
Proceedings Track 2022 NeurIPS Workshop on Symmetry and Geometry in Neural Representations

Barron’s Theorem for Equivariant Networks

Hannah Lawrence hanlaw@mit.edu

Massachusetts Institute of Technology, Cambridge, MA 02139

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane

Abstract

The incorporation of known symmetries in a learning task provides a powerful inductive
bias, reducing the sample complexity of learning equivariant functions in both theory and
practice. Group-symmetric architectures for equivariant deep learning are now widespread,
as are accompanying universality results that verify their representational power. How-
ever, these symmetric approximation theorems suffer from the same major drawback as
their original non-symmetric counterparts: namely, they may require impractically large
networks. In this work, we demonstrate that for some commonly used groups, there exist
smooth subclasses of functions — analogous to Barron classes of functions — which can
be efficiently approximated using invariant architectures. In particular, for permutation
subgroups, there exist invariant approximating architectures whose sizes, while dependent
on the precise orbit structure of the function, are in many cases just as small as the non-
invariant architectures given by Barron’s Theorem. For the rotation group, we define an
invariant approximating architecture with a new invariant nonlinearity, which may be of
independent practical interest, that is similarly just as small as its non-invariant coun-
terparts. Overall, we view this work as a first step towards capturing the smoothness of
invariant functions in invariant universal approximation, thereby providing approximation
results that are not only invariant, but efficient.
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1. Introduction

Symmetries arise in a wide range of learning tasks, with symmetry groups ranging from the
discrete (such as permutations of sets or graph nodes) to the continuous (such as rotations of
point clouds). In such settings, restricting the hypothesis class to only symmetric functions
improves generalization bounds in linear and kernel learning (Elesedy and Zaidi, 2021; Mei
et al., 2021), and empirically aids generalization in deep learning (Cohen and Welling,
2016; Kondor et al., 2018). Group-symmetric architectures come in many shapes and sizes,
however, and one can ask how expressive various architectures truly are.

Yarotsky (2018) first demonstrated that shallow neural nets, based on classical results
on polynomial invariants and equivariants (Hilbert, 1890, 1893), are universal approxima-
tors of invariant and equivariant continuous functions, respectively, for compact groups.
Later works built on this framework for many different groups: for permutation subgroups,
Maron et al. (2019b) defined tensor networks, and proved universality when the network has
sufficiently high order tensor activations. Similarly, Maron et al. (2019a) defined invariant
graph networks, which are universal for certain classes of graph functions (dependent on the
network’s tensor order). Bogatskiy et al. (2020) defined universal tensor-product networks
equivariant to the Lorentz group, while Dym and Maron (2021) showed that commonly used
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point cloud architectures are universal. DeepSets, a permutation-invariant architecture for
learning on sets, has also been shown to be universal (Zaheer et al., 2017).

However, these results do not bound the size of the network needed to approximate
a continuous equivariant function arbitrarily well. Indeed, the size of the neural network
will often depend at least exponentially on the input dimension, or on abstract algebraic
quantities such as the cardinality or degree of the generating set of polynomials. In fact,
this caveat dates back to the original universality theorems by Cybenko (Cybenko, 1989)
and Hornik (Hornik et al., 1990), who first demonstrated that shallow neural networks with
sigmoidal activations are universal approximators. These early universality results relied on
polynomial approximation, yielding exponential dependence on dimension. In his seminal
work, Barron (1993) circumvented this drawback by defining a class of smooth functions
which can be approximated efficiently, in terms of network size. Yet, an analogous result
for invariant networks has not yet been shown. Our central question is therefore: What
classes of invariant functions can be efficiently approximated by invariant neural networks?

Of course, one can trivially group-average any approximating architecture, such as that
of Barron (1993), to obtain an invariant approximation with error at least as good (Yarot-
sky, 2018). However, the size of the network naively increases by a factor of |G|, which may
be large or even infinite. (Here, we define the size of the network by the number of hid-
den units, rather than the number of learnable parameters. Indeed, group-averaging does
not increase the number of learnable parameters, but it significantly increases the number
of hidden units in the network, and therefore the computational complexity of a forward
pass.) Our main contribution is to demonstrate that this blow-up in size is not necessary
for several commonly used groups and function classes.

Our Contributions For subgroups of the permutation group Sn (Theorem 2), we show
that there exist invariant approximating architectures whose size very often improves on the
group-averaging baseline, and in many non-trivial cases by a factor of |G|. For the rotation
group (Theorem 7), we analytically simplify the group-averaging operation to obtain an
invariant approximating architecture with a novel analytic nonlinearity. As a result, group-
averaging need not increase the number of nodes in the network.

Preliminaries and Notation Let G be a group acting orthogonally on X ⊆ Rn. A
function f : X → R is G-invariant if f(x) = f(gx) ∀x ∈ X , g ∈ G. X is partitioned into
possibly unequally-sized1 orbits O, where [x] = {gx : g ∈ G} ∈ O. xi is the ith entry of x.

Barron’s Theorem We review Barron’s Theorem below; see Appendix A.1 for details.

Theorem 1 ( Barron (1993)) Let f : Rn → R have Fourier transform f̂ and “Barron
parameter” Cf :=

∫
w∈Rn ∥w∥ · |f̂(w)|. Then, there exists a two-layer neural network with

nonlinearity σ(x) = 1(x ≥ 0), and approximation error ||f −NNBarron||22 at most
Θ(C2

f )

k .

