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Abstract

Despite the prevalence of recent success in learning from static graphs, learning
from time-evolving graphs remains an open challenge. In this work, we design
new, more stringent evaluation procedures for link prediction specific to dynamic
graphs, which reflect real-world considerations, to better compare the strengths and
weaknesses of methods. First, we create two visualization techniques to understand
the reoccurring patterns of edges over time and show that many edges reoccur at
later time steps. Based on this observation, we propose a pure memorization-based
baseline called EdgeBank. EdgeBank achieves surprisingly strong performance
across multiple settings which highlights that the negative edges used in the current
evaluation are easy. To sample more challenging negative edges, we introduce
two novel negative sampling strategies that improve robustness and better match
real-world applications. Lastly, we introduce six new dynamic graph datasets
from a diverse set of domains missing from current benchmarks, providing new
challenges and opportunities for future research. Our code repository is accessible
athttps://github.com/fpour/DGB.git.

1 Introduction

Many evolving real-world relations can be modelled by a dynamic graph where nodes correspond
to entities and edges represent relations between nodes. Nodes, edges, weights or attributes in a
dynamic graph can be added, deleted or adjusted over time. Therefore, understanding and analyzing
the temporal patterns of a dynamic graph is an important problem. For instance, in popular online
social networks, many users join the platform on a daily basis while connections between users
are constantly added or removed [10]. To facilitate more efficient learning on dynamic graphs,
many efforts have been devoted to the development of dynamic graph representation learning
methods [40, 37, 41, 28, 42,43, 29, 3].

Link prediction is a fundamental learning task on dynamic graphs which focuses on predicting future
connections between nodes. Recent methods such as [ 18, 38,42, 28, 41] show promising performance
on this task, with the state-of-the-art (SOTA) performance [28, 41] being close to perfect on most
existing benchmark datasets. However, considering that link prediction in static graphs, an arguably
less complex task, still faces major challenges [12, 1 1], it is important to meticulously examine the
near-perfect performance of dynamic link prediction methods. We hypothesize that current evaluation
procedures and datasets fail to properly differentiate between the proposed approaches. Therefore,
we identify several limitations in current evaluation procedures and propose solutions towards more
robust and effective evaluation protocols.

Limited Domain Diversity. Existing benchmark datasets are mostly social or interaction networks
thus limited in domain diversity. It is well-known that networks across different domains exhibit a
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diverse set of properties. For example, biological networks such as protein interaction networks differ
significantly from social networks in community structure and centrality measures [9]. Therefore, it is
necessary to test dynamic link prediction methods in various domains outside of social or interaction
networks. To this end, we incorporate six new datasets for dynamic link prediction ranging from
politics, economics, and transportation networks. In addition, we introduce novel visualization
techniques for dynamic graphs. We show that in most networks, a significant portion of edges reoccur
over time but the reocurrence patterns vary widely across different networks and domains.
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Memorization Works Well. Finally, we introduce a simple memorization-based baseline, named
EdgeBank, which simply stores previously observed edges in memory, and then predicts stored edges
in memory as positive at test time. In Fig. 1, we contrast the performance of SOTA methods with
that of EdgeBank (in horizontal lines). EdgeBank is a surprisingly strong baseline for dynamic link
prediction. In the historical NS setting, EdgeBank achieves the second best ranking amongst all
methods. As EdgeBank requires neither learning nor hyper-parameter tuning, we argue that it is a
strong and necessary baseline for future methods to compare against.

The goal of this work is to propose more effective evaluation strategies to better differentiate dynamic
link prediction methods. We identify challenges and drawbacks in the current evaluation setting for
dynamic link prediction: (1) existing strategies for sampling negative edges during evaluation are
insufficient, (2) memorization leads to over-optimistic evaluation, and (3) there is a lack of diversity
in dynamic graph dataset domains. Our main contributions can be summarized as follows:

* Novel Negative Sampling Strategies. We evaluate the impact of negative edges on model perfor-
mance and outline two novel sampling strategies: historical NS and inductive NS, which provide
more robust and in depth evaluation.

