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Abstract

The end-to-end speech translation (E2E-ST)001
has received increasing attention due to the po-002
tential of its less error propagation, lower la-003
tency, and fewer parameters. However, the004
effectiveness of neural-based approaches to005
this task is severely limited by the available006
training corpus, especially for domain adapta-007
tion where in-domain triplet training data is008
scarce or nonexistent. In this paper, we pro-009
pose a novel non-parametric method that lever-010
ages domain-specific text translation corpus to011
achieve domain adaptation for E2E-ST system.012
To this end, we first incorporate an additional013
encoder into the pre-trained E2E-ST model014
to realize text translation modelling and then015
unify the decoder’s output representation for016
text and speech translation tasks by reducing017
the correspondent representation mismatch in018
available triplet training data. During domain019
adaptation, a k-nearest-neighbor (kNN) classi-020
fier is introduced to produce the final transla-021
tion distribution using the external datastore022
built by the domain-specific text translation023
corpus, while the universal output representa-024
tion is adopted to perform a similarity search.025
Experiments on the Europarl-ST benchmark026
demonstrate that when in-domain text transla-027
tion data is used only, our proposed approach028
significantly improves the baseline by 12.82029
BLEU on average in all translation directions.030

1 Introduction031

Speech translation (ST), the task of automatically032

translating a speech signal in a given language033

into a text in another language, is a widely stud-034

ied topic thanks to the increasing demand for in-035

ternational communications. Traditional ST sys-036

tems cascade automatic speech recognition (ASR)037

and machine translation (MT) (Ney, 1999; Sperber038

et al., 2017; Zhang et al., 2019; Iranzo-Sánchez039

et al., 2020a; Machácek et al., 2021). Recently,040

various large-scale speech-translation datasets have041

been proposed, e.g., Libri-Trans (Kocabiyikoglu042

et al., 2018), MuST-C (Gangi et al., 2019), and 043

CoVoST (Wang et al., 2020a). With these large- 044

scale annotations, building an end-to-end speech 045

translation (E2E-ST) system (Vila et al., 2018; Liu 046

et al., 2019; Li et al., 2021; Han et al., 2021; Dong 047

et al., 2021) has become popular, since it has lower 048

latency and less error propagation compared with 049

previous ST methods. Recent researches have also 050

shown that there is no significant difference be- 051

tween end-to-end models and cascaded systems in 052

translation performance (Bentivogli et al., 2021). 053

In many practical application scenarios, such as 054

political negotiations, business meetings, etc., there 055

is no available domain-specific speech-translation 056

data to conduct the end-to-end training, which es- 057

sentially limits the promotion of E2E-ST systems. 058

The general practice is that the E2E-ST model 059

learns knowledge well enough in the general do- 060

main, and then we directly use it to translate speech 061

input in the target domain. Unfortunately, due to 062

the domain shift issue (Gretton et al., 2006; Ram- 063

poni and Plank, 2020), the generalization capabili- 064

ties of current end-to-end models are weak across 065

different scenarios. Instead of speech-translation 066

annotations, the bilingual text in the target domain 067

is usually abundant and easy to collect. Thus, it is 068

essential to explore the capability of E2E-ST sys- 069

tem in this scenario, in which a large amount of 070

in-domain bilingual text is utilized. 071

In this work, we focus on this domain adapta- 072

tion setting and aim to replace the domain-specific 073

parameter updating in the neural-based E2E-ST 074

model with a non-parametric search to make it 075

adaptable and achieve domain adaptation without 076

any speech-translation annotations. Actually, the 077

non-parametric approach kNN-MT, recently pro- 078

posed by Khandelwal et al. (2021), is a promis- 079

ing alternative to achieve this goal. The kNN-MT 080

equips a pre-trained MT model with a k-nearest- 081

neighbor (kNN) classifier over an external datas- 082

tore to improve translation accuracy without retrain- 083
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ing. However, it requires the in-domain speech-084