The central idea of Barron’s Theorem is to sample the Fourier basis functions2 propor-
tionally to f ’s Fourier coefficients, which produces a two-layer cosine3 network. Maurey’s

1. For example, the orbit of [1, 1, . . . , 1] over Sn is itself, while the orbit of [1, 2, . . . , n] has size |Sn| = n!.
2. In Section 2, we make the minor switch to discrete (rather than continuous) Fourier series, which simplifies

the analysis for invariant functions while retaining the key intuitions of Barron’s Theorem.
3. An algebraic manipulation transforms the cosine nonlinearity to an indicator.
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Barron’s Theorem for Equivariant Networks

Lemma (Pisier, 1981) (see Lemma 15) then bounds the network size versus approximation
error tradeoff, with error governed by the expected norm of the sampled functions.

2. Subgroups of Sn

Let G ≤ Sn, and throughout this subsection, let f : [0, 1]n → R be a G-invariant function.
f can be decomposed using discrete Fourier series:

f(x) =
∑
w∈Zn

f̂(w)e2πi⟨x,w⟩ =
∑

[w]∈O

∑
w∈[w]

Re(f̂(w)) cos(2π⟨x,w⟩)−Im(f̂(w)) sin(2π⟨x,w⟩),

where f̂(w) =
∫
x∈[0,1]n f(x)e

−2πi⟨x,w⟩. We define an inner product over periodic functions,

⟨f, g⟩ =
∫
[0,1]n f(x)g(x). It is easy to check that f̂(w) = f̂(gw) ∀g ∈ G,∀w ∈ Zn (Ap-

pendix A.2). Using this Fourier invariance structure, we will see that Theorem 1 can be
non-trivially extended for invariant networks by sampling orbits, instead of individual fre-
quencies, in Fourier space. In fact, this can be done for any invariant function and group;
naively, it is equivalent to group-averaging the architecture of Barron (1993). For permuta-
tion subgroups, however, one can show that fewer sampled orbits than group-averaging are
needed to achieve the original network’s approximation error, thereby circumventing the
blow-up in size.

Theorem 2 Let N =
∑

w∈Zn |f̂(w)|, and let m and M denote the minimum and maxi-

mum, respectively, orbit sizes |[w]| in Supp(f̂). Then there exists a two-layer group-invariant
network NN with cosine activations and kM hidden units such that∫

[0,1]n
|f(x)−NN(x)|2dx ≤

Θ(N ·
∑

[w]∈O |f̂([w])|)
k

≤ Θ(N 2)

mk
(1)

The proof of Theorem 2 (see Appendix A.3) modifies that of Theorem 1 by sampling orbits
instead of individual frequencies in Fourier space, to ensure invariance. It proceeds by
approximating the even and odd parts of f separately; then, the discrete cosines and sines,
are orthogonal within a given orbit, and the squared norm of each orbit (which controls the
approximation error from sampling) can be decomposed with the Pythagorean theorem.

Remark 3 (Comparison to Barron) A non-invariant version of Theorem 2 would ob-

tain error Θ
(
N 2

k

)
with k hidden units; then, naive group-averaging would obtain error

Θ
(
N 2

k

)
with kM units. Therefore, up to a constant factor, Theorem 2 has a factor of m

improvement over group-averaging. Moreover, if m = M (all orbits are equally sized), there
is no increase in size relative to the non-invariant approximation (in the regime where the

original approximation error is sufficiently small, i.e. at most Θ
(
N 2

M

)
).

Remark 4 (Comparison to tensor networks) Although not directly comparable, this
approximation result has several distinctive features from that of Maron et al. (2019b).
First, the tensor networks of Maron et al. (2019b) rely on both approximating invariant
polynomials, and universal approximation of the multiplication function, as key primitives
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to achieving universality. These would induce an exponential dependence on n in an end-to-
end approximation guarantee, avoided by Theorem 2. Second, the intermediate tensor order

from Maron et al. (2019b) may be as high as n
n(n−1)

2 (dependent on G but not approximation

error), whereas for approximation error Θ(N
2

m ) (therefore constant k), the group-invariant
networks of Theorem 2 have size scaling with orbit size4.

Although already an improvement for many functions and groups, Theorem 2 does not
improve over group-averaging when m = 1, and is more generally loose when m is much
smaller than M . A more precise version of Theorem 2 below (proven in Appendix A.4)
articulates the exact interplay between f ’s orbit structure and approximation error. For
simplicity of presentation, we assume that f is even (f(x) = f(1 − x)), but an analogous
statement holds for odd functions as well (and therefore for arbitrary invariant functions).

Theorem 5 Let f be an even function, v[w] =
∑

w∈[w] sgn(f̂(w)) cos(2π⟨w,w⟩), x1 equal

N · v[w] with probability |f̂([w])|·|[w]|
N , and s1 equal the corresponding orbit size |[w]|. Then

there exists a two-layer group-invariant network NN with cosine activations, equal to a
weighted sum of k orbits v[w] and comprising H total hidden units, such that∫
[0,1]n

|f(x)−NN(x)|2dx = Θ
(
(2− k)E[s1]||f ||2 − 2⟨f,E[x1s1]⟩+N 2E[s21] + (k − 1)E[s1]

2N 2
)

Remark 6 Note that Theorem 5 depends on the new quantities E[s1], E[s21], and E[x1s1],
which capture how the mass of f̂ is distributed among orbits of different sizes. If most or
all of the mass of f̂ is on equal-sized orbits, Theorem 5 essentially recovers Theorem 2 with
m = M .