 Strong Baseline. We propose a novel non-parameterized and memorization-based method, Edge-
Bank, which provides a strong baseline for current and future approaches to compare against.

* New Datasets and Visualization Tools. We present six novel dynamic graph datasets from various
domains such as politics, transportation, and economics. These datasets exhibit different temporal
edge evolution patterns, which can be understood through our proposed TEA and TET plots.

Reproducibility: our code repository is available at https://github. com/fpour/DGB.git. All
datasets can be accessed at https://zenodo.org/record/7008205#.Yv_a_3bMJIPZ.

2 Related Work

Benchmarking Graph Learning Methods. A number of studies identify several issues in evaluation
of existing GNN models [5, 33, 6, 12, 22]. Focusing on static graphs, Dwivedi et al. [5] identify
issues with comparative evaluation due to inconsistent experimental settings. Shchur et al. [33] show
that reusing the same train-test splits in many different works has led to overfitting and using different
splits of the data could result in different ranking of the methods. OGB [ 2] facilitates reproducibility
and scalability of graph learning tasks by providing a diverse set of datasets together with unified
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evaluation protocols, metrics, and data splits. In contrast to these works, we focus on improving
evaluation for dynamic link prediction.

For dynamic graphs, Junuthula et al. [14] differentiate dynamic and static link prediction by edge
insertion or deletion. Junuthula et al. [15] then consider the problem of incorporating information
from friendship networks into predicting future links in social interaction domains. Haghani and
Keyvanpour [10] provide a comprehensive review of link prediction methods for social networks and
categorize the link prediction task into two groups: missing link prediction, and future link prediction.
Similar to these works, we also focus on dynamic link prediction but from different perspectives: new
negative sampling strategies, new baseline, and new dataset domains.

Negative Sampling (NS) of Edges in Graphs. Yang et al. [45] argue that NS is as important as
positive sampling in graph representation learning. For static link prediction, the most common
method is to sample negative edges at random [8, 1, 32]. Alternatively, the sampling can be based on
connecting nodes with specific properties (e.g. a sufficiently large degree) [19], or it can be based on
a particular geodesic distance [20, 21]. Kotnis and Nastase [17] provide an empirical study of the
impact of different NS strategies during training on the learned representations of various methods
in knowledge graphs. In our work, we focus on the impact of NS strategies during evaluation, and
propose two novel NS strategies based on the history of the observed edges in dynamic graphs.
Current evaluation protocol has difficulty differentiating between models as many methods achieve
near-perfect performance across the board. In comparison, our proposed NS strategies sample harder
negative edges for better evaluation.

Dynamic Graph Representation Learning. Recently there is a surge of interest towards temporal
networks. Kazemi et al. [16] present a survey of advances in representation learning on dynamic
graphs. Skardinga et al. [35] concentrate on recent studies on Dynamic Graph Neural Networks
(DGNNs) and provide a detailed terminology of dynamic networks. Zhang et al. [46] highlights
the importance of learning fully temporal embeddings which also models information propagation.
Skardinga et al. [35] and Kazemi et al. [16] both argue modeling dynamic graphs with continuous
representations has higher potential, since it offers superior temporal granularity. In our experiments
we center our attention on five recent models of this type: JODIE [18], DyRep [38], TGAT [42], TGN
[28], and CAWN [41]. An overview of these methods is provided in Appendix A.l. As shown in
Section 6, these methods often achieve close to perfect performance for current link prediction tasks
on dynamic graphs. This hinders researchers’ ability to evaluate if new models are superior. Also,
it exaggerates the efficacy of current models on real-world tasks. Hence, we further examine the
evaluation procedure, from the perspective of benchmark datasets, negative sampling and baselines.

