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ABSTRACT

In-context Learning (ICL) is the ability of Large Language Models (LLMs) to
perform new tasks when conditioned on prompts comprising a few task examples.
However, ICL performance can be critically sensitive to the choice of examples.
To dynamically select the best examples for every test input, we propose Example
Gisting, a novel approach for training example encoders via supervised fine-tuning
with an attention bottleneck between inputs and outputs. These gist models form the
basis for GistScore, a novel metric for scoring and selecting informative examples.
Further, in addition to fine-tuning gist models on each dataset, we also experiment
with training a single model on a large multi-task corpus that can then be used
for new tasks out-of-the-box, ensuring a training-free ICL pipeline. Evaluation
with 21 datasets spanning 9 tasks and 8 diverse LLMs shows that our fine-tuned
models yield state-of-the-art ICL performance with over 20% absolute gain over
off-the-shelf retrievers and 5% over the best prior methods. Further, our multi-task
model generalizes to new tasks and datasets and is on par or better than all baselines
while being three orders faster than the strongest training-free baseline.

1 INTRODUCTION
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Figure 1: Top Example Gisting train-
ing with an attention masking bottleneck
where the output can only attend to the
inputs indirectly via gist tokens. Bottom
Retrieval of the candidate examples with
the highest GistScore with the test input.

In-context Learning (Brown et al., 2020) is a training-free
approach for leveraging large language models (LLMs) for
new tasks by conditioning them on a prompt comprising a
few task demonstrations. However, it is highly sensitive to
the choice of in-context examples (Zhao et al., 2021; Liu
et al., 2022b; Lu et al., 2022). Despite extensive prior work
on better example selection methods (Rubin et al., 2022;
Ye et al., 2023; Mualem et al., 2024; Gupta et al., 2023), the
standard approach remains to use off-the-shelf retrievers
like BM25 or cosine similarity between general-purpose
encoder representations Reimers & Gurevych (2019). This
is because the more effective prior approaches require task
or even LLM-specific training Rubin et al. (2022); Ye et al.
(2023); Hu et al. (2022), eliminating the key advantage
of in-context learning. More recently, Gupta et al. (2023)
proposed training-free approaches based on BERTScore-
Recall (BSR, Zhang et al. (2020)). However, BSR is
computationally expensive, especially for long-text tasks,
and is also limited by its use of general-purpose encoders.

This work proposes Example Gisting, a novel approach
for training encoders for ICL example selection without
feedback from a larger LLM. Based on Gisting, a recent technique by Mu et al. (2023) for compressing
prompts, Example Gisting induces an attention masking bottleneck between example inputs and
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outputs (Figure 1, Top). Training with this bottleneck comprising a few gist tokens forces the model
to store task-specific salient input information into those tokens’ activations. Subsequently, the trained
gist model maps both candidate examples and new test inputs into sequences of gist token embeddings
that can be used with GistScore, a novel metric for scoring the informativeness of candidate examples
(Figure 1, Bottom). By sharing BSR’s functional form but operating on far fewer tokens, GistScore
can be significantly faster while also being amenable to Gupta et al. (2023)’s extension to a set-level
metric that can be used to find optimal sets of examples. Finally we experiment with two variations:
(1) fine-tuning a gist model on each dataset for optimal performance and (2) multi-task training a
single gist model on a large collection of datasets that can then be used to select in-context examples
for new tasks and datasets out-of-the-box enabling a training-free ICL pipeline.

Evaluating on 21 diverse datasets spanning 9 task categories and 8 diverse LLMs, we find that
example selection using GistScore dramatically improves ICL. With fine-tuning, it consistently
outperforms all prior methods, including ones that leverage task or LLM-specific training, beating
off-the-shelf retrievers by up to 21 points and the best trained method by 5 points on average. Further,
our multi-task trained gist model recovers much of this performance gain. Applied out-of-the-box,
it matches or outperforms all baselines even on held-out datasets while also being thousands of
times faster than BSR. Finally, congruent to Gupta et al. (2023), we find that the set-extension of
GistScore is highly effective for Semantic Parsing tasks and compositional generalization. Overall,
our multi-task gist model presents the best tradeoff of performance, ease of use, and selection speed
making it a promising alternative to general-purpose retrievers.

2 PRELIMINARIES

In-context Learning (ICL) Given a set of (input, output) pairs {(xi, yi)}ki=1, prompt template
T , and the test input xtest, ICL using an Inference LLM involves prompting it with the context
T (x1,y1, . . . ,xk,yk,xtest ) to conditionally generate the test output ytest . Often it is necessary to
select the k examples from a larger pool of candidates {(xi, yi)}Ni=1. This may be due to context-
length limitation, computational efficiency, or sensitivity of LLMs to order (Liu et al., 2022b) and
position of relevant in-context examples (Liu et al., 2023). The goal of in-context example selection
is thus to select the k ≪ N most relevant examples that are most helpful for solving the test input.

Instruction Gisting was proposed by Mu et al. (2023) for compressing instruction-following prompts
into shorter gists for efficient inference. It involves training a gist model, to simultaneously compress
prompts comprising task instructions into a few gist tokens and to follow instructions encoded in those
gist tokens. This is achieved by masking attention such that any attention to/from the task instruction
goes through the gist tokens. Specifically, given an instruction tuning dataset DI = {(ti, xi, yi)} of
instruction, (optional) input, and target tuples, the model is trained to predict y from the sequence
[t, G, x], where G is the sequence of special "gist" tokens added to the model vocabulary. Attention
masking forces the model to predict based on the information of t encoded in the activations above G.
The trained gisting model can be used to compress new instructions by feeding it the sequence [t, G],
precomputing the activations above G, and then prompting it with those activations instead of t.

3 METHOD

Example Gisting While Mu et al. (2023) used Gisting for efficient prompting, we hypothesise that
it can also be used to extract salient information from example inputs into compressed encodings
that can then be used to retrieve the most relevant examples for a given test input. Specifically, we
propose Example Gisting which involves supervised training with a gist-bottleneck between inputs
and outputs. Given a labeled dataset for target task t, Dt = {(xi, yi)}, it finetunes a gist model to
predict yi given the inputs [xi, G], where G is the attention bottleneck comprising l gist tokens. This
encourages the activations of the gist tokens to encode task-specific salient information.

Example Selection The trained example gisting model is used to select examples as follows1: given
the gists G(xtest) of the test input and G(z) for each candidate z, we use the final layer gist activations

1Unlike Instruction Gisting, example gists are only used to select examples for ICL, which can then be
performed with any Inference LLM with the full text of the selected examples.
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as gist embeddings, i.e. z = z1, . . . zl = G(z)[−1] and x = x1, . . .xl = G(xtest)[−1]. Then we use
the following metric, called GistScore, to score each candidate with respect to the test input:

GS(x, z) =
1

l

l∑
i=1

max
j=1,...l

xT
i zj

∥xi∥∥zj∥
(1)

Finally, the top-k examples with the highest GistScore are selected for ICL. Note that GistScore
shares the functional form of BERTScore-Recall (Zhang et al., 2020), and for l = 1, reduces to cosine
similarity. l > 1 may be useful when a single embedding cannot encode all salient information.
Further, GistScore can also be extended to a set-level metric that can be greedily optimized to select
examples together as a set (see App B).

Multi-Task Training While task-specific finetuning can yield greater performance, the need for
training can limit ease-of-use. Thus, we propose a multi-task training approach so the gisting model
may work for new tasks without further training, preserving the training-free ICL pipeline. The key
idea is to encode both the task instruction and the example input so that the model can distinguish
the task and extract task-specific salient information from the input. Formally, given a collection
of datasets DM =

⋃
t∈T {(t, x, y) : (x, y) ∈ Dt} spanning tasks T , we train the model to predict y

given the input sequence [t, x,G] where t is the task instruction and G, the gist-bottleneck as before.

4 EXPERIMENTAL SETUP

Methods As described in § 3, we experiment with both finetuning gist models for each dataset as well
as multi-task training a single model on a large collection of datasets. We refer to GistScore-based
selection using these as GS[F, l] and GS[M, l] and the set-extension as SET-GS[F, l] and SET-
GS[M, l], respectively. Here, l refers to the number of gist tokens (l = 1 unless specified otherwise).
We use encoder-decoder LMs for both settings; flan-t5-base (Chung et al., 2022) for GS[F] and
flan-t5-large for GS[M]. We compare with the following training-free baselines: (1) RAND
which selects examples randomly, (2) dense retrieval using an encoder (all-mpnet-base-v2) from
SentenceBERT (SBERT, Reimers & Gurevych (2019)), (3) sparse retrieval using BM25, and (4)
BERTScore-Recall (BSR, Zhang et al. (2020)) and its set-extension (SET-BSR) proposed by Gupta
et al. (2023) both with deberta-large-mnli. We additionally compare with three trained baselines:
(1) EPR (Rubin et al., 2022), (2) CEIL (Ye et al., 2023), and (3) LLM-R (Wang et al., 2023a).
EPR and LLM-R train a retrievers while CEIL trains a Determinantal Point Process (Kulesza, 2012)
for set selection. See App. C.1 for details of all the methods and the multi-task collection.

Datasets We evaluate on 21 datasets spanning 9 diverse task categories and multiple languages as
listed in Table 4. These include several datasets not in multi-task collection to evaluate the out-
of-the-box generalization of our multi-task gist models to new tasks (e.g. Semantic Parsing), new
datasets for seen tasks (e.g. WANLI), and domains (e.g. medical domain in MedNLI), etc. Further, in
addition to IID splits, for the semantic parsing datasets (SMCalFlow and COGS), we also evaluate on
compositional generalization (CG) splits. App. C.2 provides additional details about all the datasets,
including splits, sample instances, selection and ICL templates, and evaluation metrics.

Inference LLMs We experiment with 8 Inference LLMs including: 6 base LLMs viz. GPT-Neo-2.7B
(Black et al., 2021), LLaMA-7B and LLaMA-13B (Touvron et al., 2023), Mistral (Jiang et al.,
2023), OpenAI’s Babbage (babbage-002) and Davinci (davinci-002); Zephyr (Tunstall et al.,
2023), an instruction-tuned LLM; and StarCoder (Li et al., 2023), a code-pretrained base LLM. We
include additional details about LLMs and ICL prompt construction in App. C.3 and C.4.