3. Rotations

As noted in Section 1, one straightforward approach to obtaining universal approximation
theorems for invariant/equivariant architectures is simply to group-average a generic ap-
proximation, such as that of Theorem 1, producing a symmetric architecture with no worse
approximation error (Appendix A.5). However, this architecture is naively a factor of |G|
larger than the original architecture. In the previous section, we used a tighter sampling
analysis to avoid this blow-up for permutation subgroups. In this section, we instead look
closely at the group-averaged network architecture for G = SO(n), and show that it can be
computed with a network whose size is no larger than that of the original architecture, by
careful choice of nonlinearity.

Theorem 7 When averaged over the special orthogonal group in n dimensions, the non-
linear invariant function

∫
g∈SO(n) 1(wT gx− b ≥ 0) is expressible as follows:

1̄w,b(x) :=

∫
g∈SO(n)

1(wT gx− b ≥ 0) =
1

2
Isin(ϕ)2(

n− 1

2
,
1

2
).

4. Although the orbit size may be as large as |G|, this quantity is dwarfed by n
n(n−1)

2 asymptotically.
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Here, ϕ = cos−1( b
||w||·||x||) and Ia(b, c) denotes the regularized incomplete beta function.

As a result, any network (including that of Theorem 1) of the form αT1(Wx − b) can
be averaged over SO(n) using regularized incomplete beta function nonlinearities, with no
further increase in network size.

The proof of Theorem 7 is in Appendix A.6. To our knowledge, no SO(n)-invariant archi-
tecture have used such a nonlinearity before. Computing analytic forms for invariant and
equivariant network layers is itself an exciting direction for future work, both for stronger
approximation results and as a practical tool in equivariant architecture design.

Reducing to orbit space Instead of averaging a non-invariant architecture over SO(n)
as in Theorem 7, one could also compute the smooth orbit mapping x 7→ ∥x∥2, and then
apply any universal approximation theorem (such as Barron’s Theorem) in one dimension to
approximate an SO(n)-invariant function. (Indeed, this approach is feasible for other groups
using any method for mapping to orbits, such as Dym and Gortler (2022).) The resultant
neural network may be more efficient (if the Barron parameter in the radial dimension is
smaller than in the ambient space), although this does not provide a method for precisely
group-averaging any existing one-layer architecture.

4. Conclusion

In this work, we provided evidence that invariant, universal, and small architectures should
exist for broad classes of “nice” invariant functions. Barron’s Theorem (Barron, 1993)
first provided a particular quantification of the smoothness of a function, based on how
well it can be approximated by sampling Fourier coefficients; here, we adapt this notion of
smoothness for group-invariant functions, instead structuring our sampling in Fourier space
to produce an approximating architecture that is itself invariant, too. However, this notion
of smoothness arose as a consequence of the particular technical tools of Barron’s Theorem.
Is there a better, more inherent way of measuring the smoothness of invariant functions?
For example, as noted in the previous section, the orbits of a radially symmetric function
correspond to R+, and the function’s approximability via neural nets can also be governed
by its smoothness along the radial dimension: rigorously extending this intuition to other
groups is an exciting direction for future work. Overall, we hope that the techniques and
examples developed here serve as an invitation to further develop the theory of efficient
invariant approximation.
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Appendix A. Proofs

A.1. Barron’s Theorem (original)

Theorem 8 (Barron’s Theorem, Barron (1993)) Let f : Rn → R be a continuous

function with Fourier transform f̂ and “Barron parameter” Cf :=
( ∫

w∈Rn ∥w∥ · |f̂(w)|
)2

.

Let σ(x) be a sigmoidal5 nonlinearity. In particular, we will consider σ(x) = 1(x ≥ 0).
Then, there exists a two-layer neural network NNBarron(x) =

∑k
i=1 αiσ(⟨wi, x⟩ − bi) with

bounded approximation error:∫
|f(x)−NNBarron(x)|2 ≤

Θ(Cf )

k

Proof Write f in terms of its Fourier coefficients as follows:

f(x) = Re

(∫
w
e2π⟨w,x⟩f̂(w)dw

)

= Re

(∫
w
e2π⟨w,x⟩+2π∡(w)|f̂(w)|dw

)

=

∫
w
cos(2π⟨w, x⟩+ 2π∡(w))|f̂(w)|

5. A nonlinearity σ is sigmoidal if limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1.
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Moreover, we can write f(x) − f(0) as
∫
w(cos(2π⟨w, x⟩ + 2π∡(w)) − cos(2π∡(w)))|f̂(w)|,

and algebraic manipulation yields

cos(2π⟨w, x⟩+ 2π∡(w))− cos(2π∡(w)) ∝
∫ ||w||

0
1(wTx− b ≥ 0) sin(2πb+ 2π∡(w).

Finally, we apply Maurey’s Lemma to argue that subsampling in w and b will not induce
too much error:

Lemma 9 (Maurey’s Lemma, Pisier (1981)) Let x lie in a convex set V. Then there
exist k elements v1, . . . , vk ∈ V and weights α1, . . . , αk such that

||x−
k∑

i=1

αivi|| ≤
supv∈V ||v||22

k

Applying Maurey’s Lemma to the set V indexed by w and 0 ≤ b ≤ ||w|| of functions
1(wTx ≥ b) yields the result.

A.2. Fourier structure of invariant and equivariant functions

In this subsection, we establish the Fourier structure of both invariant and equivariant
functions. We begin with periodic functions, and consider the structure of their discrete
Fourier series.

