
DeePC-Hunt: Data-enabled Predictive Control Hyperparameter Tuning
via Differentiable Optimization

Michael Cummins 1 Alberto Padoan 2 Keith Moffat 2 John Lygeros 2 Florian Dörfler 2

Abstract

This paper introduces Data-enabled Predictive
Control Hyperparameter Tuning via Dif-
ferentiable Optimization (DeePC-Hunt), a
backpropagation-based method for automatic
hyperparameter tuning of the Data-enabled
Predictive Control (DeePC) algorithm. The
necessity for such a method arises from the
critical importance of hyperparameter selection
to achieve satisfactory closed-loop DeePC perfor-
mance. The standard methods for hyperparameter
selection are to either optimize the open-loop
performance, or use manual guess-and-check.
Optimizing the open-loop performance can
result in unacceptable closed-loop behavior,
while manual guess-and-check can pose safety
challenges. DeePC-Hunt provides an alternative
method for hyperparameter tuning which uses
an approximate model of system dynamics and
backpropagation to directly optimize hyperpa-
rameters for the closed-loop performance of
DeePC. Numerical simulations demonstrate
the effectiveness of DeePC in combination
with DeePC-Hunt in a complex stabilization
task for a nonlinear system and its superiority
over model-based control strategies in terms of
robustness to model misspecifications.

1. Introduction
Over the past decade, direct data-driven control methods
have experienced a resurgence of interest (Coulson et al.,
2019a; van Waarde et al., 2020; Waarde et al., 2020; Xue &
Matni, 2021), primarily fueled by the increasing adoption

1School of Electronic and Electrical Engineering, Trinity Col-
lege Dublin 2Department of Electrical Engineering and Informa-
tion Technology, ETH Zürich. Correspondence to: Michael Cum-
mins <micummin@tcd.ie>.

Workshop on Foundations of Reinforcement Learning and Con-
trol at the 41 st International Conference on Machine Learning,
Vienna, Austria. Copyright 2024 by the author(s).

Figure 1. The DeePC-Hunt pipeline and the tools needed for imple-
mentation. The DeePC policy is instantiated using CvxpyLayers
and PyTorch to enable automatic differentiation. Simulations are
carried out on an approximate model of the system and projected
resilient backpropagation is used to update the hyperparameters.

of machine learning techniques and the availability of vast
datasets. Unlike traditional control design paradigms that
rely on system identification followed by model-based con-
trol, these methods compute control actions directly from
data. Leveraging tools from behavioral system theory and
convex optimization, this class of methods showcased sig-
nificant promise in simplifying some of the complexities
arising in traditional model-based control, while achieving
satisfactory control performance with reduced implementa-
tion effort.

Among the vast array of methods in this rapidly expanding
literature, Data-enabled Predictive Control (DeePC) (Coul-
son et al., 2019a) stands out as an effective direct data-driven
control algorithm. Operating similarly to Model Predictive
Control (MPC) in a receding-horizon manner (Borrelli et al.,
2017), DeePC circumvents the need for an accurate state-
space model, relying instead on a Hankel matrix derived
from offline input/output raw data. Although stability guar-
antees have been established only under specific assump-
tions, the DeePC algorithm has demonstrated remarkable
performance in controlling nonlinear systems affected by

1

DeePC-Hunt

noise. This performance is mainly attributed to regulariza-
tion techniques (Coulson et al., 2019b) and is theoretically
justified by tools from distributionally robust optimization
(Coulson et al., 2022). However, the DeePC algorithm is
often found to be sensitive to the choice of regularization pa-
rameters (Dörfler et al., 2023), presenting challenges where
experiments are difficult, costly, or unsafe.

Today, the two standard methods for regularization tun-
ing are analytical methods for the open-loop and manual
guess-and-check. The analytical methods for the open-loop
(Coulson et al., 2019b; Chiuso et al., 2023) are considered
overly conservative because the regularization for the open-
loop is more conservative than for the closed-loop, as the
latter accounts for DeePC’s ability to replan at each timestep.
Manual guess-and-check methods, on the other hand, op-
timize the closed-loop performance but require potentially
difficult experiments on the real system. Given the conser-
vativeness of open-loop methods and the danger of manual
methods, there is a need for the development and adoption
of automatic hyperparameter selection strategies.

This paper introduces Data-enabled Predictive Control
Hyperparameter Tuning via Differentiable Optimization
(DeePC-Hunt), a backpropagation-based method designed
to automate hyperparameter tuning for DeePC. DeePC-Hunt
interprets DeePC, i.e., the solution of the DeePC optimiza-
tion, as a control policy, and interprets the DeePC hyperpa-
rameters as the parameters of the policy. Leveraging this
DeePC-as-policy interpretation and an approximate model
of the system dynamics, DeePC-Hunt optimizes the hy-
perparameters (to local optimality) using backpropagation
(Rumelhart et al., 1986). Specifically, DeePC-Hunt imple-
ments a (constrained) variant of the resilient backpropa-
gation algorithm (Riedmiller & Braun, 1993) and widely-
used automatic differentiation tools (Paszke et al., 2019)
to directly optimize the regularization hyperparameters of
a DeePC policy based on the closed-loop performance of
the policy deployed on the approximate model. Our find-
ings suggest that DeePC in combination with DeePC-Hunt
outperforms comparable model-based control strategies in
terms of robustness to model misspecifications, without
requiring extensive manual tuning.