translation corpus to construct an effective data-085

store when we apply this method in the speech086

translation setting. To tackle this problem, we pro-087

pose a novel Non-Parametric Domain Adaptation088

framework based on kNN-MT for E2E-ST, named089

as NPDA-kNN-ST. The key core of this method is090

to directly leverage in-domain text translation cor-091

pus to generate the corresponding datastore, and092

encourage it to play a similar role with the real in-093

domain speech-translation data, through the care-094

fully designed architecture and loss function.095

Specifically, we first incorporate an additional096

trainable encoder for text modelling into the pre-097

trained E2E-ST model. Based on that, we further098

make the decoder’s output representation for text099

and speech translation tasks close, by reducing the100

representation inconsistency of these two tasks in101

training triplet data and keeping the parameters102

of the original pre-trained E2E-ST model fixed.103

In this way, the additional encoder module learns104

the semantic mapping in feature space from the105

source language text to the speech signal, which106

enables the construction of an effective in-domain107

datastore when only text translation data is used.108

Then, we introduce a kNN classifier to produce109

the final translation distribution based on the in-110

domain datastore built by the correspondent text111

translation data. Meanwhile, the universal output112

representation is used to perform a similarity search113

and guide the translation process.114

We evaluate the effectiveness of our method on115

the Europarl-ST benchmark, and demonstrate that116

our approach significantly improves the baseline117

by 12.82 BLEU on average in all translation direc-118

tions when only using large-scale in-domain text119

translation data. Besides, additional experiments120

on Europarl-ST and MuST-C datasets show that121

the in-domain text translation datastore generated122

by our method can play a similar role with the real123

in-domain speech-translation data, thanks to the124

universal output representation.125

2 Background126

In this section, we first give a formal definition127

of the E2E-ST task and then briefly introduce the128

nearest neighbor machine translation (kNN-MT).129

2.1 End-to-End Speech Translation130

The E2E-ST receives speech signals in a source131

language and directly generates the text in a target132

language without an intermediate transcription pro- 133

cess. Concretely, the E2E-ST corpus consists of a 134

set of triplet data DST =
{
(x(n), z(n),y(n))

}N
n=1

, 135

where x(n) = (x
(n)
1 , x

(n)
2 , ..., x

(n)

|x(n)|) is the input 136

sequence of the speech wave (in most cases, acous- 137

tic features are used), z(n) = (z
(n)
1 , z

(n)
2 , ..., z

(n)

|z(n)|) 138

represents the transcription sequence from the 139

source language and y(n) = (y
(n)
1 , y

(n)
2 , ..., y

(n)

|y(n)|) 140

denotes the translation sequence of target language. 141

The goal of E2E-ST model is to seek an optimal 142

translation sequence y without generating an inter- 143

mediate transcription z, and the standard training 144

objective is to optimize the maximum likelihood 145

estimation (MLE) loss of the training data: 146

LST (θ) =
1

N

N∑
n=1

logP
(
y(n) | x(n); θ

)
, (1) 147

where we adopt a single encoder-decoder struc- 148

ture to fit the conditional distribution P (y(n)|x(n)) 149

and θ is the model parameter. In order to develop 150

the high-quality E2E-ST system, the ASR and MT 151

tasks ((x(n), z(n)) and (z(n),y(n))) are typically 152

used to pre-train the encoder and decoder, respec- 153

tively (Bansal et al., 2019; Wang et al., 2020c). 154

However, in practice, it is not realistic to obtain 155

a large amount of high-quality speech-translation 156

data in every domain that we are interested in, while 157

in-domain text translation corpus is usually cheaper 158

and easier to collect. Thus, it is essential to investi- 159

gate the capability of the E2E-ST model that only 160

uses large-scale in-domain text translation corpus 161

to achieve domain adaptation, making the E2E-ST 162

system more practical. 163

2.2 Nearest Neighbor Machine Translation 164

Recently, Khandelwal et al. (2021) proposed a non- 165

parametric method kNN-MT, which has shown 166

the promising capability of directly augmenting 167

the pre-trained neural machine translation (NMT) 168

model with domain-specific token-level kNN re- 169

trieval to improve the translation performance with- 170

out retraining. The kNN-MT mainly involves two 171

steps: datastore creation and token inference with 172

cached datastore. 173

Datastore Creation. The datastore of kNN-MT 174

is the cache of a set of key-value pairs. Given a par- 175

allel sentence pair (z,y) ∈ (Z,Y), the pre-trained 176

NMT model generates the context representation 177

fθ(z, y<t) at each timestep t. Then the whole data- 178

store (K,V) is constructed by taking the output 179
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Figure 1: The overview of our non-parametric domain adaptation framework for E2E-ST (NPDA-kNN-ST).

hidden states fθ(z, y<t) as key and yt as value:180

(K,V) =
⋃

(z,y)∈(Z,Y)

{(fθ(z, y<t), yt),∀yt ∈ y}.

