
Matching Feature Separation Network for Domain Adaptation in 
Entity Matching 

 

ABSTRACT	
Entity matching (EM) determines whether two records from 
different data sources refer to the same real-world entity. Cur-
rently, deep learning (DL) based EM methods have achieved 
state-of-the-art (SOTA) results. However, applying DL-based 
EM methods often costs a lot of human efforts to label the da-
ta. To address this challenge, we propose a new domain adap-
tation (DA) framework for EM called Matching Feature Sepa-
ration Network (MFSN). We implement DA by separating pri-
vate and common matching features. Brie ly, MFSN irst uses 
three encoders to explicitly model the private and common 
matching features in both the source and target domains. 
Then, it transfers the knowledge learned from the source 
common matching features to the target domain. We also pro-
pose an enhanced variant called Feature Representation and 
Separation Enhanced MFSN (MFSN-FRSE). Compared with 
MFSN, it has superior feature representation and separation 
capabilities. We evaluate the effectiveness of MFSN and MFSN-
FRSE on twelve transferring EM tasks. The results show that 
our framework is approximately 7% higher in F1 score on av-
erage than the previous SOTA methods. Then, we verify the 
effectiveness of each module in MFSN and MFSN-FRSE by ab-
lation study. Finally, we explore the optimal strategy of each 
module in MFSN and MFSN-FRSE through detailed tests. 

CCS	CONCEPTS	
• Insert CCS text here • Insert CCS text here   • Insert CCS 
text here 

KEYWORDS	
Entity matching, Deep neural network, Domain adaptation, 
Matching feature separation network, Data integration 

ACM	Reference	format:	

FirstName Surname, FirstName Surname and FirstName Surname. 
2023. Matching Feature Separation Network for Domain Adaptation 
in Entity Matching. In Proceedings	 of	 ACM	 Woodstock	 conference	
(WOODSTOCK’18).	 ACM,	 New	 York,	 NY,	 USA,	 2	 pages. 

https://doi.org/10.1145/1234567890 

1	 Introduction	
Entity Matching (EM) aims to determine whether two records 
from different data sources refer to the same real-world entity 
[1]. It has been a core problem in data integration. Early 
works focus on using manually defined matching rules [2] or 
machine learning [3] for EM. In recent years, with the devel-
opment of deep learning (DL), more and more researchers 
have used DL to solve the EM problem. Such as record distrib-
uted representation-based method (DeepER [4]), RNN and 
Attention based method (DeepMatcher [1]), and pre-trained 
language models (pre-trained LMs) based method (Ditto [5]). 
Among these methods, DL-based methods often achieve the 
best results. However, it is well known that DL-based methods 
are data hungry. Therefore, DL-based EM methods often cost a 
large amount of human effort to label the data. This manual 
labeling work is both expensive and time-consuming, making 
it impractical for many practical applications. 

To improve the above issue, some works attempt to reduce 
dependence on labeled data by using pre-trained LMs [5, 6]. 
Pre-trained LMs (such as BERT [7], DistilBERT [8], RoBERTa 
[9]) are pre-trained on a large corpus and can provide deeper 
language understanding than traditional word embeddings. 
This excellent language understanding ability can help models 
generalize better to new tasks. Thus, introducing pre-trained 
LMs to solve EM tasks can reduce the dependence on labeled 
record pairs. However, even the most famous work Ditto [5] 
still needs at least several thousand labeled pairs to achieve 
satisfactory results. Later, some works start to consider using 
domain adaptation (DA) to reduce the cost of data labeling 
[10]. DA, a case of transfer learning, uses models trained on 
labeled data from related domains (usually called the source 
domain) to solve new tasks without labeled data (usually 
called the target domain). The main challenge of DA is the do-
main shift problem, as shown in Figure 1(a). Since the source 
and target datasets may come from different domains, they 
don’t follow the same distribution. Therefore, the EM model 
trained on the source dataset doesn’t correctly work on the 
target dataset. Recently, some DA-based EM methods have 
been proposed [10, 11]. These methods only directly learn the 
common features in source and target domains by applying 
special constraints on the feature mapping function. However, 
these methods ignore explicit modeling of domain-private fea-
tures. Domain-private features are only meaningful in a specif-
ic domain, such as technical terms or customary usage in a 
domain. As shown in Figure 1(b), if these features are not dif-
ferentiated and processed, the matching decision stage may be 
disturbed by the discrepancy between the source and target 

∗Article Title Footnote needs to be captured as Title Note 
†Author Footnote to be captured as Author Note 
Permission to make digital or hard copies of part or all of this work for per-
sonal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. Copyrights for third-party 
components of this work must be honored. For all other uses, contact the 
owner/author(s). 
WOODSTOCK’18, June, 2018, El Paso, Texas USA



WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al. 
 

 

 

domains. Therefore, the main challenge of DA in EM is that we 
need to explicitly model the domain-private features so that 
the final common features contain as few domain-private 
properties as possible. 

 

Figure	1:	Domain	 adaptation	 (DA)	 for	 entity	matching	
(EM).	

To address this challenge, we propose a new DA framework 
for EM called Matching Feature Separation Network (MFSN). 
As shown in Figure 1(c), MFSN can learn better common 
matching features by explicitly modeling the private matching 
features of each domain. We conduct various experiments on 
twelve transferring EM tasks, and the results indicate the ef-
fectiveness of our proposed model. The main contributions of 
this paper are as follows: 

1. We propose a framework called Matching Feature Sepa-
ration Network (MFSN). MFSN explicitly models the pri-
vate and common matching features in the source and 
target domains by three encoders and transfers only the 
knowledge in common matching features. 

2. We propose an enhanced variant of MFSN called Feature 
Representation and Separation Enhanced MFSN (MFSN-
FRSE). Compared with MFSN, MFSN-FRSE has better fea-
ture representation and separation capabilities. 

3. We evaluate the effectiveness of MFSN and MFSN-FRSE 
on twelve transferring EM tasks (six similar domain tasks 
and six different domain tasks). Our experimental results 
show that the MFSN-FRSE is approximately 7% higher in 
F1 score on average than the previous SOTA methods. 
Then, we verify the effectiveness of each module in MFSN 
and MFSN-FRSE by ablation study. Finally, we explore the 
optimal strategy of key modules in MFSN and MFSN-FRSE 
by detail tests. 

The rest of this paper is organized as follows. Section 2 intro-
duces the related work about EM, transfer learning, and trans-
ferring EM. Section 3 first defines the EM task and DA in EM, 
and then proposes a framework for DA in EM. Section 4 re-
ports a series of comparative experiments. Section 6 con-
cludes the paper. 

2	 Related	Work	

Early works on EM are devoted to designing various matching 
rules [2]. However, these methods lack universality, as no 
matching rules are suitable for all datasets. In recent years, 
DL-based EM methods have been extensively studied and 
have achieved the SOTA results. DeepMatcher [1] proposes a 
DL-based EM framework, which includes four solutions with 
varying representational power: SIF, RNN, Attention, and Hy-

brid. Ditto [5] applies pre-trained LMs to EM tasks, which 
achieves the SOTA results and reduces the number of training 
data. DL-based EM methods can automatically generate more 
expressive features and satisfy the end-to-end needs of real-
world applications. However, DL-based methods still need a 
large amount of training data to achieve satisfying results. 