Related work: DeePC-Hunt is motivated and inspired by
policy optimization algorithms (Hu et al., 2022), which
iteratively refine control policy parameters to minimize cu-
mulative cost using different versions of the (projected)
gradient descent algorithm. Unlike MPC or DeePC, DeePC-
Hunt yields policies expressed as explicitly differentiable
functions mapping states to actions. The implicit function
theorem (Amos & Kolter, 2021) can be then used to differ-
entiate the solution map of a Convex Optimisation Control
Policy (COCP), where Karush-Kuhn-Tucker (KKT) con-
ditions are differentiated to compute the gradient of the

control input with respect to the hyperparameters. The work
closest to ours are (Amos et al., 2019; Zuliani et al., 2024),
which extend the theory of differentiating KKT conditions
theory to MPC policies for automatic parameter tuning via
gradient descent methods. However, (Amos et al., 2019;
Zuliani et al., 2024) explicitly rely on state-space models,
which restrict the model class and are not generally avail-
able. A broader approach to policy optimization for COCPs
is presented in (Agrawal et al., 2020b), with experimental
validation demonstrating the effectiveness of differentiable
optimization for tuning a wide range of COCPs. Unlike
previous approaches, DeePC-Hunt optimizes DeePC poli-
cies by integrating data from a system with data obtained
from numerical simulations of an approximate model of the
system, resulting in improved closed-loop performance.

Contributions:

i) We introduce the DeePC-Hunt algorithm for tuning the
hyperparameters of a DeePC policy.

ii) To efficiently implement DeePC-Hunt, we introduce
a variant of the resilient backpropagation algorithm
(Riedmiller & Braun, 1993) that supports box con-
straints, and implement it using automatic differentia-
tion tools (Paszke et al., 2019).

iii) We validate DeePC + DeePC-Hunt on a challenging
benchmark task: landing a Vertical Takeoff and Verti-
cal Landing (VTVL) vehicle on an oceanic platform
using a realistic Gym environment simulator (Brock-
man et al., 2016).

Paper organization: The paper is organized as follows.
Section 2 presents a concise overview of Differentiable
Convex Optimization Layers, DeePC, and a version of Re-
silient Backpropagation (Riedmiller & Braun, 1993). Sec-
tion 3 introduces our methodology; DeePC-Hunt. Section 4
demonstrates DeePC + DeePC-Hunt on the VTVL landing
task and compares the performance with model-mismatched
MPC. Section 5 concludes the paper with a summary of our
findings and an outlook for future research directions.

Notation: The set of real numbers is denoted by R. The
set of real n-dimensional vectors is denoted by Rn. The set
of real n ×m-dimensional matrices is denoted by Rn×m.
The set of positive integers is denoted by N. The set of
non-negative real numbers is denoted by R+. The set of
n× n-dimensional symmetric positive definite matrices is
denoted by Sn×n

+ . The set of closed, convex cones in Rm

is denoted by Cm. The transpose of the matrix M ∈ Rp×m

is denoted by M⊺. The p-norm of the vector x ∈ Rn is
denoted by |x|p. The weighted norm of a vector x ∈ Rn

with the positive definite weight matrix Q ∈ Sn×n
+ is de-

noted by |x|2Q = x⊺Qx. The ith entry of a vector vd ∈ Rn

2

DeePC-Hunt

is denoted by vd |i. The expectation operator is denoted
by E. The function sign : R→ {−1, 0, 1} is defined as −1
if the argument is negative, 1 if the argument is positive,
and 0 if the argument is zero. Given two vectors x1 ∈ Rn1

and x2 ∈ Rn2 , we define col(x1, x2) := (x⊺1 , x
⊺
2)

⊺. Given
T ∈ N, the Hankel matrix of depth L ∈ N, with L ≤ T ,
associated with the vector w ∈ RqT is denoted by

HL(w)=

w1 w2 · · · wT−L+1

w2 w3 · · · wT−L+2

...
...

. . .
...

wL wL+1 · · · wT

 .

2. Background
2.1. Differentiable Convex Optimization Layers

Consider the parameterized convex optimization problem

min
x∈Rn

f(x|θ)

s.t. g(x|θ) ≤ 0, (1)
h(x|θ) = 0,

where f : Rn → R and g : Rn → Rm1 are convex func-
tions, h : Rn → Rm2 is affine and θ represents the vector
of parameters of f , g and h. The parameter θ belongs to
a given set Θ ⊆ Rℓ, which represents the problem data.
The solution to the class of convex optimization problems
of the form (1), known as disciplined parameterized pro-
grams (Agrawal et al., 2019a), may be defined as a mapping
θ 7→ x∗(θ) from the parameter θ to the global solution x∗(θ)
of (1). Formally, we define the solution map of (1) as

s(θ) := θ 7→ x∗(θ). (2)

Differentiable convex optimization layers (Agrawal et al.,
2019a) provides a method for differentiating the global so-
lution (2) with respect to the parameter θ. To this end, (1) is
first transformed into a convex cone problem defined as

min
x,ν

c⊺x

s.t. Ax+ ν = b, (3)
(x, ν) ∈ Rn ×K,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and K ∈ Cp are the
problem data of (3). Such a transformation is typically per-
formed through domain-specific languages for convex pro-
gramming, such as CVXPY (CVXPY) (Diamond & Boyd,
2016), and (A, b, c) is determined via a sparse (linear) pro-
jection L(θ) = (A, b, c) (Agrawal et al., 2019b).