(2)

181

Inference via kNN Retrieval. In the inference182

stage, the kNN-MT model predicts the probability183

distribution of t-th target token ŷt with the con-184

text representation fθ(z, ŷ<t). Specifically, kNN-185

MT utilizes the context representation to query the186

cached datastore (K,V) and retrieves k nearest187

neighbor key-value pairs w.r.t Euclidean distance.188

Then the probability distribution of ŷt generated by189

kNN retrieval is calculated as follow:190

pkNN(ŷt|z, ŷ<t) ∝ (3)191 ∑
(hi,vi)∈R

1yt=vi exp(
−d(hi, fθ(z, ŷ<t))

T
),192

whereR = {(hi, vi), i ∈ {1, 2, ..., k}} is the set of193

k nearest neighbors, d(·, ·) represents the Euclidean194

distance, and T is the temperature to control the195

sharpness of the softmax function. The final output196

distribution is an interpolation between distribu-197

tions from the NMT model and the kNN retrieved198

neighbors with a tuned parameter λ ∈ [0, 1]: 199

p(ŷt|z, ŷ<t) = λ pkNN(ŷt|z, ŷ<t)
+ (1− λ) pNMT(ŷt|z, ŷ<t).

(4) 200

3 Method 201

When we apply kNN-MT in the speech translation 202

task, it needs the real speech-translation corpus 203

to build an effective datastore for kNN retrieval. 204

However, this requirement could not be satisfied in 205

the domain adaptation scenario mentioned before, 206

as there is no available domain-specific speech- 207

translation corpus. In this paper, we focus on this 208

domain adaptation setting and attempt to replace 209

the domain-specific parameter updating with a non- 210

parametric search to achieve domain adaptation. 211

To this end, we design a novel Non-Parametric 212

Domain Adaptation framework based on kNN- 213

MT for E2E-ST, named as NPDA-kNN-ST. The 214

overview framework of NPDA-kNN-ST is illus- 215

trated in Figure 1, mainly divided into two parts: a) 216

unifying text and speech representation to enable 217

datastore creation; b) performing domain adapta- 218

tion through kNN retrieval. Next, we will introduce 219

the model architecture, training objective, and in- 220

ference process of our approach in detail. 221
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3.1 Unifying Text and Speech Representation222

The NPDA-kNN-ST aims to directly build an in-223

domain effective datastore with only text transla-224

tion corpus, and make it play a similar role with the225

real in-domain speech-translation data. It means226

that whether word tokens or speech signals are227

taken as input, we should construct the universal228

output representation for them in a unified model.229

As shown in Figure 1(a), we introduce an additional230

transformer encoder and reuse the original trans-231

former decoder of the pre-trained E2E-ST model232

for source text modelling, by which we only in-233

crease a few parameters for our method.234

Based on this model structure, we try to make the235

decoder’s output representation for text and speech236

translation tasks close, by which the text translation237

data can be used to build an effective in-domain238

datastore. We achieve this by leveraging out-of-239

domain triplet data DST . More specifically, given240

a triplet data point in the corpus (x, z,y) ∈ DST ,241

the original E2E-ST model takes speech-translation242

pair (x,y) as input and generates output repre-243

sentation f(θe,θd)(x; y<t) for each target token yt.244

Meanwhile, with corresponding text translation245

pair (z,y), the model with an additional trans-246

former encoder produces another representation247

for yt, which can be denoted as f(θ′e,θd)(z; y<t).248

Then, we take the end-to-end paradigm, and di-249

rectly update the introduced transformer encoder250

by minimizing the squared euclidean distance of251

the two sets of decoder representations and opti-252

mizing MLE loss of text translation pair:253

LMSE(θ
′
e) =

1

|DST |
∑

(x,z,y)∈DST∑
t

||f(θe,θd)(x; y<t)− f(θ′e,θd)(z; y<t)||
2,

LMT (θ
′
e) =

1

N

N∑
n=1

logP
(
y(n) | z(n); θ′e, θd

)
,

L(θ′e) = LMT (θ
′
e)− LMSE(θ

′
e),

(5)

254

where θe and θd are parameters of encoder and de-255

coder in the pre-trained E2E-ST model respectively,256

θ′e represents the parameter of the new transformer257

encoder and token embedding, and we keep θe and258

θd fixed during training to avoid the E2E-ST per-259

formance degradation in the inference stage. The260

out-of-domain validation set and its correspondent261

loss are adopted to select the best model in our262

experiments.263

3.2 Domain Adaptation via kNN Retrieval 264

We consider the domain adaptation scenario of 265

E2E-ST that only domain-specific text translation 266

corpus DMT =
{
(z(n),y(n))