Transfer learning (TL) refers to transferring knowledge 
learned in an old domain to a new domain by utilizing similar-
ities between data, tasks, or models [12]. In the EM literature, 
only a few studies have focused on TL. Kirielle et al. [18] pro-
pose an instance-based method, called TransER. This method 
first selects source instances with similar features and neigh-
borhoods to the target domain instances. Then, it uses select-
ed source instances to train a classifier that can work on the 
target domain. However, this method uses attribute-based 
similarities to generate features, so it is only applicable to the 
structured dataset and can’t be applied to the unstructured 
dataset. Tu et al. [10] propose a DA framework for EM, called 
DADER. This framework systematically explores the design 
space and compares different choices of DA for ER. Some 
methods in DADER achieve the current SOTA results. However, 
these methods in DADER directly learn common features 
through statistics metrics or adversarial training. By disre-
garding the explicit modeling of domain-private features, it 
can’t be guaranteed that the final common features contain as 
few domain-private properties as possible. Sun et al. [19] pro-
pose a DSN-based method called VAER-DSN. VAER-DSN uses 
gated recurrent units (GRU) and variational auto-encoders 
(VAE) as the basic components to learn the private and com-
mon features. However, the pre-trained LMs are not consid-
ered as the underlying models. As mentioned earlier, they 
have general natural language comprehension capabilities, 
therefore they can be a good starting point to help the models 
quickly adapt to a new task. Thus, in the next section, we will 
utilize the pre-trained LMs to solve the DA in EM. 

3	 Matching	Feature	Separation	Network	for	
Domain	Adaptation	in	Entity	Matching	

3.1	 Task	Definitions	
Entity matching (EM) aims to determine whether two records 
from different data sources refer to the same entity [1]. Let 𝐷  
and 𝐷  be two collections of entity records with multiple at-
tributes. Each record 𝑟 ∈ 𝐷 (or 𝑟 ∈ 𝐷 ) is a set of key-value 
pairs 𝑎𝑡𝑡𝑟 , 𝑣𝑎𝑙 , where 𝑎𝑡𝑡𝑟  and 𝑣𝑎𝑙  denote the 𝑖-th 
attribute name and attribute value respectively. EM aims to 
determine whether 𝑟  and 𝑟  refer to the same real-world enti-
ty or not. A typical EM pipeline consists of two steps: blocking 
and matching. The blocking step generates a candidate set 
𝐶𝑛𝑑 ⊂ 𝐷 𝐷  with a high recall by removing unnecessary 
comparisons. The subsequent matching step only needs to de-
termine whether the candidate pair 𝑟 , 𝑟 ∈ 𝐶𝑛𝑑 match or 
not. The DL-based EM method first defines an EM model 
ℳ,which takes the candidate pair 𝑟 , 𝑟  as input and outputs 
a prediction 𝑦. 

𝑦 ℳ 𝑟 , 𝑟 1  



Matching Feature Separation Network for Domain Adaptation in 
Entity Matching 

WOODSTOCK’18, June, 2018, El Paso, Texas USA 

 

 

  

 

Figure	2:	The	architecture	of	Matching	Feature	Separation	Network	(MFSN).	

Subsequently, a training set 𝐷, 𝑌 𝑟 , 𝑟 , y  is defined, 
where 𝐷 ⊂ 𝐷 𝐷  is the set of record pairs and 𝑌 is the set of 
labels. Finally, the ℳ is trained on the 𝐷, 𝑌 , and its parame-
ters are updated such that it can correctly determine whether 
the input record pairs match or not. 

Next, we define domain adaptation (DA) in EM. Given a la-
beled source dataset 𝐷 , 𝑌 𝑟 , 𝑟 , 𝑦  and an unla-
beled target dataset 𝐷 𝑟 , 𝑟 , the goal is to train an EM 
model with labeled source data and unlabeled target data, so 
that it does not only work well on 𝐷 , but also is able to make 
correct predictions on 𝐷 .  

3.2	 Framework	Overview	
We propose a framework for DA in EM called Matching Fea-
ture Separation Network (MFSN). As shown in Figure 2, MFSN 
consists of five modules: private target encoder Enc , private 
source encoder Enc , shared encoder Enc , decoder Dec, and 
EM classifier Classifier. The two private encoders are used to 
learn the private matching features in the source and target 
domains respectively, while the shared encoder is used to 
learn the common matching features in both domains. The 
decoder takes the sum of private and common matching fea-
tures as input to reconstruct the input candidate pairs. The 
EM classifier makes matching decisions with the common 
matching features. For simplicity, we use Enc  to denote the 
private encoder, disregarding its domain. 

3.3	 Encoder	for	Matching	Feature	Separation	
Encoder Enc aims to learn the matching features 𝑀𝐹 from the 
candidate pairs 𝑟 , 𝑟 , which can be used for subsequent 
matching decisions. 

𝑀𝐹 Enc 𝑟 , 𝑟 2  

The effectiveness of DA largely depends on the quality of 𝑀𝐹, 
so the choice of encoder architecture is very important. There 

are many choices of encoder architectures: RNN, Attention, 
VAE, and pre-trained LMs. We choose BERT [7], a Transform-
er-Encoder-based pre-trained LM, as the encoder for MFSN. 
Firstly, the pre-trained LMs (such as BERT) have excellent 
language compression capability, which can provide strong 
support for DA. 

3.3.1 Encoder Sketch. The procedure to obtain 𝑀𝐹 by using 
BERT [7] as an encoder is as follows: 

First of all, given a candidate pair 𝑟 , 𝑟  and each record 
𝑟 𝑎𝑡𝑡𝑟 , 𝑣𝑎𝑙 . The candidate pair 𝑟 , 𝑟  is converted 
into a candidate pair sequence S 𝑟 , 𝑟  using Equation (3) and 
Equation (4): 

S 𝑟 , 𝑟 CLS S 𝑟 SEP S 𝑟 SEP 3  

S 𝑟 ATT 𝑎𝑡𝑡𝑟 VAL 𝑣𝑎𝑙 … ATT 𝑎𝑡𝑡𝑟 VAL 𝑣𝑎𝑙 4  

[ATT] and [VAL] are used to indicate the beginning of the at-
tribute name and attribute value, [SEP] is used to separate the 
two records, and [CLS] is used to encode the whole sequence. 

Then, S 𝑟 , 𝑟  is input to BERT for encoding, and the hidden 
representation of [CLS] is obtained as 𝑀𝐹. 

As shown in Figure 2, MFSN defines three encoders. The 
two private encoders are used to learn private matching fea-
tures of the source and target domains respectively, as shown 
in Equation (5). The shared encoder is used to learn common 
(i.e., domain-invariant) matching features of each domain, as 
shown in Equation (6). 

𝑀𝐹 , 𝑀𝐹 Enc 𝑟 , 𝑟 , Enc 𝑟 , 𝑟 5  

𝑀𝐹 , 𝑀𝐹 Enc 𝑟 , 𝑟 , Enc 𝑟 , 𝑟 6  

𝑀𝐹 ∈ ℝ  (𝑀𝐹 ∈ ℝ ) denotes the private matching features 
of the source (target) domain, and the 𝑀𝐹 ∈ ℝ  (𝑀𝐹 ∈ ℝ ) 
denotes the common matching features of the source (target) 
domain. For simplicity, we use 𝑀𝐹  (𝑀𝐹 ) to denote the com-
mon (private) matching feature, disregarding its domain. 

 1 2Shared Encoder Enc ( , )C r r

 1 2Private Source Encoder Enc ( , )S S S
P r r

 1 2 1 2Decoder Dec(Enc ( , ) + Enc ( , ))C Pr r   r r

 1 2Entity Matching Classifier Classifier(Enc ( , ))S S
C r r

shared weight

 1 2Private Target Encoder Enc ( , )T T T
P r r

dif
TL

simL

dif
SL1 2( , )S Sr r

1 2( , )T Tr r

shared weight

T
CMF

S
CMF

BERT

BERT

BERT

S
PMF

BERT

T
PMF

Transformer-Decoder

Transformer-Decoder

MLP+Softmax

ˆ ˆ
1 2( , )T Tr r

ˆ ˆ
1 2( , )S Sr r

ˆ Sy

recon
TL

recon
SL

EML



WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al. 
 

 

 

3.3.2 Similarity Loss. The similarity loss 𝐿  can effectively 
measure the discrepancy between the feature distributions of 
𝑀𝐹  and 𝑀𝐹 . 