Lemma 10 Let G ≤ Sn, and let f : [0, 1]n → R (or alternatively, let f : Rn → R be
periodic on [0, 1]n. Then f̂(w) = f̂(gw) for all g ∈ G, w ∈ Zn.

Proof As before, the symmetry of f with respect to G is reflected in its Fourier coefficients
as well:

f̂(gw) =

∫
x∈[0,1]n

f(x)e2πi⟨x,gw⟩

=

∫
x∈[0,1]n

f(x)e2πi⟨g
T x,w⟩

=

∫
z∈[0,1]n

f(gz)e2πi⟨z,w⟩

=

∫
z∈[0,1]n

f(z)e2πi⟨z,w⟩ = f̂(w)

Note that the domain of integration [0, 1]n is invariant under permutations g, which allowed
the change of variable z = gTx.

Although we only use the discrete Fourier transform in the main body, it is worth
noting for future work that this invariance structure in Fourier space holds for non-periodic
functions as well.
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Lemma 11 (Fourier characterization of invariant functions) f : Rn → R is invari-
ant to a group G ≤ O(n) iff the Fourier transform of f is also invariant, i.e. f̂(w) = f̂(gw)
for all w ∈ Rn and for all g ∈ G.

Proof

F(f)(gw) =

∫
x∈Rn

e−2πi⟨gw,x⟩f(x)

=

∫
x∈Rn

e−2πi⟨w,gT x⟩f(x)

=

∫
z∈Rn

e−2πi⟨w,z⟩f(z)

= F(f)(w)

Finally, vector-valued equivariant functions are also equivariant in Fourier space, in the
following sense.

Lemma 12 (Fourier characterization of equivariant functions) f : Rn → Rm is
equivariant to a group G ≤ O(n) iff the entrywise Fourier transform f̂ : Rn → Rm is also
equivariant, i.e. gf̂(w) = f̂(gw) for all w ∈ Rn and for all g ∈ G.

Proof

F(f)(gw)s =

∫
x∈Rn

e−2πi⟨gw,x⟩fs(x)

=

∫
x∈Rn

e−2πi⟨w,gT x⟩fs(x)

=

∫
z∈Rn

e−2πi⟨w,z⟩fs(gz)

By the equivariance of f , the vector f(gz) is equal to gf(z). Therefore, we can interchange
the entrywise integral and the group action to complete the proof:

F(f)(gw)s =

∫
z∈Rn

e−2πi⟨w,z⟩f(gz)

=

∫
z∈Rn

e−2πi⟨w,z⟩gf(z)

= g

∫
z∈Rn

e−2πi⟨w,z⟩f(z)

= gF(f)(w)

9



Lawrence

A.3. Proof of Theorem 2

Consider the proof technique of Barron’s Theorem applied in this setting, modified to
preserve invariance. We will often work with the orbits of Zn with respect to G, denoted
by O. We denote individual orbits by [w], where o is the orbit representative, i.e. [w] =
{gw : g ∈ G}. Recall the discrete Fourier decomposition of f :

f(w) =
∑

[w]∈O

∑
w∈[w]

Re(f̂(w)) cos(2π⟨x,w⟩)− Im(f̂(w)) sin(2π⟨x,w⟩).

We will approximate the terms
∑

[w]∈O
∑

w∈[w]Re(f̂(w)) cos(2π⟨x,w⟩) and∑
[w]∈O

∑
w∈[w] Im(f̂(w)) sin(2π⟨x,w⟩) separately. Since we would like to sample functions

according to a positive probability measure, we have

Re(f̂(w)) cos(2π⟨x,w⟩) = |Re(f̂(w))|sgn(Re(f̂(w))) cos(2π⟨x,w⟩)

and likewise for the second term. We next show that the trigonometric functions above are
orthogonal.

Lemma 13 (Cosine functions are orthogonal) Let w, z ∈ Rn with w1, z1 ∈ Z and
w2
1 ̸= z21. Let x1 indicate the first entry of a vector x, and x2: the rest of the entries. Then

the following orthogonality relation holds for arbitrary functions r, s : R2n−2 → R:∫
x∈[0,1]n

cos(2π(x1w1 + r(x2:, w2:))) cos(2π(x1z1 + s(x2:, z2:))) = 0

Proof We will heavily use the trigonometric identities cos(α + β) = cos(α) cos(β) −
sin(α) sin(β).

We will also rely on the standard trigonometric orthogonality statements, assuming n
and m are integers with distinct absolute values:∫

x∈[0,1]
sin(2πnx) cos(2πmx) = 0∫

x∈[0,1]
cos(2πnx) cos(2πmx) = 0∫

x∈[0,1]
sin(2πnx) sin(2πmx) = 0

Recall the trigonometric identity cos θ cosϕ = cos(θ−ϕ)+cos(θ+ϕ)
2 . If |n| ≠ |m|, then θ−ϕ ̸= 0

and θ+ϕ ̸= 0, and
∫
x∈[0,1] cos(2π(n−m)x) =

∫
x∈[0,1] cos(2π(n+m)x) = 0. Similar reasoning

using the identities sin θ sinϕ = cos(θ−ϕ)−cos(θ+ϕ)
2 and sin θ cosϕ = sin(θ−ϕ)+sin(θ+ϕ)

2 yield the
other two equalities.

