal to
Angle(A,D1,B), but supple-
mentary to Angle(A,D2,B).

A B

C

D

O

(b) With the usual definition of
angles: Angle(A,O,C) =
Angle(C,O,A), and
Angle(A,O,C) is supple-
mentary to Angle(A,O,D).

(c) An example of a diagram-
matic inference rule (from Avi-
gad et al. (2009)): if b is between
a and c, and a and c are on the
same side of line L, then a and b
are on the same side of L.

A.2 PROBLEM CONSTRUCTION

In order to generate a problem, we first sample a list of construction rules and then sample a corre-
sponding diagram. For calculation problems, we use parameterized construction rules. The diagram
is fully determined by its construction rules and parameters, up to a global translation, reflection,
and rotation. On the other hand, construction rules with unspecified degrees of freedom are also em-
ployed for generating proving problems, where the theorem to be proved usually holds for a range
of diagrams rather than a specific one.

Consider the constructions

a,b,c = construct triangle(); x = construct foot(a,b,c)

illustrated in figures 4a and 4b. To sketch the diagram, the coordinates of points are sampled accord-
ing to the construction rules. Some initial conditions directly follow from the construction, so we ob-
tain Not(Collinear(a,b,c)) and Perpendicular(x,a,b,c). Additionally, diagram-
matic relations obtained from the sample are added to the proving state, such as Between(x,b,c)
and OppositeSide(b,c,a,x). Given the same set of construction rules, the diagrammatic re-
lations may differ from one sample to another. For example, if Angle(a,b,c) > π/2, we will
instead obtain Between(b,x,c) and SameSide(b,c,a,x).

A.3 DEDUCTIVE DATABASE

After solving equations, we store all implied equivalence relationships in union-find structures.
The list of points, the equivalence classes of angles, angle sums, lengths, and length ratios, together
with each kind of predicates (such as Perpendicular, Collinear), is stored in an in-memory
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C

X

A B

(a) A sampled figure with
diagrammatic relations
Between(x,b,c) and
OppositeSide(b,c,a,x).

X

B

C

A

(b) An alternative configuration
with Between(b,x,c) and
SameSide(b,c,a,x).

A

B

D

C

(c) A diagram illustrating our al-
gebraic system.

SQL database as tables. In this way, a conjunction of conditions is naturally encoded as a table join,
and all applicable inference rules can be enumerated with an SQL query.

For example, the condition for a being the midpoint of b and c is:

Length(a,b) = Length(a,c), Collinear(a,b,c), Between(a,b,c)

which can be translated into an SQL query:

SELECT a.name AS a, b.name AS b, c.name AS c
FROM points a
JOIN points b
JOIN points c
JOIN length r0l

ON ((r0l.p0 = a.name AND r0l.p1 = b.name) OR (r0l.p1 = a.name AND
r0l.p0 = b.name))
JOIN length r0r

ON ((r0r.p0 = a.name AND r0r.p1 = c.name) OR (r0r.p1 = a.name AND
r0r.p0 = c.name))

AND r0l.component = r0r.component
JOIN collinear r1

ON ((a.name = r1.p0 AND b.name = r1.p1 AND c.name = r1.p2)
OR (a.name = r1.p0 AND c.name = r1.p1 AND b.name = r1.p2)
OR (b.name = r1.p0 AND a.name = r1.p1 AND c.name = r1.p2)
OR (b.name = r1.p0 AND c.name = r1.p1 AND a.name = r1.p2)
OR (c.name = r1.p0 AND a.name = r1.p1 AND b.name = r1.p2)
OR (c.name = r1.p0 AND b.name = r1.p1 AND a.name = r1.p2))

JOIN between r2
ON ((a.name = r2.p0 AND b.name = r2.p1 AND c.name = r2.p2)

OR (a.name = r2.p0 AND c.name = r2.p1 AND b.name = r2.p2))
WHERE b.name < c.name;

Notice that we impose a lexical partial order on the variables to eliminate permutational redundancy.
For example, Midpoint(A,B,C) is equivalent to Midpoint(A,C,B), so the filter b.name <
c.name removes the latter.

A.4 ALGEBRAIC SYSTEM

During each iteration, our algebraic system solves the following three (log-linear) systems of equa-
tions using Gaussian elimination:

Linear equations of angles: Angle(A,B,C)+ Angle(A,C,B)+ Angle(B,A,C) = π,

Linear equations of lengths: Length(A, M)+ Length(B,M) = Length(A,B),

Log-linear equations of lengths:
Length(A,B)

Length(P,Q)
=
Length(B,C)

Length(Q,R)
.

Although the linear and log-linear equations of lengths involve the same set of variables and could
theoretically be solved together, doing so easily leads to high-order polynomials, making it impos-
sible to find symbolic solutions. Instead, the three systems are solved independently.
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Then, we substitute the solutions from each system into all equations, including the non-(log-)linear
ones involving trigonometry or high-order polynomials. If the result contains no free variables, we
have found the value of a geometric quantity. If the equation after substitution is (log-)linear, we
add the equation back to the corresponding system. In this way, we allow message passing between
the three (log-)linear systems without solving the entire non-linear system simultaneously.

Consider diagram A.4, where it is known that

AD + AB = 7, AD - AB = 1.

The goal is finding AC. The set of linear equations of lengths can be summarized as the following
matrix equation:




1 1 0 0
−1 1 0 0
1 0 0 −1
0 1 −1 0






AB
AD
BC
CD


 =



7
1
0
0




First, Gaussian elimination is applied to the system of linear equations to find AD = 4 and AB = 3.
Using the Pythagorean theorem, we have

AC2 = AB2 + AD2

Substituting the solutions from the linear system, we obtain

AC2 = 25

After post-processing the solution and eliminating negative values for lengths, we obtain AC = 5.