𝐿 Distribution_Discrepancy 𝑀𝐹 , 𝑀𝐹 7  

By continuously minimizing 𝐿 , the distributions of 𝑀𝐹  and  
𝑀𝐹  are becoming more and more similar. In this paper, we 
propose three methods to implement 𝐿 , denoted as MMD 
loss [13], CORAL loss [14], and GRL loss [15]. 

MMD	Loss.	The MMD loss is based on Maximum Mean Dis-
crepancy (MMD) [13]. Briefly, MMD maps the distributions 
into the reproducing kernel Hilbert space (RKHS) by using a 
kernel function. Then MMD takes the distance between the 
mean embeddings of the two distributions in the RKHS as the 
discrepancy between them: 

𝐿 sup
‖ ‖

𝔼 ~ φ 𝑀𝐹

𝔼 ~ φ 𝑀𝐹
8  

φ ∙  represents a kernel function that maps 𝑀𝐹  ( 𝑀𝐹 ) to an 
RKHS, and ‖𝜑‖ 1 defines a set of functions in the unit ball 
of RKHS. 𝐿 0 if and only if the distributions of 𝑀𝐹  and 
𝑀𝐹  are the same. 

CORAL	Loss.	The CORAL	 loss is based on CORrelation Align-
ment [14], which is a particular case of 𝑘-order where 𝑘 2. 
It measures the discrepancy between two distributions by 
computing the difference between their covariance matrices 
(second-order statistics). The CORAL loss is defined as Equa-
tion (9). 

𝐿
1

4𝑑
cov 𝐌𝐅 cov 𝐌𝐅 9  

𝐌𝐅 𝐌𝐅 ∈ ℝ  is the common matching feature matrix of 
the source (target) domain, where 𝑑 is the dimensionality of 
𝑀𝐹  and 𝑛 is the number of source (target) samples. The func-
tion cov ∙  is used to compute the covariance matrix for a giv-
en matching features matrix. ‖∙‖  denotes the squared matrix 
Frobenius norm. 

	GRL	Loss.	The GRL loss is based on adversarial training [15]. 
We first introduce a Discriminator to determine whether the 
𝑀𝐹  are from the source or target domain, as shown in Equa-
tion (10). Then, the Discriminator and Enc  are trained in an 
adversarial manner: the Enc  aims to maximize the domain 
classification error, while the Discriminator aims to minimize 
it. The loss function is shown in Equation (11), and the adver-
sarial training is implemented by adding a gradient reversal 
layer (GRL) [15] between the Enc  and Discriminator: 

𝑑 Discriminator 𝑀𝐹 10  

𝐿 𝑑 log 𝑑 1 𝑑 log 1 𝑑 11  

𝑁  and 𝑁  denote numbers of common matching features in 
the source and target domains, respectively, and 𝑑 ∈ 0,1  
denotes the domain label for 𝑀𝐹 . 

3.3.3 Difference Loss. The difference loss [16] can help the pri-
vate and shared encoders to encode different aspects of the 
input. Given a source or target domain candidate pair 𝑟 , 𝑟 , 
we first use the corresponding private and shared encoder to 
obtain 𝑀𝐹  and  𝑀𝐹 . The difference loss is defined as Equa-
tion (12). 

𝐿 𝑀𝐹 𝑀𝐹 12  

‖∙‖  denotes the squared matrix Frobenius norm. Minimizing 
𝐿  can help the shared and private encoders generate mutu-
ally orthogonal features.  

3.4	 Decoder	for	Reconstruction	
The decoder Dec uses both common and private matching fea-
tures to reconstruct the original input pairs. As shown in Fig-
ure 2, given a source or target domain candidate pair 𝑟 , 𝑟 , 
we first use the corresponding private and shared encoder to 
obtain 𝑀𝐹  and 𝑀𝐹 , respectively. Then 𝑀𝐹  and 𝑀𝐹  are 
summed up and fed into the Dec for decoding: 

�̂� , �̂� Dec 𝑀𝐹 𝑀𝐹 13  

We evaluate the effectiveness of the two encoders by com-
paring the discrepancy between �̂� , �̂�  and 𝑟 , 𝑟 . Finally, we 
use the discrepancy as the reconstruction loss to further op-
timize the model. The reconstruction loss is defined as: 

𝐿 Record_Discrepancy �̂� , �̂� , 𝑟 , 𝑟  

CE �̂� , 𝑡                                   14
 

The function CE(∙) is the Cross-Entropy loss function. The 𝑡  
denotes the 𝑖-th token in candidate pairs sequence S 𝑟 , 𝑟  
which is obtained from 𝑟 , 𝑟  by Equation (3). The �̂�  denotes 
the 𝑖-th token in S �̂� , �̂� , and 𝑚 denotes the length of S 𝑟 , 𝑟 . 

For the choice of decoder architecture, we can’t directly use 
the vanilla Transformer-Decoder architecture [21]. As shown 
in Equation (15), if the encoder only provides a single vector 
𝑀𝐹 for decoding, the decoder’s CrossAttention layer always 
outputs the same value for any query vector 𝑞, which comes 
from the previous masked self-attention layer.  

𝑀𝐹 𝐖 CrossAttention 𝑞, 𝑀𝐹 𝐖 , 𝑀𝐹 𝐖 15  

𝐖  and 𝐖  are key and value matrices. To avoid the above 
situation, we add a gate mechanism [22] to the vanilla Trans-
former-Decoder: Suppose 𝑞  is the 𝑡-th query vector, and the 
output 𝑜  of the CrossAttention layer is: 

𝑜 𝜎 𝑞 𝐖 𝑀𝐹𝐖 ⊙ 𝑀𝐹 𝐖 16  

The function σ ∙  is the sigmoid activation function, 𝐖  and 
𝐖  are two learnable parameter matrices, 𝐖  is value matrix, 
and ⊙ denotes Hadamard product. 

3.5	 Entity	Matching	Classifier	and	Objective	
Function	

EM classifier can make matching decisions based on 𝑀𝐹 . 



Matching Feature Separation Network for Domain Adaptation in 
Entity Matching 

WOODSTOCK’18, June, 2018, El Paso, Texas USA 

 

 

𝑦 Classifier 𝑀𝐹 17  

We utilize the 𝑀𝐹  to train an EM classifier, while the EM loss 
is defined as Equation (18). 

𝐿 𝑦 log 𝑦 1 𝑦 log 1 𝑦 18  

𝑁 denotes the number of candidate pairs in the source domain, 
𝑦  denotes the label for the 𝑖-th pairs, and 𝑦  is the prediction 
made by EM classifier for it. 

The final objective function consists of EM loss, reconstruc-
tion loss, difference loss, and similarity loss, as shown in Equa-
tion (19). Our training goal is to minimize this objective func-
tion. 

𝐿 𝐿 𝛼𝐿 𝛽𝐿 𝛾𝐿 19  

ℒ  comes from Section 3.5, ℒ  comes from Section 3.4, 
ℒ  and ℒ  comes from Section 3.3.  

3.6	 Feature	Representation	and	Separation	
Enhancement	

In this section, we propose an enhanced variant called Feature 
Representation and Separation Enhanced MFSN (MFSN-FRSE). 
First of all, to enhance the feature representation capability, 
we propose an enhanced encoder to obtain the hidden repre-
sentation of all tokens. Then, the difference loss is computed 
in a "token-by-token" manner, the similarity loss is computed 
with the help of DomAtt. Lastly, the decoder takes all tokens’ 
private and common features as input to reconstruct the orig-
inal input pairs. In MFSN-FRSE, we mainly improve the encod-
er and decoder modules, while the other modules are the 
same as MFSN. 

