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ABSTRACT

While deep learning has been very beneficial in data-rich settings, tasks with
smaller training set often resort to pre-training or multitask learning to leverage
data from other tasks. In this case, careful consideration is needed to select tasks
and model parameterizations such that updates from the auxiliary tasks actually
help the primary task. We seek to alleviate this burden by formulating a model-
agnostic framework that performs fine-grained manipulation of the auxiliary task
gradients. We propose to decompose auxiliary updates into directions which help,
damage or leave the primary task loss unchanged. This allows weighting the up-
date directions differently depending on their impact on the problem of interest.
We present a novel and efficient algorithm for that purpose and show its advantage
in practice. Our method leverages efficient automatic differentiation procedures
and randomized singular value decomposition for scalability. We show that our
framework is generic and encompasses some prior work as particular cases. Our
approach consistently outperforms strong and widely used baselines when lever-
aging out-of-distribution data for Text and Image classification tasks.

1 INTRODUCTION

Multitask learning (Caruana, 1997) and pretraining (Devlin et al., 2018; Caron et al., 2019) have
transformed machine learning by allowing downstream tasks with small training sets to benefit from
statistical regularities from data-rich related tasks (Collobert & Weston, 2008; Zhang et al., 2014;
Liu et al., 2019; Kornblith et al., 2019). Despite these advances, leveraging the mixing of tasks is
still an art left to the practitioner. When one is interested in a primary task, it is unclear how to
select helpful auxiliary tasks, an appropriate parameter sharing architecture and a good way to filter
out auxiliary data which might be detrimental to the primary tasks. Without careful choices, pre-
training might hurt end-task performance (Gururangan et al., 2020) or have limited impact (Raghu
et al., 2019).

Prior work has examined these problems and proposed solutions, either to choose auxiliary tasks
depending on their impact on the primary task (Du et al., 2018; Lin et al., 2019) or to equalize
the impact of updates across tasks (Sener & Koltun, 2018; Chen et al., 2018; Hessel et al., 2019).
Recently, several approaches (Sinha et al., 2018; Suteu & Guo, 2019; Yu et al., 2020) have been
proposed that attempt to minimize interference between the updates across tasks. Our work builds
on this direction, but unlike these previous approaches, we do not consider a symmetric view of
multi-task learning in the sense that our goal is not to train a model performing well on all tasks.
Instead, we focus on improving generalization for a single task, the primary task, and the other tasks,
the auxiliary tasks are considered only through their impact on the problem of interest.

For that purpose, we introduce a framework which decomposes the gradient updates from the aux-
iliary tasks according to their impact on the primary task. We analyze the auxiliary task gradients
in the subspace spanned by the primary task per-example gradients. This allows us to decompose
auxiliary gradients into into three components : components that help, interfere or have no impact
on the primary task according to the Taylor expansion of the expected primary loss. This decompo-
sition allows us to re-weight each component differently prior to the update. Our framework enables
us to treat each auxiliary update differently depending on its impact on the task of interest and it
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encompasses prior methods such as classical multitask learning (Caruana, 1997) or more novel gra-
dient surgery techniques (Yu et al., 2020). To achieve a tractable approach, we introduce an efficient,
robust algorithm (ATTITTUD, Auxiliary Task Training with Influence from Target Task Update Di-
rection) to estimate the subspace spanned by the primary task gradients in an online manner and
decompose the auxiliary updates appropriately. As a result, we can integrate our approach with the
stochastic training of large neural networks in various contexts.

The contribution of our work is four-fold. To our knowledge, this paper proposes the first approach
to adapt auxiliary gradients using a decomposition built from the span of the primary task Jaco-
bian. In order to scale this approach to deep neural nets, we contribute a tractable and efficient
algorithm called ATTITTUD that leverages insights from randomized linear algebra and automatic
differentiation such as the R-operator (Pearlmutter, 1994). As our third contribution, we show that
the fine-grained manipulation of the auxiliary task gradients under ATTITTUD, represents a unified
framework that encompasses several previous approaches to asymmetrical task learning as special
cases. Finally, we demonstrate the efficacy of our approach in both data-rich and data-starved pri-
mary tasks, over both images and textual data.

2 RELATED WORK

Methods to leverage data outside of the task of interest have been popular in machine learning
since the inception of multitask learning (Caruana, 1997; Ruder, 2017; Vandenhende et al., 2020).
These methods address multiple task simultaneously and have been successful in various application
domains (Collobert & Weston, 2008; Zhang et al., 2014; Misra et al., 2016). The optimization
problem induced by multitask learning is difficult and solutions have been proposed for the various
difficulties, including dealing with task gradients of different magnitude (Sener & Koltun, 2018;
Chen et al., 2018; Hessel et al., 2019), or interfering with each others (Sinha et al., 2018; Suteu &
Guo, 2019; Yu et al., 2020). The specific problem of interference has been studied extensively in the
context of continual learning. Continual learning visits task in sequence and update interference is
particularly problematic as it yields newer tasks to damage previously mastered tasks. In particular,
a family of methods to project the gradient of the new tasks to be orthogonal to the gradient of the
previous tasks has been proposed (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018; Farajtabar
et al., 2019).