3 Understanding Dynamic Graph Datasets

A dynamic graph can be represented as timestamped edge streams — triplets of source, destination,
timestamp, i.e. G = {(so,do, to), (s1,d1,t1),...,(s7,dpr,T)} where the timestamps are ordered
(0 <ty <ty <o Ztgpiir < ... <T'). Weinvestigate the task of predicting the existence of an edge
between a node pair in the future. The timeline is split at a point, ¢, into all edges appearing before
or after. This results in train and test edge sets Fi,in, and Ei.. We can then divide edges of a given
dynamic graphs into three categories: (a) Eyain \ Erest: €dges that are only seen during training, (b)
Elrain N Erest: €dges that are seen during training and reappear during test, which can be considered
as fransductive edges, and (¢) Eiest \ Eain: €dges that have not been seen during training and only
appear during test, which can be considered as inductive edges.

We aim to understand the differences between dynamic graph datasets across a variety of domains. To
this end, we first investigate seven widely used benchmark datasets and contribute six novel dynamic
graphs (marked as new) from diverse domains currently under-studied in dynamic link prediction
literature. The statistics of these datasets are summarized in Table 1, and details are explained in
Section 3.1. To better characterize the differences between dynamic graphs, we propose two types
of plots and define three indices to visualize and quantify the patterns in dynamic graphs and the
difficulty of a given evaluation split in Section 3.2 and Section 3.3.



Table 1: Dataset statistics.

Dataset | Domain #Nodes Total Edges Unique Edges Unique Steps Time Granularity —Duration
Wikipedia Social 9,227 157,474 18,257 152,757 Unix timestamp 1 month
Reddit Social 10,984 672,447 78,516 669,065 Unix timestamp 1 month
MOOC Interaction 7,144 411,749 178,443 345,600 Unix timestamp 17 month
LastFM Interaction 1,980 1,293,103 154,993 1,283,614 Unix timestamp 1 month
Enron Social 184 125,235 3,125 22,632 Unix timestamp 3 years
Social Evo. Proximity 74 2,099,519 4,486 565,932 Unix timestamp 8 months
UCI Social 1,899 59,835 20,296 58,911 Unix timestamp 196 days
Flights (new) Transport 13,169 1,927,145 395,072 122 days 4 months
Can. Parl. (new) | Politics 734 74,478 51,331 14 years 14 years
US Legis. (new) | Politics 225 60,396 26,423 12 congresses 12 congresses
UN Trade (new) | Economics 255 507,497 36,182 32 years 32 years
UN Vote (new) Politics 201 1,035,742 31,516 72 years 72 years
Contact (new) Proximity 694 2,426,280 79,531 8,065 5 minutes 1 month

3.1 Temporal Graph Datasets

We consider a wide set of dynamic graph datasets from diverse domains. The data collection and
processing details are explained in Appendix A.2. All datasets are publicly available under MIT
licence or Apache License 2.0. Note that none of these datasets contains node attributes, but we
include description of edge attributes when applicable.

Wikipedia [18]: consists of edits on Wikipedia pages over one month. Editors and Wiki pages
are modelled as nodes, and the timestamped posting requests are edges. Edge features are LIWC-
feature vectors [27] of edit texts with a length of 172.

Reddit [18]: models subreddits’ posted spanning one month, where the nodes are users or posts
and the edges are the timestamped posting requests. Edge features are LIWC-feature vectors [27]
of edit texts with a length of 172.

MOOC [18]: is a student interaction network formed from online course content units such as
problem sets and videos. Each edge is a student accessing a content unit and has 4 features.
LastFM [18]: is an interaction network where users and songs are nodes and each edge represents

a user-listens-to-song relation. The dataset consists of the relations of 1000 users listening to the
1000 most listened songs over a period of one month. The dataset contains no attributes.

Enron [34]: is an email correspondence dataset containing around S0K emails exchanged among
employees of the ENRON energy company over a three-year period. This dataset has no attributes.
Social Evo. [24]: is a mobile phone proximity network which tracks the everyday life of a whole
undergraduate dormitory from October 2008 to May 2009. Each edge has 2 features.