5 RESULTS

Table 1 and Figures 3 (Top) and 6a compare the performance of ICL example selection using single-
token GistScore with prior training-free and trained approaches for a variety of datasets and Inference
LLMs. With the exception of Semantic Parsing datasets, GS[F, 1] consistently and dramatically
outperforms all baselines, beating the training-free SBERT and BSR by up to 21 and 11 points and
the trained baselines, CEIL and LLM-R, by 5 and 8 points on average, respectively. In fact, even
our multi-task model (GS[M, 1]) used without task-specific finetuning, matches or outperforms
all baselines. Further, Figure 3 (Bottom) shows that it is also able to generalize out-of-the-box to
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Selector Neo L7B L13B Mis. Zeph. Bab. Dav.

RAND 38.0 46.3 48.9 56.4 58.8 39.9 52.4
BM25 46.2 53.6 57.3 64.0 65.1 45.4 57.4
SBERT 46.5 53.7 57.7 64.6 65.5 47.3 58.1
BSR 57.1 60.8 64.6 70.9 70.1 57.3 65.4

GS[M, 1] 63.5 65.8 68.1 73.6 71.7 63.1 68.4
GS[F, 1] 68.1 70.1 71.8 76.5 74.9 67.3 71.0

Table 1: Average 8-shot ICL with single-
token GistScore v/s training-free baselines
for different LLMs. See App. D for complete
results for each dataset and LLM. While fine-
tuning (GS[F]) yields the best performance,
GS[M] also outperforms the baselines and re-
covers much of GS[F]’s performance despite
requiring no finetuning.
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Figure 2: Left GS[F] and GS[M] consis-
tently outperform baselines across varying
number of in-context examples, requiring
just 2 examples to surpass 8-shot ICL us-
ing SBERT and BM25. Right Due to their
complex compositional nature, Semantic Pars-
ing datasets benefit from additional gist to-
kens and set-selection. With 15 tokens, SET-
GS[M] matches the average 8-shot semantic
parsing ICL performance of SET-BSR, while
SET-GS[F] vastly outperforms it. See Table
2 for trained baselines and Table 9 for com-
plete results.
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Figure 3: Top Single-token GistScore v/s BSR and
trained baselines, EPR and CEIL with GPT-Neo-
2.7B. All numbers are absolute gain in 8-shot ICL
performance over SBERT except EPR and CEIL on
MNLI, SST5, MRPC, and CMSQA which are with
50 examples. Bottom Comparison of training-free
methods on held-out datasets. GS[M] generalizes
without training to held-out datasets, significantly out-
performing both off-the-shelf retrievers as well as the
stronger but slower BSR.

Selector
SMC COGS

MTOP AVGIID CG IID CG

BSR 65.3 18.6 91.8 78.0 68.0 64.3
EPR 69.8 17.3 72.6
GS[M, 1] 58.2 16.0 88.4 70.8 68.5 60.4
GS[F, 1] 69.0 14.6 89.0 75.0 71.0 63.7

SET-BSR 69.6 51.4 92.4 77.1 70.0 72.1
CEIL 71.0 31.8 73.7
SET-GS[M, 15] 69.2 52.3 91.7 71.6 71.7 71.3
SET-GS[F, 15] 73.7 53.1 94.7 81.4 75.5 75.7

Table 2: Average 8-shot ICL using StarCoder for
Semantic Parsing datasets with independent ranking
(top) and set selection (bottom) methods.

held-out datasets, significantly outperforming off-the-shelf retrievers (BM25 and SBERT) as well as
BSR. Additional results for all datasets and LLMs are provided in App. D. In particular, Figure 7
shows that the improvements from GistScore persist across varying number of shots and Figure 6b
shows that GistScore-based selection is thousands of times faster than BSR.

While a single gist token worked well for most tasks, it may not suffice to capture all the salient
information in complex compositional semantic parsing instances. Moreover, it is also known to
require set-selection as opposed to independent ranking-based selection (Gupta et al., 2023). Indeed,
as shown in Figure 8, set-selection of examples using the set-extension of GistScore with additional
gist-tokens leads to dramatic gains for these datasets for both variants of gist models. In fact, with 15
tokens, SET-GS[F] outperforms all prior methods on semantic parsing as well (see Table 2).

6 ANALYSIS

We now analyze the improvements from GistScore. For classification tasks, we found ICL accuracy
to be strongly correlated with the precision of selected examples’ labels (see Figure 4). In particular,
this suggests that GistScore improves ICL performance by selecting examples that share the test
input’s class labels. This is possible because, as shown in Figure 5, for classification tasks like QNLI
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Figure 4: GPT-Neo-2.7B ICL accuracy
across all classification tasks is strongly
correlated with the precision of the vari-
ous selectors, i.e. per-dataset-average of
the fraction of in-context examples match-
ing the test input’s label. This suggests
that retrieving such examples is the pri-
mary driver of ICL performance for these
datasets.

Figure 5: t-SNE plots of GS[M,1] gist embeddings.
They encode task-specific information such as class la-
bels for MNLI; whether the question is about an animal
or an action (e.g. driving car) for CMSQA; whether the
input pertains to organizational hierarchy (e.g. Who is
Bill’s manager?), contains temporal information (e.g.
Dinner at 3pm today), or neither, for SMCalFlow; and
whether the answer is numeric or textual for DROP.

and MNLI, the gist embeddings contain information of the correct label. Note that this does not
necessarily mean that ICL performance for classification tasks is bounded by selection precision
– as shown in Figure 9, stronger LLMs are less reliant on accurate retrieval and can improve ICL
performance beyond it especially when the selector is weak.

Method SST5 QNLI CMSQA
SMC COGS

GSM DROPCG IID CG IID

GM[F] 53.7 85.6 64.6 0.0 64.7 45.7 99.0 0.0 32.5

N
eo

RAND 13.0 41.9 19.0 0.0 3.3 3.8 8.1 1.7 7.7
SBERT 37.9 44.0 18.1 1.1 31.6 26.0 34.7 2.0 12.6
GS[F, 1] 50.0 82.0 59.9 4.2 50.0 56.3 62.4 3.1 25.4

Z
ep

hy
r RAND 52.3 73.4 72.5 0.0 5.9 15.4 17.7 37.9 37.0

SBERT 51.2 72.1 71.6 13.4 50.8 39.7 55.4 35.9 46.3
GS[F, 1] 56.1 85.2 73.0 16.1 66.8 68.5 78.0 39.0 53.6

Table 3: ICL performance v/s the performance of the gist
models trained on various tasks. Here, the gist model
means the full encoder-decoder model with the gist bot-
tleneck. GistScore-based selection can improve ICL per-
formance beyond that of the underlying gist model (GM)
itself.

As gist models are trained to perform the
tasks, it is possible to compare against
their performance directly. Table 3 shows
that ICL with GistScore-based selection
can yield performance exceeding that of
the underlying gist model itself, especially
when using stronger LLMs. This is best
exemplified on tasks requiring composi-
tional generalization and chain-of-thought
reasoning (GSM8K), a known emergent
capability Wei et al. (2022). This is
because, as shown in Figure 5 for SM-
CalFlow, in these settings, gists can en-
code abstract task-specific salient aspects
(Gupta et al., 2023) useful for selecting in-
formative examples. We share additional
analyses of gist embeddings in App. E.

7 CONCLUSION

We presented Example Gisting, a novel approach for training retrievers for in-context learning through
supervised fine-tuning of encoder-decoder models with a bottleneck that is forced to encode the
salient information in inputs into a few tokens. We further proposed GistScore, a novel metric that
uses gist encodings to evaluate informativeness of candidates for a given test input. Evaluation on
diverse tasks and LLMs shows that finetuned gist models yield state-of-the-art ICL performance.
Further, with multi-task training, gist models can be used out-of-the-box for new tasks and datasets,
enabling am improved yet training-free ICL pipeline.
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A ADDITIONAL RELATED WORK

In-Context Learning Numerous approaches have been proposed for selecting in-context examples:
(1) training retrievers with feedback from a larger LLM Rubin et al. (2022); Wang et al. (2023a), (2)
selecting diverse examples with reduced redundancy (Su et al., 2022; Levy et al., 2022; Agrawal
et al., 2022; Ye et al., 2022), (3) selecting examples that minimize the entropy of the LLM’s output
distribution for the test input (Lu et al., 2022; Wu et al., 2023), (4) Bayesian inference (Wang et al.,
2023b), and (5) selecting examples as a set (Gupta et al., 2023; Ye et al., 2023; Mualem et al., 2024).
The most effective of these either require task and/or LLM-specific training Rubin et al. (2022); Wang
et al. (2023a); Ye et al. (2023) or are computationally inefficient Gupta et al. (2023).

Attention and Memory Both Example and Instruction Gisting Mu et al. (2023) leverage attention
bottlenecks to encode pertinent information in a few tokens, thereby acting as a memory. This is
related to past work on improving memory and long-range sequence modeling with Transformers
(Dai et al., 2019; Child et al., 2019; Beltagy et al., 2020; Rae et al., 2020). In particular, similar
to the specialization of gist tokens, Guo et al. (2022) and Xiao et al. (2023) model long sequence
dependencies using specific tokens that act as a shared global memory, rather than passthrough tokens.
Additionally, the sparsity induced by attention-masking in gisting is related to various sparse attention
methods that have been proposed to improve Transformer efficiency. For example, Dai et al. (2019)
use block-wise dense local attention combined with recursive attention to the previous attention block.
Child et al. (2019) and Beltagy et al. (2020) use different forms of sliding (and strided) attention.