Thus, the solution map (2) can be decomposed into compo-
nent functions:

s(θ) = (R ◦ S ◦ L)(θ), (4)

where L : Rℓ → Rm×n × Rm × Rn maps the
problem data of (1) to the problem data of (3),
S : Rm×n × Rm × Rn → Rn ×K is the solution map of
(3) and R : Rn ×K → Rn maps the solution of (3) to the
solution of (1). Specifically, S(A, b, c) = (x∗, ν∗) and
R(x∗, ν∗) = x∗. The gradient of the solution map is then
formulated as ∇s(θ) = ∇L(θ)∇S(A, b, c)∇R(x∗, ν∗).
Since R and L are designed to be linear mappings,
calculating their gradient is elementary. ∇S(A, b, c) may
be obtained by differentiating the KKT conditions of (3), as
detailed in (Agrawal et al., 2020a) (see also (Agrawal et al.,
2019b;a; 2020a) for details).

The CvxpyLayers (Agrawal et al., 2019a) Python package
integrates CVXPY and PyTorch (Paszke et al., 2019) to
enable the transformation (1) 7→ (3) and the differentiation
of (4) with respect to θ. DeePC, explained in the following
section, can be interpreted as a convex optimization problem
of the form (1). CvxpyLayers will be later used in the
implementation of DeePC-Hunt to instantiate the DeePC
policy (6), allowing us to differentiate the control inputs
with respect to the regularization parameters.

2.2. The DeePC Algorithm

Consider a discrete-time dynamical system described by the
equations

xk+1 = f (xk, uk) , (5)
yk = h (xk, uk) ,

where u ∈ Rm is the input of the system, x ∈ Rn is the
state of the system and y ∈ Rp is the output of the system,
respectively.

The DeePC algorithm leverages raw data matrices de-
rived from offline input/output measurements of sys-
tem (5) as a predictive model. Assuming the
availability of offline/training data recorded from the
(true) system (5), let ud = col(ud|1, . . . , ud|T) ∈ RmT

and yd = col(yd|1, . . . , yd|T) ∈ RpT be vectors contain-
ing an input sequence of length T ∈ N applied to sys-
tem (5) and the corresponding output sequence, re-
spectively. Let q = m+ p and define the data vector
wd = col(ud|1, . . . , ud|T , yd|1, . . . , yd|T) ∈ RqT . For given
initial and future time horizons Tini ∈ N and Tf ∈ N, we
define the input and output data matrices as(

Up
Uf

)
= HTini+Tf(u

d),

(
Yp
Yf

)
= HTini+Tf(y

d), .

whereHt(z) converts the vector z ∈ RT into a t-tall Hankel
matrix with T − t+ 1 columns. Furthermore, we define the
past and future combined input-and-output data matrices as
Wp = (U⊺

p , Y
⊺

p)
⊺ and Wf = (U⊺

f , Y
⊺

f)
⊺, respectively.

The DeePC algorithm operates in a receding-horizon fashion
by iteratively solving an optimization problem using a data

3

DeePC-Hunt

matrix as a predictive model. Given a reference trajectory
wref = col(uref |1, . . . , uref |Tf , yref |1, . . . , yref |Tf) ∈ RqTf ,
a vector of past input/output data at
time k wini

k = col(uini
k , y

ini
k) ∈ RqTini , where

uini
k = col(uk−Tini , . . . , uk−1) ∈ RmTini and
yini
k = col(yk−Tini , . . . , yk−1) ∈ RpTini , an input con-

straint set U ⊆ RmTf , an output constraint set Y ⊆ RpTf , a
positive-definite input cost matrix R ∈ Sm×m

+ , a positive-
definite output cost matrix Q ∈ Sp×p

+ , a regularization
function ψ : RT−Tini−Tf+1 × RpTini → Rr

+, and a weight
vector λ ∈ Rr

+, the DeePC optimization is:

min
u,y,g,σy

Tf∑
i=1

|yi − yref |i|2Q + |ui − uref |i|2R + λ⊺ψ(g, σy),

s.t.

Up
Yp
Uf
Yf

 g =

uini
k

yini
k

u
y

+

0
σy
0
0

 , (6)

(u, y) ∈ U × Y.