UCI [26]: is a Facebook-like, unattributed online communication network among students of the
University of California at Irvine, along with timestamps with the temporal granularity of seconds.
Flights (new) [31]: is a directed dynamic flight network illustrating the development of the air
traffic during the COVID-19 pandemic. It was extracted and cleaned for the purpose of this study.
Each node represents an airport and each edge is a tracked flight. The edge weights specify the
number of flights between two given airports in a day.

Can. Parl. (new) [13]: is a dynamic political network documenting the interactions between
Canadian Members of Parliaments (MPs) from 2006 to 2019. Each node is one MP representing
an electoral district and each edge is formed when two MPs both voted "yes"” on a bill. The edge
weights specify the number of times that one MP voted "yes” for another MP in a year.

US Legis. (new) [7, 13]: is a senate co-sponsorship graph which documents social interactions
between legislators from the US Senate. The edge weights specify the number of times two
congress persons have co-sponsored a bill in a given congress.

UN Trade (new) [23]: is a weighted, directed, food and agriculture trading graph between 181
nations and spanning over 30 years. The edge weights specify the total sum of normalized
agriculture import or export values between two countries.

UN Vote (new) [39]: is a dataset of roll-call votes in the United Nations General Assembly from
1946 to 2020. If two nations both voted "yes" for an item, then the edge weight between them is
incremented by one.

Contact (new) [30]: is a dataset describing the temporal evolution of the physical proximity around
700 university students over a period of four weeks. Each participant is assigned an unique ID and
edges between users indicate that they are within close proximity of each other. The edge weights
indicate the physical proximity between participants.
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Figure 2: TEA plots show many real-world dynamic networks contain a large proportion of edges
that reoccur over time. Thus, even a simple memorization approach such as EdgeBank can potentially
achieve strong performance. The numbers in parentheses report the novelty index. Due to space
limitation, the Reddit’s TEA plot is presented in Fig. 7a in Appendix A.3.

3.2 Temporal Edge Appearance (TEA) Plot

A TEA plot illustrates the portion of repeated edges versus newly observed edges for each timestamp
in a dynamic graph, as shown in Fig. 2. The grey bar indicates the number of edges which were
observed in previous time steps and the red bar represents the number of new edges seen at each
step. To further quantify the observed pattern, we measure the average ratio of new edges in each
timestamp as:
T
1 BN\ Efeenl
novelty = T Z |Et|5“” , where E' = {(s,d,t.)| t. =t} and E'__, = {(s,d,t.)| t. <t}
t=1
Here, E* denotes the set of edges present in timestamp ¢, and Ef,_,, denotes the set of all edges seen
in the previous timestamps. This metric gives an estimation of the portion of positive edges that a
pure memorization method cannot predict correctly.

Fig. 2 shows high variance across datasets in temporal evolutionary patterns in terms of new and
repeated edges. Some datasets such as Social Evo. comprise mainly repeated edges, while others
such as MOOC have a high proportion of new edges. The TEA plots also show significant differences
in when edges occur, and distinctions between our new datasets and existing ones. For example, our
new Flights dataset has significantly more unique edges and higher numbers of edges per timestamp.

TEA plots show that it is important to consider the relative distribution of the repeated and new edges
when designing and choosing methods for the dynamic link prediction task. When many edges are
repeated, a simple memorization approach can potentially achieve strong performance. In contrast,
if there are many new edges, memorization would be insufficient. In addition, to understand the
consistency of edge reocurrence patterns, we now propose:

3.3 Temporal Edge Traffic (TET) Plot

A TET plot visualizes the reocurrence pattern of edges in different dynamic networks over time,
as shown in Fig. 3. To construct these plots, we first sort edges based on the timestamp they first
appeared. Then for edges occurring in the same timestamp, we sort them based on when they last
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Figure 3: TET plots illustrate varied edge traffic patterns in different temporal graphs. The horizontal
line startlng with "X" marks tp;;¢. In parentheses, we report the proportion of training set edges

reoccurring in the test set (reocurrence index) & the proportion of unseen test edges (surprise index),
respectively. Due to space limitation, the Reddit’s TET plot is presented in Fig. 7b in Appendix A.3.