The equation AC = 5 is both a linear and log-linear equation of lengths, so it is added back to both
systems. The “sources” attribute is set as AC2 = AB2 + AD2, AB = 3, AD = 4, which will be
used during backtracking to generate the proof.

B MORE DETAILS OF EUCLID-OMNI

B.1 EXAMPLES OF TEMPLATES AND PROMPTS FOR NATURAL LANGUAGE TRANSLATION

Following prior work (Huang et al., 2025), we construct multiple natural language templates for each
construction rule (in the problem) and relation (in the solution) within our formalization. During
transformation, one template is randomly sampled for instantiation. For example, the construction
rule x = construct circumcenter(a,b,c) can be expressed as:

x is the circumcenter of abc
x is the center of the circle passing through a, b, and c
the center of the circle through points a, b, and c is x
the point x is the circumcenter of triangle abc

Similarly, each relation can also be expressed through multiple templates. For example, the relation
Perpendicular(a,b,c,d) can be instantiated as:

line ab is perpendicular to line cd
line ab ⊥ line cd
line through a and b is perpendicular to the line through c and d
the lines formed by (a, b) and (c, d) are perpendicular

For LLM refinement, we first apply a problem prompt to transform the template-based problem and
its goal into a more natural and fluent form. The prompt is defined as follows:

You are given a plane geometry problem:

Problem: <template-based problem>. Determine <template-based goal>.

Task:
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- Rewrite the problem in clear, concise, and fluent language,
preserving the original meaning.
- Output ONLY the rewritten problem, with no explanations or extra
text.

Once the refined problem is obtained, we apply a solution prompt to convert the template-based
solution into fluent text:

You are given a plane geometry problem and its corresponding
solution:

Problem:
<refined problem>

Solution:
<template-based solution>

Task:
- Rewrite the solution in clear, concise, and fluent language,
simplifying trivial or redundant steps.
- Step-wise formatting is optional. Use it only when it improves
clarity; otherwise, presenting the solution as a continuous
paragraph is acceptable.
- Output ONLY the rewritten solution, with the final answer inside
\boxed{} at the end.
- Do NOT include the problem statement, explanations, or extra
text.

We also support transforming formal problems and solutions into multiple-choice problems, as com-
monly used in calculation-style geometry datasets. The problem prompt for this setting is:

You are given a plane geometry problem and its corresponding
solution:

Problem: <template-based problem>. <template-based goal> = ( ).

Reference Answer (for correctness only):
<answer>

Task:
- Rewrite the problem in clear, concise, and fluent language,
preserving the original meaning.
- Convert the task into a multiple-choice question with exactly 4
options labeled A,B,C,D.
- Use the reference solution ONLY to determine the correct
numeric/choice answer.
- Create plausible distractors of comparable scale or magnitude to
the correct answer.
- Ensure EXACTLY ONE option is correct.
- Output ONLY the rewritten problem followed by the choices, with
no explanations or extra text.
- Do NOT include the solution, rationales, or extra text.

Output format:
<Rewritten problem statement>

Choices:
A: ...
B: ...
C: ...
D: ...

Finally, the solution prompt for the multiple-choice setting is:
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You are given a plane geometry problem and its corresponding
solution:

Problem:
<refined multiple-choice problem>

Solution:
<template-based solution>

Task:
- Rewrite the solution in clear, concise, and fluent language,
simplifying trivial or redundant steps.
- Step-wise formatting is optional. Use it only when it improves
clarity; otherwise, presenting the solution as a continuous
paragraph is acceptable.
- Ensure the final choice label matches the provided solution’s
final answer.
- Output ONLY the rewritten solution, with the final CHOICE LABEL
(e.g., A, B, C, or D) inside \boxed{} at the end.
- Do NOT include the problem statement, explanations, or extra
text.

B.2 EXAMPLES OF SYNTHETIC INSTANCES

We present two examples of our generated instances for calculation problems: one in a final-answer
format and the other in a multiple-choice format. The first example is shown below, with its corre-
sponding diagram provided in Figure 5.

Problem:
ABCD is a square with side length 100. Point F lies on a circle
centered at D with a radius of 150. Line segment FB is
perpendicular to DB, and point G is the foot of the perpendicular
dropped from point B onto the line DF. Find the area of triangle
BDG.

Solution:
Let ABCD be a square with a side length of 100. Point F lies on a
circle centered at D with a radius of 150, and FB is perpendicular
to DB. Point G is the foot of the perpendicular from B to line DF.
\n\nSince triangle BDF and triangle BDG share ∠BDF and are both
right triangles, they are similar. Using the similarity ratio, we
have:\n\n\\[\n\\frac{BD}{DF} = \\frac{DG}{BD}\n\\]\n\nFrom the
square, \\( BD = 100\\) and \\( DF = 150 \\),
so:\n\n\\[\n\\frac{100}{150} = \\frac{DG}{100} \\implies DG =
\\frac{400}{3}.\n\\]\n\nSince \\( DF = DG + FG \\) and \\( DF =
150 \\), substituting \\( DG = \\frac{400}{3}
\\):\n\n\\[\n\\frac{400}{3} + FG = 150 \\implies FG =
\\frac{50}{3}.\n\\]\n\nTriangle BDG has a right angle at G. Its
area is given by:\n\n\\[\n\\text{Area} = \\frac{1}{2} \\times BG
\\times DG.\n\\]\n\nUsing the similarity ratio from triangles BDG
and FBG:\n\n\\[\n\\frac{BG}{DG} = \\frac{FG}{BG} \\implies BGˆ2 =
DG \\cdot FG.\n\\]\n\nSubstituting \\( DG = \\frac{400}{3} \\) and
\\( FG = \\frac{50}{3} \\):\n\n\\[\nBGˆ2 = \\frac{400}{3} \\cdot
\\frac{50}{3} = \\frac{20000}{9} \\implies BG =
\\sqrt{\\frac{20000}{9}} = \\frac{100\\sqrt{2}}{3}.\n\\]\n\nThe
area of triangle BDG is:\n\n\\[\n\\text{Area} = \\frac{1}{2}
\\times BG \\times DG = \\frac{1}{2} \\times
\\frac{100\\sqrt{2}}{3} \\times \\frac{400}{3} = \\frac{20000
\\sqrt{2}}{9}.\n\\]\n\n\\[\n\\boxed{\\frac{20000
\\sqrt{2}}{9}}\n\\]

The second example is shown below, with its corresponding diagram provided in Figure 6.
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Figure 5: Diagram of the generated final-answer calculation problem.