Noting that (6) is a parameterized convex optimization prob-
lem (λ is the parameter), we define its solution map in terms
of λ, wini

k and wref
k as

Swd

(
λ,wini

k , w
ref

)
:=

(
λ,wini

k , w
ref

)
7→ (w∗, g∗, σ∗

y),
(7)

where w∗ = col(u∗, y∗) and (w∗, g∗, σ∗
y) is the optimal so-

lution of the optimization problem (6) . Furthermore, defin-
ing the (linear) projection

P(w∗, g∗, σ∗
y) = u∗0,

where u∗0 ∈ Rm is the vector defined by the first m entries
of w∗, we rewrite the DeePC control policy as

πλ
wd
(wini

k , w
ref) := (P ◦ Swd)

(
λ,wini

k , w
ref

)
. (8)

The original formulation of the DeePC algorithm presented
in (Coulson et al., 2019a) employs a one-norm regularizer
on the decision variable g ∈ RT−Tini−Tf+1, namely

λ⊺ψ(g, σy) = λ1 |g|1 ,

which promotes the selection of low-complexity models.

Alternatively, as detailed in (Dörfler et al., 2023), one may
use the identification-induced regularizer

λ⊺ψ(g, σy) = λ0 |(I −Π)g|s ,

with s ∈ N and

Π =

Up
Yp
Yf

† Up
Yp
Yf

 .

This regularizer leads to consistent predictions and connects
to classic Subspace Predictive Control (SPC) algorithms
(Favoreel & De Moor, 1999).

In this work, we leverage the regularization function

λ⊺ψ(g, σy) = λ0 |(I −Π)g|22 + λ1 |g|1 .

This choice leads to improved performance, as suggested by
findings in (Dörfler et al., 2023) and validated by our numer-
ical simulations. Furthermore, a one-norm regularization is
used to promote sparsity in the slack variable σy (Coulson
et al., 2019a) yielding the regularization function

λ⊺ψ(g, σy) = λ0 |(I −Π)g|22 + λ1 |g|1 + λ2|σy|1 (9)

with the parameter vector λ = col(λ0, λ1, λ2).

2.3. Projected Resilient Backpropagation

Consider the constrained optimization problem

min
λ∈Λ

ϕ(λ), (10)

where Λ ⊆ Rr
+ and ϕ : Rr → R. Finding a locally optimal

solution λ∗ ∈ Rr
+ may be challenging with a first-order it-

erative optimization algorithm (e.g., gradient descent); for
example, the objective function ϕ is a convex quadratic
function with a large condition number. Resilient backprop-
agation (Riedmiller & Braun, 1993) is a heuristic first-order
iterative optimization algorithm that mitigates this issue by
optimizing over each scalar element of the decision variable
λ = col(λ0, . . . , λr−1) using only the sign of the gradient
and an adaptive step-size. The update rule of the algorithm
is defined as

λik+1 = λik − ηiksign(∇λiϕ(λik)), (11)

ηik+1 = Rprop(ηik, λ
i
k, λ

i
k+1|ηmax, ηmin, β, α)

=

min{αηik, ηmax}, if∇λiϕ(λik+1)∇λiϕ(λik) < 0,

max{βηik, ηmin}, if∇λiϕ(λik+1)∇λiϕ(λik) > 0,

ηik, if∇λiϕ(λik+1)∇λiϕ(λik) = 0,

where Rprop : R+ × R× R→ R is the step-size genera-
tor and (ηmax, ηmin, β, α) ∈ R4

+ are design parameters that
represent the minimum step-size, maximum step-size, decay
factor, and growth factor, respectively. Resilient backpropa-
gation is particularly useful in the context of DeePC-Hunt,
because the (locally) optimal DeePC regularization parame-
ters can be orders of magnitude from an initial guess (e.g.,
λ0∗ = 1 and λ∗1 = 105).

In addition to the challenge of the scale of the regulariza-
tion, each regularization term λi must be non-negative. To
enforce this constraint, we define the projection operator as

PΛ(λ) = argmin
µ∈Λ

1

2
|λ− µ|2,

4

DeePC-Hunt

where we recall that Λ ⊆ Rr
+. Redefining (11), we obtain

the modified iteration scheme

γik+1 = γik − ηiksign(∇λiϕ(λik)), (12)

ηik+1 = Rprop(ηik, γ
i
k, γ

i
k+1|ηmax, ηmin, β, α),

λk+1 = PΛ (γk+1) ,

which ensures that the constraint λk ∈ Λ is satisfied. To
the best of the authors’ knowledge, this paper is the first to
employ a version of resilient backpropagation that ensures
the feasibility of the iterates of (11) through a projection
scheme.

3. DeePC-Hunt
As noted in the introduction and Section 2.2, the regulariza-
tion parameter λ has a significant impact on the closed-loop
performance of DeePC. DeePC-Hunt tunes λ to optimize the
closed-loop performance of a DeePC policy implemented on
a simplified or incorrect surrogate model of the system. The
intuition for this approach is that the optimal regularization
parameters of a DeePC controller are “close” for “similar”
systems. By optimizing λ with respect to the closed-loop
performance on the surrogate model, we hope to find a λ that
also works for the true system. Thus, the surrogate model is
used to find λ∗, but is not used to control the system; only
the data from the true system is used by the DeePC policy.