occurred. Further, we color edges based on whether they are seen in training set only (green), test set
only (inductive edges, red), or both (transductive edges, orange). To quantify the patterns in these
plots we define the following two indices:

_ |Etrain N Etest| L |Etest \ Etrain|
reocurrence = ————— , surprisé = ——————
‘ FEvain | ‘ Eiey |

TET plots provide more insights about the edges that are used for training and testing of different
DGNN methods. A memorization approach can potentially predict the transductive positive edges,
since it has observed and hence recorded them during training. In particular, if they appear consistently,
then simple memorization is likely to be successful. This is when reocurrence index is high and
surprise index is low. On the other hand, if they appear at some times but then disappear later, then
memory is likely still helpful, but simple and full memorization will not work. It would incorrectly
predict that those edges still exist, i.e. when reocurrence index is low. Meanwhile, memorization is
not helpful at all for predicting inductive positive test edges at their first appearance, since these are
new edges that have not been observed before, i.e. high surprise index.

We encourage researchers to investigate the proposed TEA and TET plots to get a more comprehensive
overview of dynamic graphs in addition to the network statistics. For example, while Social Evo. and
UN Trade have a relatively similar proportion of repeated vs. new edges based on their TEA plots,
we see in their TET plots that UN Trade has far more consistent reocurrence. The clear difference we
can observe in the visualization is mirrored in the results - the best model on UN Trade is among the
worst on Social Evo., and vice versa (see Fig. 5).



4 EdgeBank: A Baseline for Dynamic Link Prediction

We propose a pure memorization-based approach called EdgeBank, in order to understand whether
memorizing past edges can be a competitive baseline. This is based on the observation that many
edges in dynamic graphs reoccur over time. The memory component of EdgeBank is simply a
dictionary which is updated with newly observed edges at each timestamp, similar to the memory
update procedure of TGN [28]. In this way, EdgeBank resembles a bank of observed edges and
requires no parameters. The storage requirement of EdgeBank is the same as the number of edges in
the dataset.

At test time, EdgeBank predicts a test edge as positive if the edge was seen before (stored in the
memory), and negative otherwise. EdgeBank can accurately predict edges which reoccur frequently
over time. There are two types of edges of which EdgeBank will make an incorrect prediction: (i)
an unseen (inductive) edge, or (ii) an edge observed before (in memory) but are not observed at the
current time. In the standard random negative sampling evaluation [28, 42, 41], as graphs are often
sparse, it is unlikely that an edge observed before will be sampled as a negative edge. Therefore,
EdgeBank has strong performance on negative edges in many cases.

We consider two different memory update strategies for EdgeBank thus resulting in two variants:

* EdgeBank__ stores all observed edges in memory, thus remembering edges even from a long time
ago. It is prone to false positives on edges which appear once but rarely reoccur over time.

* EdgeBank,, only remembers edges from a fixed size time window from the immediate past. The
size of the time window is set to the duration of validation split, based on the intuition of predicting
the test set behavior from the most similar (recent) period available. Hence, EdgeBank,,, focuses
on the edges observed in the short-term past.

Note that EdgeBank is not designed to replace state-of-the-art methods. Rather we argue that
all dynamic graph representation methods should be able to do better than memorization, thus
outperforming EdgeBank. EdgeBank provides a simple and strong baseline to demonstrate how far
pure memorization can go on each dataset.