Different from many previous approaches, we are not interested in addressing multiple tasks per
se. In our setting, only the primary task matters and the other auxiliary task have the sole role of
improving generalization on the primary task. This is the setting considered by Du et al. (2018); Lin
et al. (2019), who favor auxiliary tasks whose gradient directions are helpful to the primary task.
Unlike these works that use coarse properties like the cosine similarity between averaged gradients,
our approach allows fine-grained gradient manipulation within a subspace. Also, in our case, we do
not distinguish between the different auxiliary tasks. Instead, we aim at correcting every auxiliary
gradient in the same manner to improve the loss on the primary task. This type of gradient correction
is related to Yu et al. (2020), which considers projecting multi-task gradients such that the directions
of disagreement are removed. This method is actually a special case of our framework.

Our work also shares some similarities with data selection and domain adaptation approaches. In
this case, the training data comes from a single task but its distribution is different from the valida-
tion/test distribution (Moore & Lewis, 2010; Axelrod et al., 2011; Ngiam et al., 2018). This classical
problem has recently been addressed by sampling training points whose gradient aligns well with
the expected validation gradient (Wang et al., 2020b;a). Instead of sampling individual points based
on an estimated distribution of how helpful they will be to the primary task, our work avoids the use
(and inherent challenges) of this reinforcement learning approach by operating on batch gradients
of groups of points.

Our primary task/auxiliary task setting is also related to the pre-training then fine-tuning paradigm
in which the auxiliary tasks are visited first (pre-training) to give an initialization for training on
the primary task (fine-tuning). These methods have been very successful in settings where primary
task data are rare. In particular, it is common to first rely on an unsupervised task over very large
datasets prior to fine tuning over a supervised task (Devlin et al., 2018; Liu et al., 2019; Kornblith
et al., 2019; Yang et al., 2019; Song et al., 2019; Caron et al., 2018).
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Figure 1: Example gradient manipulation in the 2-D x − y plane with ATTITUD. ATTITUD can
operate in any n-dimensional subspace. Left: Primary task gradient gprim decomposed along the
3 Dimensions x, y and z. Mid: Decomposed Auxiliary task gradient gaux. We label the x com-
ponent of gaux as positive since it agrees (in direction) with the x component of gprim. Since the
y component of gaux is in the opposite direction as that of gprim, this is assigned a negative label.
Right: Corresponds to g̃aux obtained by applying ηaux =

(
1.0, 1.0,−1.0

)
. We flip the conflicting

gradient direction to agree with our primary task. This is just one configuration achievable under
our framework.

3 AUXILIARY TASK UPDATE DECOMPOSITION

This section introduces a new method to improve generalization on a primary task T ∗ using training
data from auxiliary tasks T = {T1, . . . , Tn}, where θ ∈ RD denote the parameters shared by all
tasks. Our approach leverages gradient updates from the auxiliary tasks, but unlike the traditional
approach, we decompose these gradients to maximize their usefulness to T ∗. Precisely, we decom-
pose the auxiliary task gradients into directions which decrease a first-order approximation of the
primary task loss, increase it or have no effect. This decomposition allows weighting these three
directions differently when learning from the auxiliary tasks.

In order to decompose the auxiliary gradient, we must collect more fine-grained statistics about the
primary task. At each training step, we collect the gradient of the loss with respect to θ for individual
examples from the primary task, {∇θLprim

i ,∀i }. The span of these vectors,

S = Span{∇θLprim
i ,∀i}

defines a subspace in which any linear combination of primary task gradients lies, including the
gradient of the expected primary task loss, i.e. gprim = E(∇θLprim

i ) ∈ S. We denote the size of the
subspace, |S| = K. This is upper-bounded by the number of examples m, used to construct S. If
we define the orthogonal complement of S as S⊥, any vector v ∈ S⊥, is therefore orthogonal to
gprim, i.e. v · gprim = 0. This means that adding such a vector to the parameters has no impact on the
expected primary task loss, according the order-1 Taylor expansion of Lprim, i.e.

Lprim(θ + v) ' Lprim(θ) + v · gprim = Lprim(θ).

We propose to project auxiliary task gradients onto S and S⊥. This allow to distinguish between
the directions of the auxiliary task updates which impact the primary task loss and those which do
not. If we denote the averaged auxiliary task gradient as gaux = E(∇θLaux

i ), we can decompose
this gradient as gaux = g±aux + g⊥aux. where g±aux ∈ S is the portion of the gradient that lies in the
span of the primary task example gradients and g⊥aux ∈ S⊥ is the portion that lies outside of it. Since
g⊥aux ∈ S⊥, it is orthogonal to the average primary task gradient and parameter updates along the
direction of g⊥aux are expected to have limited impact on the primary task loss. On the other hand,
updates along the direction of g±aux can potentially improve or damage the averaged primary task
loss. This component deserves a more careful treatment.