3.6.1 Enhanced Encoder. Recall that the encoder in MFSN simp-
ly uses the hidden representation of [CLS] as 𝑀𝐹, which is 
suitable for classification tasks. However, TL tasks often re-
quire a higher feature representation capability of the model. 
Therefore, to improve the feature representation capability, 
we propose an enhanced encoder EEnc. Specifically, it uses 
BERT to obtain the hidden representations of all tokens in 
𝑟 , 𝑟 , and combine them to form a hidden representation 

matrix 𝐇: 

𝐇 EEnc 𝑟 , 𝑟 20 	

The hidden representation matrix	𝐇 ∈ ℝ , 𝑚 is the number 
of tokens in candidate pairs sequence S 𝑟 , 𝑟  obtained from 
𝑟 , 𝑟  by Equation (3), and 𝑑 is the dimensionality of the 

BERT’s output. As shown in Figure 3 and Figure 4, we next use 
a token sequence-based method to compute the difference 
loss and similarity loss. 

Enhanced	 Similarity	 Loss.	 The enhanced similarity loss can 
help the enhanced shared encoder EEnc  learn similar com-
mon features from the source and target domain. We intro-
duce a pooling layer Pool to efficiently compute the similarity 
loss between two hidden representation matrices. As shown 
in Figure 3, we first obtain the common hidden representation 

matrices 𝐇  and 𝐇  of 𝑟 , 𝑟  and 𝑟 , 𝑟  by the EEnc . Next, 
we use the Pool to learn a domain-aware matching feature 
vector from the 𝐇  and 𝐇 , respectively:  

ℎ , ℎ Pool 𝐇 , Pool 𝐇 21  

The similarity loss of ℎ  and ℎ  is then computed to ensure 
that their feature distributions are similar. The similarity loss 
between ℎ  and ℎ  can be computed in three ways described 
in Section 3.3. 

However, conventional pooling strategies (such as using 
special tokens or averaging operations) can’t accurately cap-
ture the domain information of the sequence. So, we propose a 
DomAtt mechanism, which is based on self-Attention [21]. As 
shown in Equation (22)-(23), the DomAtt takes a hidden rep-
resentation matrix as the key and the value, while a learnable 
domain-shared vector 𝑎 as the query. 

ℎ softmax
𝑎 𝐖 𝐇 𝐖

√𝑑
𝐇 𝐖 22  

ℎ  softmax
𝑎 𝐖 𝐇 𝐖

√𝑑
𝐇 𝐖 23  

The learnable parameter matrices 𝐖 , 𝐖 , 𝐖 ∈ ℝ , and 𝑑 
is the dimensionality of the input features. For the technical 
details of the self-attention mechanism, please refer to [21]. 

 

Figure	3:	The	way	 to	compute	 the	enhanced	similarity	
loss,	 in	MFSN‐FRSE.	𝒂𝑺	and	𝒂𝑻	are	 two	 learnable	domain‐
shared	vectors	 in	the	source	and	target	domains,	respec‐
tively.	

 

Figure	4:	The	way	to	compute	the	enhanced	difference	
loss,	in	MFSN‐FRSE.	

Enhanced	Difference	 Loss.	 The enhanced difference loss can 
help the enhanced private encoder EEnc  and enhanced 

1 2Enhanced Shared Encoder EEnc ( , )C r r

1 2( , )r r

CH

1 2Enhanced Private Encoder EEnc ( , )P r r

PH

BERT

BERT

enh
difL



WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al. 
 

 

 

shared encoder EEnc  to encode different aspects of the input. 
As shown in Figure 4, Given a source or target domain candi-
date pair 𝑟 , 𝑟 , we first obtain the private hidden represen-
tation matrix 𝐇  and common hidden representation matrix 
𝐇 , respectively. Then, we adopt a token-by-token manner to 
compute the difference loss: 

𝐿 ‖𝐇 𝑖 𝐇 𝑖 ‖ 24  

𝐇 𝑖  (𝐇 𝑖 ) denotes the 𝑖-th row of the hidden representa-
tion matrix 𝐇  (𝐇 ), which corresponds to the hidden repre-
sentation of the 𝑖-th token in the S 𝑟 , 𝑟  obtained from 𝑟 , 𝑟  
by Equation (3). 𝑚 denotes the length of S 𝑟 , 𝑟 . 

3.6.2 Enhanced Decoder. Decoder Dec takes 𝐇  and 𝐇  as in-
puts to reconstruct the original input candidate pairs. As men-
tioned before, it can help the EEnc  and EEnc  to learn more 
effective features. Specifically, given a source or target domain 
candidate pair 𝑟 , 𝑟 , we first use the corresponding EEnc  
and EEnc  to obtain the 𝐇  and 𝐇 . Then the 𝐇  and 𝐇  are 
summed up and fed into the Dec for decoding: 

�̂� , �̂� Dec 𝐇 𝐇 25  

The reconstruction loss can be computed using Equation (14) 
in Section 3.4. For the architecture of Dec, we use a single lay-
er of Transformer-Decoder. 

4	 Experimental	Evaluation	

4.1	 Experiment	Setup	
4.1.1 Datasets. Table 1 displays the statistical information of 
all datasets used in the experiment. The first nine datasets are 
obtained from DeepMatcher [1] and cover a wide range of 
domains such as products, citations, and restaurants. The lat-
ter four datasets are obtained from the WDC product dataset 
[23]. This dataset collects data from multiple ecommerce sites 
and categorizes them into four categories: computers, watches, 
shoes, and cameras. Each category has 1,100 labeled candi-
date pairs. Finally, we denote a DA task by 𝐷 → 𝐷 , where 𝐷  
is the source dataset and 𝐷  is the target dataset. 

Table	 1:	 Datasets	 used	 in	 our	 experiments.	 #Pairs,	
#Matches,	 and	 #Attrs	 represent	 the	 numbers	 of	 entity	
pairs,	matching	pairs,	and	attributes,	respectively.	

Dataset Domain #Pairs #Matches #Attrs 
Walmart-Amazon (WA) Product 10,242 962 5 

Abt-Buy (AB) Product 9,575 1,028 3 
DBLP-Scholar (DS) Citation 28,707 5,347 4 

DBLP-ACM (DA) Citation 12,363 2,220 4 
Fodors-Zagats (FZ) Restaurant 946 110 6 
Zomato-Yelp (DZY) Restaurant 894 214 3 
iTunes-Amazon (IA) Music 532 132 8 

RottenTomatoes-IMDB 
(RI) Movies 600 190 3 

Books2 (B2) Books 394 92 9 
WDC-Computers (CO) Product 1,100 300 2 

WDC-Cameras (CA) Product 1,100 300 2 
WDC-Watches(WT) Product 1,100 300 2 

WDC-Shoes (SH) Product 1,100 300 2 

4.1.2 Baselines. To demonstrate the effectiveness of our model, 
we set following baselines: 

NoDA. NoDA uses the pre-trained LMs as an encoder to learn 
matching features from the input candidate pair. Then, it uses 
a classifier to make matching decisions based on the learned 
features. Notice that NoDA doesn’t use any DA.  

VAER‐DSN [19]. VAER-DSN is based on the DSN model. VAER-
DSN uses GRU and VAE as the basic components to learn the 
private and common features. The classifier in VAER-DSN can 
make matching decisions by using the common features. The 
decoder can reconstruct the learned features back to the en-
coder input.  

DADER [10]. DADER is a famous framework of DA for EM, and 
describes six representative methods: MMD, K-order, GRL, 
InvGAN, InvGAN+KD, and ED. The experimental results show 
that: 1) the methods based on pre-trained LMs often achieve 
the best results. 2) the results of ED are even worse than 
NoDA in most cases. Therefore, we use MMD, K-order, GRL, 
InvGAN, and InvGAN+KD as the baselines in our experiments, 
and all five methods adopt the pre-trained LMs.  

In the subsequent experiments, we use MFSN-basic to rep-
resent the basic model introduced in Section 3.2-3.5. MFSN-
basic-MMD, MFSN-basic-CORAL, and MFSN-basic-GRL repre-
sent MFSN-basic with three different similarity losses: MMD 
loss, CORAL loss, and GRL loss, respectively. Similarly, MFSN- 
FRSE is used to represent the enhanced variant introduced in 
Section3.6. MFSN-FRSE-MMD, MFSN-FRSE-CORAL, and MFSN-
FRSE-GRL represent MFSN-FRSE with three different similari-
ty losses, respectively. 