S Revisiting Negative Sampling in Dynamic Graphs

Current SOTA methods for dynamic link prediction often achieve near perfect performance on
existing benchmark datasets [18, 38, 42, 28, 41, 37]. Consequently, one can argue that either the
existing datasets are too simplistic or the current evaluation process is insufficient to differentiate
methods. We discussed the dataset aspect extensively. Next, we need to carefully examine the current
evaluation setting of DGNNs. In particular, although negative edges constitute half of the evaluation
edges, little attention has been dedicated to understanding the effect of different sets of negative edges
on the overall performance. In this section, we take a closer look at Negative Sampling (NS) strategies
for evaluation of dynamic link prediction, and propose two novel NS strategies for more robust
evaluation and better differentiation amongst methods. To better motivate the two new methods, we
first explain the standard random NS strategy widely used in literature.

Random Negative Sampling. Current U 7 T
evaluation samples negative edges ran-
domly from almost all possible node pairs Ea Ea Ean @
of the graphs [18, 38, 42, 28, 41]. At each
time step, we have a set of positive edges
consisting of source and destination nodes

together with edge timestamps and edge @
features. To generate negative samples, the S
standard procedure is to keep the times-
tamps, features, and source nodes of the (@) (b) ()

positive edges, while choosing destination  Fjgyre 4: Negative edge sampling strategies during eval-
nodes randomly from all nodes. This ap- yation for dynamic link prediction; (a) random sampling
proach has two significant issues: (standard in existing works), (b) historical sampling
(1) No Collision Checking: most existing (ours), (c) inductive sampling (ours).

implementations have no collision check

Etrain Etrain Etrain




between positive and negative edges. There are some exceptions, such as [3], but this holds for all the
DGNN methods examined in our experiments. Therefore, it is possible for a given edge to be both
positive and negative. This collision is more likely to happen in denser datasets, such as UN Vote and
UN Trade. A basic accept-reject sampling could address this issue, as applied in our experiments.

(2) No Reoccurring Edges: the probability of sampling an edge which was observed before is often
very low due to the sparsity of the graph. Therefore, a simple method like EdgeBank can perform well
on negative edges. However, in many real-world tasks such as flight prediction, correct prediction of
the same edge for different time steps is particularly important. For example, predicting that there
will be no flight between the north and south poles this week is not nearly as practical as predicting
whether a standard, reoccurring commuter flight will be canceled.

To address the second issue, we need to sample from previously observed edges, which can be from
the training or test set. This constitutes the two alternative NS strategies proposed here, illustrated in
Fig. 4. Here, S is the sample space for negative edges. Let U, Fqj;, Eyq:n be the set of all possible
node pairs, all edges in the dataset (train and test) and all edges in the train set, respectively. Note
that oy = Eirain + Etest Where Eye s is all edges in the test set. Lastly, we set Upeg = U — Eqy.
In random NS, we sample from edges e € U, with the proportion from E,; and E}, 4, regulated
only by the sizes of those sets relative to U. To resolve the issues with random NS, in the following
sections we propose historical NS and inductive NS.

Historical Negative Sampling. In historical NS, we focus on sampling negative edges from the set
of edges that have been observed during previous timestamps but are absent in the current step. The
objective of this strategy is to evaluate whether a given method is able to predict in which timestamps
an edge would reoccur, rather than, for example, naively predicting it always reoccurs whenever it
has been seen once. Therefore, in historical NS, for a given time step ¢, we sample from the edges

ec (Etrain N E)

Inductive Negative Sampling. While in historical NS we focus on observed training edges, in
inductive NS, our focus is to evaluate whether a given method can model the reocurrence pattern of
edges only seen during test time. At test time, after observing the edges that were not seen during
training, the model is asked to predict if such edges exist in future steps of the test phase. Therefore,
in the inductive NS, we sample from the edges ¢ € (Fiest N Etrqin N Ey) at time step t. As these
edges are not observed during training, they are considered as inductive edges. Note that in both
historical and inductive NS if the number of available negative edge of the given type is less than the
number of positive edges, the remaining negative edges are sampled by the random NS strategy. See
discussion in Appendix B.2.