The surrogate model is described by the equations

x̃k+1 = f̃ (x̃k, ũk) , (13)

ỹk = h̃ (x̃k, ũk) ,

where ũ ∈ Rm, x̃ ∈ Rn and ỹ ∈ Rp, respectively. The
functions f̃ and h̃ approximate the input-output behavior of
system (5). The approximate model may be derived from the
physics of (a simplified version of) the system (5) or through
the use of model reduction techniques (see, e.g., (Antoulas,
2005) for an overview of available techniques).

Without loss of generality, the timestep k at which DeePC-
Hunt determines the optimal λ is set to 1. Given the ap-
proximate model (13), the vector wini

1 consisting of the prior
Tini measurements at timestep 1, the reference trajectory
wref , and the DeePC policy πλ

wd
(Section 2.2), we define the

approximate closed-loop cost, C̃πλ
wd : RqTini × RqTf → R+,

over the N -long horizon (note: N may be different than Tf)
as

C̃πλ
wd

(
wini

1 , w
ref

)
=

N∑
i=1

|ỹi − yref |i|2Q + |u∗i − uref |i|2R,

(14)
where u∗i is the input produced by πλ

wd

(
wini

i , w
ref

)
and ỹi

is the output given by (13) when u∗i is applied. At each
timestep i, wini

i+1 is given by inserting u∗i and ỹi into wini
i ,

and removing the measurements furthest in the past cor-
responding to time i − Tini. x̃0, the initial state required
by (13), is determined from wini

1 using a Kalman Filter or
another state estimation method.

The aim is for λ to be effective for all initial conditions.
Therefore, the expected closed-loop cost over a probability
distribution of initial conditionswini

1 is optimized. (A similar
procedure could be followed for wref , if the DeePC policy
needs to work for a distribution of reference trajectories as
well.) For simplicity, the wini

1 distribution is taken to be the
uniform distribution over the columns of Wp, denoted as
D(Wp). The expected closed-loop cost is

Ewini
1 ∼D(Wp)

[
C̃πλ

wd
(
wini

1 , w
ref

)]
.

The operators, Ψ(·), Ωu(·), and Ωy(·), are
defined for wini

i such that Ψ(wini
i) = x̃i−1

and Ωu(w
ini
i) = (uini

i−Tini+2, . . . , u
ini
i), and

Ωy(w
ini
i) = (yini

i−Tini+2, . . . , y
ini
i). The constrained,

non-convex DeePC-Hunt optimization problem is

min
λ∈Λ

Ewini
1 ∼D(Wp)

[
C̃πλ

wd
(
wini

1 , w
ref

)]
, (15)

which is equivalent to

min
λ∈Λ

Ewini
1 ∼D(Wp)

[
N∑
i=1

|ỹi − yref |i|2Q + |u∗i − uref |i|2R

]
,

s.t. x̃0 = Ψ(wini
1),

x̃i+1 = f̃ (x̃i, ũi) ,

ỹi = h̃ (x̃i, ũi) ,

wini
i+1 = col(Ωu(w

ini
i), ũi+1,Ωy(w

ini
i), ỹi+1)

ũi = πλ
wd

(
wini

i , w
ref

)
Note that this problem is a bi-level optimization problem
since πλ

wd is itself an optimization problem. Recalling (7)
and (8), πλ

wd is the solution map of a disciplined parameter-
ized program with a linear projection applied. Therefore,
πλ
wd may be differentiated using CvxpyLayers, which lever-

ages the technique discussed in Section 2.1. Thus, the pro-
jected resilient backpropagation method described in (12)
can be used to compute a locally optimal solution λ∗ of
(15).

Note that D(Wp) is an empirical distribution over recorded
trajectories and it is therefore possible to compute (15). Fur-
thermore, (15) is an empirical risk minimization problem
with dataset D(Wp) and hypothesis πλ

wd. If the sample size
of D(Wp) is large, one would require numerous simulations
to compute the constraints/objective and take a single gradi-
ent step. To alleviate this issue, a similar approach is taken
to Stochastic Gradient Descent (SGD) methods by com-
puting an unbiased estimate of (15) in the form of Monte

5

DeePC-Hunt

Carlo samples, which is common practice when performing
empirical risk minimization with large datasets (Ryu & Yin,
2022).

Pseudo code for the sample-estimate/Monte Carlo DeePC-
Hunt implementation is given in Algorithm 1.

Algorithm 1 DeePC-Hunt

Given: Batch size b ∈ R+, closed-loop time horizon N ∈
N, policy πwd , reference trajectory wref ∈ RqTf , training
time tmax ∈ N, (ηmax, ηmin, β, α) ∈ R4

+, and approximate
dynamics f̃ and g̃.
Initialise: ηi0, λi0, γi0, ∀i = 1, . . . , r
for k = 1 : tmax do

for j = 1 : B in parallel do
wini

1
,j ∼ D(Wp)

x̃j0 = Ψ(wini
1

,j)
for i = 0 : N − 1 do

ũji ← πλk

wd

(
wini

i
,j , wref

)
ỹji ← h̃

(
x̃bi , ũ

j
i

)
x̃ji+1 ← f̃

(
x̃ji , ũ

j
i

)
wini

i+1
,j ← col(Ωu(w

ini
i

,j), ũji ,Ωy(w
ini
i

,j), ỹji)
end for

end for
J(λk)← 1

b

∑b
j=1 C̃

πλ
wd

(
wini,j , wref

)
for i = 1 : r in parallel do

γik+1 ← γik − ηiksign(∇λiJ(λik))