}M
m=1

is available. 267

During domain adaptation, the entire inference pro- 268

cess is illustrated in Figure 1(b). Once we gain the 269

well-trained model with Equation 5, the new trans- 270

former encoder and original transformer decoder of 271

the E2E-ST model are utilized to forward pass the 272

text translation corpus to create an in-domain data- 273

store (K,V). This construction process is the same 274

as the kNN-MT. Due to the universal decoder’s 275

representation, this datastore could directly be used 276

for the in-domain kNN retrieval when translating 277

speech input x. The final probability of NPDA- 278

kNN-ST to predict the next token ŷt is an interpo- 279

lation of two distributions with a hyper-parameter 280

λ: 281

p′(ŷt|x, ŷ<t) = λ pkNN(ŷt|x, ŷ<t)
+ (1− λ) pE2E-ST(ŷt|x, ŷ<t),

(6) 282

where pE2E-ST indicates the general domain E2E- 283

ST prediction and pkNN represents the in-domain 284

retrieval based on Equation 3. Actually, this pre- 285

diction way can also be replaced with other kNN 286

variants (Zheng et al., 2021; He et al., 2021). 287

4 Experiments 288

4.1 Setup 289

We conduct experiments to evaluate our proposed 290

method in two aspects: a) domain adaptation on 291

Europarl-ST benchmark with the pre-trained E2E- 292

ST model on MuST-C dataset; b) the performance 293

comparisons on MuST-C benchmark when speech- 294

translation and text-translation data are leveraged 295

to build datastore, respectively. 296

MuST-C Datasets. MuST-C (Gangi et al., 2019) 297

is a publicly available large-scale multilingual ST 298

corpus, consisting of triplet data sources: source 299

speech, source transcription, and target translation. 300

The speech sources of MuST-C are from English 301

TED Talks, which are aligned at the sentence level 302

with their manual transcriptions and translations. 303

MuST-C contains translations from English (EN) 304

to 8 languages: Dutch (NL), French (FR), Ger- 305

man (DE), Italian (IT), Portuguese (PT), Romanian 306

(RO), Russian (RU), and Spanish (ES). The statis- 307

tics of different language pairs are illustrated in 308

Appendix A.1. 309
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Europarl-ST Datasets. Europarl-ST (Iranzo-310