6 Experiments

In this section, we present a comprehensive evaluation of the dynamic link prediction task on all
13 datasets with 5 SOTA methods. Our experimental setup closely follows [18, 38, 42, 28, 411].
The objective of the link prediction task is to predict the existence of an edge between a node pair
at a given time. For all DGNN methods, we use a Multilayer Perceptron as the output layer for
edge prediction, where concatenated node embeddings are inputs and the probability of the edge is
the output. For all experiments, we use the same 70% — 15% — 15% chronological splits for the
train-validation-test sets as [42, 28, 41]. The average results over five runs are reported. The Area
Under Receiver Operating Characteristic (AU-ROC) metric is selected as the main performance
metric. We visualize the results for easier interpretation, but the exact numbers that produce the
visualizations — and the equivalents with Average Precision (AP) — are presented in the Appendix B.1.

Fig. 5a compares the performance of all models under the standard random NS strategy. First, we
observe significant variation in performance for all models across datasets. This supports the benefits
of evaluation on datasets from different domains. Second, we observe a strong inconsistency in
relative ranking amongst methods across datasets. For example, while CAWN achieves SOTA on
most datasets, on MOOC and Social Evo. it performs significantly worse than several other models.
Lastly, note that EdgeBank demonstrates competitive performance even when compared to SOTA
methods. Despite its simplicity, EdgeBank outperforms highly parametrized and complex models on
datasets such as LastFM, Enron and UN Trade.

Next, we examine the impact of NS strategies on performance. Fig. 5b and Fig. 5¢ shows the
performance of different methods with the historical NS and inductive NS strategies, respectively.
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Figure 5: Performance of methods in all three NS settings. In (a) the proposed memorization baselines
are on par with SOTA methods, and over-performing in some datasets, e.g. LastFM. In (b) and (c),
with alternative negative sampling strategies, we observe a more clear gap between the performance
of models and the memorization baseline, whilst the ranking of the models also changes, e.g. CAWN
not being the ranked one in most datasets, which is in contrast with the rankings obtained in the
standard setting. In (d) and (e), we report the performance drop when moving from the standard
setting, which can hint at the (lack of) generalization power of different methods, especially in (e).

First, we observe that the ranking of models can change significantly across different NS settings.
This shows that relying on a single NS strategy, such as the random NS, is insufficient for the
complete evaluation of methods. Second, for the historical NS setting, EdgeBank,,, becomes highly
competitive, often beating most methods and even achieving SOTA for UN Trade, UN Vote, Flights,
Enron, and Contact. This shows that in these datasets, recently observed edges contain crucial
information for link prediction. Third, EdgeBank _ has a significant drop in performance in both NS
strategies. This shows that as the negative edges are sampled from either previously observed edges
or unseen edges, naively memorizing all past edges is no longer sufficient. However, EdgeBank can
perform competitively under random NS. This further shows that the standard random NS is limited
in its ability to effectively differentiate methods. In Fig. 5d and Fig. 5e, we examine the performance
changes for each model in historical or inductive NS setting. CAWN, which performed best overall
with random NS, collapses on certain datasets such as LastFM and Enron. Other models fare much
better on these datasets. All models exhibit a large performance drop on the Flights dataset.

The performance degradation is also correlated with the degree of memorization. Fig. 6 shows that
the models which are more correlated with EdgeBank  tend to perform worse in the historical and
inductive NS settings. Since EdgeBank _ is naively dependent on the memory, higher correlation



with it indicates a model relies more heavily on memorization. For example, CAWN has the
highest correlation and JODIE the second highest. They have the largest and second largest losses
(respectively) in performance with the more challenging negative sampling. Similarly, DyRep is the
least correlated with EdgeBank, and experiences the least drop in performance with historical NS and
second least with inductive NS.