Problem:
In triangle ABC, ∠ABC is a right angle, AB = 52, and BC = 32. D is
a point on the line passing through C and parallel to AB, such
that DB is perpendicular to AC. Find the area of triangle BCD.

Choices:
A: 2048/13
B: 4096/13
C: 5120/13
D: 1024/13

Solution:
Given that ∠ABC is a right angle, AB is perpendicular to BC. Since
AB is parallel to CD, CD is also perpendicular to BC, making ∠BCD
= 90◦. The area of triangle BCD is given by \\(\\frac{1}{2} \\cdot
BC \\cdot CD\\).\n\nTriangles ABC and BCD are similar because ∠ABC
= ∠BCD (both 90◦), and the other angles are congruent by the
geometric constraints. By the similarity ratio, \\(\\frac{AB}{BC}
= \\frac{BC}{CD}\\). Substituting the given side lengths \\(AB =
52\\) and \\(BC = 32\\), we solve for
\\(CD\\):\n\n\\[\n\\frac{52}{32} = \\frac{32}{CD} \\implies CD =
\\frac{32 \\cdot 32}{52} = \\frac{1024}{52} =
\\frac{256}{13}.\n\\]\n\nThe area of triangle BCD
is:\n\n\\[\n\\text{Area} = \\frac{1}{2} \\cdot BC \\cdot CD =
\\frac{1}{2} \\cdot 32 \\cdot \\frac{256}{13} =
\\frac{4096}{13}.\n\\]\n\n\\(\\boxed{B}\\)

We also provide two examples of synthetic problems that require auxiliary constructions. The first
example is presented below and the associated diagram is shown in Figure 7.

Problem:
a,b = construct_segment(), c = construct_on_circle(b,a),
c = construct_on_line(b,a), e = construct_on_bline(c,a),
f = construct_angle_bisector(b,c,e), f = construct_on_bline(e,a)
Goal:
Concyclic(a,c,e,f)

Auxiliary Constructions:
d = construct_midpoint(b,a),
h = construct_intersection_tt(f,a,e,b,c,d)
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Figure 6: Diagram of the generated multiple-choice calculation problem.

Figure 7: Diagram of the synthetic problem with its auxiliary constructions.

The second example is presented below and the associated diagram is shown in Figure 8.

Problem:
a,b = construct_segment(), c = construct_on_dia(b,a),
d = construct_on_bline(c,a), d = construct_angle_bisector(c,b,a)
Goal:
Angle_a_b_c + Angle_a_d_c - 180

Auxiliary Constructions:
e = construct_on_dia(a,b), e = construct_angle_bisector(c,d,a)

C MORE DETAILS OF EXPERIMENTAL RESULTS

C.1 EXAMPLES OF PRODUCED PROOFS

We compare the proofs generated by Euclidea against those produced by AlphaGeometry (Trinh
et al., 2024), Newclid (Sicca et al., 2024), and PyEuclid (Li et al., 2025). For this evaluation, we
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Figure 8: Diagram of the synthetic problem with its auxiliary constructions.

randomly selected two problems: one from JGEX-AG-231 (Trinh et al., 2024) and another from
IMO-AG-30 (Trinh et al., 2024).

The natural language formulation of the first problem is given below, and the corresponding diagram
is shown in Figure 9.

In triangle ECD, ∠E is a right angle. O is the midpoint of side
DC. Line AC is perpendicular to side DC, and AE is perpendicular
to EO. Line CA intersects at a point F, and line DE also passes
through point F. Prove that AE is equal to AF.

Figure 9: Diagram of the geometry problem selected from JGEX-AG-231.
The proof produced by Euclidea for this problem is shown below:

Solution:
1. Collinear(d,e,f) => Angle_e_d_o - Angle_f_d_o & Angle_a_f_d -
Angle_a_f_e & Angle_d_e_o + Angle_f_e_o - 180
2. Collinear(c,d,o) => Parallel(c,d,d,o)
3. Perpendicular(a,c,c,d) & Parallel(c,d,d,o) =>
Perpendicular(a,c,d,o)
4. Collinear(a,c,f) => Parallel(a,c,a,f)
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5. Perpendicular(a,c,d,o) & Parallel(a,c,a,f) =>
Perpendicular(a,f,d,o)
6. Perpendicular(a,f,d,o) => Angle_a_f_d + Angle_f_d_o - 90
7. Angle_e_d_o - Angle_f_d_o & Angle_a_f_d - Angle_a_f_e &
Angle_a_f_d + Angle_f_d_o - 90 => Angle_a_f_e + Angle_e_d_o - 90
8. Perpendicular(a,e,e,o) => Angle_a_e_o - 90
9. Angle_a_e_f + Angle_a_e_o - Angle_f_e_o & Angle_d_e_o +
Angle_f_e_o - 180 & Angle_a_e_o - 90 => Angle_a_e_f + Angle_d_e_o
- 90
10. Midpoint(o,c,d) & Perpendicular(c,e,d,e) => Length_d_o -
Length_e_o
11. Length_d_o - Length_e_o => Angle_d_e_o - Angle_e_d_o
12. Angle_a_f_e + Angle_e_d_o - 90 & Angle_a_e_f + Angle_d_e_o -
90 & Angle_d_e_o - Angle_e_d_o => Angle_a_e_f - Angle_a_f_e
13. Angle_a_e_f - Angle_a_f_e => Length_a_e - Length_a_f