4.1.3 Evaluation Metric and Experiment Settings. Following most 
 EM works [1, 5, 10], we use precision, recall, and F1 as the 
evaluation metrics. Specifically, precision  |TP| / |TP|  
|FP| , recall  |TP| / |TP|  |FN| , and F1  2  precision  re-
call / precision  recall . TP denotes true positives, FP de-
notes false positives, FN denotes false negatives, and | ∙ | de-
notes the cardinal number of a set. 

All experiments are implemented using Python. In all meth-
ods, the batch size is set to 32. The pre-trained LMs are uni-
formly using “distilbert-base-uncased” [8]. We used a server 
with NVIDIA GeForce RTX 3090 GPU for the experiments All 
experiments are repeated three times, and the average results 
are reported. 

4.2	 Main	Results	
The effect of DA may depend on the discrepancy levels be-
tween the source and target datasets, so we classify the tasks 
into two categories: similar domain tasks (selecting source 
and target domain datasets from the same domain, e.g., FZ →
DZY) and different domain tasks (selecting source and target 
datasets from different domains, e.g., B2 → FZ). The experi-
mental results are shown in Table 2. 

From the overall perspective, the best method is MFSN-
FRSE-MMD, followed by MFSN-FRSE-GRL. They significantly 
outperform NoDA in both task settings, which shows the effec-
tiveness of our proposed method. Among all methods, VAER-
DSN usually achieves the worst results. The main reason is  



Matching Feature Separation Network for Domain Adaptation in 
Entity Matching 

WOODSTOCK’18, June, 2018, El Paso, Texas USA 

 

 

Table	2:	F1	score	on	similar	and	different	domain	tasks.	Bold,	single	underline,	and	double	underline	indicate	the	best,	
second,	and	third	values,	respectively.	"Avg‐sim"	represents	the	average	for	tasks	in	six	similar	domains.	"Avg‐dif"	repre‐
sents	the	average	for	tasks	in	six	different	domains.	"Avg‐all"	represents	the	overall	average	across	all	12	tasks.	

 Similar domain tasks 

Avg-
sim 

Difference domain tasks 

Avg-
dif 

Avg-
all  

FZ 
↓ 

DZY 

DZY 
↓ 

FZ 

SH 
↓ 

CA 

CA 
↓ 

CO 

CO 
↓ 

WA 

WA 
↓ 

SH 

B2 
↓ 

FZ 

B2 
↓ 

DZY 

RI 
↓ 

WA1 

RI 
↓ 

AB 

IA 
↓ 

DA 

IA 
↓ 

DS 

NoDA 6.27 82.87 50.75 69.13 72.85 65.77 57.84 49.51 29.55 18.28 19.34 74.42 56.15 41.21 49.52 

VAER-DSN 32.59 15.89 37.31 44.55 43.01 46.14 35.58 26.94 40.47 19.24 20.50 52.57 42.71 33.74 35.16 

DADER 

MMD 53.19 66.98 64.03 70.08 74.76 68.77 66.30 24.51 13.31 18.85 22.61 91.52 85.22 42.67 54.49 

CORAL 75.37 75.91 64.51 69.30 68.44 70.67 70.70 74.27 54.23 19.81 19.72 79.33 58.41 50.96 60.83 

GRL 23.98 83.16 59.34 70.45 69.13 63.43 61.58 62.57 46.18 34.03	 28.46	 85.64 70.24 54.52 58.05 

InvGAN 28.68 91.10 57.73 68.60 67.86 67.10 63.51 63.25 44.16 23.83 21.62 85.97 69.95 51.46 57.49 

InvGAN+KD 19.18 90.74 64.61 68.51 75.01 71.91 64.99 62.70 36.49 25.56 23.27 87.35 71.75 51.19 58.09 

MFSN-
basic 

MMD 46.74 80.91 62.93 72.43 74.67 70.08 67.96 69.12 42.76 22.06 25.32 91.52 86.63	 56.24 62.10 

CORAL 68.47 53.20 64.18 70.30 72.25 68.49 66.15 52.65 51.04 20.11 22.29 89.05 78.47 52.27 59.21 

GRL 29.06 78.27 62.30 72.32 72.01 73.05 64.58 84.45 37.47 29.20 25.56 91.98	 76.20 57.48 60.99 

MFSN-
FRSE 

MMD 58.58 91.67	 67.24 70.16 76.44 72.56 72.78	 90.00	 60.40	 25.01 25.95 90.44 85.86 62.94	 67.86	

CORAL 86.12	 58.54 66.05 68.50 74.09 67.60 70.15 51.94 56.70 28.08 25.26 87.91 78.40 54.72 62.43 

GRL 50.67 87.54 68.04	 72.95	 78.03	 73.61	 71.81 87.72 50.84 30.95 25.93 91.10 82.80 61.56 66.68 

 

that VAER-DSN doesn’t use the Transformer-Encoder-based 
pre-trained LMs as its underlying model. As mentioned before, 
these pre-trained LMs not only have powerful feature repre-
sentation capabilities but also have general comprehension 
capabilities. Therefore, for DA in EM, it is necessary to use 
Transformer-Encoder-based pre-trained LMs as the underly-
ing model. 

Compared with DADER, MFSN-FRSE-MMD have higher av-
erage F1 scores in both similar and different domain tasks. 
Specifically, in similar domain tasks, MFSN-FRSE-MMD shows 
an average improvement of 2.08%. In different domain tasks, 
the improvement is even more significant at 8.42%. This indi-
cates that MFSN-basic and MFSN-FRSE have more advantages 
in different domain tasks. Compared with similar domain 
tasks, the different domain tasks may have more domain-
private features. Methods in DADER don’t explicitly model or 
process these domain-private features. As a result, the learned 
domain-invariant features are not clean (may contain some 
domain-private features), which may affect the models’ per-
formances. MFSN-basic and MFSN-FRSE can separate the pri-
vate features from the common features. Thus, our proposed 
models can achieve better DA performances. 

We can find that the performance of MFSN-FRSE is general-
ly better than MFSN-basic. In some cases, MFSN is even worse 
than NoDA. The possible reason is that the encoder in MFSN-
basic has limited feature representation capability. This as-
sumption can be confirmed by subsequent ablation studies. At 
last, the average F1 score of MMD loss is better than that of 
both CORAL loss and GRL loss.  Therefore, we chose the MMD   

 

loss as the default similarity loss for subsequent experiments. 

4.3	 Visualization	Analysis	of	Transferring	Ef‐
fect	

 

Figure	5:	DA	Visualization	of	MFSN‐FRSE.	Distributions	
of	 source	 (red)	 and	 target	 (blue)	 are	 much	 closer	 in	
MFSN‐FRSE	than	NoDA.		

To further analyze the effect of DA, we use t-SNE [25] to map 
the matching features learned from the source and target da-
tasets into a two-dimensional space. Due to the limitation of 
space, we only show three representative cases. The top of 
Figure 5 shows the matching feature distribution obtained by 
NoDA, and the bottom shows the matching feature distribu-
tion obtained by MFSN-FRSE. Compared with NoDA, MFSN-
FRSE generates more similar feature distributions for the 
source and target domain, which help the entity matching 
classifier make correct predictions on the target dataset. 



WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al. 
 

 

 

4.4	 Ablation	Study	
Next, we analyze the effectiveness of difference loss, similarity 
loss, and decoder by ablation study. The results are shown in 
Table 3-4. 