B SET EXTENSION

Gupta et al. (2023) proposed a class of metrics called Coverage Measures for evaluating the relevance
of a candidate example z with respect to the test input xtest as a recall of salient aspects with the
following form,

cover (xtest , z) =
∑

s∈Sxtest

c(s, z) (2)

where the set of salient aspects Sxtest and the coverage of individual aspects c(s, z) would be defined
differently for every metric. Such metrics can be extended to a sub-modular, and hence greedily
optimizable, set-level metrics for evaluating sets of examples Z as follows:

setcov (xtest , Z) =
∑

s∈Sxtest

max
z∈Z

c(s, z) (3)

For l > 1 GistScore, as defined in Eq. 1, has the form of Eq. 2 for Sxtest = {1, . . . , L} and

c(s, z) = 1
l max
j=1,...l

xT
s zj

∥xs∥∥zj∥ . Thus, its set-extension can be defined as:
Set-GSl>1(x, Z) =

1

l

l∑
i=1

max
z∈Z

max
j=1,...l

xT
i zj

∥xi∥∥zj∥
(4)

For l = 1, GistScore reduces to cosine similarity. Hence, we use Gupta et al. (2023)’s extension for
cosine similarity in this case which assumes Sxtest = {1, . . . , d} where d is the embedding size and
c(s, z) = x1[i]z1[i]

∥x1∥∥z1∥ :

Set-GSl=1(x, Z) =

d∑
i=1

max
z∈Z

x1[i]z1[i]

∥x1∥∥z1∥
(5)

C EXPERIMENTAL SETUP

C.1 METHODS

C.1.1 GISTSCORE

We use encoder-decoder models for both task fine-tuned and multi-task pretrained gist models. This
means that after training, we can drop the decoder and only keep the encoder for computing exmaple
gists. We experiment with the following different variants of Gist LM-based retrievers:
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Finetuned Gisting models (GS[F]) In this setting, we fine-tune Flan-T5-base Chung et al. (2022)
models to produce gists of varying lengths on each individual dataset using the procedure described
in § 3. For each dataset, we use the entire train set with instances longer than 500 tokens filtered out
for computational efficiency. For early stopping, we compute Rouge-L (Lin, 2004) for DROP and
GSM8K and Exact-Match Accuracy for the remaining datasets on up to 1000 random instances from
the validation set. All training was done with batch size 36 for up to 40000 steps with early stopping
with the Adafactor optimizer (Shazeer & Stern, 2018) and a constant learning rate of 5e-5.

Multi-task Pre-trained Gist Model (GS[M]) For this setting, we train using a large multi-task
collection of prompts subsampled from the FLAN 2022 collection (Longpre et al., 2023) of 15M
prompts from over 473 datasets and 146 task categories. Specifically, we take zero-shot prompts at
most 256 tokens long and further subsample at most 10,000 prompts for every task category, yielding
roughly 5M prompts. We use 95% of this sub-collection for training and 1000 random instances from
the remaining 5% for early stopping with Rouge-L (Lin, 2004) as the metric. To assess effect from
varying gist lengths, we train four models that can gist to 1, 3, 6, and 15 tokens. Each model was
trained using the Adafactor optimizer (Shazeer & Stern, 2018) on an NVIDIA A10G GPU with a
batch size of 4 and 64 gradient accumulation steps for an effective batch size of 256. The learning
rate was kept constant at 5e-4.

C.1.2 BASELINES

In addition to randomly selecting in-context examples (RAND), we compare with the following
training-free rankind-based selection baselines: (1) dense retrieval using a general-purpose encoder
(all-mpnet-base-v2) from SentenceBERT library (SBERT, Reimers & Gurevych (2019)), (2)
sparse-retrieval using Okapi variant (Robertson et al., 1993) of BM25 from the rank_bm252 library,
and (3) BERTScore-Recall (BSR, Zhang et al. (2020)) using deberta-large-mnli(Williams et al.,
2018) as encoder. We also compare with the set-extension of BSR (SET-BSR) proposed by Gupta
et al. (2023) for selecting optimal sets of examples.

Further, we compare with three methods that leverage training with feedback from an Inference LLM:
(1) EPR (Rubin et al., 2022) which uses LLM perplexity (GPT-Neo-2.7B) to train a dense retriever
for each dataset, (2) CEIL (Ye et al., 2023) which uses EPR and feedback from an LLM to train a
Determinantal Point Process (Kulesza, 2012) for each dataset that is used to select examples as a set,
and (3) LLM-R (Wang et al., 2023a) which uses feedback from LLaMA-7B to train a reward model
for evaluating candidate examples that is distilled into a dense retriever used for example selection.
For EPR and CEIL, we compare with the 8-shot results reported in Gupta et al. (2023), if available,
and the 50-shot results from Ye et al. (2023), otherwise. For LLM-R, we use their 8-shot ICL results
with LLaMA-7B. Being multi-task trained, LLM-R can also be applied to held-out tasks; however, as
Wang et al. (2023a)’s held-out tasks are included in our multi-task collection, we only compare with
it on its held-in datasets.

C.2 DATASETS

We evaluate on 21 datasets spanning 9 diverse task categories and multiple languages as listed in Ta-
ble 4. These include several datasets not in FLAN-2022 to evaluate the out-of-the-box generalization
of our multi-task gist models to new tasks, datasets, domains, etc.3 In particular, MedNLI (Herlihy &
Rudinger, 2021) and TweetEval (Barbieri et al., 2020) evaluate on held-out domains (Medical and
Tweets) while XNLI (Conneau et al., 2018) and PAWSX (Yang et al., 2019) evaluate generalization
to non-English languages.

Splits For all datasets other than XNLI, PAWSX, COGS, and SMCalFlow, we use the standard IID
splits. For XNLI which is a multilingual NLI dataset, we use the German and Russian splits. For
PAWSX which is a multilingual paraphrase detection dataset, we use the French and Spanish splits.
For COGS, we evaluate on the standard IID and compositional generalization evaluation sets. For
SMCalFlow we evaluate on the IID and compositional generalization splits from Yin et al. (2021) as
described below. Following prior work (Gupta et al., 2023; Rubin et al., 2022; Ye et al., 2023), for

2https://github.com/dorianbrown/rank_bm25
3Most of our held-in datasets also require the multi-task models to generalize to new prompt templates as our

ICL prompt templates differ from FLAN-2022’s.
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Task Category Dataset

Natural
Language
Inference

QNLI Wang et al. (2018)
MNLI Williams et al. (2018)
RTE Bentivogli et al. (2009)
WANLI Liu et al. (2022a)
XNLI Conneau et al. (2018)
MedNLI Herlihy & Rudinger (2021)

Paraphrase
Detection

MRPC Dolan & Brockett (2005)
QQP Wang et al. (2018)
PAWS Zhang et al. (2019)
PAWSX Yang et al. (2019)

Question
Answering

DROP Dua et al. (2019)
BoolQ Clark et al. (2019)

Semantic
Parsing

SMCalFlow (SMC, Andreas et al. (2020)
MTOP Li et al. (2021)
COGS Kim & Linzen (2020)

Sentiment
Analysis

SST2 Socher et al. (2013)
SST5 Socher et al. (2013)
Rotten Tomatoes Pang & Lee (2005)
TweetEval-emotion Barbieri et al. (2020)

Commonsense CommonSenseQA (CMSQA, Talmor et al. (2019))

CoT GSM8K Wei et al. (2023)

Summarization AGNews Zhang et al. (2015)

Misc TweetEval-offensive Barbieri et al. (2020)
CoLA Warstadt et al. (2019)

Table 4: Datasets used in this work. Red highlights
datasets held-out from our multi-task collection.
We use the German and Russian splits of XNLI
and Spanish and French of PAWSX, and both IID
and Compositional Generalization (CG) splits of
SMCalFlow and COGS.

each split, we use up to 44,000 random instances
from the train set as the candidate pool and eval-
uate on up to 1000 instances from the validation
set if available, and the test set otherwise.

SMCalFlow (Andreas et al., 2020) is a dataset of
task-oriented natural language dialogs about cal-
endars, weather, places, and people paired with
executable dataflow programs. SMCalFlow-CS
(Yin et al., 2021) is a subset of SMCalFlow
containing single-turn dialogs involving two do-
mains (organization structure and calendar event
creation), each having its own set of program
symbols with two types of test sets: a cross-
domain (C) test set containing only instances
where both domains appear and meant to test
for compositional generalization, and a single-
domain (S) test set contains instances with only
single-domain for in-distribution evaluation. For
compositional evaluation, we use the 32-C split,
a few-shot cross-domain split where the train-
ing set includes 32 cross-domain examples. For
our IID evaluation, following Levy et al. (2022),
we use the 8-S split. Additionally, we use the
programs with the simplified syntax provided by
Meron (2022).

Templates Tables 5, 6, and 7 contain the textual
templates we use to linearize the instances for ex-
ample selection and ICL for the various datasets.
The complete ICL prompt is constructed de-
scribed in App. C.4.

Evaluation Metric We report Exact-Match Accuracy for all the Semantic Parsing datasets and
Accuracy for the remaining datasets.

C.3 INFERENCE LLMS

We experiment with eight diverse Inference LLMs including: 6 base LLMs viz. GPT-Neo-2.7B
(Black et al., 2021), LLaMA-7B and LLaMA-13B (Touvron et al., 2023), Mistral4 (Jiang et al.,
2023), OpenAI’s Babbage (babbage-002) and Davinci (davinci-002); Zephyr5 (Tunstall et al.,
2023), an instruction-tuned and aligned LLM; and StarCoder6 (Li et al., 2023), a code-pretrained
base LLM. GPT-Neo-2.7B, LLaMA-7B, and LLaMA-13B have context windows of 2048, StarCoder
of 7000, Mistral and Zephyr of 8192, and Babbage and Davinci of 16384.

C.4 ICL PROMPT CONSTRUCTION

Following prior work (Rubin et al., 2022; Gupta et al., 2023), for k-shot (k = 8 unless specified
otherwise) ICL with any given dataset, example selection method, and LLM, we construct the ICL
prompt by selecting k (or fewer depending on LLM context window) examples from the train split.
(2) ordering the examples by increasing relevance so that the more relevant examples are closer to the
test input, (3) linearizing the ordered examples and the test input using the dataset’s ICL example
template in Tables 5, 6, and 7, and (4) concatenating the linearizations using \n\n as the separator
For set-selection methods (SET-BSR and SET-GS), the examples are ordered by their corresponding
instance-level score.

4https://hf.co/mistralai/Mistral-7B-v0.1
5https://hf.co/HuggingFaceH4/zephyr-7b-alpha
6https://hf.co/bigcode/starcoder
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Dataset Selector Example Template ICL Example Template

SMCalFlow1 Translate this sentence into a logical
form representing its meaning:
Great , thanks ! I am going to
need a meeting with Karen , Jim ,
and Pam tomorrow before noon .