For that purpose, we introduce {ui, i = 1, . . . ,K} an orthonormal basis of S. In this basis, we can
measure if the components of g±aux agree or disagree with gprim. We say that the two gradients agree
along ui iif sign(g±aux · ui) = sign(gprim · ui). This means that we can decompose g±aux = g+aux + g−aux
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where g+aux refers to the projection of g±aux onto the basis vectors where g±aux and gprim agree. By this
decomposition, g+aux helps the primary task, g+aux · gprim > 0, while g−aux interfere with the primary
task, g−aux · gprim < 0.

Guided by the primary task, we can therefore decompose the auxiliary task gradient as

gaux = g⊥aux + g+aux + g−aux (1)

which is described on Fig 1. Our approach proposes to re-weight differently the components of gaux,
i.e.

g̃aux = η⊥g
⊥
aux + η+g

+
aux + η−g

−
aux (2)

where ηaux =
(
η⊥, η+, η− ) are hyper-parameters adjusting the auxiliary gradient according to the

impact on the main task. If we also wish to include the primary task gradient in descent, as with
multitasking, we can introduce ηprim as a scalar control variable to modulate its weighting.

A consequence of introducing ηaux is that specific configurations lead us to gradient updates that are
guaranteed to do no harm to both tasks. This is captured by Theorem 1 below.
Theorem 1. Let Laux(θt) and Lprim(θt) represent the full batch losses of the auxiliary tasks and
primary task respectively at step t. We assume the gradients of Laux and Lprim are Lipschitz con-
tinuous with constant L > 0. Following the update rule : θt+1 = θt − α · g̃aux, where α ≤ 1

L is the
learning rate, we are guaranteed :

Laux(θt+1) ≤ Laux(θt)

Lprim(θt+1) ≤ Lprim(θt)

If η− = 0 and η⊥, η+ ≥ 0

Proof. See Appendix A

This theorem focuses on a single update and guarantees progress on both auxiliary and primary tasks.
However, our asymmetric scenario is not interested in improving the auxiliary tasks per se and is
amenable to more aggressive settings. Ideally we want gradient updates during pre-training with T
to not only do-no-harm to T ∗ when applied downstream but also to be along descent directions that
are maximally beneficial to T ∗. We can consider η− < 0 as in Fig 1. Reversing the direction of
g−aux by setting η− < 0 preserves the descent guarantee on Lprim(θt+1) but no longer ensures descent
on Laux(θt+1). There are other interesting settings for our control parameters. One can recover the
original gradient gaux with η⊥ = η− = η+ = 1.0. One can choose to drop gradients orthogonal to
the primary task gradient span with η⊥ = 0.0, or ignore those which conflict with the main task by
setting η− = 0.0.

Relationships to other approaches Our framework is generic and encompasses other ap-
proaches as a particular case. One can train solely on the primary task by selecting ηaux =(
0.0, 0.0, 0.0) and ηprim = 1.0. Classical multitasking corresponds to ηaux =

(
1.0, 1.0, 1.0)

and ηprim > 0.0, while classical pre-training corresponds to performing a first phase with
ηaux =

(
1.0, 1.0, 1.0) and ηprim = 0.0. Interestingly, our formulation introduces novel variants

of pre-training, for instance, one can consider pre-training with only auxiliary gradients help-
ful to the primary task, ηaux =

(
0.0, 1.0, 0.0) and ηprim = 0.0, followed by fine-tuning with

ηaux =
(
0.0, 0.0, 0.0) and ηprim = 1.0.

Our approach also instantiates PCGrad (Yu et al., 2020) as a particular case. This method was
introduced to address the issue of conflicting gradients in multitask settings. PCGrad orthogonalizes
the gradients of each task and removes conflicting gradients. To recover PCGrad under our approach,
note that it is equivalent to a specific choice of our decomposition in the 1-D subspace spanned by
the gprim. PCGrad then removes components of gaux that conflict with gprim which is equivalent to
ηaux =

(
αaux, αaux, 0.0

)
and ηaux = αprim.

4 IMPLEMENTATION

Equation 2 requires selecting a basis for the span of primary task gradients. Multiple choices are
possible to define the basis {ui}, to represent the span at each optimization time-step. This choice
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is important since the components of g±aux are labeled positive or negative depending on how they
agree with the projection of the averaged primary task gradient onto the same basis. A natural choice
is to select the basis as the singular vectors of the matrix of primary task per-example gradients
J∗ ∈ Rm×D, also know as the Jacobian. To improve efficiency and prevent over-fitting on a few
examples, we consider the span defined by the, k < |S|, largest principal vectors of J∗. Using the
principal vectors as directions of descent instead of the mean induces a more robust algorithm since
the mini-batch average gradient is susceptible to outliers and skew from replicated data-points. To
the best of our knowledge, we are the first to propose using the singular vectors of J∗ as directions
of descent. We leave the theoretical implications of this algorithm to future work but note that its
variance reduction properties may induce generalization benefits (Namkoong & Duchi, 2017).