To apply these one-dimensional identities in our setting, again apply the trigonometric
identity for the cosine of a sum to decompose cos(2π(x1w1 + r(x2:, w2:))), and likewise for
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the analogous term with z. Therefore, we have the following:

cos(2π(x1w1 + r(x2:, w2:)) cos(2π(x1z1 + s(x2:, z2:))

= cos(2πx1w1 + 2πr(x2:, w2:)) cos(2πx1z1 + 2πs(x2:, z2:))

= (cos(2πx1w1) cos(2πr(x2:, w2:)− sin(2πx1w1) sin(2πr(x2:, w2:))·
(cos(2πx1z1) cos(2πs(x2:, z2:)− sin(2πx1z1) sin(2πs(x2:, z2:))

= cos(2πx1w1) cos(2πr(x2:, w2:) cos(2πx1z1) cos(2πs(x2:, z2:))−
cos(2πx1w1) cos(2πr(x2:, w2:) sin(2πx1z1) sin(2πs(x2:, z2:))−
sin(2πx1w1) sin(2πr(x2:, w2:)) cos(2πx1z1) cos(2πs(x2:, z2:))+

sin(2πx1w1) sin(2πr(x2:, w2:)) sin(2πx1z1) sin(2πs(x2:, z2:))

Recall that the integral of a separable function is equal to the product of the integrals.
Therefore, evaluating each term separately:∫

x∈[0,1]n
cos(2πx1w1) cos(2πr(x2:, w2:) cos(2πx1z1) cos(2πs(x2:, z2:)

=
(∫

x1∈[0,1]
cos(2πx1w1) cos(2πx1z1)︸ ︷︷ ︸

=0

)(∫
x2:∈[0,1]n−1

cos(2πr(x2:, w2:) cos(2πs(x2:, z2:)
)

∫
x∈[0,1]n

sin(2πx1w1) sin(2πr(x2:, w2:) cos(2πx1z1) cos(2πs(x2:, z2:)

=
(∫

x1∈[0,1]
sin(2πx1w1) cos(2πx1z1)︸ ︷︷ ︸

=0

)(∫
x2:∈[0,1]n−1

sin(2πr(x2:, w2:) cos(2πs(x2:, z2:)
)

∫
x∈[0,1]n

cos(2πx1w1) cos(2πr(x2:, w2:) sin(2πx1z1) sin(2πs(x2:, z2:)

=
(∫

x1∈[0,1]
cos(2πx1w1) sin(2πx1z1)︸ ︷︷ ︸

=0

)(∫
x2:∈[0,1]n−1

cos(2πr(x2:, w2:) sin(2πs(x2:, z2:)
)

=
(∫

x1∈[0,1]
sin(2πx1w1) sin(2πx1z1)︸ ︷︷ ︸

=0

)(∫
x2:∈[0,1]n−1

sin(2πr(x2:, w2:) sin(2πs(x2:, z2:)
)
.

We can build on this lemma to reason about the orthogonality of cosine basis functions, as
shown in the following lemma.

Lemma 14 (Cosine basis functions are orthogonal) Let w, z ∈ Zn with w ̸= z and
w ̸= −z. Then the following orthogonality relation holds:∫

x∈[0,1]n
cos(2π⟨x,w⟩)) cos(2π⟨x, z⟩) = 0

11
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Proof First, suppose there exists some index i ∈ [1, . . . , n] such that w2
i ̸= z2i . Without

loss of generality, let i = 1. Then by the previous lemma, Lemma 13, the statement holds
with r(x2:, w2:) = ⟨x2:, w2:⟩ and likewise for s.

Therefore, suppose w2
j = z2j for all j. Since w ̸= z, there is some j such that wj = −zj .

Without loss of generality, let j = 1. Again, let r(x2:, w2:) = ⟨x2:, w2:⟩ and likewise for s.

We have that

∫
x1∈[0,1]

cos(2πx1w1) cos(2πx1z1) =

∫
x1∈[0,1]

cos(2πx1w1) cos(2π − x1w1)

=

∫
x1∈[0,1]

cos2(2πx1w1)

=

∫
x1∈[0,1]

cos(4πx1w1) + 1

2

=
1

2
.

Above, we used the double-angle formula cos2(x) = cos(2x)+1
2 . Moreover,

∫
x1∈[0,1]

sin(2πx1w1) sin(−2πx1w1) =

∫
x1∈[0,1]

− sin2(2πx1w1)

=

∫
x1∈[0,1]

cos2(2πx1w1)− 1

= −1

2
.

We also have that

∫
x1∈[0,1]

sin(2πmx1) sin(2πnx1) = 0

for any integers m and n, as sin θ cosϕ = sin(θ−ϕ)+sin(θ+ϕ)
2 .

12
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Now, recall that the proof of Lemma 13 decomposed the integral of interest into a
(signed) sum of four terms:

∫
x∈[0,1]n

cos(2πx1w1) cos(2πr(x2:, w2:) cos(2πx1z1) cos(2πs(x2:, z2:)

=
(∫

x1∈[0,1]
cos(2πx1w1) cos(2πx1z1)︸ ︷︷ ︸

= 1
2

)(∫
x2:∈[0,1]n−1

cos(2πr(x2:, w2:) cos(2πs(x2:, z2:)︸ ︷︷ ︸
(∗)

)
∫
x∈[0,1]n

sin(2πx1w1) sin(2πr(x2:, w2:) cos(2πx1z1) cos(2πs(x2:, z2:)