ηik+1 ← Rprop
(
ηik, γ

i
k, γ

i
k+1 |ηmax, ηmin, β, α

)
end for
λk+1 ← PΛ (γk+1)

end for

4. Numerical Simulation: landing a VTVL
vehicle

4.1. Rocket Lander Gym Environment

The performance of DeePC-Hunt is demonstrated by con-
sidering the task of safely landing a Vertical Takeoff and
Vertical Landing (VTVL) rocket on an oceanic platform.
The objective is to land the VTVL vehicle on the designated
landing pad in a vertical position, as illustrated in Fig. 3
and Fig. 4. The problem is motivated and inspired by a
version of the Lunar Lander benchmark problem introduced
in (Ferrante, 2017) and implemented using OpenAI’s Gym
Library (Brockman et al., 2016).

The dynamics of the VTVL vehicle are modeled by the

equations of motion

mẍ = Fs cos (θ)− FE sin (φ+ θ)l1,

mÿ = Fs cos (θ)− FE sin (φ+ θ)l1 −mg, (16)

mθ̈ = FE sin(2π − φ)l1 − Fsl2,

where x(t) ∈ R is the horizontal position of the rocket,
y(t) ∈ R is the vertical position of the rocket, θ(t) ∈ R
is the vertical pitch of the rocket, Fs(t) ∈ R is the force
exerted by the side engines, FE(t) ∈ R+ is the force exerted
by the main engine, φ(t) ∈ R is the heading angle of the
main engine, m ∈ R is the mass of the rocket, l1 ∈ R+ is
the length of the portion of the rocket below the center
of gravity, and l2 ∈ R+ is the length of the portion of the
rocket above the center of gravity, respectively. A free-body
diagram representing all forces acting on the VTVL vehicle
is given in Fig. 2.

Figure 2. Free body diagram of the VTVL rocket taken from (Fer-
rante, 2017) and the corresponding equations of motion.

For simplicity, it is assumed that the landing pad remains
stationary, perfect state information is available, and control
inputs are chosen as u = (FE , Fs, φ) ∈ R3, thus facilitat-
ing full actuation. The state and control variables are also
required to satisfy given state and input box constraints
x(t) ∈ X , y(t) ∈ Y , θ(t) ∈ Θ, and u(t) ∈ U , respectively.

4.2. MPC Policy

With perfect knowledge of the system parameters, MPC
can be used to land the VTVL vehicle on the designated
landing pad (Rawlings et al., 2017). Linearizing around an
appropriately selected equilibrium point and discretizing the
resulting system using zero-order-hold sampling gives the

6

DeePC-Hunt

following MPC control scheme

min
x∈R6N ,u∈R3N

Tf∑
i=1

|xi − r|2Q + |ui|2R

s.t. x0 = x̂0, (17)
xi+1 = Axi +Bui,

(x, u) ∈ (X × Y × R2 ×Θ× R× U)Tf ,

where r is the reference trajectory for the state.

Numerical simulations suggest that the performance of pol-
icy (17) is highly sensitive on the quality of the state-space
model (A,B). To illustrate this point, two distinct models
are considered. The first model, named Model A, leverages
the exact parameters of model (16). Model B leverages
inaccurately estimated parameters adjusted by increasing
l1 by 33% and by decreasing l2 and m by 25% and 50%,
respectively.

The performance of the MPC policy is illustrated in Fig. 3.
Fig. 3a and 3b illustrate the trajectory of the VTVL vehi-
cle under nominal conditions, confirming the effectiveness
of a well-estimated model coupled with a linearized MPC
scheme (17). However, performance significantly deterio-
rated when the incorrect system model was used. Figures 3c
and 3d demonstrate that even minor perturbations impact-
ing the information regarding the center of gravity led to
adverse outcomes, resulting in an unsuccessful landing.

4.3. DeePC-Hunt Policy

Two DeePC policies are considered: one with λ opti-
mized using DeePC-Hunt with Model A, and the other
with Model B. For both policies, we adopt the DeePC
formulation (6), employing the regularization function
(9), input constraints U = UTf , and output constraints
Y = (X × Y × R2 ×Θ× R)Tf . We set Tf = 10, Tini = 1,
and λ0 = (50, 50, 1000).

The offline/training data collection process involves apply-
ing a persistently exciting input trajectory ud ∈ RmT , with
length T ∈ N, to the VTVL vehicle and observing the
corresponding output trajectory yd ∈ RpT . The inputs are
determined via a Pseudo-Random Binary Sequence (PRBS)
scheme, initiated from an equilibrium point yeq ∈ Rp. The
offline/training data wd is used to build the Hankel matrices
in (6) and the hyperparameters λ are determined by running
DeePC-Hunt with either Model A or B, resulting in the
DeePC policies πλA

wd
and πλB

wd
, respectively.