We also consider alternative choices of bases as baselines, including the canonical parameter ba-
sis. This choice will examine the sign of every parameter update to verify whether it agrees
with gprim. Whilst Theorem 1 holds irrespective of the choice of basis, its proof reveals that the
amount of progress made on each loss depends on the choice of basis. Specifically, the reduction in
Lprim(θt+1),Laux(θt+1) after a gradient step along g̃aux is proportional to the fraction of the norms
of gprim and gaux captured by the subspace spanned by our choice of basis. To justify our use of the
top singular values of J∗, we evaluate this fraction for different choice of basis in our experiments
(see Appendix C).

We are interested in applying our approach to the training of large neural networks and must consider
a scalable algorithmic solution. As stochastic optimization is prevalent in this setting, we construct
subspace S from a mini-batch of primary task data. Similarly, the expected gradients gprim and gaux
are defined over a mini-batch. Instead of computing the singular value decomposition (SVD) of
{∇θLprim

i ,∀i} exactly, we rely on a randomized approximation (Halko et al., 2011; Rokhlin et al.,
2010; Nakatsukasa, 2017). This method does not require instantiating the vectors {∇θLprim

i ,∀i}
and only needs a low dimensional projection onto a random subspace. This is advantageous for high
dimensional cases, i.e. when the number of model parameters is large. In our case, this method
also allows us to benefit from memory-efficient computation of Jacobian Vector product using the
R-operator (Pearlmutter, 1994) offered by automatic differentiation packages (Baydin et al., 2015)
like Pytorch (Paszke et al., 2017). This means that we can compute SVD with a limited computa-
tional and memory burden, albeit without sacrificing approximation accuracy (Nakatsukasa, 2017).
Additionally, we do not recompute the basis at every optimization step but at every n steps, which is
efficient when training with small updates, e.g. when small learning rates and gradient clipping are
used (Pascanu et al., 2013) (see Appendix C for more details about n).

We study the impact of these choices in practice in Section 6. Putting it all together results in the
ATTITTUD algorithm, Auxiliary Task Training with Influence from Target Task Update Direction,
shown as Algorithm 1. The sub-procedure randomized lowrank approx is detailed in Ap-
pendix B as Algorithm 2 .

Algorithm 1: ATTITTUD : Construct Auxiliary Task Surrogate Gradient
Require : gaux, J∗ : Auxiliary task average gradient, primary task Jacobian
Require : ηaux =

(
η⊥, η+, η−

)
: Auxiliary task control parameters

Require : k : Size of subspace
gprim = 1

m

∑m
i=1 J

∗
i,:

V ← randomized lowrank approx(J∗, k)

pprim, paux = Vt
(
gprim

)T
, Vt

(
gaux

)T
// ◦ is the hadamard product operator

p+aux,p
−
aux =

(
1[

pprim◦paux ≥ 0
]) ◦ paux,

(
1[

pprim◦paux < 0
]) ◦ paux

// Calculate the decomposition components

g+aux, g
−
aux =

(
p+aux

)T
V ,

(
p−aux

)T
V

// Calculate the out of span component

g⊥aux = gaux −
(
g+aux + g−aux

)
g̃aux =

(
η⊥ · g⊥aux

)
+
(
η+ · g+aux

)
+
(
η− · g−aux

)
Return : g̃aux : Auxiliary task surrogate gradient
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5 EXPERIMENTAL SETUP

We compare ATTITTUD with previous methods on a variety of tasks and domains. We rely on both
text and image classification tasks to conduct our analysis. We also present ablation experiments
to explain the impact of hyper-parameter selection. We make code for ATTITTUD and related
experiments available on github. 1

Text Classification. We apply our method on binary sentiment classification. We consider the
Amazon Helpfulness (McAuley et al., 2015) and Imdb Movie Review (Maas et al., 2011) tasks. The
Amazon Helpfulness task splits text reviews into 115k/5k/25k documents for train-validation-test
split whilst the Imdb Review dataset has a 20k/5k/25k split. The Imdb Review task also has 50k
unlabeled reviews as extra data which we utilize.

For our models we build on top of Gururangan et al. (2020)’s work where they introduce Task-
Adaptive Pre-training (TAPT). TAPT further pre-trains a generic model, Roberta (Liu et al., 2019),
by performing Masked Language Modelling, MLM, (Devlin et al., 2018) on the task specific data
(ignoring the labels) before doing supervised learning with the same data. We replicate Gururangan
et al. (2020)’s experimental setup and re-use their hyper-parameters for our experiments. We use the
TAPT task as our auxiliary task. We extend TAPT to use our method by modifying the TAPT gra-
dient with guidance from the supervised-learning task gradients. As baselines, we compare against
TAPT and cross-TAPT: where we swap the masked language modelling pre-training data for the two
tasks. Cross-TAPT is a setting where one uses out-of-distribution data for pre-training.