The proof produced by AlphaGeometry for this problem is shown below:

* Proof steps:
001. C,O,D are collinear [01] & CD ⊥ AC [03] ⇒ CO ⊥ CA [07]
002. CO ⊥ CA [07] & AE ⊥ EO [04] ⇒ ∠COE = ∠CAE [08]
003. C,A,F are collinear [05] & C,O,D are collinear [01] & ∠COE =
∠CAE [08] ⇒ ∠FAE = ∠COE [09]
004. D,F,E are collinear [06] & DE ⊥ CE [00] ⇒ FD ⊥ CE [10]
005. AE ⊥ EO [04] & FD ⊥ CE [10] ⇒ ∠(AE-FD) = ∠OEC [11]
006. D,F,E are collinear [06] & ∠(AE-FD) = ∠OEC [11] ⇒ ∠FEA = ∠
CEO [12]
007. ∠FAE = ∠COE [09] & ∠FEA = ∠CEO [12] (Similar Triangles)⇒
OC:OE = AF:AE [13]
008. C,O,D are collinear [01] & OD = OC [02] ⇒ O is midpoint of
DC [14]
009. CE ⊥ DE [00] & O is midpoint of DC [14] ⇒ CO = EO [15]
010. OC:OE = AF:AE [13] & CO = EO [15] ⇒ AF = AE

The proof produced by Newclid for this problem is shown below:

# Proof:
000. | O is the midpoint of CD [C0], CE ⊥ DE [C1] =(r19 Hypotenuse
is diameter)> CO = EO [0]
001. | CO = EO [0] =(r13 Isosceles triangle equal angles)> ∠
(CE,CO) = ∠(EO,CE) [1]
002. | A, C, F are collinear [C2], A ̸= C [N0], A ̸= F [N1], C ̸= F
[N2] =(r82 Parallel from collinear)> AF ∥ AC [2]
003. | O is the midpoint of CD [C0] =(r56 Properties of midpoint
(coll))> C, D, O are collinear [3]
004. | C, D, O are collinear [3], C ̸= D [N3], C ̸= O [N4], D ̸= O
[N5] =(r82 Parallel from collinear)> CO ∥ CD [4]
005. | D, E, F are collinear [C3], D ̸= E [N6], D ̸= F [N7], E ̸= F
[N8] =(r82 Parallel from collinear)> DE ∥ EF [5]
006. | ∠(CE,CO) = ∠(EO,CE) [1], AF ∥ AC [2], CO ∥ CD [4], DE ∥ EF
[5], AC ⊥ CD [C4], AE ⊥ EO [C5], CE ⊥ DE [C1] =(AR Deduction)>
∠(AE,EF) = ∠(EF,AF) [6]
007. | ∠(AE,EF) = ∠(EF,AF) [6], A, E, F are not collinear [N9]
=(r14 Equal base angles imply isosceles)> AF = AE [7]

The proof produced by PyEuclid for this problem is shown below:

* Proof steps:
001. Length_c_o - Length_d_o &
Collinear(c,d,o) &
Between(o,c,d) ⇒ -Length_c_d/2 + Length_d_o
002. Angle_c_d_e - Angle_f_d_o &
Angle_c_d_f - Angle_f_d_o ⇒ Angle_c_d_e - Angle_c_d_f
003. Perpendicular(a,c,c,d) &
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Parallel(a,c,c,f) ⇒ Angle_d_c_f - pi/2
004. Angle_d_c_f - pi/2(3) &
Angle_c_e_d - pi/2 ⇒ Angle_c_e_d - Angle_d_c_f
005. Not(Collinear(c,d,e)) &
Angle_c_d_e - Angle_c_d_f(2) &
Angle_c_e_d - Angle_d_c_f(4) ⇒ Length_c_d/Length_d_f -
Length_d_e/Length_c_d
006. Perpendicular(c,e,d,e) &
Parallel(d,e,e,f) ⇒ Angle_c_e_f - pi/2
007. Angle_c_e_d - pi/2 &
Angle_c_e_f - pi/2(6) ⇒ -Angle_c_e_d + Angle_c_e_f
008. Angle_c_e_d - pi/2 &
Angle_c_d_e - Angle_f_d_o &
Angle_c_d_e + Angle_c_e_d + Angle_d_c_e - pi ⇒ Angle_d_c_e +
Angle_f_d_o - pi/2
009. Angle_c_d_f - Angle_f_d_o &
Angle_c_f_d - Angle_c_f_e &
Angle_c_d_f + Angle_c_f_d + Angle_d_c_f - pi &
Angle_d_c_f - pi/2 ⇒ Angle_c_f_e + Angle_f_d_o - pi/2
010. Angle_d_c_e + Angle_f_d_o - pi/2(8) &
Angle_c_f_e + Angle_f_d_o - pi/2(9) ⇒ Angle_c_f_e - Angle_d_c_e
011. Not(Collinear(c,e,f)) &
-Angle_c_e_d + Angle_c_e_f(7) &
Angle_c_f_e - Angle_d_c_e(10) ⇒ Length_c_e/Length_d_e -
Length_e_f/Length_c_e
012. Angle_a_e_o - pi/2 &
Angle_a_f_e - Angle_c_f_d &
-Angle_c_d_f + Angle_f_d_o &
-Angle_a_e_f - Angle_a_e_o + Angle_f_e_o &
Angle_a_e_f + Angle_a_f_e + Angle_e_a_f - pi &
Angle_c_d_f + Angle_c_f_d + Angle_d_c_f - pi &
Angle_d_c_f - pi/2 ⇒ Angle_e_a_f - Angle_f_d_o + Angle_f_e_o - pi
013. -Angle_e_d_o + Angle_f_d_o &
Angle_d_e_o + Angle_d_o_e + Angle_e_d_o - pi &
Angle_c_o_e + Angle_d_o_e - pi &
Angle_d_e_o + Angle_f_e_o - pi ⇒ Angle_c_o_e - Angle_f_d_o +
Angle_f_e_o - pi
014. Angle_e_a_f - Angle_f_d_o + Angle_f_e_o - pi(12) &
Angle_c_o_e - Angle_f_d_o + Angle_f_e_o - pi(13) ⇒ -Angle_c_o_e +
Angle_e_a_f
015. -Angle_c_e_f - Angle_c_e_o + Angle_f_e_o &
Angle_c_e_f - pi/2 ⇒ Angle_c_e_o - Angle_f_e_o + pi/2
016. Angle_a_e_o - pi/2 &
-Angle_a_e_f - Angle_a_e_o + Angle_f_e_o ⇒ Angle_a_e_f -
Angle_f_e_o + pi/2
017. Angle_c_e_o - Angle_f_e_o + pi/2(15) &
Angle_a_e_f - Angle_f_e_o + pi/2(16) ⇒ Angle_a_e_f - Angle_c_e_o
018. Not(Collinear(a,e,f)) &
-Angle_c_o_e + Angle_e_a_f(14) &
Angle_a_e_f - Angle_c_e_o(17) ⇒ Length_a_f/Length_c_o -
Length_e_f/Length_c_e
019. -Length_c_o + Length_d_o &
-Length_c_d/2 + Length_d_o(1) &
Length_c_d/Length_d_f - Length_d_e/Length_c_d(5) &
Length_c_e/Length_d_e - Length_e_f/Length_c_e(11) &
Length_a_f/Length_c_o - Length_e_f/Length_c_e(18) ⇒ Length_a_f -
sqrt(Length_d_f)*sqrt(Length_e_f)/2
020. -Angle_a_f_e + Angle_c_f_d &
Angle_c_d_f - Angle_f_d_o &
Angle_c_d_f + Angle_c_f_d + Angle_d_c_f - pi &
Angle_d_c_f - pi/2 ⇒ Angle_a_f_e + Angle_f_d_o - pi/2
021. Angle_c_e_d - pi/2 &
Angle_c_d_e - Angle_f_d_o &
Angle_d_c_e - Angle_e_c_o &
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Angle_c_d_e + Angle_c_e_d + Angle_d_c_e - pi ⇒ Angle_e_c_o +
Angle_f_d_o - pi/2
022. Angle_a_f_e + Angle_f_d_o - pi/2(20) &
Angle_e_c_o + Angle_f_d_o - pi/2(21) ⇒ Angle_a_f_e - Angle_e_c_o
023. Not(Collinear(a,e,f)) &
Angle_a_e_f - Angle_c_e_o(17) &
Angle_a_f_e - Angle_e_c_o(22) ⇒ Length_a_e/Length_e_o -
Length_e_f/Length_c_e
024. Angle_e_d_o - Angle_f_d_o &
Angle_d_e_o + Angle_d_o_e + Angle_e_d_o - pi &
Angle_d_e_o + Angle_f_e_o - pi ⇒ Angle_d_o_e + Angle_f_d_o -
Angle_f_e_o
025. Angle_a_e_o - pi/2 &
-Angle_a_f_e + Angle_c_f_d &
Angle_c_d_f - Angle_f_d_o &
-Angle_a_e_f - Angle_a_e_o + Angle_f_e_o &
Angle_a_e_f + Angle_a_f_e + Angle_e_a_f - pi &
Angle_c_d_f + Angle_c_f_d + Angle_d_c_f - pi &
Angle_c_a_e + Angle_e_a_f - pi &
Angle_d_c_f - pi/2 ⇒ Angle_c_a_e + Angle_f_d_o - Angle_f_e_o
026. Angle_d_o_e + Angle_f_d_o - Angle_f_e_o(24) &
Angle_c_a_e + Angle_f_d_o - Angle_f_e_o(25) ⇒ Angle_c_a_e -
Angle_d_o_e
027. Angle_a_c_d - pi/2 &
Angle_c_e_d - pi/2 &
-Angle_c_d_e + Angle_f_d_o &
Angle_a_c_d - Angle_a_c_e - Angle_d_c_e &
Angle_c_d_e + Angle_c_e_d + Angle_d_c_e - pi ⇒ Angle_a_c_e -
Angle_f_d_o
028. Angle_a_c_e - Angle_f_d_o(27) &
Angle_e_d_o - Angle_f_d_o ⇒ Angle_a_c_e - Angle_e_d_o
029. Not(Collinear(a,c,e)) &
Angle_c_a_e - Angle_d_o_e(26) &
Angle_a_c_e - Angle_e_d_o(28) ⇒ Length_a_e/Length_e_o -
Length_c_e/Length_d_e
030. Length_c_o - Length_d_o &
Collinear(c,d,o) &
Between(o,c,d) &
Perpendicular(c,e,d,e) ⇒ Length_c_o - Length_e_o
031. -Length_c_d/2 + Length_d_o(1) &
Length_a_e/Length_e_o - Length_e_f/Length_c_e(23) &
Length_c_d/Length_d_f - Length_d_e/Length_c_d(5) &
Length_a_e/Length_e_o - Length_c_e/Length_d_e(29) &
Length_d_o/Length_e_o - Length_e_o/Length_d_o ⇒ Length_a_e -
sqrt(Length_d_f)*sqrt(Length_e_f)/2
032. Length_a_f - sqrt(Length_d_f)*sqrt(Length_e_f)/2(19) &
Length_a_e - sqrt(Length_d_f)*sqrt(Length_e_f)/2(31) ⇒ Length_a_e
- Length_a_f

For the second problem, the natural language formulation is presented below, together with its cor-
responding diagram in Figure 10.