Table	3.	Ablation	 test	 for	MFSN‐basic.	Complete	repre‐
sents	 the	 complete	model.	W/o	decoder,	w/o	difference,	
and	w/o	similarity	 represent	 removing	 the	decoder,	dif‐
ference	 loss,	 and	 similarity	 loss,	 respectively.	Bold	 indi‐
cates	the	best	value.	

 complete 
w/o 

decoder 
w/o 

difference 
w/o 

similarity 

B2-FZ 69.12 67.69 65.37 72.07	

B2-DZY 42.76 53.10	 34.08 45.29 

RI-WA1 22.06 18.24 23.93	 23.06 

RI-AB 25.32	 24.41 22.57 23.78 

IA-DA 91.52 92.32 92.81	 73.08 

IA-DS 86.63 87.16	 87.05 66.19 

FZ-DZY 47.74 55.88	 54.20 52.43 

DZY-FZ 80.91 80.99 86.33	 71.78 

SH-CA 62.93 63.47 66.85	 63.96 

CA-CO 72.43	 70.88 69.92 70.33 

CO-WA 74.67 72.31 72.76 74.70	

WA-SH 70.08 67.77 70.84	 70.25 

average 62.18 62.85	 62.23 58.91 

Table	4.	Ablation	 test	 for	MFSN‐FRSE.	Complete	repre‐
sents	 the	 complete	model.	W/o	decoder,	w/o	difference,	
and	w/o	similarity	 represent	 removing	 the	decoder,	dif‐
ference	 loss,	 and	 similarity	 loss,	 respectively.	Bold	 indi‐
cates	the	best	value.	

 
complete 

w/o 
decoder 

w/o 
difference 

w/o 
similarity 

B2-FZ	 90.00	 79.90 84.24 45.19 

B2-DZY	 60.40	 50.11 37.94 56.84 

RI-WA1 25.01 23.23 28.08	 19.57 

RI-AB 25.95 25.31 26.22	 21.28 

IA-DA	 90.44	 90.34 89.53 63.64 

IA-DS	 84.86	 84.83 84.02 57.74 

FZ-DZY	 58.58	 57.02 56.32 2.05 

DZY-FZ	 91.67	 90.24 88.35 84.52 

SH-CA	 67.24	 64.30 66.71 57.04 

CA-CO 70.16 73.22	 70.19 70.22 

CO-WA 76.44 73.31 73.29 77.71	

WA-SH	 72.56	 70.33 70.90 70.17 

average	 67.78	 65.18 64.65 52.16 

We can see that if the decoder is removed, the MFSN-FRSE’s 
performance will decrease. This indicates that the decoder can 
help the model to learn more effective features. However, if 
the decoder is removed, the MFSN-basic’s performance will 
increase. The main reason is that the encoders in MFSN-basic 
have limited representation capability. These encoders only 
use the hidden representation of [CLS] as the matching feature, 

which can’t simultaneously contain the information for match-
ing decisions and reconstruction tasks.  

In most tasks, if the difference loss is removed, the MFSN-
FRSE’s performance will also decrease. Introducing the differ-
ence loss can encourage the model to separate the private fea-
tures from the common feature, leading to better DA perfor-
mance. However, in RI → WA1 and RI → AB, if the difference 
loss is removed, the performance of MFSN-FRSE will increase. 
The main reason is that these two tasks have too few common 
matching features between the source and target domains. 
That is not enough to make a correct matching decision. We 
will try to tackle this issue in our future work. 

In most tasks, if the similarity loss is removed, the model’s 
performance will decrease significantly. Introducing the simi-
larity loss can ensure the distributions of the source and tar-
get common matching features are similar. Therefore, the en-
tity matching classifier can make correct decisions in both the 
source and target domains. We can also see that on the WDC 
dataset, introducing the similarity loss doesn’t bring a great 
improvement. The possible reason is that the data distribution 
between the different WDC datasets is very similar [10]. 

To explore the optimal strategies for key modules in MFSN 
and MFSN-FRSE, we conduct a series of detailed tests in the 
appendix. The results show that the optimal similarity loss is 
the MMD loss, and the optimal pooling layer is the DomAttion 
mechanism. For the reconstruction and computing difference 
loss, the optimal strategy is to use the hidden representation 
of all tokens. 

5	 Conclusion	
We propose a framework for DA in EM called Matching Fea-
ture Separation Network (MFSN). Briefly, MFSN achieves good 
DA performance by explicitly modeling domain-specific fea-
tures. It utilizes three Pre-LMs based encoders to learn the 
private and common matching features of the source and tar-
get domains. The difference loss can make the common and 
private matching features mutually orthogonal.  The similarity 
loss can make the distributions of the both common matching 
features are similar. We also propose an enhanced variant 
called Feature Representation and Separation Enhanced 
MFSN (MFSN-FRSE). Compared with MFSN, it has better fea-
ture representation and separation capabilities. It utilizes 
three enhanced encoders to learn more expressive private and 
common hidden representation matrices of both domains. 
Then, the difference loss is computed in a "token-by-token" 
manner, and the similarity loss is computed with the help of 
DomAtt. The experiment results show that our framework 
outperforms the previous SOTA methods. we verify the effec-
tiveness of each module by ablation study. Finally, we explore 
the optimal strategy of each module by detailed tests. 

ACKNOWLEDGMENTS	

	



Matching Feature Separation Network for Domain Adaptation in 
Entity Matching 

WOODSTOCK’18, June, 2018, El Paso, Texas USA 

 

 

REFERENCES	
[1] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon 

Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghaven-
dra. 2018. Deep Learning for Entity Matching: A Design Space Exploration. 
In Proceedings of the 2018 International Conference on Management of 
Data (SIGMOD '18). Association for Computing Machinery, New York, NY, 
USA, 19–34. https://doi.org/10.1145/3183713.3196926. 

[2] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic 
constraints for record matching. The VLDB Journal 20, 4 (August    2011), 
495–520. https://doi.org/10.1007/s00778-010-0206-6. 

[3] AnHai Doan, Pradap Konda, Paul Suganthan G. C., Yash Govind, Derek 
Paulsen, Kaushik Chandrasekhar, Philip Martinkus, and Matthew Christie. 
2020. Magellan: toward building ecosystems of entity matching solutions. 
Commun. ACM 63, 8 (August 2020), 83–91. 
https://doi.org/10.1145/3405476. 

[4] Muhammad Ebraheem, Saravanan Thirumuruganathan, Sha iq Joty, 
Mourad Ouzzani, and Nan Tang. 2018. Distributed representations of tu-
ples for entity resolution. Proc. VLDB Endow. 11, 11 (July 2018), 1454–
1467. https://doi.org/10.14778/3236187.3269461. 

[5] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, Jin Wang, Wataru Hirota, and 
Wang-Chiew Tan. 2021. Deep Entity Matching: Challenges and Opportuni-
ties. J. Data and Information Quality 13, 1, Article 1 (March 2021), 17 pages. 
https://doi.org/10.1145/3431816. 

[6] Ursin Brunner and Kurt Stockinger. 2020. Entity matching with transform-
er architectures-a step forward in data integration. In 23rd International 
Conference on Extending Database Technology, Copenhagen, 30 March-2 
April 2020, OpenProceedings, 463–473. 

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. 
Bert: Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805(2018). 

[8] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. 
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. 
arXiv preprint arXiv:1910.01108 (2019). 

[9] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, 
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. 
Roberta: A robustly optimized bert pretraining approach. arXiv preprint 
arXiv:1907.11692 (2019). 

[10] Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Chengliang Chai, Guoliang Li, 
Ruixue Fan, and Xiaoyong Du. 2022. Domain Adaptation for Deep Entity 
Resolution. In Proceedings of the 2022 International Conference on Man-
agement of Data (SIGMOD '22). Association for Computing Machinery, New 
York, NY, USA, 443–457. https://doi.org/10.1145/3514221.3517870. 

[11] Mohamed Trabelsi, Jeff He lin, and Jin Cao. 2022. DAME: Domain Adapta-
tion for Matching Entities. In Proceedings of the Fifteenth ACM Interna-
tional Conference on Web Search and Data Mining (WSDM '22). Associa-
tion for Computing Machinery, New York, NY, USA, 1016–1024. 
https://doi.org/10.1145/3488560.3498486 

[12] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE 
Transactions on knowledge and data engineering 22, 10 (2009), 1345–
1359. 