Image Classification. We apply our method to both high-resource and limited-data image classi-
fication tasks. We use the Cifar100 dataset (Krizhevsky et al., 2009) to explore the high-resource
setting. We follow Rosenbaum et al. (2017) and treat each of the 20 super-classes / coarse labels
of Cifar100 as a separate task. In our asymmetrical task setting, each of the 20 tasks is treated as
a primary task, whilst the remaining 95 classes are grouped into a single auxiliary task. Thus, for
each coarse label, we have an auxiliary 95-way classification task and a 5-way primary classification
task. Moving forward, we refer to this setting as MultiCifar100.

We use a down-sampled version of Cifar10 (Krizhevsky et al., 2009) as a low-resource setting.
Specifically, we rely on Cat-vs-Dog for the primary task and use the remaining 8 classes for the
auxiliary task. Our auxiliary task is therefore an 8-way classification task where each class has
5,000 examples. We restrict the Cat and Dog classes to only 50 training examples from each class.
We use the low-resource setting to compare against other methods and for our ablation study.

For these vision experiments, we use a WideResNet-22 architecture (Zagoruyko & Komodakis,
2016) with a depth of k = 4. We compare our method to 4 different baselines : no pre-training,
vanilla pre-training, multitasking and PCGrad (Yu et al., 2020). Our architecture is more standard
and allows gradient descent optimization unlike the routing network of Rosenbaum et al. (2017) and
(Yu et al., 2020), which requires reinforcement learning for training.

Medical Imaging Transfer. We apply our method to cross-domain transfer for low-resource medi-
cal image classification. Specifically, we use 5k training examples from the ChexPert Dataset (Irvin
et al., 2019) as our primary task and seek to identify 5 different thoracic pathologies: atelectasis,
cardiomegaly, consolidation, edema and pleural effusion. This setup has been used in several cross-
domain pretraining studies (Raghu et al., 2019; Jaiswal et al., 2019). Note that since we do not have
access to the test set for this task, we use the validation set (231 images) as a proxy test set, and
sample 100 images from the training data as a new validation set. We rely on generic photographs
(Imagenet) as an auxiliary task (Deng et al., 2009). We use Tiny Imagenet Dataset (Le & Yang,
2015), a subset of Imagenet which consists of 500 examples each from 200 classes, instead of train-
ing on full Imagenet. All approaches are applied to the Resnet18 model (He et al., 2016) trained
with Adam (Kingma & Ba, 2014).

For all our experiments, we select the auxiliary task control parameters ηaux within
{(1.0, 1.0,−1.0), (1.0, 1.0, 0.0), (1.0, 0.0,−1.0), (1.0, 0.0, 0.0)} for ease of interpretability. For
settings where we compare against multi-tasking, we select ηprim within a small subset of the set-
tings that worked best with multitasking baseline experiments. These choices limit the overhead
of hyper-parameter search but still allow us to show the empirical advantage of our method. In

1Code available here https://github.com/ldery/ATTITTUD
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Imdb Imdb + Amazon MLM Amazon Amazon + Imdb MLM
Roberta 95.4 ± 0.14 - 67.0 ± 0.50 -
TAPT 96.1 ± 0.11 95.1 ± 0.10 70.3 ± 0.87 67.8 ± 0.46
Ours 96.1 ± 0.09 95.4±0.03 70.1 ± 1.13 68.5±1.01

Table 1: Results on Text Classification measured by F1. Experiments are averaged over 5 runs.
all our experiments, we provide all methods with similar hyper-parameter search budgets, e.g. for
Cifar10-Cat-vs-Dog, we ran a grid search with 16 configurations for regular pretraining, 16 config-
urations for PCGrad and 12 configurations for ATTITUD. More experimental details are available
in Appendix C

6 RESULTS AND DISCUSSION

Text Classification. Table 1 shows the results for text classification. When the same data is used
both for the auxiliary task of MLM and the primary classification task, TAPT and ATTITTUD both
bring a similar improvement over Roberta (Imdb, Amazon columns). For the Cross-TAPT setting
where different data is used for the auxiliary task and the primary task (Imdb + Amazon MLM,
Amazon + Imdb MLM columns), TAPT does not perform as well as ATTITTUD. This highlights
the advantage of ATTITTUD when the auxiliary task data distribution differ from the primary task
distribution.