7 Conclusion

In this paper, we proposed tools to improve the WS jODIE NN DyRep O TGAT NEM TGN WER CAWN
evaluation of dynamic link prediction. First,
we introduced six new datasets to increase the
diversity of domains in which link prediction
methods are currently being evaluated. Then,
we created TEA and TET plots to visualize and
quantify the temporal patterns of edges in dy-
namic graphs, and the difficulty of an evalua-
tion split. Next, we showed the limitations of
the current random negative sampling strategy
used in the evaluation and introduced two new Figure 6: Performance correlation with the pro-
strategies, historical and inductive sampling, to  posed memorization baseline, EdgeBank__ (on the
better test the generalization of different models. left), predicts the performance loss (lower = better)
Finally, we proposed a competitive yet simple of the methods in both of the harder negative sam-
memorization-based baseline, EdgeBank. It can pling settings (on the right).

yield insights into how much different models

rely on memorization. When we applied these tools to compare existing models, we found that the
performance and ranking of different models vary significantly. We hope that these tools will lead to
more thorough, lucid, and robust evaluation practices in dynamic link prediction.
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Broader Impact: We expect this work to have a major impact on the fundamental as well as applied
dynamic graph research. Essentially, high-quality datasets from diverse domains play undeniable
roles in advancement of research (e.g., OGB [12] or ImageNet [4]). By contributing 6 new datasets
from less explored real-world domains, we aim to enrich available datasets for dynamic graph
learning tasks, and facilitate the development of novel dynamic graph models. In addition, our
proposed dynamic graph visualization techniques (i.e., TEA and TET plot) together with the defined
indices (i.e., novelty, reoccurrence, and surprise index) provide comprehensive summary of datasets
characteristics. EdgeBank also provides a simple yet strong baseline that future dynamic link
prediction methods can easily compare against. Additionally, our investigation on the impact of
negative sampling in dynamic graphs leads to more robust evaluation setup for the dynamic link
prediction task and facilitates methodological advancement in dynamic graph ML.

Since dynamic link prediction has many applications in different domains, such as recommendation
systems, academic graphs, computational finance, etc., we expect this work to facilitate the develop-
ment of applied methods in different domains as well. One potential negative impact is that future
research may narrow down their study to these datasets. We aim to regularly update the datasets with
the input from the community to prevent this issue. Additionally, improving link prediction can be
associated with several potential negative use cases such as user profiling. While our work does not
directly lead to such negative impacts, being aware of such impacts is important and appropriate
precautions should be considered.

Limitations: We consider two main limitations for this work: First, in the current evaluation setup,
there is a single point split for past and future links, which is the current common practice. It might
be more relevant to consider alternative settings where temporal information plays a stronger role,
from splitting in more time points to predict the exact time of an edge.

Second, we have only considered the transductive setting where all nodes are seen during training,
since this is the only setup that we could easily check for memorization. The baseline and historic
negative sampling strategy proposed here are only considered in the transductive setting.

In addition to these two main limitations, we only considered the dynamic link prediction task and
leave the exploration of similar concepts in the related node classification task in dynamic graphs as
future work.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please see Section 7 for discussion
about the limitations of our work.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our work
focus on evaluating existing dynamic link predictions methods; thus, it is unclear if any
direct negative societal impact would occur as a result. However, we discuss potential
negative impacts in Section 7 for dynamic link prediction task in general.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We conform to the ethics guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A ]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] Our code
and data can be found on the project repository on github. This is also mentioned in
Reproducibility part of Section 1.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We report training details for reproducibility in Section 6 and
Appendix A.5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report error bars in Appendix B.1 for different settings
and performance metrics. (Please note that since the standard deviations of the reported
results are mostly within a small range, we reported them in the Appendix B.1 to
improve readability of Fig. 5.)

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We report this information in
Appendix A.6.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes] Yes, the assets are in MIT licence or
Apache License 2.0, noted in Appendix A.1 and Section 3.1.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] We shared the link to our github repository at https://github.com/fpour/
DGB.git. The link to our datasets repository at https://zenodo.org/record/
7008205#.Yv_a_3bMJPZ.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identi-
fiable information or offensive content? [Yes] None of our data contains personally
identifiable information and they are already licensed and open sourced. Please see
Appendix 3.1.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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