For the DeePC-Hunt training routine outlined in
Algorithm 1, we set tmax = 100, r = 3, N = 20,
B = 1, (ηmax, ηmin, β, α) = (102, 10−3, 1.2, 0.5), and
Λ = {(λ0, λ1, λ2) ∈ R3 | λi ∈ [λlower, λupper]} where
λlower = 10−5 and λupper = 105.

(a) Final position of the VTVL
vehicle using the parameters
m = 530.41kg, l1 = 2.85m,
l2 = 2.14m

(b) Trajectory of VTVL
vehicle using the correct
parameters m = 530.41kg,
l1 = 2.85m, l2 = 2.14m

(c) Final position of the VTVL
vehicle using the incorrect
parameters m = 265.201kg,
l1 = 2.14m, l2 = 2.85m

(d) Trajectory of the VTVL
vehicle using the incorrect
parameters m = 265.201kg,
l1 = 2.14m, l2 = 2.85m

Figure 3. Performance of the MPC policies with
Q = diag(100, 10, 5, 1, 3000, 30), R = diag(0.01, 0.01, 0.01),
X = [0, 33.33], Y = [0, 26.66], and Θ = [−0.61, 0.61],
U = [0, 16118.5]× [0, 322.37]× [−0.26, 0.26] and N = 10.

Figure 4 illustrates the performance of the DeePC policies
in combination with DeePC-Hunt. Both DeePC policies,
trained using accurately and inaccurately estimated models,
exhibit satisfactory performance from the predefined posi-
tion, displaying nearly identical trajectories. This highlights
the effectiveness of DeePC in conjunction with DeePC-Hunt,
even in scenarios with inaccurately modeled dynamics.

4.4. Evaluation of Control Performance

To perform a comprehensive comparison, we introduce two
metrics. The first metric evaluates the closed-loop system
cost I : U × Y → R+, defined as

I(y, u) =

N∑
i=1

|yi − yref |i|2Q + |ui − uref |i|2R, ,

where Nπ is the number of time steps it took the policy π
to land the VTVL vehicle. The second metric assesses the
empirical success rate across various initial conditions. We
uniformly sample k = 50 initial states within a specified
range (x, y) ∈ X × Y and compute the percentage of suc-
cessful landings from these initial positions. Results for
both MPC and DeePC in combination with DeePC-Hunt are
presented in Table 1.

7

DeePC-Hunt

(a) Final position of rocket
using DeePC (B) with
λB = (27.475, 2.128, 946.05).

(b) Trajectory of rocket
using DeePC (B) with
λB = (27.475, 2.128, 946.05).

(c) Final position of rocket
using DeePC (A) with
λA = (49.837, 8.364, 1000.05).

(d) Trajectory of rocket
using DeePC (A) with
λA = (49.837, 8.364, 1000.05).

Figure 4. Performance of the DeePC policies with
Q = diag(100, 10, 5, 1, 3000, 30), R = diag(0.01, 0.01, 0.01),
X = [0, 33.33], Y = [0, 26.66], and Θ = [−0.61, 0.61],
U = [0, 16118.5]× [0, 322.37]× [−0.26, 0.26] and N = 10.

Cost (×103) % Success
MPC (A) 11.228 46%

DeePC (A) 16.678 56%
MPC (B) 8.213 22%

DeePC (B) 12.165 66%

Table 1. Results for DeePC and MPC policies using both
models. The DeePC policy trained with model A and
B, converges to λA = (49.837, 8.364, 1000.05) and
λB = (27.475, 2.128, 946.05), respectively. We track the
averaged closed-loop cost over k = 50 simulations with different
initial conditions. When sampling the initial conditions, we set
X = [6.67, 26.66] and Y = [18.66, 24].

DeePC notably outperforms MPC in success rate, especially
under model inaccuracies. However, a trade-off emerges
as MPC exhibits lower closed-loop costs upon successful
landings. This discrepancy primarily arises from the impact
of regularization parameters on the cost function in (6),
prioritizing regularization (g, σy) over progress towards the
setpoint wref . Employing model B with DeePC-Hunt yields
significantly improved performance over direct MPC use.

Our findings suggest promising implications for real-world
systems, indicating that even with a poor approximation of

true dynamics, effective regularization parameters can be
easily identified, ensuring good performance on the true sys-
tem with a DeePC policy. Given its ease of implementation,
DeePC-Hunt appears as a practical solution for automated
parameter tuning. It is particularly advantageous when ex-
ploring multiple parameters is costly, while developing a
poorly approximated model is easy.

5. Conclusion
The paper has introduced DeePC-Hunt, a backpropagation-
based method for automatic hyperparameter tuning of the
DeePC algorithm. We have demonstrated the efficacy
of backpropagation for hyperparameter tuning. Further-
more, we have shown that DeePC-Hunt outperforms model-
mismatched MPC on a challenging nonlinear control task,
without requiring manual tuning. Our findings suggest
promising implications for real-world systems—even with
a poor approximation of true dynamics, effective regulariza-
tion parameters can be identified offline that provide good
closed-loop performance on the true system. Given its ease
of implementation, DeePC-Hunt appears to be a practical
solution for automated DeePC parameter tuning.