Image Classification. Our results are presented in Table 2. Both for MultiCifar100 (high resource
setting) and Cifar10-Cat-vs-Dog (low resource setting), ATTITUD shows a strong improvement
over baselines. In general, we find that primary-task aware pre-training (Multitasking, PCGrad,
Ours) is better than vanilla pre-training which also performs better than having no pre-training at
all. For MultiCifar100, we find that using ηaux = (1.0, 1.0,−1.0),ηprim = 0.1 worked best for
11 out of the 20 Cifar100 super-classes tasks. Note that ηaux = (1.0, 1.0,−1.0) is an aggressive
but novel configuration we introduce. Multitask learning and PCGrad produce better models on
6 and 3 tasks respectively. In the low-resource Cat-vs-Dog, setting ATTITUD produces a bigger
boost in performance compared to baselines, with the best performing configuration being ηaux =
(1.0, 0.0, 0.0),ηprim = 0.01. We posit that this configuration is successful because removal of the
in-span components makes overfitting less likely. Applying the out-of-span components means the
model learns features that do not harm the loss of the current mini-batch but could be useful later.
Note that our best performing configurations are all novel and never an instantiation of PCGrad.

Method MultiCifar100 Cifar10-Cat-vs-Dogs
No-Pretraining 57.6 53.6 ± 2.26
Vanilla Pre-training 70.2 64.5 ± 1.26
PCGrad 75.6 64.2 ± 1.10
Multitask 75.5 65.3 ± 1.35
Ours 76.1 67.1±1.31

Table 2: Average Accuracy on MultiCifar100 and Cat-vs-Dog Cifar10 tasks. Cat-vs-Dog experi-
ments are averaged over 5 runs

Method Average AUC Across 5 Pathologies
No-Pretraining 78.3 ± 0.87
Pretrained-ResNet 81.4 ± 1.34
Pretrained-ResNet + Ours 83.3±0.71

Table 3: Results on ChexPert-5k task measured by average AUC (Area Under Roc-Curve). All
experiments are averaged over 5 runs.

Medical Imaging Transfer. Table 3 shows our results on the ChexPert multi-label classification
task. Per-pathology breakdowns are in Appendix C. Doing no pre-training at all performs worst.
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Our method outperforms using a pre-trained Resnet18 model over Imagenet. We apply the end-
task-aware ATTITUD over 100k ImageNet images after the initial pretraining and we reach 83.3%
AUC, an improvement over 81.4%.

Subspace Canonical Random Unit avg grad Randomized SVD
Average Acc. 51.42 ± 2.09 58.72 ± 2.68 59.13 ± 2.08 62.2±4.00

Table 4: Experiment conducted on Cat-vr-Dog Cifar10 dataset for different choices of subspace
basis. We use k = 5 for Random and Randomized SVD. This ablation uses a smaller hyper-
parameter budget than Table 2

Ablation Study. Our approach relies on the top-k singular vectors from randomized svd to define
the basis to identify the positive and negative component of the auxiliary task gradient, see Section 4.
This method is more accurate than several alternatives; see Table 4. Namely, we compare our choice
to random, the basis spanned by k randomly chosen orthogonal vectors in RD, unit avg grad, the
basis spanned by the average primary task gradient, and canonical, the per-parameter basis. This
ablation was performed under a more limited tuning budget (we cross-validated on configurations
(1, 1, 0) and (1, 1,−1) only) than the full Cat-vs-Dog experiments from Table 2.
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Figure 2: Averaged across 5 random initializations. Left We vary the number of samples used to
estimate a 5-d subspace up to a maximimum of 100 (the total number of training examples in this
low-resource setting). Right. We compare the effect of the dimensionality of the subspace in the
low-resource (50 examples each for Cat, Dog classes) and high-resource (1000 examples each per
class).

We also examine the number of samples to estimate the principal directions of the per-example
primary task gradient. Larger sample sizes involve more computation but have limited benefit on
average accuracy. Large sample sizes however reduce variance, as shown in Figure 2 (left). This is
as expected since using more samples gives a higher fidelity estimate of the top-k singular vectors.

Another parameter of our algorithm is the size of our subspace, k. In general, we observe that in
low-resource settings, it is better to operate on the auxiliary task gradient in a smaller dimensional
subspace. The opposite holds for high-resource settings. This can be seen in Figure 2 (right). Whilst
using a larger dimensional subspace captures a richer description of the J∗, it also creates the risk
of over-fitting especially in a limited data setting. This trade-off therefore has to be validated on a
per-task basis.

7 CONCLUSIONS

In this work, we propose a new approach to training a model with additional help from an auxil-
iary task. Our method decomposes the gradients of the auxiliary task according to three directions,
with positive, negative and neutral impact on the primary task. This decomposition allows a flex-
ible re-weighting of the auxiliary task components and give rise to a family of training strategies,
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which encompasses novel and existing approaches. We leverage insights from randomized linear
algebra and automatic differentiation to scale the approach to large deep networks. Experiments in
multitasking, pretraining and domain transfer over vision and text classification task demonstrate
the empirical benefit of our framework.
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A PROOF OF THEOREM 1

Theorem. Let Laux(θt) and Lprim(θt) represent the full batch losses of the auxiliary tasks and pri-
mary task respectively at step t. We assume the gradients ofLaux andLprim are Lipschitz continuous
with constant L > 0. Following the update rule : θt+1 = θt −α · g̃aux, where α ≤ 1