Sánchez et al., 2020b) collects from the official311

transcriptions and translations of European Par-312

liament debate. In order to evaluate the domain313

adaptation, we select seven languages (DE, FR, IT,314

RO, NL, PT, and ES) that intersect with MuST-C315

dataset, in which the training size of Europarl-ST is316

one ninth of MuST-C dataset. For our method, we317

only leverage the bilingual text in the entire speech-318

translation data to achieve domain adaptation. The319

statistics of different language pairs are shown in320

Appendix A.1.321

Europarl Datasets. To verify the effectiveness322

of our proposed method with the large-scale text323

translation data, we introduce the easily accessi-324

ble in-domain parallel corpus – Europarl1 (Koehn,325

2005). In our experiments, we randomly select 2M326

sentence pairs for each translation direction, except327

for the EN-RO. We adopt the entire Europarl for328

EN-RO, which consists of almost 400k samples.329

Data Pre-processing. We follow the FAIRSEQ330

S2T (Wang et al., 2020b) recipes to perform data331

pre-processing. For the speech data in Europarl-ST332

and MuST-C, we extract an 80-dimensional log-333

Mel filter bank as the acoustic feature. The acous-334

tic features are normalized by global channel mean335

and variance. The SpecAugment approach (Park336

et al., 2019) is used in all experiments and we re-337

move samples consisting of more than 3k frames.338

For the external text translation data, we delete the339

bilingual data in Europarl that intersects with the340

validation/test sets of the Europarl-ST dataset. We341

adopt unigram sentencepiece2 to build 5K and 8K342

sub-word vocabularies for the transcriptions and343

the translations, respectively. For the multilingual344

model, both vocabulary sizes are set to 10K.345

Baseline. We compare our proposed approach346

(NPDA-kNN-ST) with several baseline methods:347

• Cascaded ST System: Iranzo-Sánchez et al.348

(2020b) provides the version of cascaded ST sys-349

tem on Europarl-ST, in which the large-scale ex-350

ternal MT data is used to build the MT system.351

• E2E-ST-Base: we leverage the MuST-C dataset352

to train the E2E-ST model following the training353

process in FAIRSEQ S2T (Wang et al., 2020b).354

This model is also used as the pre-trained model355

for NPDA-kNN-ST.356

1https://www.statmt.org/europarl/
2https://github.com/google/sentencepiece

• E2E-ST-SP: we build a domain-specific E2E-ST 357

model on Europarl-ST, and its training process is 358

consistent with E2E-ST-Base. 359

• E2E-ST-FT: we fine-tune E2E-ST-Base with the 360

speech training corpus of Europarl-ST. 361

• LNA-D: Li et al. (2021) integrate Wave2vec 362

2.0 (Baevski et al., 2020) and mBART (Chipman 363

et al., 2021) into a multilingual E2E-ST model, 364

in which layernorm and attention layers in the 365

decoder are fine-tuned with the MuST-C dataset. 366

• kNN-MT: we directly apply kNN-MT (Khandel- 367

wal et al., 2021) for E2E-ST-Base and construct 368

the cached datastore with the in-domain speech- 369

translation data. 370

Implementation Details. All experiments are 371

implemented based on the FAIRSEQ3 (Ott et al., 372

2019) toolkit. For the model structure of all base- 373

lines, it consists of two one-dimensional convo- 374

lutional layers with a downsampling factor of 4, 375

12 transformer encoder layers, and 6 transformer 376

decoder layers. The additional encoder in our ap- 377

proach includes 12 transformer encoder layers and 378

token embedding, which parameters are initialized 379

randomly. The input embedding size of the trans- 380

former layer is 256, the FFN layer dimension is 381

1024, and the number of self-attention heads is 4. 382

For the multilingual model, the above parameters 383

are set to 512, 2048, and 8, respectively. During 384

training, we deploy the Adam optimizer (Kingma 385

and Ba, 2015) with a learning rate of 2e-3 and 10K 386

warm-up updates to optimize model parameters. 387

Both label smoothing coefficient and dropout ratios 388

are set to 0.1. The batch size is set to 20K tokens, 389

and we accumulate the gradient for every 4 batches. 390

We set patience to 5 to select the best checkpoint on 391

the validation set. The Faiss4 (Johnson et al., 2021) 392

is used to build the in-domain datastore to carry out 393

fast nearest neighbor search. We utilize the Faiss 394

to learn 8192 cluster centroids for each translation 395

direction, and search 64 clusters for each target to- 396

ken in decoding. During inference, the beam size 397

is set to 5 for all methods. The hyper-parameters 398

(k, λ and T ) for kNN retrieval are tuned on the in- 399

domain validation set. More details can be found 400

in Appendix A.2. In our experiments, we report the 401

case-sensitive BLEU score (Papineni et al., 2002) 402

using sacreBLEU5. 403

3https://github.com/pytorch/fairseq
4https://github.com/facebookresearch/faiss
5https://github.com/mjpost/sacrebleu, with a configuration

of 13a tokenizer, case-sensitiveness, and full punctuation
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Model In-domain Params. (M) Target Language
ST MT Tuned/Total DE FR ES NL IT RO PT Avg.

Cascaded ST System X X - 22.40 23.40 28.00 / / / / /

E2E-ST-Base × × 0.0/31.1 15.71 16.45 23.49 16.06 14.25 16.95 18.28 17.31
LNA-D × × 384.8/793.0 22.50 30.00 32.23 / 21.50 / 28.40 /

E2E-ST-SP X × 31.1/31.1 16.20 24.52 26.00 19.50 18.35 20.62 21.34 20.93
E2E-ST-FT X × 31.1/31.1 21.84 30.97 32.25 23.77 23.36 25.47 26.30 26.28
kNN-MT X × 0.0/31.1 18.29 27.69 28.93 20.70 20.45 22.37 23.08 23.07

NPDA-kNN-ST × X 17.1/48.1 18.76 27.73 29.01 20.79 20.54 23.54 23.54 23.42
NPDA-kNN-ST+ × X 17.1/48.1 23.23 35.26 33.71 27.71 33.76 28.29 28.96 30.13

Table 1: BLEU score [%] of different methods on the Europarl-ST dataset. “Tuned Params.” refers to the number of
fine-tuned parameters. “NPDA-kNN-ST+” directly uses large-scale Europarl data to build the in-domain datastore,
while “NPDA-kNN-ST” leverages the text translation part in the Europarl-ST training data. “In-domain" indicates
whether the method uses in-domain ST/MT data.

Model Extra. Params. (M) Target Language
Tuned/Total DE FR ES NL IT RO PT RU Avg.