Let BC be a line segment, and O be the midpoint of BC. Point A
lies on a circle with center O and radius OB. Point D lies on the
perpendicular bisector of line segment AB and is located on the
same circle with center O and radius OB. Point E is located on the
perpendicular bisector of line segment OA and also lies on the
circle with center O and radius OB. Similarly, point F is located
on the perpendicular bisector of line segment OA and lies on the
circle with center O and radius OB. Line JO is parallel to AD, and
point J lies on line AC. Prove that ∠ECJ = ∠FCJ.

The proof produced by Euclidea for this problem is shown below:
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Figure 10: Diagram of the geometry problem selected from IMO-AG-30.

Solution:
1. Length_b_o - Length_c_o & Length_a_o - Length_b_o => Length_a_o
- Length_c_o
2. Length_b_o - Length_f_o & Length_b_o - Length_c_o => Length_c_o
- Length_f_o
3. -Length_a_o + Length_c_o & Length_c_o - Length_f_o =>
Angle_a_c_f - Angle_a_o_f/2
4. Collinear(a,c,j) => Angle_a_c_f - Angle_f_c_j & Angle_a_c_e -
Angle_e_c_j
5. Length_b_o - Length_f_o & Length_b_o - Length_e_o => Length_e_o
- Length_f_o
6. Length_a_e - Length_e_o & Length_e_o - Length_f_o & -Length_a_f
+ Length_f_o => Rhombus(a,e,o,f)
7. Rhombus(a,e,o,f) => Angle_a_o_e - Angle_a_o_f
8. Length_b_o - Length_c_o & Length_b_o - Length_e_o => Length_c_o
- Length_e_o
9. -Length_a_o + Length_c_o & Length_c_o - Length_e_o =>
Angle_a_c_e - Angle_a_o_e/2
10. Angle_a_c_f - Angle_a_o_f/2 & Angle_a_c_f - Angle_f_c_j &
Angle_a_o_e - Angle_a_o_f & Angle_a_c_e - Angle_a_o_e/2 &
Angle_a_c_e - Angle_e_c_j => Angle_e_c_j - Angle_f_c_j

The proof produced by AlphaGeometry for this problem is shown below:

* Proof steps:
001. OE = OB [03] & OF = OB [05] & OA = OB [01] & OD = OB [02] &
OB = OC [00] ⇒ E,A,F,C are concyclic [08]
002. E,A,F,C are concyclic [08] ⇒ ∠AEF = ∠ACF [09]
003. E,A,F,C are concyclic [08] ⇒ ∠EFA = ∠ECA [10]
004. EO = EA [04] & OE = OB [03] & OF = OB [05] & FO = FA [06] ⇒
AF = AE [11]
005. AF = AE [11] ⇒ ∠EFA = ∠AEF [12]
006. J,A,C are collinear [07] & ∠AEF = ∠ACF [09] & ∠EFA = ∠AEF
[12] & ∠EFA = ∠ECA [10] ⇒ ∠ECJ = ∠JCF

The proof produced by Newclid for this problem is shown below:

# Proof:
000. | O is the midpoint of BC [C1] =(r51 Midpoint splits in two)>
BC:BO = 2/1 [0]
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001. | O is the midpoint of BC [C1] =(r51 Midpoint splits in two)>
BC:CO = 2/1 [1]
002. | AO = BO [C0], BC:BO = 2/1 [0], BC:CO = 2/1 [1] =(AR
Deduction)> CO = AO [2]
003. | CO = AO [2] =(r13 Isosceles triangle equal angles)>
∠(AC,AO) = ∠(CO,AC) [3]
004. | ∠(AE,AO) = ∠(AO,EO) [C3], ∠(AF,AO) = ∠(AO,FO) [C2] =(AR
Deduction)> ∠(AE,AF) = ∠(FO,EO) [4]
005. | AE = EO [C4], EO = BO [C5], FO = AF [C6], FO = BO [C7] =(AR
Deduction)> AE:AF = FO:EO [5]
006. | ∠(AE,AF) = ∠(FO,EO) [4], AE:AF = FO:EO [5], △AEF has the
same orientation as △EOF [N0] =(r62 SAS Similarity of triangles
(Direct))> △AEF ∼= △OFE [6]
007. | △AEF has the same orientation as △EOF [N0], △AEF ∼= △OFE
[6] =(r52 Properties of similar triangles (Direct))> ∠(AF,EF) =
∠(EO,EF) [7]
008. | EO = BO [C5], BC:BO = 2/1 [0], BC:CO = 2/1 [1] =(AR
Deduction)> EO = CO [8]
009. | EO = CO [8] =(r13 Isosceles triangle equal angles)>
∠(CE,CO) = ∠(EO,CE) [9]
010. | FO = BO [C7], BC:BO = 2/1 [0], BC:CO = 2/1 [1] =(AR
Deduction)> CO = FO [10]
011. | CO = FO [10] =(r13 Isosceles triangle equal angles)>
∠(CF,CO) = ∠(FO,CF) [11]
012. | A, C, J are collinear [C8], A ̸= C [N1], A ̸= J [N2], C ̸= J
[N3] =(r82 Parallel from collinear)> CJ ∥ AC [12]
013. | ∠(AC,AO) = ∠(CO,AC) [3], ∠(AF,AO) = ∠(AO,FO) [C2],
∠(AF,EF) = ∠(EO,EF) [7], ∠(CE,CO) = ∠(EO,CE) [9], ∠(CF,CO) =
∠(FO,CF) [11], CJ ∥ AC [12] =(AR Deduction)> ∠(CE,CJ) = ∠(CJ,CF)
[13]