L is the learning
rate, we are guaranteed :

Laux(θt+1) ≤ Laux(θt)

Lprim(θt+1) ≤ Lprim(θt)

If η− = 0 and η⊥, η+ ≥ 0

Proof. Let Vt ∈ RK×D be the orthonormal matrix whose rows span the per-example primary task
gradients J∗ at timestep t. The projections of the average primary task gradient gprim = 1

m

∑m
i=1 J

∗
i,:

and average auxiliary task gradient gaux at iteration t are

pprim = Vt
(
gprim

)T
paux = Vt

(
gaux

)T
pprim and paux will agree on some directions (same sign on those components). We use the operator
[x]+ to mark these directions of agreement. This operator preserves components that agree and
sets those that disagree to zero. As an example given pprim = [1, 1,−1] and paux = [1, 3, 10],
[pprim]+ = [1, 1, 0] and [paux]+ = [1, 3, 0]. For directions that disagree (different signs of the
respective components), we introduce the operator [x]−. In the above example [pprim]− = [0, 0,−1]
and [paux]− = [0, 0, 10]. Note that our operators are defined by comparing two vectors x1 and x2,
Our operators have the following properties by definition :

x = [x]− + [x]+

and
[x]+ ⊥ [x]−, [x1]± ⊥ [x2]∓

From Equation 2 :
g̃aux = η+g

+
aux + η−g

−
aux + η⊥g

⊥
aux

We can re-write this in terms of [x]± as :

g̃aux = η+[paux]+ + η−[paux]− + η⊥
(
gaux − paux

)
We now proceed to show the effect of the gradient descent update below on Laux(θt+1) and
Lprim(θt+1).

θt+1 = θt − α · g̃aux (3)

How does this update affect the loss on the primary task loss Lprim(θt+1)?

Lprim(θt+1) = Laux(θt − α · g̃aux)

≈ Lprim(θt)− α
(
g̃aux

)T
gprim (First order Taylor Expansion)

= Lprim(θt)− α
(
η+[paux]+ + η−[paux]− + η⊥g

⊥
aux

)T
gprim

= Lprim(θt)− α
(
η+[paux]+ + η−[paux]− + η⊥g

⊥
aux

)T(
[pprim]+ + [pprim]−

)
= Lprim(θt)− α

(
η+

(
[paux]

T
+[pprim]+ + [paux]

T
+[pprim]−

)
+ η−

(
[paux]

T
−[pprim]+ + [paux]

T
−[pprim]−

))
= Lprim(θt)− α

(
η+[paux]

T
+[pprim]+ + η−[paux]

T
−[pprim]−

)
≤ Lprim(θt) (if η− ≤ 0, η⊥, η+ ≥ 0)
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Note that in going from line 3 to 4 in the proof above, we use the fact that
(
g⊥aux

)T
gprim = 0 since

g⊥aux lies outside the subspace and gprim lies inside it. For the last step of the proof, we use the
observations below :

[paux]+[pprim]+ ≥ 0 since these directions agree in sign
[paux]−[pprim]− ≤ 0 since these directions disagree in sign
[paux]+[pprim]− = 0 by the property of the [x]± operator
[paux]−[pprim]+ = 0 same motivation as above

How does Equation 3 affect the auxiliary task loss Laux(θt+1)?

Laux(θt+1) = Laux(θt − α · g̃aux)

≈ Laux(θt)− α
(
g̃aux

)T
gaux (First order Taylor Expansion)

= Laux(θt)− α
(
η⊥g

⊥
aux + η+g

+
aux + η−g

−
aux

)T (
g⊥aux + g+aux + g−aux

)
= Laux(θt)− α

(
η⊥‖g⊥aux‖2 + η+‖g+aux‖2 + η−‖g−aux‖2

)
(Cross terms cancel due to orthogonality)

≤ Laux(θt) (If η−, η⊥, η+ ≥ 0)

Thus, choosing η− = 0 ensures that we are minimizing both Laux(θt) and Lprim(θt). We can
combine this with the constraint on α ≤ 1

L to derive convergence guarantees after some T steps as
in optimization literature.

B RANDOMIZED MATRIX THEORY

Algorithm 2: randomized lowrank approx : Construct low rank approximation

Require : J ∈ Rm×D : Input Matrix
Require : k : Rank of subspace

Π ∼ N (0, I) ∈ Rk×m
C = ΠJ
V ← Gram Schmidt(C)

Return : V ∈ Rk×D : Low rank approximation of J

The Gram Schmidt procedure orthogonalizes the rows of an input matrix.

C MORE EXPERIMENTAL DETAILS

Image Classification For MultiCifar100, unlike Rosenbaum et al. (2017); Yu et al. (2020) who
use a 500-100 train-test split for examples under each fine-grained CIFAR 100 label, we include a
validation set and therefore opt for a 400-100-100 train-validation-test split. We test on all 1000 test
examples per class.