2 Logical Form:

1 Great , thanks ! I am going to need a
meeting with Karen , Jim , and Pam
tomorrow before noon .

CreateEvent(AND(with_attendee ("
Pam "),with_attendee (" Karen "),
with_attendee (" Jim "),starts_at(
OnDateBeforeTime(date=Tomorrow (),
time=Noon()))))

MTOP 1 Translate this sentence into a logical
form representing its meaning:
call Nicholas and Natasha

2 Logical Form:

1 call Nicholas and Natasha [IN:
CREATE_CALL [SL:CONTACT Nicholas ]
[SL:CONTACT Natasha ] ]

COGS 1 Translate this sentence into a logical
form representing its meaning:
Liam hoped that a box was burned
by a girl .

2 Logical Form:

1 Liam hoped that a box was burned by a
girl . hope ( agent = Liam ,
ccomp = burn ( theme = box , agent
= girl ) )

QNLI 1 As of that day , the new constitution
heralding the Second Republic came
into force.

2 Can we know "What came into force after
the new constitution was herald ?"
given the above sentence (Yes or

No)?

1 Question: What came into force after
the new constitution was herald?

2 Sentence: As of that day , the new
constitution heralding the Second
Republic came into force.

3 Answer: Yes

MNLI 1 Premise: The new rights are nice enough
2 Does the above premise entail the

hypothesis that "Everyone really
likes the newest benefits " (Yes ,
Maybe , or No)?

3 Answer:

1 Premise: The new rights are nice enough
2 Hypothesis: Everyone really likes the

newest benefits
3 Answer: Maybe

RTE 1 Dana Reeve , the widow of the actor
Christopher Reeve , has died of
lung cancer at age 44, according
to the Christopher Reeve
Foundation.

2 Based on the above paragraph can we
conclude that "Christopher Reeve
had an accident ." (Yes or No)?

1 Premise: Dana Reeve , the widow of the
actor Christopher Reeve , has died
of lung cancer at age 44,
according to the Christopher Reeve
Foundation.

2 Hypothesis: Christopher Reeve had an
accident .?

3 Answer: No

MedNLI 1 Premise: No history of blood clots or
DVTs , has never had chest pain
prior to one week ago.

2 Is the hypothesis that "Patient has
angina ." an entailment ,
contradiction or neutral with
respect to the above premise?

3 Answer:

1 Premise: No history of blood clots or
DVTs , has never had chest pain
prior to one week ago.

2 Hypothesis: Patient has angina.
3 Answer: Yes

WANLI 1 Premise: In the past , I have found that
there is no point in making a

speech unless you have prepared it
.

2 Is the hypothesis that "You should
prepare a speech ." an entailment ,
contradiction or neutral with
respect to the above premise?

3 Answer:

1 Premise: In the past , I have found that
there is no point in making a

speech unless you have prepared it
.

2 Hypothesis: You should prepare a speech
.

3 Answer: Yes

XNLI 1 Premise: Et il a dit , maman , je suis à
la maison.

2 Is the hypothesis that "Il a appelé sa
mère dès que le bus scolaire l'a d
éposé." an entailment ,
contradiction or neutral with
respect to the above premise?

3 Answer:

1 Premise: Et il a dit , maman , je suis à
la maison.

2 Hypothesis: Il a appelé sa mère dès que
le bus scolaire l'a déposé.

3 Answer: No

Table 5: The example templates we use for example selection and in-context learning for the various
datasets. See also Tables 6, 7 and 8.
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Dataset Selector Example Template ICL Example Template

SST5 1 Review: in his first stab at the form ,
jacquot takes a slightly anarchic
approach that works only

sporadically .
2 Does the review above see the movie as

terrible , bad , OK, good , or great?
3 Answer:

1 Review: in his first stab at the form ,
jacquot takes a slightly anarchic
approach that works only

sporadically .
2 Sentiment: OK

SST2 1 Review: it 's a charming and often
affecting journey .

2 Is the sentiment of the above review
Negative or Positive?

3 Answer:

1 Review: it 's a charming and often
affecting journey .

2 Sentiment: Positive

Rotten
Tomatoes

1 Review: compassionately explores the
seemingly irreconcilable situation
between conservative christian

parents and their estranged gay
and lesbian children .

2 Is the sentiment of the above review
Negative or Positive?

3 Answer:

1 Review: compassionately explores the
seemingly irreconcilable situation
between conservative christian

parents and their estranged gay
and lesbian children .

2 Sentiment: Positive

MRPC 1 Sentence 1: He said the foodservice pie
business doesn 't fit the company
's long -term growth strategy .

2 Sentence 2: " The foodservice pie
business does not fit our long -
term growth strategy .

3 Do the above sentences convey the same
meaning? Yes or No.

4 Answer:

1 Sentence 1: He said the foodservice pie
business doesn 't fit the company
's long -term growth strategy .

2 Sentence 2: " The foodservice pie
business does not fit our long -
term growth strategy .

3 Answer: Yes

PAWS 1 Sentence 1: Bradd Crellin represented
BARLA Cumbria on a tour of
Australia with 6 other players
representing Britain , also on a
tour of Australia .

2 Sentence 2: Bradd Crellin also
represented BARLA Great Britain on
a tour through Australia on a

tour through Australia with 6
other players representing Cumbria
.

3 Are these sentences paraphrases of each
other? Yes or No.

4 Answer:

1 Sentence 1: Bradd Crellin represented
BARLA Cumbria on a tour of
Australia with 6 other players
representing Britain , also on a
tour of Australia .

2 Sentence 2: Bradd Crellin also
represented BARLA Great Britain on
a tour through Australia on a

tour through Australia with 6
other players representing Cumbria
.

3 Answer: No

QQP 1 Question 1: Why are African -Americans
so beautiful?

2 Question 2: Why are hispanics so
beautiful?

3 Are Questions 1 and 2 asking the same
thing? Yes or No.

4 Answer:

1 Question 1: Why are African -Americans
so beautiful?

2 Question 2: Why are hispanics so
beautiful?

3 Answer: No

PAWSX 1 Sentence 1: El Consejo Shawnee Trail
nació de la unión entre el Consejo
Four Rivers y el Consejo Audubon.

2 Sentence 2: El Consejo de caminos de
los Shawnee se formó por la fusión
del Consejo de Four Rivers y el

Consejo de Audubon.
3 Are the above sentences paraphrases of

each other? Yes or No.
4 Answer:

1 Sentence 1: El Consejo Shawnee Trail
nació de la unión entre el Consejo
Four Rivers y el Consejo Audubon.

2 Sentence 2: El Consejo de caminos de
los Shawnee se formó por la fusión
del Consejo de Four Rivers y el

Consejo de Audubon.
3 Answer: Yes

Table 6: The example templates we use for example selection and in-context learning for the various
datasets. See also Table 5, 7 and 8.
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Dataset Selector Example Template ICL Example Template

CMSQA 1 Select one of the choices that best
answers the following question:

2 Question: A revolving door is
convenient for two direction
travel , but it also serves as a
security measure at a what?

3 Option A: bank
4 Option B: library
5 Option C: department store
6 Option D: mall
7 Option E: new york
8 Answer:

1 Question: A revolving door is
convenient for two direction
travel , but it also serves as a
security measure at a what?

2 Option A: bank
3 Option B: library
4 Option C: department store
5 Option D: mall
6 Option E: new york
7 Answer: A

AGNews 1 Classify the following news article
into one of these categories:
World , Sports , Business ,
Technology.

2 Fears for T N pension after talks
Unions representing workers at
Turner Newall say they are '
disappointed ' after talks with
stricken parent firm Federal Mogul
.

3 Category:

1 Article: Fears for T N pension after
talks Unions representing workers
at Turner Newall say they are '
disappointed ' after talks with
stricken parent firm Federal Mogul
.

2 Category: Business

GSM8K 1 Give the step -by-step reasoning process
and then the final answer.Janet 's
ducks lay 16 eggs per day. She

eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She
sells the remainder at the farmers
' market daily for $2 per fresh
duck egg. How much in dollars does
she make every day at the farmers

' market?

1 Question: Janet 's ducks lay 16 eggs per
day. She eats three for breakfast
every morning and bakes muffins

for her friends every day with
four. She sells the remainder at
the farmers ' market daily for $2
per fresh duck egg. How much in
dollars does she make every day at
the farmers ' market?

2 Solution: Janet sells 16 - 3 - 4 =
<<16-3-4=9>>9 duck eggs a day.

3 She makes 9 * 2 = $<<9*2=18>>18 every
day at the farmer 's market.

4 #### 18

CoLA 1 Is the following sentence grammatical (
Yes or No)?

2 The sailors rode the breeze clear of
the rocks.

3 Answer:

1 Sentence: The sailors rode the breeze
clear of the rocks.

2 Answer: Yes

TweetEval 1 Classify the emotion in the following
tweet as one of anger , joy ,
optimism , or sadness ..

2 Tweet: @user @user Oh, hidden revenge
and anger ...I rememberthe time ,she
rebutted you.

3 Answer:

1 Tweet: @user @user Oh, hidden revenge
and anger ...I rememberthe time ,she
rebutted you.

2 Answer: A

Table 7: The example templates we use for example selection and in-context learning for the various
datasets. See also Tables 5, 6 and 8.
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Dataset Selector Example Template ICL Example Template

DROP1 Hoping to rebound from their loss to the
Patriots , the Raiders stayed at home
for a Week 16 duel with the Houston
Texans. Oakland would get the early
lead in the first quarter as
quarterback JaMarcus Russell
completed a 20-yard touchdown pass to
rookie wide receiver Chaz Schilens.
The Texans would respond with

fullback Vonta Leach getting a 1-yard
touchdown run , yet the Raiders would
answer with kicker Sebastian

Janikowski getting a 33-yard and a
30-yard field goal. Houston would
tie the game in the second quarter
with kicker Kris Brown getting a 53-
yard and a 24-yard field goal.
Oakland would take the lead in the
third quarter with wide receiver
Johnnie Lee Higgins catching a 29-
yard touchdown pass from Russell ,
followed up by an 80-yard punt return
for a touchdown. The Texans tried

to rally in the fourth quarter as
Brown nailed a 40-yard field goal ,
yet the Raiders ' defense would shut
down any possible attempt.