The proof produced by PyEuclid for this problem is shown below:

* Proof steps:
001. Length_a_o - Length_b_o &
-Length_b_o + Length_f_o ⇒ Length_a_o - Length_f_o
002. -Length_a_e + Length_e_o &
-Length_b_o + Length_e_o &
-Length_b_o + Length_f_o ⇒ Length_a_e - Length_f_o
003. Length_a_o - Length_f_o(1) &
Length_a_e - Length_f_o(2) ⇒ Length_a_e - Length_a_o
004. Not(Collinear(a,e,o)) &
Length_a_e - Length_a_o(3) ⇒ Angle_a_e_o - Angle_a_o_e
005. -Length_b_o + Length_e_o &
-Length_b_o + Length_f_o ⇒ Length_e_o - Length_f_o
006. Not(Collinear(a,e,o)) &
Length_a_e - Length_e_o ⇒ -Angle_a_o_e + Angle_e_a_o
007. Length_b_o - Length_c_o &
-Length_b_o + Length_f_o ⇒ Length_c_o - Length_f_o
008. Length_a_o - Length_f_o(1) &
Length_c_o - Length_f_o(7) ⇒ Length_a_o - Length_c_o
009. Length_e_o - Length_f_o(5) &
Length_c_o - Length_f_o(7) ⇒ Length_c_o - Length_e_o
010. SameSide(c,o,a,e) &
Length_a_o - Length_c_o(8) &
Length_c_o - Length_e_o(9) ⇒ Angle_a_c_e - Angle_a_o_e/2
011. Angle_a_c_e - Angle_e_c_j &
Angle_a_e_o + Angle_a_o_e + Angle_e_a_o - pi &
Angle_a_e_o - Angle_a_o_e(4) &
-Angle_a_o_e + Angle_e_a_o(6) &
Angle_a_c_e - Angle_a_o_e/2(10) ⇒ Angle_e_c_j - pi/6
012. Length_a_o - Length_f_o(1) &
Length_a_f - Length_f_o ⇒ Length_a_f - Length_a_o
013. Not(Collinear(a,f,o)) &
Length_a_f - Length_a_o(12) ⇒ Angle_a_f_o - Angle_a_o_f
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014. Not(Collinear(a,f,o)) &
Length_a_f - Length_f_o ⇒ -Angle_a_o_f + Angle_f_a_o
015. SameSide(c,o,a,f) &
Length_a_o - Length_c_o(8) &
Length_c_o - Length_f_o ⇒ Angle_a_c_f - Angle_a_o_f/2
016. Angle_a_c_f - Angle_f_c_j &
Angle_a_f_o + Angle_a_o_f + Angle_f_a_o - pi &
Angle_a_f_o - Angle_a_o_f(13) &
-Angle_a_o_f + Angle_f_a_o(14) &
Angle_a_c_f - Angle_a_o_f/2(15) ⇒ Angle_f_c_j - pi/6
017. Angle_e_c_j - pi/6(11) &
Angle_f_c_j - pi/6(16) ⇒ Angle_e_c_j - Angle_f_c_j

It is important to note that proofs generated by different systems can vary substantially in both style
and strategy. In contrast to Euclidea, AlphaGeometry and Newclid rely on full-angle formaliza-
tion (Chou et al., 1996), which often fails to distinguish an angle from its supplement and may
therefore yield “incorrect” angle relations compared to human reasoning (highlighted in red). Fur-
thermore, these systems represent angles using pairs of lines (shown in blue), introducing additional
ambiguity. By comparison, the proofs generated by Euclidea faithfully capture the angle relations
shown in the diagram, yielding a representation that is more human-like. Compared to PyEuclid,
Euclidea produces proofs that are about twice as compact and avoid redundant equations, making
them significantly clearer and easier for humans to read.

C.2 EXAMPLES OF GENERATED SOLUTIONS ON CALCULATION PROBLEMS

We provide two samples from GeoQA (Chen et al., 2021a) and Geometry3K (Lu et al., 2021)
datasets respectively and compare the solutions given by our finetuned model with the one given
by base Qwen 2.5 VL model to illustrate efficacy of training with the synthetic dataset and the
capability of our model in solving the informal geometry problems.

The natural language description of the problem from GeoQA dataset is given below, and the cor-
responding diagram is shown in Figure 11. The example demonstrate that our model is able to
understand diagrammatic relationship correctly via finetunig.

As shown in the figure, it is known that BA is the tangent of
circle O, and connect OB to intersect circle O at point C. If
angle B = 45.0 and the length of AB is 2.0, then the length of BC
is
()\nChoices:\nA:2\sqrt{2}-1\nB:\sqrt{2}\nC:2\sqrt{2}-2\nD:2-\sqrt{2}

Figure 11: Diagram of the problem selected from GeoQA dataset.
The solution produced by our model for this problem is shown below:

Since BA is a tangent line to circle O, we have OA perpendicular
to AB. Given that angle B is 45 degrees, we can find that OA
equals AB, which is 2. In right triangle AOB, using the
Pythagorean theorem, we can find OB as \sqrt{OAˆ2+ABˆ2}, which
equals 2\sqrt{2}. Therefore, BC equals OB minus OC, which is
2\sqrt{2}-2. Hence, the answer is \\boxed{C}

The solution produced by the base model for this problem is shown below:

Since AB is a tangent line to circle O, we have OA perpendicular
AB. In right triangle AOB, we know that angle B is 45\u00b0 and AB
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is 2. Therefore, OA = OB = AB * sin(45◦) = \sqrt{2}. Hence, OC = OA
= \sqrt{2}. Thus, BC = OB - OC = (\sqrt{2}) - (\sqrt{2})/2 =
(\sqrt{2})/2. Therefore, the answer is option D.\nAnswer:D

The natural language description of the problem from Geometry3K dataset is given below, and the
corresponding diagram is shown in Figure 12. The example shows that our model learns the correct
calculation steps from the algebraic system of the symbolic solver.