For Cat-vs-Dog, we use 100 examples from the training set as validation and test on all 1000 test
examples per-class.

For Image Classification experiments, we perform pre-training with a learning rate of 1e-4 for all
experiments and finetuning learning rate of 5e-4. These values were selected after coarse hyper-
parameter search. In both pre-training and finetuning settings, we decay the learning rate by 0.5 if
the validation loss has not improved over 4 epochs, up till a minimum learning rate of 1e-5. we use
the Adam Optimizer (Kingma & Ba, 2014) with β = (0.9, 0.999). We clip all gradient norms to 1.0
before performing gradient descent. We cross-validated dropout rates within the set {0.05, 0.1, 0.2,
0.3} for both pre-training and finetuning steps. We cross validate ηprim based on the relative sizes of
primary and auxilary task datasets. All experiments are averaged over 5 random seeds. For all our
Vision experiments, we either recompute our subspace basis every n = 5 or n = 10 iterations. We
find that n is not as important as the other hyper-parameters, with the two choices showing similar
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performance when the other hyper-parameters (learning rate and gradient norm clipping) are fixed
to reasonable values.

Due to the fact that Yue et al (PCGrad) treat all tasks symmetrically, which is different from our
primary-auxiliary setting, we introduced an extra parameter, αprim, for PCGrad to account for
weighting the primary task. We cross validated values of αprim ∈ {0.1, 0.05, 0.01, 0.001}.
Medical Imaging Transfer Table 4 presents a more detailed breakdown of the ChexPert task. For
50k examples from Imagenet, our best performing configuration was ηaux = (1.0, 0.0,−1.0). We did
not use the primary task gradient directly for pre-training so ηprim = 0.0 for all cases. For ATTITUD,
we use the same learning rates as in the Image classification setup above. For the No-Pretraining and
Vanilla pretraining we cross-validated the learning rates for both finetuning and pre-training from
the set {1e-3, 1e-4}. We cross-validated the same list of dropout values above.

Method No-Pretraining Pretrain w Imgnet Pretrained + Ours (50k) Pretrained + Ours (100k)
Atelectasis 76.0 ± 1.82 79.0 ± 3.66 81.6±1.38 81.8±0.80

Cardiomegaly 74.9 ± 2.34 75.8 ± 4.04 78.0 ± 2.13 80.7±1.79

Consolidation 83.2 ± 2.26 85.3±1.86 85.6±2.32 84.9 ± 1.36
Edema 79.5 ± 1.27 82.6 ± 0.76 85.2±1.23 84.7 ± 1.78
P. Effusion 77.9 ± 1.88 84.4±0.75 83.4 ± 1.80 84.3±0.65

Table 5: Results on ChexPert-5k tasks measured by average AUC (Area Under Roc-Curve)

Text Classification For our NLP experiments, we tried limiting the number of layers we applied
ATTITUD to. We achieved good performance without applying ATTITUD to the word embedding
layers (these were updated with untouched auxiliary task gradients). We cross-validated ηprim =
{0.01, 0.05, 0.0025}. For all our NLP experiments, we either recompute our subspace basis every
n = 1 or n = 4 times

For all experiments involving ATTITUD, We cross-validate the following choices of the subspace
size k ∈ {5, 10, 20} from J∗ ∈ Rm×D using m ∈ {32, 64}. We recompute the subspace every 10
steps for vision experiments and every 4 steps for NLP experiments. We run all experiments for a
maximum of 150 pretraining epochs and 500 finetuning epochs. We performed early stopping for
all experiments if no improvement after 10 consecutive epochs.

Ablation of Fraction of Norm within Subspace The left pane of Figure 3 reinforces our intuition
and confirms that our choice of the top-k singular vectors (randomized svd) gives the best accuracy
as averaged across 5 seeds. random is the basis spanned by k randomly chosen orthogonal vectors in
RD, unit avg grad is the basis spanned by the average primary task gradient whilst canonical uses
the per-parameter basis. Note that k = 5 for random and randomized svd whilst for unit avg grad
and canonical, k = 1 and k = D respectively. We use the fraction of the norm of sample gradients
within a subspace as indicators of how semantically meaningful that choice of subspace is. We
expect that a semantically meaningful choice of basis will achieve better generalization performance
because it captures the essential parts of the gradient with k � D . canonical trivially captures all
the norm of the sampled gradient vectors but because k = D, it generalizes poorly. Notice that
only small fractions of the norms of sample primary and auxiliary task average gradients lie in the
subspace for random and unit avg grad, whilst significant fractions lie in randomized svd.
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Figure 3: Experiment conducted on Cat-vr-Dog Cifar10 dataset. Left Averaged accuracy across 5
seeds of different choices of basis. Our choice, randomized svd performs best. Right We look at
the fraction of the norm of gaux within each subspace (dashed line). We also do so for a randomly
sampled mini-batch of the primary task (solid line).
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