[13] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. 
2014. Deep domain confusion: Maximizing for domain invariance. arXiv 
preprint arXiv:1412.3474 (2014). 

[14] Baochen Sun and Kate Saenko. 2016. Deep coral: Correlation alignment for 
deep domain adaptation. In Computer Vision–ECCV 2016 Workshops: Am-
sterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, 
Part III 14, Springer, 443–450. 

[15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo 
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 
2016. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 
17, 1 (January 2016), 2096–2030. 

[16] Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, 
and Lars Birkedal. 2023. Verifying Reliable Network Components in a Dis-
tributed Separation Logic with Dependent Separation Protocols. Proc. ACM 
Program. Lang. 7, ICFP, Article 217 (August 2023), 31 pages. 
https://doi.org/10.1145/3607859. 

[17] Shuhao Cui, Xuan Jin, Shuhui Wang, Yuan He, and Qingming Huang. 2020. 
Heuristic domain adaptation. Advances in Neural Information Processing 
Systems 33, (2020), 7571–7583. 

[18] Nishadi Kirielle, Peter Christen, and Thilina Ranbaduge. 2022. TransER: 
Homogeneous Transfer Learning for Entity Resolution. In EDBT, 2–118. 

[19] Sun C, Xu L, Shen D, Nie T, and others. 2023. Domain Separation Network 
Based Entity Resolution Transferring Method. Journal of Hunan University 
2 (2023), 86–94. 

[20] Bing Li, Yukai Miao, Yaoshu Wang, Yifang Sun, and Wei Wang. 2021. Im-
proving the ef iciency and effectiveness for bert-based entity resolution. In 
Proceedings of the AAAI Conference on Arti icial Intelligence, 13226–
13233. 

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, 
Aidan N Gomez, and Illia Polosukhin. 2017. Attention is All you Need. In 
Advances in Neural Information Processing Systems 30. 5998--6008. 

[22] Ivan Montero, and Nikolaos Pappas. 2021. Sentence bottleneck autoencod-
ers from transformer language models. arXiv preprint arXiv:2109.00055 
(2021). 

[23] Anna Primpeli, Ralph Peeters, and Christian Bizer. 2019. The WDC Training 
Dataset and Gold Standard for Large-Scale Product Matching. In Compan-
ion Proceedings of The 2019 World Wide Web Conference (WWW '19). As-
sociation for Computing Machinery, New York, NY, USA, 381–386. 
https://doi.org/10.1145/3308560.3316609. 

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative 
adversarial networks. Commun. ACM 63, 11 (November 2020), 139–144. 
https://doi.org/10.1145/3422622. 

[25] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using 
t-SNE. Journal of machine learning research, Vol. 9, Nov (2008), 2579—
2605.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al. 
 

 

 

A						Appendix	

To explore the optimal strategies for key modules in MFSN 
and MFSN-FRSE, we conduct a series of detailed tests. 

A.1	 Detailed	test	of	similarity	loss	
Figure 6 and Figure 7 show the results of MFSN-basic and 
MFSN-FRSE using MMD loss, CoRAL loss, GRL loss, and with-
out similarity loss. We can observe that the GRL-loss and 
MMD-loss have a strong generality, while the CORAL loss lacks 
flexibility. This is because it measures the discrepancy be-
tween two distributions only by their difference in the second-
order statistics (a.k.a., the covariance). Therefore, it is only 
suitable for few datasets. For example, CORAL loss can effec-
tively measure the discrepancy between Fodors-Zagats (FZ) 
and Zomato-Yelp (DZY). However, it can’t accurately compute 
the discrepancy between Books2 (B2) and Fodors-Zagats (FZ). 
The adversarial training-based methods (e.g., GRL) learn a 
function that can reasonably compute the distribution differ-
ences according to given data examples, so it has a strong gen-
erality [24]. Equation (8) shows that MMD usually predefines 
multiple kernel functions φ ∙  to measure the discrepancy be-
tween the source and target domains. In other words, MMD 
can measure the discrepancy from multiple perspectives, so it 
also has a strong generality. 

 

Figure	 6:	 The	 detailed	 test	 of	 similarity	 loss	 in	 MFSN‐
basic.	W/o	sim	represents	removing	the	similarity	loss.	

 

Figure	7:	The	detailed	test	of	similarity	loss	in	MFSN‐FRSE.	
W/o	sim	represents	removing	the	similarity	loss.	

A.2	 Detailed	test	of	pooling	strategy	in	MFSN‐
FRSE	

To explore the optimal choice of pooling layer in MFSN-FRSE, 
we test the DomAtt and three different conventional pooling 
strategies. The results are shown in Figure 8. SelfAtt indicates 
using self-Attention for pooling: the hidden representation of 
[CLS] is the query, and the hidden representations of all to-
kens are the key and the value. CLS indicates taking the [CLS]’s 
hidden representation as the result of pooling. Mean indicates 

taking the average of all tokens’ hidden representations as the 
result of pooling. From the overall results, DomAtt usually 
achieves better results. Compared with other methods, it can 
learn critical domain features from the input based on a do-
main-shared vector 𝑎. Therefore, DomAtt is more suitable for 
computing the similarity loss between two token sequences.  

 

Figure	8:	The	detailed	 test	 for	pooling	 strategy.	DomAtt,	
SelfAtt,	Mean,	 and	 CLS	 indicate	 different	 pooling	 strate‐
gies. 

A.3	 Detailed	test	of	Decoder	

 

Figure	9:	The	detailed	test	for	the	decoder	in	MFSN‐basic.	
Dec(cls),	dec(seq),	and	dec(all)	represent	the	input	strat‐
egies	of	 the	decoder.	They	 correspond	 to	 only	 the	 [CLS]	
token,	all	tokens	except	for	the	[CLS]	token,	and	all	tokens	
in	the	sequence,	respectively.	

 

Figure	 10:	 The	 detailed	 test	 for	 the	 decoder	 in	 MFSN‐
FRSE.	Dec(cls),	dec(seq),	and	dec(all)	represent	the	input	
strategies	 of	 the	 decoder.	 They	 correspond	 to	 only	 the	
[CLS]	token,	all	tokens	except	for	the	[CLS]	token,	and	all	
tokens	in	the	sequence,	respectively.	

To explore the optimal reconstruction strategy, we test the 
decoder to adopt three different strategies for reconstruction: 
only using the hidden representation of [CLS] (denoted as 
dec(cls)), using the hidden representation of all tokens except 
for [CLS] (denoted as dec(seq)), and using the hidden repre-
sentation of all tokens (denoted as dec(all)). The results are 
shown in Figure 9 and Figure 10. Overall, the optimal recon-
struction strategy for the decoder is dec(all). The results also 
show that dec(all) is better than dec(seq). This indicates that 