Find $m\\angle R$\nChoices:\nA:58\nB:60\nC:122\nD:124

Figure 12: Diagram of the problem selected from Geometry3K dataset.

To find the measure of angle \\( \\angle R \\), we need to use the
fact that the sum of the interior angles of a quadrilateral is
always 360 degrees.\n\nGiven the angles in the quadrilateral:\n-
\\( \\angle Q = (2x + 5)ˆ\\circ \\)\n- \\( \\angle R = xˆ\\circ
\\)\n- \\( \\angle S = (2x + 7)ˆ\\circ \\)\n- \\( \\angle T =
xˆ\\circ \\)\n\nWe can set up the equation for the sum of the
interior angles:\n\\[\n(2x + 5) + x + (2x + 7) + x =
360\n\\]\n\nCombine like terms:\n\\[\n2x + 5 + x + 2x + 7 + x =
360\n\\]\n\\[\n6x + 12 = 360\n\\]\n\nSubtract 12 from both
sides:\n\\[\n6x = 348\n\\]\n\nDivide by 6:\n\\[\nx =
58\n\\]\n\nNow, substitute \\( x = 58 \\) back into the expression
for \\( \\angle R \\):\n\\[\n\\angle R = xˆ\\circ =
58ˆ\\circ\n\\]\n\nThus, the measure of \\( \\angle R \\)
is:\n\\[\n\\boxed{58}\n\\]

To find the measure of angle \\( \\angle R \\) in the given
quadrilateral, we need to use the fact that the sum of the
interior angles of a quadrilateral is always \\( 360ˆ\\circ
\\).\n\nThe given angles are:\n- \\( \\angle Q = (2x + 5)ˆ\\circ
\\)\n- \\( \\angle S = (2x + 7)ˆ\\circ \\)\n- \\( \\angle T =
xˆ\\circ \\)\n- \\( \\angle R = xˆ\\circ \\)\n\nWe can set up the
equation for the sum of the interior angles:\n\n\\[\n(2x + 5) +
(2x + 7) + x + x = 360\n\\]\n\nCombine like terms:\n\n\\[\n2x + 5
+ 2x + 7 + x + x = 360\n\\]\n\n\\[\n4x + 12 = 360\n\\]\n\nSubtract
12 from both sides:\n\n\\[\n4x = 348\n\\]\n\nDivide by
4:\n\n\\[\nx = 87\n\\]\n\nNow, substitute \\( x = 87 \\) back into
the expression for \\( \\angle R \\):\n\n\\[\n\\angle R = xˆ\\circ
= 87ˆ\\circ\n\\]\n\nThus, the measure of \\( \\angle R \\)
is:\n\n\\[\n\\boxed{87}\n\\]

C.3 EXAMPLES OF GENERATED AUXILIARY CONSTRUCTIONS ON PROVING PROBLEMS

We compared the auxiliary constructions identified by AlphaGeometry (Trinh et al., 2024) with those
generated by our approach. Notably, our predicted constructions often differ from those of Alpha-
Geometry, highlighting that multiple valid auxiliary strategies can achieve the same goal. Moreover,
our method sometimes requires fewer auxiliary constructions than AlphaGeometry. To illustrate
these differences, we present two examples from the IMO-AG-30 dataset (Trinh et al., 2024).
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The natural language formulation of the first problem is given below, and the corresponding diagram
is shown in Figure 13.

In triangle ABC, point O is the midpoint of side BC. Point M lies
on the circle centered at O with radius OB, and M is located on
line AB. Point N lies on the circle centered at O with radius OB,
and N is located on line AC. Point R lies on the angle bisector of
∠BAC, such that ∠MOR = ∠RON. Let O1 be the center of the circle
passing through points B, M, and R, and O2 be the circumcenter of
triangle CNR. Point P lies on the circle centered at O1 with radius
O1R, and P also lies on the circle centered at O2 with radius O2R.
Prove that the points B, C, and P are collinear.

Figure 13: Diagram of the first geometry problem selected from IMO-AG-30.
The auxiliary constructions predicted by our LLLM for this problem is shown below:

Construct point K as the circumcenter of triangle AMN.

The auxiliary constructions predicted by AlphaGeometry for this problem is shown below:

Construct point K such that KM = KN.
Construct point L as the intersection of circles (K, A) and (O, A).

The natural language formulation of the second problem is given below, and the corresponding
diagram is shown in Figure 14.

In triangle ABC, let H be the orthocenter. Point F lies on the
line HA and also on the line BC. Let M be the midpoint of segment
BC. Let O be the circumcenter of triangle ABC, which is the center
of the circle passing through points A, B, and C. Triangle QAH is
a right triangle with a 90-degree angle at Q, where Q lies on the
circle centered at O with radius OA. Similarly, triangle KHQ is a
right triangle with a 90-degree angle at K, where K also lies on
the circle centered at O with radius OA. Let O1 be the circumcenter
of triangle KQH, and let O2 be the circumcenter of triangle FKM.
Prove that points K, O1, and O2 are collinear.

The auxiliary constructions predicted by our LLLM for this problem is shown below:

Construct point p as the intersection of cicle (O, A) and Line (H,
Q).
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Figure 14: Diagram of the second geometry problem selected from IMO-AG-30.

The auxiliary constructions predicted by AlphaGeometry for this problem is shown below:

Construct point X as the midpoint of CH.
Construct point Y as the midpoint of KM.
Construct point Z as the midpoint of BH.

D THE USE OF LLMS

LLMs were mainly used for minor language editing. Specifically, we employed them to polish the
phrasing of individual sentences or short paragraphs in order to improve fluency and readability.
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