2 How many field goals did both teams kick
in the first half?

3 Answer:

1 Passage: Hoping to rebound from their
loss to the Patriots , the Raiders
stayed at home for a Week 16 duel
with the Houston Texans. Oakland
would get the early lead in the first
quarter as quarterback JaMarcus

Russell completed a 20-yard touchdown
pass to rookie wide receiver Chaz

Schilens. The Texans would respond
with fullback Vonta Leach getting a
1-yard touchdown run , yet the Raiders
would answer with kicker Sebastian

Janikowski getting a 33-yard and a
30-yard field goal. Houston would
tie the game in the second quarter
with kicker Kris Brown getting a 53-
yard and a 24-yard field goal.
Oakland would take the lead in the
third quarter with wide receiver
Johnnie Lee Higgins catching a 29-
yard touchdown pass from Russell ,
followed up by an 80-yard punt return
for a touchdown. The Texans tried

to rally in the fourth quarter as
Brown nailed a 40-yard field goal ,
yet the Raiders ' defense would shut
down any possible attempt.

2 Question: How many field goals did both
teams kick in the first half?

3 Answer: 2

BoolQ1 Ethanol fuel -- All biomass goes through
at least some of these steps: it
needs to be grown , collected , dried ,
fermented , distilled , and burned. All
of these steps require resources and
an infrastructure. The total amount

of energy input into the process
compared to the energy released by
burning the resulting ethanol fuel is
known as the energy balance (or ``

energy returned on energy invested '')
. Figures compiled in a 2007 report
by National Geographic Magazine point
to modest results for corn ethanol

produced in the US: one unit of
fossil -fuel energy is required to
create 1.3 energy units from the
resulting ethanol. The energy balance
for sugarcane ethanol produced in

Brazil is more favorable , with one
unit of fossil -fuel energy required
to create 8 from the ethanol. Energy
balance estimates are not easily
produced , thus numerous such reports
have been generated that are
contradictory. For instance , a
separate survey reports that
production of ethanol from sugarcane ,
which requires a tropical climate to
grow productively , returns from 8 to
9 units of energy for each unit

expended , as compared to corn , which
only returns about 1.34 units of fuel
energy for each unit of energy

expended. A 2006 University of
California Berkeley study , after
analyzing six separate studies ,
concluded that producing ethanol from
corn uses much less petroleum than

producing gasoline.
2 does ethanol take more energy make that

produces (yes or no)
3 Answer:

1 Passage: Ethanol fuel -- All biomass goes
through at least some of these steps:
it needs to be grown , collected ,

dried , fermented , distilled , and
burned. All of these steps require
resources and an infrastructure. The
total amount of energy input into the
process compared to the energy

released by burning the resulting
ethanol fuel is known as the energy
balance (or ``energy returned on
energy invested ''). Figures compiled
in a 2007 report by National
Geographic Magazine point to modest
results for corn ethanol produced in
the US: one unit of fossil -fuel
energy is required to create 1.3
energy units from the resulting
ethanol. The energy balance for
sugarcane ethanol produced in Brazil
is more favorable , with one unit of
fossil -fuel energy required to create
8 from the ethanol. Energy balance

estimates are not easily produced ,
thus numerous such reports have been
generated that are contradictory. For
instance , a separate survey reports

that production of ethanol from
sugarcane , which requires a tropical
climate to grow productively , returns
from 8 to 9 units of energy for each
unit expended , as compared to corn ,

which only returns about 1.34 units
of fuel energy for each unit of
energy expended. A 2006 University of
California Berkeley study , after

analyzing six separate studies ,
concluded that producing ethanol from
corn uses much less petroleum than

producing gasoline.
2 Question: does ethanol take more energy

make that produces
3 Answer: no

Table 8: The example templates we use for example selection and in-context learning for the various
datasets. See also Tables 5, 6 and 7.
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Figure 6: (a) Single-token GistScore v/s BSR and LLM-R with LLaMA-7B. All numbers are
absolute gain in 8-shot ICL performance over SBERT. Both GS[F, 1] and GS[M, 1] consistently
outperform LLM-R. (b) Example selection using GistScore (GS[M, 1]) is up to three orders faster
than BSR, two orders faster than the Python implementation of BM25, and scales well with the
number of gist tokens.
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Figure 7: Average ICL performance with GPT-Neo-2.7B (top) and LLaMA-7B (bottom) for varying
number of in-context examples. Both GS[F] and GS[M] are consistently better, and both surpass
8-shot ICL using SBERT and BM25 with just 2 examples!

D ADDITIONAL RESULTS

Results for GistScore-variations and all baselines Tables 10, 11, 12, 13, 14, 15 and 16 show 8-shot
ICL results for all the datasets with GPT-Neo-2.7B, LLaMA-7B, LLaMA-13B, Mistral, Zephyr,
Babbage, and Davinci, respectively.

Set-selection using SET-GS Figure 8 and Table 9 compare performance for different number of gist
tokens and set-selection for different LLMs.

Varying number of shots The gains from GistScore persist across varying number of in-context
examples as shown in Figure 7. In fact, with just 2 examples, GS[F, 1] outperforms 8-shots retrieved
using general-purpose retrievers.

Impact of gist model size Table 13 shows results for GistScore-based selection using a larger
multi-task gist model based on flan-t5-xlshowing that a stronger gist model can further improve
ICL performance.

Selection Speed Despite sharing its functional form and hence quadratic time-complexity in number
of tokens, GistScore can be faster than BSR as it compares only a few gist tokens. Figure 6b shows
that this yields thousands of times faster selection with single-token GistScore compared to BSR,
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Figure 8: 8-shot ICL with different LLMs on semantic parsing datasets using BSR, GS[M], and
GS[F] with varying number of gist tokens and set extension. Due to their complex compositional
nature, Semantic Parsing datasets benefit from additional gist tokens and set-selection. With 15
tokens, SET-GS[M] matches the average 8-shot semantic parsing ICL performance of SET-BSR,
while SET-GS[F] vastly outperforms it. See Table 2 for trained baselines and Table 9 for complete
results.

which took over 20 seconds per test input for some datasets (see Table 17). Further, due to GPU
acceleration, we found GistScore to be significantly faster than even BM25.

E ANALYSIS

Effect of Selection Precision Figure 9 compares ICL accuracy with selection precision, i.e., the
fraction of labels with the test input’s label, for classification tasks with fixed label sets and different
LLMs. While the ICL accuracy of all LLMs improves with more accurate selection, larger LLMs are
less reliant on it.

Gist Embeddings encode salient aspects Figure 10 shows t-SNE visualizations of salient information
in gist embeddings for additional datasets. Figure 11 shows that the salient aspects seen in t-SNE
visualizations in Figures 5 and 10 can also be observed in PCA visualizations.

Gist tokens are different from standard tokens Figure 12 qualitatively compares gist token
embeddings with ordinary token embeddings through 3 types of pairwise distance distributions: NLP
x NLP, Gist x Gist, and NLP x Gist. Clearly, gist tokens are embedded into a different geometry when
compared to ordinary language tokens.
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Figure 9: ICL accuracy v/s selection precision i.e. the fraction of in-context examples with the test
label for the various classification datasets with fixed label sets, selectors, and LLMs. While the ICL
accuracy of all LLMs improves with more accurate selection, larger LLMs are less reliant on it.

Figure 10: t-SNE Visualizations of gist embeddings for additional datasets. For QNLI, gist em-
beddings encode class labels. For GSM8K, they encode whether the solution can be obtained by a
chain-of-thought reasoning comprising only addition, only multiplication, or only division.
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Figure 11: PCA visualizations of gist embeddings show similar results as t-SNE visualization in
Figure 5 and 10. Gist embeddings encode task-specific salient information such as class labels
(MNLI, QNLI) or more abstract information aspects (CMSQA, SMCalFlow, DROP, GSM8K) that
help retrieve better in-context examples.
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LM Dataset BSR SET-BSR
GS[M] SET-GS[M] GS[F] SET-GS[F]

l=1 l=3 l=6 l=15 l=1 l=3 l=6 l=15 l=1 l=3 l=6 l=15 l=1 l=3 l=6 l=15

G
PT

-N
eo

-2
.7

B
SMC CG 2.7 4.5 2.4 2 2.7 3.2 1.8 5 4.8 5.1 4.2 8 8.4 11.3 6.3 10.6 13 13
SMC IID 36.6 37 33.4 35.5 34.1 35.3 30.4 36.3 34.7 37 50 54.8 53.8 53.2 38.5 53.9 53.9 54.5

COGS CG 52.3 53 53.3 51.6 47.9 50 42.9 53.3 48.5 52 56.3 64.8 68.1 64.6 50.8 65 69.3 66.6
COGS IID 61.4 64.2 55.9 58.9 55.4 55.3 48.5 60.5 62.8 65.7 62.4 70.3 76.7 67.9 52.9 72.3 79.6 72.9

MTOP 54.1 53.1 52.8 52.9 53.4 53.2 45.9 53.2 53 54.6 60.1 60.9 62.8 60.1 49.1 61.3 61.5 60.8

AVG 41.4 42.4 39.6 40.2 38.7 39.4 33.9 41.7 40.8 42.9 46.6 51.8 54.0 51.4 39.5 52.6 55.5 53.6

L
L

aM
A

-7
B

SMC CG 8.9 17.8 5.7 6.6 8 7.7 9 16.7 16.9 16.4 8.7 15.8 16.1 17.6 11.6 24 24.6 24.9
SMC IID 51.7 53 46.8 47.7 47.7 48.9 46.4 50.6 52.9 52.4 59.8 65.4 66.8 64.4 55.7 65.6 68.1 65.9

COGS CG 59.3 59.6 57.1 57 52.1 54.7 53.6 59.2 55.9 56.5 63.9 70 72.6 70.5 64.5 73.2 73.7 73.1
COGS IID 70.7 76 69.7 68.2 66.8 64.6 65.6 70 72.8 74 75.1 81 87.8 80.1 75.6 83.6 87.3 84.5