References
Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S.,

and Kolter, Z. Differentiable convex optimization layers,
2019a.

Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S.
A rewriting system for convex optimization problems,
2019b.

Agrawal, A., Barratt, S., Boyd, S., Busseti, E., and Moursi,
W. M. Differentiating through a cone program, 2020a.

Agrawal, A., Barratt, S., Boyd, S., and Stellato, B. Learning
convex optimization control policies. In Proceedings
of the 2nd Conference on Learning for Dynamics and
Control, volume 120 of Proceedings of Machine Learning
Research, pp. 361–373. PMLR, 10–11 Jun 2020b.

Amos, B. and Kolter, J. Z. Optnet: Differentiable optimiza-
tion as a layer in neural networks, 2021.

Amos, B., Rodriguez, I. D. J., Sacks, J., Boots, B., and
Kolter, J. Z. Differentiable MPC for end-to-end planning
and control, 2019.

Antoulas, A. C. Approximation of large-scale dynamical
systems. SIAM, 2005.

Borrelli, F., Bemporad, A., and Morari, M. Predictive Con-
trol for Linear and Hybrid Systems. Cambridge Univer-
sity Press, 2017.

8

DeePC-Hunt

Brockman, G., Cheung, V., Pettersson, L., Schneider,
J., Schulman, J., Tang, J., and Zaremba, W. Ope-
nAI Gym, 2016. URL https://arxiv.org/abs/
1606.01540.

Chiuso, A., Fabris, M., Breschi, V., and Formentin, S. Har-
nessing the final control error for optimal data-driven
predictive control, 2023.

Coulson, J., Lygeros, J., and Dörfler, F. Data-enabled pre-
dictive control: In the shallows of the DeePC. In 2019
18th European Control Conference (ECC), pp. 307–312,
2019a. doi: 10.23919/ECC.2019.8795639.

Coulson, J., Lygeros, J., and Dörfler, F. Regularized and
distributionally robust data-enabled predictive control. In
2019 IEEE 58th Conference on Decision and Control
(CDC), pp. 2696–2701, 2019b. doi: 10.1109/CDC40024.
2019.9028943.

Coulson, J., Lygeros, J., and Dörfler, F. Distributionally
robust chance constrained data-enabled predictive control.
IEEE Transactions on Automatic Control, 67(7):3289–
3304, 2022. doi: 10.1109/TAC.2021.3097706.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of
Machine Learning Research, 17(83):1–5, 2016.

Dörfler, F., Coulson, J., and Markovsky, I. Bridging direct
and indirect data-driven control formulations via regular-
izations and relaxations. IEEE Transactions on Automatic
Control, 68(2):883–897, 2023. doi: 10.1109/TAC.2022.
3148374.

Favoreel, W. and De Moor, B. SPC: Subspace predictive
control. IFAC Proceedings Volumes, 32, 01 1999. doi:
10.1016/S1474-6670(17)56683-5.

Ferrante, R. A robust control approach for rocket landing.
2017. URL https://api.semanticscholar.
org/CorpusID:245352859.

Hu, B., Zhang, K., Li, N., Mesbahi, M., Fazel, M., and
Başar, T. Towards a theoretical foundation of policy
optimization for learning control policies, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Rawlings, J., Mayne, D., and Diehl, M. Model Predictive
Control: Theory, Computation, and Design. Nob Hill
Publishing, 2017. ISBN 9780975937730.

Riedmiller, M. and Braun, H. A direct adaptive method for
faster backpropagation learning: the rprop algorithm. In
IEEE International Conference on Neural Networks, pp.
586–591 vol.1, 1993. doi: 10.1109/ICNN.1993.298623.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. nature,
323(6088):533–536, 1986.

Ryu, E. K. and Yin, W. Large-Scale Convex Optimization:
Algorithms 38;amp; Analyses via Monotone Operators.
Cambridge University Press, 2022.

van Waarde, H. J., De Persis, C., Camlibel, M. K., and
Tesi, P. Willems’ fundamental lemma for state-space
systems and its extension to multiple datasets. IEEE
Control Systems Letters, 4(3):602–607, 2020. doi: 10.
1109/LCSYS.2020.2986991.

Waarde, H., Eising, J., Trentelman, H., and Camlibel, K.
Data informativity: A new perspective on data-driven
analysis and control. IEEE Transactions on Automatic
Control, PP:1–1, 01 2020. doi: 10.1109/TAC.2020.
2966717.

Xue, A. and Matni, N. Data-driven system level synthesis.
In Proceedings of the 3rd Conference on Learning for
Dynamics and Control, volume 144 of Proceedings of
Machine Learning Research, pp. 189–200. PMLR, 07 –
08 June 2021.

Zuliani, R., Balta, E. C., and Lygeros, J. BP-MPC: Optimiz-
ing the closed-loop performance of MPC using backprop-
agation, 2024.

9

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://api.semanticscholar.org/CorpusID:245352859
https://api.semanticscholar.org/CorpusID:245352859