Bilingual Results

E2E-ST-Base × 31.1/31.1 22.57 32.61 27.08 27.46 22.74 21.80 28.07 15.45 24.72
AFS × - 22.40 31.60 26.90 24.90 23.00 21.00 26.30 14.70 23.85

kNN-MT × 0.0/31.1 22.97 33.00 27.99 27.93 23.55 22.16 28.80 15.73 25.27
NPDA-kNN-ST × 17.1/48.1 23.08 33.24 28.03 28.11 23.44 22.22 28.83 15.82 25.35

Multilingual Results

E2E-ST-Base × 76.3/76.3 24.18 34.98 28.28 28.80 24.62 23.22 31.13 15.88 26.39
LNA-D X 53.5/76.3 24.16 34.52 28.30 28.35 24.46 23.29 30.51 15.84 26.18
Adapter Tuning X 38.4/76.3 24.63 34.75 28.73 28.80 24.96 23.70 30.96 15.89 26.61

kNN-MT × 0.0/76.3 25.15 35.67 30.22 30.36 25.83 23.66 31.67 17.16 27.47
NPDA-kNN-ST × 23.7/100.0 25.21 35.56 30.05 30.31 25.91 23.90 31.66 17.23 27.48

Table 2: BLEU score [%] of different E2E-ST methods on the MuST-C dataset. “AFS” and “Adapter Tuning”
represent the methods proposed by Zhang et al. (2020) and Le et al. (2021), respectively. Besides, Le et al. (2021)
reproduce the translation performance of “LNA-D” on the MuST-C dataset for fair comparison. “Extra." indicates
whether the method uses additional data.

4.2 Main Results404

Domain Adaptation on Europarl-ST. We ver-405

ify the effectiveness of NPDA-kNN-ST for domain406

adaptation on Europarl-ST. As illustrated in Table 1,407

we can observe that NPDA-kNN-ST significantly408

outperforms E2E-ST-Base in all language pairs.409

When the large-scale Europarl data is used, NPDA-410

kNN-ST+ even achieves 12.82 BLEU improve-411

ments over E2E-ST-Base on average, and gains412

the best performance in all models. These results413

demonstrate that our proposed method can make414

full use of in-domain parallel text to achieve do-415

main adaptation when in-domain speech transla-416

tion data is inaccessible. Besides, NPDA-kNN-ST417

obtains comparable translation performance with418

kNN-MT that leverages the truly in-domain speech-419

translation data to construct a datastore. It further420

indicates that our method could generate an effec- 421

tive in-domain datastore with text translation data, 422

which is equivalent to the real speech-translation 423

data. We also compare our method with LNA-D 424

that builds the large multilingual E2E-ST model 425

based on Wave2vec and mBART. In spite of adopt- 426

ing a huge model scale and pre-training techniques, 427

this approach still fails to outperform NPDA-kNN- 428

ST+ due to the domain shift problem. This result 429

shows the necessity of domain adaptation when 430

applying large-scale general E2E-ST models in a 431

certain domain. It also brings an interesting re- 432

search direction that incorporates our method with 433

LNA-D, and we leave it as future work. 434

E2E-ST Performance on MuST-C. We further 435

evaluate the effect of unifying text and speech rep- 436

resentation with an additional encoder on MuST-C. 437
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Model DE FR ES NL IT RO PT Avg.

BLEU Score(↑)

NPDA-kNN-ST 18.76 27.73 29.01 20.79 20.54 23.54 23.54 23.42
- w/o MSE Loss 18.44 26.66 28.10 19.93 19.89 22.20 22.45 22.52
- Optimize Embedding Only 18.50 27.42 28.64 20.44 20.15 22.92 23.09 23.02

Cosine Similarity (↑)

NPDA-kNN-ST 0.865 0.874 0.858 0.860 0.867 0.861 0.850 0.862
- w/o MSE Loss 0.827 0.836 0.811 0.817 0.825 0.828 0.809 0.822
- Optimize Embedding Only 0.844 0.857 0.839 0.844 0.849 0.845 0.832 0.844

Squared Euclidean Distance (↓)

NPDA-kNN-ST 5.387 4.723 5.050 5.637 5.098 4.996 5.707 5.228
- w/o MSE Loss 6.260 5.566 6.070 6.650 6.040 5.938 6.690 6.173
- Optimize Embedding Only 5.610 4.863 5.400 5.950 5.434 5.266 6.043 5.509

Table 3: BLEU score [%], cosine similarity and squared euclidean distance of our method’s variants on the
Europarl-ST dataset. All datastores are constructed by Europarl-ST training set.“w/o MSE Loss” means that the
MSE loss function is removed. “Optimize Embedding Only” means that only the token embedding is introduced
to the pre-trained E2E-ST model and fine-tuned.