MTOP 60 60.2 58.4 59.5 57.9 61.3 54.3 59.9 60 60.1 64.7 67.3 68.5 66.8 57.5 67 67.8 68.3

AVG 50.1 53.3 47.5 47.8 46.5 47.4 45.8 51.3 51.7 51.9 54.4 59.9 62.4 59.9 53.0 62.7 64.3 63.3

M
is

tr
al

SMC CG 17.6 49.3 13.4 13.7 15.2 17.5 23.5 35.1 45.4 46.8 17.6 27.3 27.3 32.4 28.7 45.6 49.8 56.7
SMC IID 62.4 69.8 57.6 59.7 61.9 61.3 57.9 63.7 65.3 68.7 71.5 74.8 74.6 71.5 65 73.7 77.2 75.1

COGS CG 65.9 66.8 64.3 62.7 61.6 63.3 59.2 65.8 64.7 68 71.7 79.1 80.7 77.6 71.6 80 81.8 81.4
COGS IID 80.4 82 79 76.9 74.3 75.3 70.7 78.8 83 84.8 81.8 86.5 90.7 86.5 82.1 88.2 92.5 90.5

MTOP 67.7 69.2 66.9 66.6 66.7 68.3 63.1 69.9 68.2 69.1 71.4 70.3 72.9 72.9 65.6 72.5 73.8 73.5

AVG 58.8 67.4 56.2 55.9 55.9 57.1 54.9 62.7 65.3 67.5 62.8 67.6 69.2 68.2 62.6 72.0 75.0 75.4

St
ar

C
od

er

SMC CG 18.6 51.4 16 16.1 17.8 18.9 22.6 35.4 44.6 52.3 14.6 24.9 23.4 30.2 27.3 39.1 43.7 53.1
SMC IID 65.3 69.6 58.2 60.6 59.1 63.1 55.3 63.4 65.7 69.2 69 71.6 73.3 70.7 64.5 73.4 74.8 73.7

COGS CG 78 77.1 70.8 72.4 71.9 70.8 64 73.2 73.4 71.6 75 78.4 83.1 80.4 75.8 77.4 82.8 81.4
COGS IID 91.8 92.4 88.4 88.8 86.3 87.5 81.7 88.9 92.6 91.7 89 91.8 95.6 92.6 89.9 91.3 95.6 94.7

MTOP 68 70 68.5 69.2 68.6 69.1 65.2 69.8 68.7 71.7 71 71.5 74.1 73.4 65.9 72.1 74.5 75.5

AVG 64.3 72.1 60.4 61.4 60.7 61.9 57.8 66.1 69.0 71.3 63.7 67.6 69.9 69.5 64.7 70.7 74.3 75.7

Table 9: 8-shot ICL results for varying number of gist tokens (l) and set-selection for semantic parsing
datasets with different LLMs.

Dataset RAND SBERT BM25 BSR
GS[M] GS[F]

EPR CEIL
l=1 l=3 l=6 l=15 l=1 l=3

SMCalFlow (CG) 0 2.6 1.1 2.7 2.4 2 2.7 3.2 4.2 8 3.6 3.8
SMCalFlow (IID) 3.3 30.7 31.6 36.6 33.4 35.5 34.1 35.3 50 54.8 54.5 59.1
MTOP 1.3 48.4 46.4 54.1 52.8 52.9 53.4 53.2 60.1 60.9 62.2 60.5
COGS (CG) 3.8 25.3 26 52.3 53.3 51.6 47.9 50 56.3 64.8
COGS (IID) 8.1 30.1 34.7 61.4 55.9 58.9 55.4 55.3 62.4 70.3
QNLI 54.8 56.8 56.3 82.6 86.8 85.9 85.5 85.8 91.4 93 74.9 84.2
MNLI 41.9 42.2 44 76.7 78.1 76.6 78.5 74.6 82 81.4 66.1 71.7
RTE 53.4 50.9 54.2 67.9 83 77.6 81.2 73.3 81.6 81.2
WANLI 38.8 44.4 42.6 60 58.2 53.8 53 54.8 66.2 65.4
XNLI (de) 33.9 36.6 33.6 41.8 58.5 56.2 58 56 62 62.6
XNLI (ru) 32.9 34 36.8 35.6 47.1 46.5 44.3 45.7 51.3 52.5
MedNLI 41.4 54.2 56.9 70.6 69.4 71.1 69.5 70.4 82.9 83
SST2 86.9 82.6 81.9 90.9 92.1 92.4 92.5 89.6 93.9 94.3
SST5 13 38.9 37.9 45.1 48.4 49.3 45.9 45.3 50 52.6 42.8 47
Rotten Tomatoes 83.1 78.1 77.2 84.5 88.9 87 88.2 85.3 90.5 90.3
MRPC 51 57.6 52.5 70.1 83.1 88 84.1 75 87.3 85.3 76 80.2
QQP 65.9 71.3 75 86.4 85.6 85.2 85.7 84.8 86.7 88.6
PAWS 48 55.2 52.5 75 90.1 90.2 88.1 84.7 92.7 91.6
PAWSX (es) 47.5 54.5 52.9 72.1 77.1 79.2 80.7 76 88.4 86.6
PAWSX (fr) 48 51.5 55.3 70.6 82.4 86.1 83 81 90.4 90.2
CMSQA 19 17.5 18.1 20.1 54.3 55.6 55 44.5 59.9 57.2 36.8 37.2
AGNews 76.6 89.4 89.3 89.9 91.4 90.4 90.5 90.7 92.1 92.5
GSM8K 1.7 4 2 2.4 3.4 1.8 3.5 3.6 3.1 3.5
DROP 7.7 12.5 12.6 10.7 18.5 18.8 19.7 18 25.4 28.7
BoolQ 39.3 49.6 47.3 50.4 65.2 65 66.3 59.7 69.5 66.3
CoLA 60.3 64.4 64.9 69.7 76.4 75.9 74.4 70.4 80 80.3
TweetEval (emotion) 42.5 44.7 48.9 51.9 66 69.8 64.7 59.6 70.3 70.9
TweetEval (offensive) 58.8 66.5 69.1 65.9 77 73.9 72.6 75.1 76.4 77.2

AVG (Held-out) 31.67 42.97 43.79 54.29 58.74 58.89 57.68 57.21 65.1 66.96
AVG (All) 37.96 46.23 46.49 57.07 63.53 63.47 62.8 60.75 68.11 69.07

Table 10: 8-shot ICL with GPT-Neo-2.7B with independent ranking-based selection. l is the number
of gist tokens. Red highlights datasets or tasks that are held-out from our multi-task training
collection. AVG (All) and AVG (Held-out) are average performances on all and only held-out
datasets, respectively.
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Dataset RAND SBERT BM25 BSR
GS[M] GS[F]

LLM-R
l=1 l=3 l=6 l=15 l=1 l=3

SMCalFlow (CG) 0 10 6.5 8.9 5.7 6.6 8 7.7 8.7 15.8
SMCalFlow (IID) 6.8 45.3 45.2 51.7 46.8 47.7 47.7 48.9 59.8 65.4
MTOP 3.4 54.3 53 60 58.4 59.5 57.9 61.3 64.7 67.3
COGS (CG) 13.3 29.3 32.9 59.3 57.1 57 52.1 54.7 63.9 70
COGS (IID) 10.6 35.9 42.1 70.7 69.7 68.2 66.8 64.6 75.1 81
QNLI 51.5 57.4 56.8 75.3 80.1 82.2 81.7 79.1 87.7 90.2 69.4
MNLI 54.3 56.1 58 76.3 78.5 76 77.4 76.2 80.8 80.1 69.8
RTE 70 68.2 67.9 70.8 85.6 80.1 81.6 78.7 84.5 84.8 70.4
WANLI 45.8 47.1 46.6 55.8 56.7 55.2 53.3 52.4 62.5 63.1
XNLI (de) 40.6 37.9 35.2 43.2 54.6 54.7 53.8 52.2 59.2 61.5
XNLI (ru) 36.5 39.7 35 36.7 48.3 43.1 44 45.3 49.7 52.2
MedNLI 60.4 69.2 68.1 74.8 73.9 75 74.6 75.3 82.8 83.6
SST2 94.2 93.2 92 95.8 95.2 94.6 94.6 94.2 94.6 94.7 93.1
SST5 38.4 45.2 43.2 40.7 45.9 44.8 45.1 45.6 46.8 51.2
Rotten Tomatoes 93.1 91.3 92.2 92 92.8 91.3 91.5 92.2 92.3 91.8
MRPC 33.8 48.3 46.6 59.8 77.9 80.6 78.2 67.9 82.4 77.5 78.2
QQP 66.2 73.2 76.1 80.4 82 80.1 79.7 80.2 83.7 84.1 83.3
PAWS 59.1 57.2 56.6 74 86.3 88.1 87.2 80.6 90.7 89.3 57
PAWSX (es) 57.8 59.4 58.9 69.9 73.2 76.2 75.6 72.3 84.5 81.4
PAWSX (fr) 56.8 59.6 59.7 69.2 76.9 79.3 78.9 74.2 86.2 87.4
CMSQA 39.9 26.2 29.9 30.3 60.1 63.4 62.1 49.2 63.7 60
AGNews 85.7 88.2 86.8 88.9 90.4 90.4 90.1 88.2 90.7 92.4 93.5
GSM8K 11 12.4 12.3 14.3 15.6 14 14.2 13.3 12.6 14.1
DROP 24.4 28.5 27.6 27.4 32.7 32.2 31.9 31.4 36.5 39.2
BoolQ 71.2 75.5 73.4 77.6 81.8 80.4 81.1 77.5 82.8 82.4 74.1
CoLA 60.1 67 70.3 70.3 74.4 71.9 73.8 72.4 77.4 77.5
TweetEval (emotion) 42.8 55.6 60.2 61 70.3 72.2 68.4 65.8 79.4 76.7
TweetEval (offensive) 67.6 68.7 71.6 68.2 76.2 75 74.8 74.7 77.3 77

AVG (Held-out) 38.25 50.24 50.51 58.67 61.47 61.5 60.53 60.11 67.58 69.59
AVG (All) 46.26 53.57 53.74 60.83 65.97 65.71 65.22 63.43 70.04 71.13

Table 11: 8-shot ICL with LLaMA-7B with independent ranking-based selection. l is the number
of gist tokens. Red highlights datasets or tasks that are held-out from our multi-task training
collection. AVG (All) and AVG (Held-out) are average performances on all and only held-out
datasets, respectively.