=
(∫

x1∈[0,1]
sin(2πx1w1) cos(2πx1z1)︸ ︷︷ ︸

=0

)(∫
x2:∈[0,1]n−1

sin(2πr(x2:, w2:) cos(2πs(x2:, z2:)
)

∫
x∈[0,1]n

cos(2πx1w1) cos(2πr(x2:, w2:) sin(2πx1z1) sin(2πs(x2:, z2:)

=
(∫

x1∈[0,1]
cos(2πx1w1) sin(2πx1z1)︸ ︷︷ ︸

=0

)(∫
x2:∈[0,1]n−1

cos(2πr(x2:, w2:) sin(2πs(x2:, z2:)
)

=
(∫

x1∈[0,1]
sin(2πx1w1) sin(2πx1z1)︸ ︷︷ ︸

=− 1
2

)(∫
x2:∈[0,1]n−1

sin(2πr(x2:, w2:) sin(2πs(x2:, z2:)︸ ︷︷ ︸
(∗∗)

)
.

It remains to show that the term (∗) is equal to the term (∗∗). We proceed by induction
on the orthogonality of not only the cosine functions, but also the sine functions. First,
suppose wi = zi for all i ≥ 2. Then r(x2:, w2:) = s(x2:, z2:) = ⟨x2:, w2:⟩. Then:

(∗) =
∫
x2:∈[0,1]n−1

cos(2πr(x2:, w2:)) cos(2πs(x2:, z2:))

=

∫
x2:∈[0,1]n−1

cos2(2π⟨x2:, w2:⟩)

=

∫
x2:∈[0,1]n−1

cos(4π⟨x2:, w2:⟩) + 1

2

=
1

2
,

13
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and

(∗∗) =
∫
x2:∈[0,1]n−1

sin(2π⟨x2:, w2:⟩) sin(2π⟨x2:, w2:⟩)

=

∫
x2:∈[0,1]n−1

sin2(2π⟨x2:, w2:⟩)

=

∫
x2:∈[0,1]n−1

1− cos2(2π⟨x2:, w2:⟩)

=
1

2

Thus, (∗) = (∗∗) and the integral is 0 as desired. If the condition that wi = zi for all i ≥ 2
does not hold, then without loss of generality w2 = −zi. By induction, (∗) = 0, since the
assumption that w ̸= z implies that eventually, there will be some cutoff point in indices
beyond which w and z are exactly equal. Similarly, by applying the same trigonometric
identities and sin(a+b) = sin a cos b+cos a sin b and using the induction hypothesis, (∗∗) = 0
as well. Therefore, the complete sum is equal to 0, and the functions are orthogonal as
desired.

Observe that since sin is merely a π
2 shift of cos, Lemma 14 also implies that the sin

basis functions are orthogonal.
Recall that we decomposed the symmetric periodic function f as

f(w) =
∑

[w]∈O

∑
w∈[w]

Re(f̂(w)) cos(2π⟨x,w⟩)− Im(f̂(w)) sin(2π⟨x,w⟩).

As in the original Barron’s Theorem, we can sample frequencies of f . However, sampling
from w ∈ Zn will yield a function that is not necessarily invariant. Instead, if we sample
orbits of w, we will obtain an invariant approximation to f . Concretely, for the even part of
f , sample functions of the form v[w] :=

∑
w∈[w] sgn(f̂(w)) cos(2π⟨x,w⟩), which are indexed

by [w] ∈ O, proportionally to |ℜ(f̂([w]))|. For the odd part of f , separately sample functions
of the form

∑
w∈[w] sgn(f̂(w)) sin(2π⟨x,w⟩), which are indexed by [w] ∈ O, proportionally

to |Imag(f̂([w]))|. Note that the individual approximations are invariant, so their sum
is as well, and the resultant approximation error is at most the sum of the individual
approximation errors. For any w1, w2 ∈ Zn, by Lemma 14,∫

x∈[0,1]n
cos(2π⟨x,w1⟩) cos(2π⟨x,w2⟩) = 0 (2)

so long as w1 ̸= w2 and w1 ̸= w2. Similarly,∫
x∈[0,1]n

sin(2π⟨x,w1⟩) sin(2π⟨x,w2⟩) = 0 (3)

under the same conditions.
We may thus approximate f̂ by sampling orbits over G in the frequency domain. By 2,

these orbits consist of sums of orthogonal functions, unless w and −w happen to be in the

14
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same orbit in the support of f̂ . This cannot happen for the odd part of f , as f̂(w) = f̂(−w)

by invariance (in this case) and f̂(w) = f̂(−w) by the realness of f together imply that
f̂(w) is real. For the even part of f , the basis functions for w and −w are precisely the
same, and so the squared norm of the orbit is still easy to analyze (and still equal to the
size of the orbit). Here, the inner product between two real-valued functions is defined by〈

f1(x), f2(x)
〉
=

∫
x∈[0,1]n

f1(x)f2(x)

As a result of the orthogonality properties above and the Pythagorean theorem, we have

||v[w]||22 = |[w]| (4)

Consider now the upper bound provided by Maurey’s Lemma:

Lemma 15 Let x lie in a convex set V. Then there exist k elements v1, . . . , vk ∈ V and
weights α1, . . . , αk such that

||x−
k∑

i=1

αivi||2 ≤
E[||x1||2]

k
,

where x is drawn from V proportionally to the convex coefficients of x.