In this experiment, we compare the translation per-438

formance when speech and text translation data are439

leveraged to construct the datastore respectively,440

and verify the improvement of combining kNN re-441

trieval with the traditional E2E-ST model at the442

same time. As illustrated in Table 2, we consider443

both bilingual and multilingual settings, and com-444

pare our method with other baselines, including445

AFS (Zhang et al., 2020), LNA-D and Adapter446

Tuning (Le et al., 2021). We can see that, when di-447

rectly incorporating kNN retrieval into the E2E-ST-448

Base model, NPDA-kNN-ST yields 0.63 and 1.09449

BLEU improvements on average in bilingual and450

multilingual settings, respectively. These results451

indicate the benefit of introducing kNN retrieval,452

even when the E2E-ST models are trained on the453

same data. In addition, NPDA-kNN-ST achieves454

similar performance with kNN-MT in both bilin-455

gual and multilingual settings, which proves the456

effectiveness of our proposed method on unifying457

text and speech representation again.458

5 Analysis459

Ablation Study. To analyze different modules in460

our method, we carry out an ablation study on the461

Europarl-ST dataset, including removing the MSE462

loss function and only introducing token embed-463

ding for unifying text and speech representation.464

In addition to the BLEU score, we measure the465

cosine similarity and squared euclidean distances466

between the synthetic representations generated by467

our method and ideals generated using ground-truth468

speech-translation data. As shown in Table 3, even 469

without in-domain speech-translation data, NPDA- 470

kNN-ST can generate the representations that are 471

close enough to the ideals (0.86 on cosine similar- 472

ity and 5.2 on squared euclidean distances), leading 473

to the efficient in-domain retrieval. Besides, two 474

training losses contribute significantly to the excel- 475

lent performance of our model. Among that, the 476

MT loss is more important, as optimizing model 477

with MSE loss only could not achieve effective 478

domain adaptation in our experiments. Another 479

observation is that our model can be smaller by 480

only introducing the token embedding and reusing 481

the transformer encoder of the pre-trained E2E-ST 482

model, causing small performance degradation. 483

The Impact of Datastore Size. As illustrated 484

in Table 1, the datastore constructed by the big- 485

ger domain-specific text translation corpus seems 486

to obtain better translation performance when us- 487

ing NPDA-kNN-ST. We evaluate the performance 488

differences caused by different datastore sizes 489

on Europarl-ST. For each translation direction of 490

Europarl-ST, we adopt a ratio range of (0.2, 0.4, 491

0.6, 0.8, 1.0) to randomly sample from the Europarl 492

corpus to build the datastore of different scales for 493

quick experiments. The detailed results are shown 494

in Figure 2. In general, the translation performance 495

in all directions is positively correlated with the 496

datastore size. More specifically, in the direction of 497

IT and FR, performance is increasing rapidly with 498

the expansion of the datastore, and both exceed 499

10 BLEU scores. The performance improvement 500

7



Figure 2: BLEU score [%] of NPDA-kNN-ST with different datastore sizes on the Europarl-ST dataset.