Figure 12: Pairwise Distances between Gist and NLP token activations.
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Dataset RAND SBERT BM25 BSR
GS[M] GS[F]

l=1 l=3 l=6 l=15 l=1 l=3

SMCalFlow (CG) 0 12.4 9.5 12.7 10.1 8.7 8.7 11.5 10.6 19.9
SMCalFlow (IID) 15.3 48.8 49.4 57.4 50.3 55 52.4 53.5 60.7 62.8
MTOP 3.9 59.7 56.5 63.4 61.4 62.4 61.2 65 68.8 68.7
COGS (CG) 14.8 31.7 35.5 60.2 56.8 57.1 53 56.3 66.5 70.5
COGS (IID) 16.3 41.3 48.5 71.7 69.8 71.1 68.6 68.9 76.9 82.2
QNLI 56.7 59.7 59.5 80.6 86.2 86.1 85.4 85.8 91.2 92.6
MNLI 50.3 61.9 62.1 82 80.6 80.4 80.6 78.4 83.4 81.4
RTE 76.5 73.3 77.6 75.5 86.3 82.7 83 80.5 85.6 84.5
WANLI 44 50 50.3 60.2 59.1 58.1 56.4 59.5 67.9 67.1
XNLI (de) 36.1 40.6 36.5 44.1 55.5 57.8 56.6 53.6 57.6 59.9
XNLI (ru) 34.5 38 37.3 36.2 47.2 44.9 46.6 48.1 48.9 53.9
MedNLI 54.5 71.9 73.4 77.7 77.6 78 78.4 77.9 83.2 84.6
SST2 93.5 93 92.4 94.8 94.8 94.6 94.4 93.3 94.3 94.7
SST5 40 46.2 46.7 42 44.6 43.5 46.8 43.2 46.5 48
Rotten Tomatoes 87.1 91.6 91.8 92.2 91.6 92.1 91.8 92.9 91.7 91.5
MRPC 70.6 62.7 57.8 71.6 86.8 88 85.5 77.2 87 86
QQP 66.8 77.2 79 85.1 84.4 83.4 84.2 84.2 86.2 87.4
PAWS 59.7 58.5 58.8 77.1 89.4 90.2 89.3 85.3 92.5 91.7
PAWSX (es) 60.2 60.5 59.9 73.9 75.9 78.4 77.8 75.1 85.3 83.1
PAWSX (fr) 63.4 63.5 61.6 74.2 80.4 84.6 82.4 79.6 89 90
CMSQA 51.4 41 44 42.2 64.7 68.4 67.4 60.4 64.9 62.2
AGNews 83.9 91.6 91.2 91.3 92.9 92.8 92.7 91.2 93.4 93.9
GSM8K 15.4 16.4 16.7 19.4 16.8 18.2 18.1 18.6 18.9 17.3
DROP 31.1 33.5 32.9 33.2 37.3 36.7 38.4 36.7 42.7 42.9
BoolQ 63.4 77 75.5 78.7 83.4 82.7 82.6 80.3 83 82.7
CoLA 58.9 65.4 71 72.4 76 74.5 76.8 72.9 80.1 79.5
TweetEval (emotion) 55.3 67.9 70.3 69.8 71.1 73 74.6 74.1 77.5 78.6
TweetEval (offensive) 66.7 69.9 71.1 69.6 77.6 76 75.7 75.5 78.3 78.3

AVG (Held-out) 39.44 53.41 53.69 61.66 63.17 64.09 63.16 63.68 68.78 70.79
AVG (All) 48.94 57.33 57.74 64.61 68.16 68.55 68.19 67.13 71.88 72.71

Table 12: 8-shot ICL with LLaMA-13B with independent ranking-based selection. l is the number
of gist tokens. Red highlights datasets or tasks that are held-out from our multi-task training
collection. AVG (All) and AVG (Held-out) are average performances on all and only held-out
datasets, respectively.

Dataset RAND BM25 SBERT BSR
GS[M, LARGE] GS[F] GS[M, XL]

l = 1 l = 3 l = 6 l = 15 l = 1 l = 3 l = 1

SMCalFlow (CG) 0 21.6 15.7 17.6 13.4 13.7 15.2 17.5 17.6 27.3 18.1
SMCalFlow (IID) 13.7 55.7 57.1 62.4 57.6 59.7 61.9 61.3 71.5 74.8 64
MTOP 7 63.5 60.2 67.7 66.9 66.6 66.7 68.3 71.4 70.3 67.1
COGS (CG) 14.2 35.2 42.7 65.9 64.3 62.7 61.6 63.3 71.7 79.1 60.5
COGS (IID) 18.4 48 58.7 80.4 79 76.9 74.3 75.3 81.8 86.5 75.9
QNLI 56.4 62.8 61.2 83.3 85.4 86.4 86.9 85.8 90.6 92.3 87.9
MNLI 62 67.6 67.9 85.6 84.5 82.2 82.2 82.5 85 85.7 85.7
RTE 80.1 77.3 75.1 79.4 88.8 84.5 83.4 83.8 87.7 84.8 88.4
WANLI 54.5 56.3 56.6 65.1 65.3 60.1 63 61.8 71.4 71.3 65.7
XNLI (de) 35.1 46.3 42.9 52 68 66.9 68.1 63.8 70.2 70.9 71.1
XNLI (ru) 33.4 42.8 42.9 44.6 57.1 55.5 55.1 54.3 59.7 58.3 60.4
MedNLI 75.4 78.7 77.6 84.2 80.7 82 83.3 82.5 83.1 85 83.5
SST2 95.5 94.5 94.4 96.4 94.7 94.7 96 95 95.9 95.6 94.8
SST5 51.1 51.1 51.8 50.5 52.9 53.2 52.7 52.7 54.2 55.4 53.6
Rotten Tomatoes 93.3 91.9 92.9 92.7 93.2 92.5 92.5 93.5 90.7 91.8 92.6
MRPC 72.8 70.6 67.6 76.7 85.5 88 84.6 79.7 87 87 90.4
QQP 73.8 78.5 80.5 86.1 84.8 84.4 84.3 85.5 86.9 88.5 85.1
PAWS 71.2 60.8 63.7 74.1 90.5 91.3 90.4 88.1 93.5 92.5 92.5
PAWSX (es) 68.8 63.3 63.9 76.9 80.7 82.2 82.2 77.8 88.8 87.2 86.3
PAWSX (fr) 71.7 63.8 65.6 74.6 83.9 86.4 84.1 82.5 90.8 90.7 86.8
CMSQA 73.5 67.6 70.6 69 75.1 76.4 76.5 72.7 74.2 73.3 77.8
AGNews 88.3 93.4 93.2 93.1 94.6 94.4 93.7 92.9 93.8 94.4 94.5
GSM8K 34.8 37.3 37 40 37.9 37.6 39.4 38.7 38.5 40.3 42.2
DROP 41.1 48.3 48.2 48.4 56 54.8 53.9 54.8 58.5 59.2 56.2
BoolQ 86.4 87.3 86.9 88.8 87.7 88.9 87.2 87.9 86 86.5 89.1
CoLA 82.1 82.2 83.1 82.2 81.8 80.3 81.1 82 83 83.2 83
TweetEval (emotion) 59.1 75.4 77.3 78.1 75.7 78.3 78.6 77.5 80.7 82.9 78.9
TweetEval (offensive) 65.7 69.3 72.2 69.3 77.4 75.1 75.4 74.3 76.5 76.9 78.8

AVG (Held-out) 43.59 57.99 59.02 66.54 68.8 68.47 68.71 68.12 73.28 75.21 70.69
AVG (All) 56.41 63.97 64.55 70.9 73.69 73.42 73.37 72.71 76.45 77.56 75.39

Table 13: 8-shot ICL with Mistral with independent ranking-based selection. l is the number of gist
tokens. Red highlights datasets or tasks that are held-out from our multi-task training collection. AVG
(All) and AVG (Held-out) are average performances on all and only held-out datasets, respectively.
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Dataset RAND SBERT BM25 BSR
GS[M] GS[F]

l=1 l=3 l=6 l=15 l=1 l=3

SMCalFlow (CG) 0 19 13.4 15.8 11.8 12.1 13.3 15.1 16.1 23.7
SMCalFlow (IID) 5.9 51.1 50.8 56.6 51.1 53.6 57.6 59.7 66.8 69.3
MTOP 4.7 59 54 61.3 61 61.1 59.8 62.3 67 65.9
COGS (CG) 15.4 33.8 39.7 63.3 61.4 59.6 59.3 61.8 68.5 76.1
COGS (IID) 17.7 46.6 55.4 77.4 74.7 72 72.4 70.9 78 83
QNLI 81.7 81.3 81.9 85.3 89 87.8 88.4 88.8 91.6 92.3
MNLI 73.4 72.5 72.1 84.3 84.5 83.3 83.7 83.7 85.2 84.5
RTE 80.5 81.6 81.2 82.7 87.4 83.4 85.2 85.6 86.3 85.2
WANLI 50.5 58.8 59.5 65.5 64.3 62.1 63.4 63.4 69.8 69.3
XNLI (de) 42.5 45.9 46.3 52 64.2 64.6 64.1 61.5 70.8 69.3
XNLI (ru) 42.8 44.7 44.6 43.1 57.8 55.4 53.1 53.5 57.5 58.9
MedNLI 76.3 80 80.8 83.6 82 83.9 83.8 82.3 84.4 85.3
SST2 95.6 94.8 95.1 96 95.6 96.1 96.1 96.1 95.9 96.1
SST5 52.3 51.6 51.2 51.4 53.2 52.8 52.7 53.9 56.1 55.2
Rotten Tomatoes 92.5 91.1 91.8 92.8 93.4 93.3 92.9 93.3 91.3 92.4
MRPC 74.3 67.9 63.2 73 79.4 83.3 80.6 74.3 82.1 82.4
QQP 80.2 80 82 82 81.7 82.3 81.5 83.5 85.1 84.6
PAWS 71.7 68.5 70.7 77.9 87.9 85.8 85.7 84.7 90.2 88.9
PAWSX (es) 73.5 69.1 68.8 76.6 79.3 81.4 81.7 77.7 86.2 86
PAWSX (fr) 72.9 69.9 72.9 78.2 82.6 82.9 81.8 80.9 87.7 87.4
CMSQA 72.5 67.7 71.6 68.9 71.8 74.1 72.9 71.5 73 72.2
AGNews 87.8 93.3 92.6 93.1 93.8 93.5 93.9 92.3 92.6 93.5
GSM8K 37.9 38.1 35.9 42 38.3 38.9 38.7 39.2 39 37.5
DROP 37 47 46.3 46.5 52.3 53.8 53.2 53.6 53.6 54.6
BoolQ 86.5 87 86 87.7 86.5 86.9 87.4 87.2 87 88
CoLA 80.2 79.4 81.6 80.8 80.1 80.5 80.4 80.7 83.7 83.1
TweetEval (emotion) 71.7 72.5 74.1 75.7 71.9 77.3 75.1 76.5 76.7 78.1
TweetEval (offensive) 68.2 70.5 71.7 68.3 74.7 73 72.2 73.1 75 76.3