69
.1

2

42
.7

6

22
.0

6

25
.3

2

91
.5

2

86
.6

3

47
.7

4

80
.9

1

62
.9

3 72
.4

3

74
.6

7

70
.0

8

62
.1

8

52
.6

5

51
.0

4

20
.1

1

22
.2

9

89
.0

5

78
.4

7

68
.4

7

53
.2

0

64
.1

8 70
.3

0

72
.2

5

68
.4

9

59
.2

1

84
.4

5

37
.4

7

29
.2

0

25
.5

6

91
.9

8

76
.2

0

29
.0

6

78
.2

7

62
.3

0 72
.3

2

72
.0

1

73
.5

0

61
.0

3

72
.0

7

45
.2

9

23
.0

6

23
.7

8

73
.0

8

66
.1

9

52
.4

3

71
.7

8

63
.9

6 70
.3

3

74
.7

0

70
.2

5

58
.9

1

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

B2→FZ B2→DZY RI→WA1 RI→AB IA→DA IA→DS FZ→DZY DZY→FZ SH→CA CA→CO CO→WA WA→SH Average

MMD CORAL GRL w/o sim

90
.0

0

60
.4

0

25
.0

1

25
.9

5

90
.4

4

84
.8

6

58
.5

8

91
.6

7

67
.2

4

70
.1

6 76
.4

4

72
.5

6

67
.7

8

51
.9

4

56
.7

0

28
.0

8

25
.2

6

87
.9

1

78
.4

0 86
.1

2

58
.5

4 66
.0

5

68
.5

0 74
.0

9

67
.6

0

62
.4

3

87
.7

2

50
.8

4

30
.9

5

25
.9

3

91
.1

0

82
.8

0

50
.6

7

87
.5

4

68
.0

4

72
.9

5

78
.0

3

73
.6

1

66
.6

8

45
.1

9

56
.8

4

19
.5

7

21
.2

8

63
.6

4

57
.7

4

2.
05

84
.5

2

57
.0

4

70
.2

2 77
.7

1

70
.1

7

52
.1

6

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

B2→FZ B2→DZY RI→WA1 RI→AB IA→DA IA→DS FZ→DZY DZY→FZ SH→CA CA→CO CO→WA WA→SH Average

MMD CORAL GRL w/o sim

90
.0

0

60
.4

0

25
.0

1

25
.9

5

90
.4

4

84
.8

6

58
.5

8

91
.6

7

67
.2

4

70
.1

6 76
.4

4

72
.5

6

67
.7

8

83
.1

4

49
.6

6

27
.1

6

24
.2

2

90
.1

4

84
.1

1

52
.0

7

86
.7

1

64
.3

6

69
.7

2

73
.3

4

72
.5

4

64
.7

6

80
.7

7

32
.3

3

27
.1

5

24
.5

8

89
.8

4

85
.6

1

60
.7

5

86
.9

9

66
.8

3

70
.5

5

74
.0

6

70
.5

8

64
.1

773
.6

4

33
.6

1

20
.6

6

24
.3

9

90
.5

3

86
.4

8

49
.2

8

72
.5

8

62
.8

7 73
.0

6

74
.9

0

71
.5

6

61
.1

3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

B2→FZ B2→DZY RI→WA1 RI→AB IA→DA IA→DS FZ→DZY DZY→FZ SH→CA CA→CO CO→WA WA→SH Average

DomAtt SelfAtt Mean CLS

69
.1

2

42
.7

6

22
.0

6

25
.3

2

91
.5

2

86
.6

3

47
.7

4

80
.9

1

62
.9

3 72
.4

3

74
.6

7

70
.0

8

62
.1

8

43
.8

2 50
.3

3

20
.0

3

23
.5

6

91
.7

5

86
.2

1

57
.8

2

89
.3

5

65
.7

1

71
.0

9

73
.9

8

70
.8

7

62
.0

470
.0

3

53
.3

3

19
.9

7

24
.2

0

92
.3

2

87
.5

4

64
.5

4

88
.2

7

64
.5

7 71
.7

9

74
.9

9

67
.7

7

64
.9

4

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

B2→FZ B2→DZY RI→WA1 RI→AB IA→DA IA→DS FZ→DZY DZY→FZ SH→CA CA→CO CO→WA WA→SH Average

dec(cls) dec(seq) dec(all)

83
.2

1

35
.5

2

26
.9

2

26
.5

6

89
.8

0

83
.8

5

63
.3

8

90
.3

0

65
.2

1

70
.1

5 78
.0

3

69
.1

6

65
.1

7

86
.9

8

57
.7

3

26
.0

5

25
.5

2

90
.2

8

84
.1

0

52
.9

9

88
.6

4

65
.7

2 72
.7

0

73
.9

3

70
.6

1

66
.2

7

90
.0

0

60
.4

0

25
.0

1

25
.9

5

90
.4

4

84
.8

6

58
.5

8

91
.6

7

67
.2

4

70
.1

6 76
.4

4

72
.5

6

67
.7

8

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

B2→FZ B2→DZY RI→WA1 RI→AB IA→DA IA→DS FZ→DZY DZY→FZ SH→CA CA→CO CO→WA WA→SH Average

Dec(cls) Dec(seq) Dec(all)



Matching Feature Separation Network for Domain Adaptation in 
Entity Matching 

WOODSTOCK’18, June, 2018, El Paso, Texas USA 

 

 

[CLS] contains the semantic information of the whole record 
pair sequence, which is helpful for the reconstruction task. 
However, the effect of dec(cls) is often the worst, which indi-
cates that the semantic information in [CLS] is relatively lim-
ited. Relying on [CLS] alone is not enough to reconstruct the 
whole sequence. 

A.4	 Detailed	test	of	Difference	Loss	

 

Figure	 11:	 The	 detailed	 test	 for	 the	 difference	 loss	 in	
MFSN‐basic.	dif(cls),	dif(seq),	and	dif(all)	represent	three	
different	strategies	 to	 calculate	 the	difference	 loss.	They	
correspond	 to	only	 the	[CLS]	token,	all	 tokens	except	 for	
the	 [CLS]	 token,	 and	 all	 tokens	 in	 the	 sequence,	 respec‐
tively.	

 

Figure	 12:	 The	 detailed	 test	 for	 the	 difference	 loss	 in	
MFSN‐FRSE.	dif(cls),	dif(seq),	and	dif(all)	represent	three	
different	strategies	 to	 calculate	 the	difference	 loss.	They	
correspond	 to	only	 the	[CLS]	token,	all	 tokens	except	 for	
the	 [CLS]	 token,	 and	 all	 tokens	 in	 the	 sequence,	 respec‐
tively.	

Finally, we test three different strategies for computing the 
difference loss: only using the hidden representation of [CLS] 
(denoted as dif(cls)), using the hidden representations of all 
tokens except for [CLS] (denoted as dif(seq)), and using the 
hidden representations of all tokens (denoted as dif(all)). The 
results are shown in Figure 11 and Figure 12. We can observe 
that dif(all) is usually the optimal strategy, followed by dif(cls). 
This also indicates that the hidden representation of [CLS] can 
encoder the overall features of the record pairs sequence. 
Therefore, the model can achieve feature separation by com-
puting the difference loss between the hidden representations 
of [CLS]. On this basis, introducing all the tokens in the se-
quence can further improve the feature separation ability of 
the model. 

 

69
.1

2

42
.7

6

22
.0

6

25
.3

2

91
.5

2

86
.6

3

47
.7

4

80
.9

1

62
.9

3 72
.4

3

74
.6

7

70
.0

8

62
.1

8

67
.2

2

49
.9

5

15
.9

6 25
.2

9

91
.2

0

86
.9

3

39
.3

3

89
.1

0

67
.5

0

70
.5

3

71
.6

6

70
.6

3

62
.1

1

59
.8

1

46
.1

1

21
.4

7

23
.8

3

91
.5

8

85
.9

7

58
.3

8

86
.6

4

59
.1

4

70
.5

3

74
.8

2

68
.8

5

62
.2

6
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

B2→FZ B2→DZY RI→WA1 RI→AB IA→DA IA→DS FZ→DZY DZY→FZ SH→CA CA→CO CO→WA WA→SH Average

dif(cls) dif(seq) dif(all)

84
.9

3

56
.3

2

26
.6

9

25
.8

1

89
.0

5

84
.9

3

55
.9

4

90
.7

0

65
.3

6

69
.0

4 74
.8

5

71
.8

1

66
.2

8

87
.3

7

37
.5

4

26
.9

3

25
.9

6

90
.1

0

85
.1

1

53
.5

1

89
.0

6

67
.4

5

69
.2

2 75
.8

8

70
.5

7

64
.8

9

90
.0

0

60
.4

0

25
.0

1

25
.9

5

90
.4

4

84
.8

6

58
.5

8

91
.6

7

67
.2

4

70
.1

6 76
.4

4

72
.5

6

67
.7

8

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

B2→FZ B2→DZY RI→WA1 RI→AB IA→DA IA→DS FZ→DZY DZY→FZ SH→CA CA→CO CO→WA WA→SH Average

dif(cls) dif(seq) dif(all)