Proof Since x ∈ V, there exists a random variable u taking values in V such that E[u] = x.
Consider the squared error from approximating E[u] = x with k random draws of variables
x1, . . . , xk ∼ u:

E[∥x− 1

k

k∑
i=1

xi∥2] =
∑k

i=1 E[∥xi − x∥2]
k2

=
E[∥x1 − x∥2]

k

=
E[||x1||2] + ||x||2 − 2xTE[x1]

k

=
E[||x1||2]− ||x||2

k

≤ E[||x1||2]
k

Therefore, there exists some drawing of the variables x1, . . . , xk satisfying this bound; the
lemma follows.

Applied as in the original Barron’s Theorem, Maurey’s Lemma would construct V as
{N · vw}, where vw equals either cos(2π⟨x,w⟩) (to approximate the even part of f) or
sin(2π⟨x,w⟩) (to approximate the odd part of f) up to the appropriate sign flip (according to
f̂), pw is defined to be either |ℜ(f̂(w))| (to approximate the even part of f) or |Imag(f̂(w))|
(for the odd part), and N is a scaling factor, N =

∑
w∈Zn pw =

∑
[w]∈C pw · |[w]|.6 Then,

6. Note that vw is an individual frequency, while v[w] denotes a summed orbit of frequencies.
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f =
∑

w∈Zn pwvw =
∑

w∈Zn
pw
N (N vw) is a convex combination of elements of V. The

numerator of the squared ℓ2 error bound given by Maurey’s Lemma is then:

E[||x||2] =
∑
w∈Zn

pw
N

||N vw||22

=
∑
w∈Zn

Npw · ||vw||22

=
∑

[w]∈O

Np[w]

∑
w∈[w]

||vw||22

=
∑

[w]∈O

Np[w] · |[w]| (5)

= N 2

We now apply Maurey’s Lemma with V = {N · v[w] : [w] ∈ O}, where

f =
∑
w∈Zn

|f̂(w)|
N

(N vw) =
∑

[w]∈O

p[w] · |[w]|
N

( ∑
w∈[w]

N
|[w]|

vw

)
.

Note that
p[w]·|[w]|

N is a measure:
∑

[w]∈O
p[w]·|[w]|

N =
∑

[w]∈O
∑

w∈[w]
p[w]

N = 1. The term

E[||x||22] is given by:

E[||x||2] =
∑

[w]∈O

p[w] · |[w]|
N

∣∣∣∣∣∣ ∑
w∈[w]

N
|[w]|

vw

∣∣∣∣∣∣2
2

=
∑

[w]∈O

Np[w]

|[w]|

∣∣∣∣∣∣ ∑
w∈[w]

vw

∣∣∣∣∣∣2
2

=
∑

[w]∈O

Np[w]

|[w]|
∑

w∈[w]

||vw||22

=
∑

[w]∈O

Np[w]

|[w]|
· |[w]|

=
∑

[w]∈O

N|f̂([w])| (6)

Note that N as defined in this section, is upper-bounded by the way it is defined in the
main body (as

∑
w |f̂(w)|), so the upper bound stated in Theorem 2 holds. Comparing

equations 6 and 5, it is clear that the improvement in the number of samples depends on
the group G, and the support of f in Fourier space. For example, if f̂ is supported only
on orbits of equal size s, where 1 ≤ s ≤ |G|, then 5 — what we’ll call “original” Barron’s
theorem — is a factor of s larger than 6. In other words, the error induced by sampling k
functions (vw or v[w]) is a factor of s smaller when sampling v[w], rather than vw. However,
note that as neural network modules, v[w] is always a factor of |[w]| ≤ |G| larger than vw: in

particular, v[w] =
∑

w∈[w]
N

|[w]|vw. (For particular groups, it may be possible to implement
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this summation over an orbit more efficiently, but a naive implementation multiplies the
network size by |[w]|.) Therefore, a function (supported only on orbits of size s in Fourier
space) that can be approximated to error ϵ using k individual frequencies, as in Barron’s
Theorem, can be approximated with an invariant neural network with sk nodes (or k orbit-
averaged nodes) to error ϵ

s . Note that for k > s, this implies that Barron’s Theorem can
be proven for invariant architectures of equal size (at least, when the function is supported
on equal-sized orbits in Fourier space). In contrast, consider naively averaging the output
of Barron’s Theorem over the group G produces an invariant architecture, but at a factor
of |G| increase in network size.

A.4. Proof of Theorem 5

When the function is supported on unequally sized orbits in Fourier space, the previous
analysis does not provide satisfactory control of the size of the network. This is because
the probabilistic method used in Maurey’s Lemma only proves the existence of k functions
v[w], but their sizes may vary depending on the orbit size |[w]|. Instead, as a more precise
analysis, we can evaluate the following quantity, which is the product of the approximation
error and the network size. Here, let si denote the size of the orbit selected by the random
variable xi. Recall that we now assume f is only even, such that f̂ is real-valued, for
convenience; however, one can apply the same analysis to the odd part of f separately, and
combine the bounds.