AVG (Held-out) 45.33 58 58.84 65.01 66.44 66.59 66.46 66.57 71.13 72.93
AVG (All) 58.79 65.1 65.54 70.06 71.85 71.96 71.82 71.68 74.9 75.68

Table 14: 8-shot ICL with Zephyr with independent ranking-based selection. l is the number of gist
tokens. Red highlights datasets or tasks that are held-out from our multi-task training collection. AVG
(All) and AVG (Held-out) are average performances on all and only held-out datasets, respectively.

Dataset RAND BM25 SBERT BSR
GS[M] GS[F]
l = 1 l = 1

SMCalFlow (CG) 0 0.3 0.6 0.8 0.9 1.2
SMCalFlow (IID) 2.9 15.4 17.2 25.2 17.7 34.3
MTOP 2.3 45.9 46.2 52.3 50.6 58.6
COGS (CG) 2.1 10.3 13.2 29.6 29.9 31.4
COGS (IID) 2.2 13.7 17.4 35.4 31.1 32.7
QNLI 51.7 55.6 56.8 83 86.5 91.2
MNLI 35.4 43.5 46.8 83.2 80.4 85.1
RTE 59.9 56.3 57.4 74 84.1 83
WANLI 38.7 45 47.9 62.6 60.2 68.4
XNLI (de) 34 36.5 36.8 51.6 65.9 68.4
XNLI (ru) 32.9 38.6 39.9 39.9 52.4 55.4
MedNLI 36.7 53.4 59.3 74.3 72.4 83.2
SST2 90.7 88.2 87.6 94.8 92.1 94.6
SST5 31.4 36.8 38.7 44.4 48.6 49.4
Rotten Tomatoes 76.8 84.6 87.2 91 90.8 90.5
MRPC 68.4 68.9 65.9 75 85 87.7
QQP 56.6 56.4 64.9 83.8 82.8 87.3
PAWS 44.5 48.8 50.4 68.6 89.8 93.4
PAWSX (es) 51.9 47.2 45.7 66.5 79.3 88.7
PAWSX (fr) 50.6 50.6 50.9 65.9 83.3 91
CMSQA 20.9 20 19.6 20.4 55.5 63.4
AGNews 85.7 92.3 92.5 93.4 92.9 93.3
GSM8K 2.7 4.1 3.6 5 2.8 4.6
DROP 10.9 14.5 15.1 14 24.3 30.1
BoolQ 64.3 68 67.8 70.3 82.8 82.8
CoLA 68.6 64.3 67 69 76.6 79.3
TweetEval (emotion) 42.5 48.1 58.6 64.7 73.5 79.1
TweetEval (offensive) 52.5 64.7 70.4 65.8 78 76.1

AVG (Held-out) 30.44 39.59 42.24 51.83 56.14 61.36
AVG (All) 39.92 45.43 47.34 57.3 63.22 67.29

Table 15: 8-shot ICL with Babbage with independent ranking-based selection. l is the number of gist
tokens. Red highlights datasets or tasks that are held-out from our multi-task training collection. AVG
(All) and AVG (Held-out) are average performances on all and only held-out datasets, respectively.
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Dataset RAND BM25 SBERT BSR
GS[M] GS[F]
l = 1 l = 1

SMCalFlow (CG) 0 0.8 1.6 2.4 3.2 1.2
SMCalFlow (IID) 0.8 12.4 17.2 29.6 22 22.8
MTOP 2.4 55.6 52.4 56.8 59.2 61.2
COGS (CG) 10 21.2 21.6 46.4 44.8 48.4
COGS (IID) 6.4 22.4 24.8 44 44.4 40
QNLI 45.2 57.2 52 82 84.4 92.4
MNLI 55.6 62.8 60 84.8 82.4 83.2
RTE 77.2 71.6 71.6 80 88.4 85.2
WANLI 49.2 50.8 52.8 65.2 62.4 71.6
XNLI (de) 42.8 46.8 44.4 52.4 73.2 69.6
XNLI (ru) 41.6 45.6 43.6 43.2 59.6 60.8
MedNLI 61.6 75.6 72.8 83.2 78.4 84
SST2 94.8 88.4 89.2 95.6 94 94
SST5 45.2 50.8 52 47.6 51.2 54.8
Rotten Tomatoes 93.2 91.2 94.8 94 94 94
MRPC 71.6 68.8 62.4 78 85.2 89.2
QQP 70.4 76.8 78.8 85.6 83.2 86
PAWS 67.6 55.6 60 80.8 90.4 94.4
PAWSX (es) 64.4 59.2 55.2 70.4 79.6 84.4
PAWSX (fr) 65.6 59.6 65.6 67.6 82.8 88.8
CMSQA 72.8 65.6 67.2 66.8 77.6 75.2
AGNews 86 94.8 93.6 92 93.6 92.8
GSM8K 32.8 30 33.6 37.2 36.8 35.2
DROP 36 38 42.8 37.6 49.6 49.6
BoolQ 82.8 84 88 88 91.6 88
CoLA 73.2 74.8 78.8 77.6 77.2 75.6
TweetEval (emotion) 58 62.8 69.2 64.8 66.8 79.6
TweetEval (offensive) 68.8 69.2 70.4 71.6 78.5 78.1

AVG (Held-out) 40.34 48.09 49.03 56.54 60.64 63.18
AVG (All) 52.71 56.87 57.73 65.19 69.09 70.72

Table 16: 8-shot ICL with Davinci with independent ranking-based selection. l is the number of gist
tokens. Red highlights datasets or tasks that are held-out from our multi-task training collection. AVG
(All) and AVG (Held-out) are average performances on all and only held-out datasets, respectively.

Dataset SBERT BM25 BSR
GS[M] GS[F]

l=1 l=3 l=6 l=15 l=1 l=3

SMCalFlow (CG) 346.84 8.72 2411.3 22.86 52.32 48.71 49.82 10.53 11.22
SMCalFlow (IID) 341.16 8.52 2418.1 23.36 56.11 26.02 27.86 13.27 12.88
MTOP 169.04 5.99 723.89 23.49 55.38 54.92 59.26 10.17 10.81
COGS (CG) 305.8 8.62 818.34 30.41 58 58.08 61.93 10.71 10.25
COGS (IID) 297.53 8.92 816.26 23.61 56.33 51.97 62.43 11.04 11.06
QNLI 1416.9 18.21 10934 1.49 2.25 3.7 7.02 1.54 2.02
MNLI 1469.9 20.71 9565.4 1.47 2.54 3.34 6.87 1.58 2.04
RTE 68.81 1.01 696.73 0.79 0.8 0.69 0.92 0.57 0.83
WANLI 1351 19.45 6556.2 1.45 2.17 3.81 6.89 1.53 1.98
XNLI (de) 6271 51.67 28794 118.75 61.97 67.06 54.06 31.17 35.73
XNLI (ru) 5863.8 56.89 35382 125.5 56.74 56.95 62.26 35.84 30.65
MedNLI 285.6 4.78 3357.4 0.74 49 39.19 44.8 25.45 22
SST2 1119.4 22.36 3639.3 1.52 2.31 3.36 6.99 1.53 2.14
SST5 295.95 5.01 609.36 0.64 0.93 1.12 1.68 0.75 1.2
Rotten Tomatoes 755.88 11.7 963.7 63.07 35.3 35.01 32.83 11.5 11.32
MRPC 89.62 1.34 255.69 0.66 0.67 0.76 1.03 0.52 0.68
QQP 1336.2 20.13 8862.5 1.55 2.14 3.58 6.86 1.58 2.06
PAWS 1350.4 20.94 6712.2 1.72 2.24 3.46 6.92 1.6 2.02
PAWSX (es) 5266.5 52.59 11698 118.93 60.19 60.61 53.79 24.65 24.95
PAWSX (fr) 5367.5 52.03 11118 114.39 59.72 56.77 53.77 24.66 25.23
CMSQA 290.7 4.19 1124.5 0.63 0.92 1.15 1.86 0.68 0.91
AGNews 2098.1 20.78 11813 1.56 2.46 3.36 6.86 1.51 1.96
GSM8K 138.6 3.19 1605.9 0.61 0.84 1 1.71 0.63 0.9
DROP 5068.6 29.71 22340 1.51 2.23 3.24 6.75 1.48 2.01
BoolQ 413.46 3.75 4876 0.63 0.9 1.11 1.81 0.68 0.9
CoLA 109.66 3.82 644.41 0.64 0.87 1.03 1.74 0.72 0.88
TweetEval (emotion) 378.42 6.57 1032 104.86 40.61 45.11 38.31 11.4 11.82
TweetEval (irony) 146.37 6.22 1886 90.75 34.71 46.66 39.15 11.05 11.41
TweetEval (offensive) 1201.3 20.23 4154.5 98.87 44.79 49.41 41.29 11.75 11.42
TweetEval (sentiment) 4964.1 71.18 6870.6 124.91 61.1 60.22 62.68 24.54 25.12

Table 17: Time (in ms) to select 8-shots for the various datasets using the different training-free
methods. The time for SBERT is higher than gisting-based retrieval because our implementation for
it does not use FAISS indexing.
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