in the DE, ES, NL, and PT directions is relatively501

smooth. In addition, since the overall datastore size502

of RO is small, it still shows a reliable performance503

improvement. Thus, an enormous domain-specific504

text translation corpus could further improve E2E-505

ST performance with NPDA-kNN-ST, but brings a506

larger datastore, which is the trade-off in practice.507

6 Related Works508

Speech Translation. Early ST methods (Ney,509

1999; Sperber et al., 2017; Zhang et al., 2019;510

Iranzo-Sánchez et al., 2020a; Machácek et al.,511

2021) cascade the ASR and MT tasks. With the512

rapid development of deep learning, the neural513

networks widely used in ASR and MT have been514

adapted to construct a new end-to-end speech-to-515

text translation paradigm. However, due to the516

scarcity of triplet training data, developing an E2E-517

ST model is still very challenging. Various tech-518

niques have been proposed to ease the training pro-519

cess by using source transcriptions, including pre-520

training (Bansal et al., 2019; Wang et al., 2020c),521

multi-task learning (Weiss et al., 2017; Anasta-522

sopoulos and Chiang, 2018; Sperber et al., 2019),523

meta-learning (Indurthi et al., 2020), interactive524

decoding (Liu et al., 2020), consecutive decod-525

ing (Dong et al., 2021), and adapter tuning (Le526

et al., 2021). Different from previous methods, we527

first investigate the domain adaptation for E2E-ST528

and propose a non-parametric domain adaptation529

method to make the E2E-ST system more practical.530

Domain Adaptation. The domain adaptation ap-531

proaches in MT are mainly divided into two cate-532

gories: 1) model-centric, which focuses on modi-533

fying the MT model architecture to learn domain- 534

related information (Wang et al., 2017; Wuebker 535

et al., 2018; Bapna et al., 2019; Guo et al., 2021); 536

2) data-centric, focusing on utilization of the mono- 537

lingual corpus (Zhang and Zong, 2016; Zhang 538

et al., 2018), synthetic corpus (Hoang et al., 2018; 539

Hu et al., 2019; Wei et al., 2020), or parallel 540

corpus (Chu et al., 2017) in the specific domain 541

for fine-tuning strategies to improve performance. 542

Recently, non-parametric methods provide a new 543

paradigm for domain adaptation by retrieving the 544

datastore of similar instances (Gu et al., 2018; 545

Bapna and Firat, 2019; Khandelwal et al., 2021; 546

Zheng et al., 2021). We follow this research line 547

and extend this non-parametric method in the do- 548

main adaptation scenario for E2E-ST. 549

7 Conclusion 550

In this paper, we present a novel non-parametric 551

method that leverages domain-specific bilingual 552

text to achieve domain adaptation for the E2E-ST 553

system. This approach builds the universal out- 554

put representation for text and speech translation 555

tasks by a carefully designed architecture and loss 556

function. Based on that, a kNN classifier is intro- 557

duced to improve translation performance with an 558

external datastore constructed by the in-domain text 559

translation data. Experimental results on Europarl- 560

ST demonstrate that our proposed method obtains 561

significant improvement over the pre-trained E2E- 562

ST model when using large-scale in-domain bilin- 563

gual text corpus. In the future, we would like to 564

explore the combination of our method and large- 565

scale E2E-ST model, such as LNA-D. 566
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A Appendix747

A.1 Dataset Statistics748

The statistics of datasets used in our experiments749

are shown in Table 4 and 5.750

Speech Train Dev Test
Duration Pairs Pairs Pairs

DE 408 hrs 225,278 1,419 2,588
FR 492 hrs 269,256 1,409 2,579
ES 504 hrs 260,050 1,313 2,450
IT 465 hrs 248,155 1,305 2,521
NL 442 hrs 243,516 1,419 2,563
PT 385 hrs 201,462 1,365 2,449
RO 432 hrs 231,471 1,366 2,503
RU 489 hrs 259,531 1,313 2,460

Table 4: The statistics of all EN-X translation direc-
tions in the MuST-C dataset.

Speech Train Dev Test
Duration Pairs Pairs Pairs

DE 83 hrs 32,629 1,321 1,254
FR 81 hrs 31,778 1,282 1,215
ES 81 hrs 31,608 1,273 1,268
IT 80 hrs 29,553 1,123 1,131
NL 80 hrs 31,402 1,270 1,236
PT 81 hrs 31,751 1,295 1,263
RO 72 hrs 28,599 1,071 1,096

Table 5: The statistics of all EN-X translation direc-
tions in the Europarl-ST dataset.

A.2 Hyper-Parameter Tuning for kNN-MT 751

and NPDA-kNN-ST 752

The performance of kNN-MT and NPDA-kNN- 753

ST is highly related to the choice of hyper- 754

parameters. We adopt grid search of k ∈ 755

{4, 8, 16, 32}, λ ∈ {0.1, 0.2, ..., 0.9} and T ∈ 756

{1, 10, 20, 50, 100, 200} for each translation direc- 757

tion on Europarl-ST validation set when using 758

kNN-MT and NPDA-kNN-ST. The optimal choice 759

is shown in Table 6 and Table 7. 760

DE FR ES NL IT RO PT RU

kNN-MT

k 8 16 8 16 16 16 16 8
λ 0.2 0.3 0.2 0.2 0.3 0.1 0.2 0.3
T 10 20 20 50 10 50 10 20

NPDA-kNN-ST

k 32 16 8 16 8 32 16 8
λ 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.3
T 10 20 20 50 10 10 20 20

Table 6: Optimal choice of hyper-parameters for each
translation direction on MuST-C validation set for E2E-
ST experiments.

DE FR ES NL IT RO PT

kNN-MT

k 16 16 16 16 16 8 8
λ 0.5 0.7 0.6 0.6 0.7 0.6 0.6
T 10 20 10 20 20 50 50

NPDA-kNN-ST

k 16 32 16 16 32 16 32
λ 0.5 0.7 0.6 0.7 0.7 0.7 0.7
T 10 10 10 20 10 10 10

NPDA-kNN-ST+

k 32 4 8 8 4 8 8
λ 0.8 0.8 0.8 0.8 0.8 0.8 0.8
T 10 10 10 10 10 10 10

Table 7: Optimal choice of hyper-parameters for each
translation direction on Europarl-ST validation set for
domain adaptation experiments.
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