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Abstract

POD-KAN-NO is a novel neural operator frame-
work that combines the interpretability of modal
decomposition with the expressive power of mod-
ern neural networks. By integrating Proper
Orthogonal Decomposition (POD) with Kol-
mogorov—Arnold Networks (KAN), our method
facilitates transparent and physically interpretable
spatial reconstruction, while preserving strong
nonlinear representation capabilities. Compared
to traditional empirical models and black-box neu-
ral operators, POD-KAN-NO offers a promis-
ing balance between interpretability and accuracy.
Preliminary results show promising performance
in tasks such as spatial reconstruction, highlight-
ing the framework’s capacity to integrate inter-
pretability with nonlinear modeling flexibility.

1. Introduction

Neural operators have transformed data-driven modeling of
physical systems by enabling flexible and accurate learning
of complex mappings between function spaces. However,
most existing architectures—such as the Fourier Neural
Operator (FNO) (Li et al., 2021)—remain fundamentally
opaque to human interpretation. This black-box nature lim-
its their reliability and practical adoption, particularly in
safety-critical or scientific applications.

In contrast, traditional empirical models and modal decom-
position techniques like Proper Orthogonal Decomposition
(POD) offer explicit mathematical structures and physically
interpretable modes, yet they struggle to capture nonlinear
phenomena. This dichotomy raises a key question: Can we
design a neural operator that preserves the interpretability
of classical methods while leveraging the representational
power of deep learning?

To address this challenge, we propose POD-KAN-NO,
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a hybrid neural operator that integrates the modal trans-
parency of POD with the expressive nonlinearity of Kol-
mogorov—Arnold Networks (KAN). POD-KAN-NO bridges
the gap between physically grounded understanding and the
powerful learning capabilities of modern neural operators.

2. Methodology: POD-KAN-NO Architecture

Classical neural operators are composed of multiple func-
tional layers, as illustrated in Figure 1. While architectures
such as the Fourier Neural Operator (FNO) and its variants
enable powerful end-to-end learning of solution operators,
they often do so at the expense of physical interpretability.
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Figure 1. neural operator layer

Modal decomposition methods, including POD, have been
widely used to extract dominant physical patterns and
achieve dimensionality reduction in complex systems (Zhou
et al., 2021). In a typical workflow, given data from a physi-
cal system, POD is applied to obtain a set of orthonormal
basis functions ¢y, (x);_,, where r denotes the truncation
rank. The approximate solution 4 (x, t) is then represented
as:

a(x,t) =Y ar(t)gr(x),
k=1

While modal decomposition methods provide interpretable
basis functions and enable efficient inference, their inherent
linearity significantly limits their ability to model nonlinear
mappings or generalize across varying physical conditions.

Recent advances, such as KAN(Liu et al., 2025), offer a
promising alternative to MLPs by enabling structured and
efficient modeling of highly nonlinear mappings. This ar-
chitecture complements POD by enhancing the nonlinear
representational power within interpretable modal frame-
works. The formulation of KAN is given by:

vi =y ci;Bi(x)
i
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Here, ¢; ; denotes the weight, B;(z;) denotes the j-th basis
function (e.g., B-spline) applied to input dimension z;.

Building on the above theoretical foundations, POD-KAN-
NO bridges the gap between interpretability and nonlinear
expressiveness by coupling a truncated POD expansion with
a KAN-based residual learner. The POD basis captures dom-
inant linear modes, while KAN corrects the approximation
by modeling nonlinear discrepancies.

This separation ensures that spatial structures remain phys-
ically interpretable through POD modes, while nonlinear
corrections are captured by the KAN component. The over-
all architecture is illustrated in Figure 2. The “Linear POD”
block is precomputed from a representative dataset, produc-
ing interpretable modal bases. The “Nonlinear KAN” block
learns the residual component through explicit functional de-
composition. The final field is reconstructed by combining
the POD approximation and the learned residual, achieving
a balance between physical insight and modeling flexibility.

Linear POD: v(z,t) ~ ; ai(t) i(x)
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Nonlinear KAN: Res(u(z,1)) = 3 KAN;(t) KAN;(z)
=1

Figure 2. POD-KAN-NO layer

The ”Nonlinear KAN” component shown in Figure 2 adopts
the KAN-a¢ strategy. Alternative formulations of the non-
linear modeling strategy are summarized in Table 1, high-
lighting the flexibility of the POD-KAN-NO framework.

Table 1. Different Nonlinear KAN modeling strategies.

Model Name Mathematical Expression Description

KAN-a > KAN(t) ¢i(x) Learn temporal coefficients

KAN-¢ >, ai(t) KAN; () Learn spatial modes

KAN-a¢ > KAN,i(t) KANy;(z)  Learn both temporal and spatial components
KAN-Direct ~ KAN(z,t) Fully end-to-end regression model

3. Results

POD-KAN-NO demonstrates strong potential across a range
of tasks, including time-series prediction and spatial re-
construction. Figure 3 presents the results for flow field
reconstruction from sparse measurements, where the KAN-
Direct modeling strategy is employed. Compared to linear
POD, which tends to smooth out high-gradient regions and
underestimate localized structures, the proposed method ef-
fectively restores fine-scale details. Notably, the POD-KAN

reconstruction recovers sharper wake regions. These results
suggest that POD-KAN-NO enhances linear reconstructions
with data-driven nonlinear corrections, effectively bridging
the gap between physical interpretability and expressive
modeling capacity.
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Figure 3. Flow field reconstruction using POD-KAN-NO

POD-KAN-NO maintains interpretability through physi-
cally meaningful modal components, while the KAN mod-
ule captures complex nonlinear relationships. Leveraging
physical structure, the framework also generalizes well with
limited data.

4. Conclusion and Future Work

POD-KAN-NO advances the frontier of operator learning by
integrating interpretable modal decomposition with expres-
sive nonlinear modeling. We believe this paradigm offers a
promising step toward interpretable Al for scientific appli-
cations. Future work will involve comprehensive empirical
evaluations and ablation studies to further understand the
impact of architectural choices.

Impact Statement

This work contributes to building transparent and reliable
neural operators for scientific applications. It may benefit
domains such as fluid mechanics, where interpretability and
data efficiency are crucial. No foreseeable negative societal
impacts are associated with this research.
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