E

[∣∣∣∣∣∣x− 1

k

k∑
i=1

xi

∣∣∣∣∣∣2( k∑
i=1

si

)]
=

1

k2
E

[( k∑
i,j=1

⟨x− xi, x− xj⟩
)( k∑

ℓ=1

sℓ

)]

=
1

k2

k∑
i,j=1

E

[
⟨x− xi, x− xj⟩

( k∑
ℓ=1

sℓ

)]

=
1

k2

k∑
i,j=1

E

[
⟨x− xi, x− xj⟩

(
si + sj +

∑
ℓ ̸=i,j

sℓ

)]

=
1

k2

k∑
i,j=1

E

[
⟨x− xi, x− xj⟩

(
si + sj +

∑
ℓ ̸=i,j

sℓ

)]

=
1

k2

k∑
i,j=1

E

[
⟨x− xi, x− xj⟩

(
si + sj

)]

+ E

[( ∑
ℓ̸=i,j

sℓ

)]
E

[
⟨x− xi, x− xj⟩

]
(7)

Note that E[⟨x− xi, x− xj⟩] = ||x||2 − 2||x||2 + ||x||2 = 0 for i ̸= j. Similarly, when i ̸= j:

E[si⟨x− xi, x− xj⟩] = E[si]||x||2 − E[si]x
TE[xj ]− xTE[sixi] + E[xTj ]E[sixi]

= E[si]||x||2 − E[si]||x||2 − xTE[sixi] + xTE[sixi] = 0
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Therefore, (7) vanishes when i ̸= j, and defining the constant value Sk−1 := E[
∑

ℓ̸=i sℓ], we
can simplify (7) to:

1

k2

k∑
i,j=1

E

[
⟨x− xi, x− xj⟩

(
si + sj

)]
+ E

[( ∑
ℓ̸=i,j

sℓ

)]
E

[
⟨x− xi, x− xj⟩

]

=
1

k2

k∑
i=1

E[||x− xi||2si] + Sk−1E[||x− xi||2]

=
1

k2

k∑
i=1

E[si]||x||2 − 2⟨x,E[xisi]⟩+ E[si||xi||2] + Sk−1||x||2 − 2Sk−1||x||2 + Sk−1E[||xi||2]

=
1

k2

k∑
i=1

E[si]||x||2 − 2⟨x,E[xisi]⟩+ E[si||xi||2]− Sk−1||x||2 + Sk−1E[||xi||2]

=
1

k

[
E[s1]||x||2 − 2⟨x,E[x1s1]⟩+ E[s1||x1||2]− Sk−1||x||2 + Sk−1E[||x1||2]

]

Finally, note that

E[s1] =
∑

[w]∈O

|f̂([w])| · |[w]|2

N
, (8)

and moreover,

E[||x1||2] =
∑

[w]∈O

|f̂([w])| · |[w]|
N

||N v[w]||2

= N
∑

[w]∈O

p[w] · |[w]|||v[w]||2

= N
∑

[w]∈O

|f̂([w])| · |[w]|2

= N 2E[s1].

Similarly,

E[s1||x1||2] =
∑

[w]∈O

|f̂([w])| · |[w]|2

N
||N v[w]||2

= N
∑

[w]∈O

|f̂([w])| · |[w]|2||v[w]||2

= N
∑

[w]∈O

|f̂([w])| · |[w]|3

= N 2E[s21]

18



Barron’s Theorem for Equivariant Networks

Combining with Sk−1 = (k − 1)E[s1], we finally obtain

E[s1]||x||2 − 2⟨x,E[x1s1]⟩+ E[s1||x1||2]− Sk−1||x||2 + Sk−1E[||x1||2]
=E[s1]||x||2 − 2⟨x,E[x1s1]⟩+ E[s1||x1||2]− (k − 1)E[s1]||x||2 + (k − 1)E[s1]N 2E[s1]

=(2− k)E[s1]||x||2 − 2⟨x,E[x1s1]⟩+N 2E[s21] + (k − 1)E[s1]
2N 2

Note that, when s1 is a constant, the first two terms simplify to a single negative term; in
the upper bound from Maurey’s lemma, this term is dropped.

A.5. Group-averaged Barron’s theorem

We begin with the case of invariance, and have the following theorem.

Theorem 16 Let G be a finite subgroup of O(n) and let X ⊆ Rn be a space7 on which G
acts. Furthermore, suppose gX = X for all g ∈ G. Let f : X → R be a G-invariant func-
tion. Then there exists a two-layer group convolutional network NNG−CNN , with sigmoidal
nonlinearity, Θ(|G| · k) units, and approximation error bounded as follows:∫

x∈X
|f(x)−NNG−CNN (x)|2 ≤

Cf

k

Here, Cf is the Barron constant: Cf =
∫
w∈Rn ∥w∥ · |f̂(w)|, minimized over all extensions of

f to Rn.

Remark 17 In contrast to existing invariant universal approximation results, such as those
of Bogatskiy et al. (2020) and Yarotsky (2018), Theorem 16 provides an explicit and mod-
erate bound on the size of the approximating networks in terms of the group size. It avoids
both exponential dependence on dimension, which arises in any blackbox call to traditional
approximation results, and any dependence on the number of invariants needed for Hilbert’s
theorem (both of which are central to Yarotsky (2018) and the works which build upon it.)

We now prove Theorem 16.

Proof

Let X be a non-homogeneous space on which G, a subgroup of the orthogonal group,
acts, and suppose gX = X for all g ∈ G. Let f : X → R. Moreover, suppose f is invariant,
i.e. f(gx) = f(x) for all g ∈ G, x ∈ X . By Barron’s Theorem, for any ϵ there exists a depth
two ReLU net

NNBarron(x) = αTσ(Wx− b)

with h = O(
Cf

ϵ ) hidden units (i.e. α ∈ Rh) such that∫
|f(x)−NNBarron(x)|2dx ≤ ϵ

7. If X is a homogeneous space, then f is a trivial function, so we think of X as a non-homogeneous space
on which G acts.
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where Cf =
( ∫

||w|| · |f̂(w)|dw
)2

. Call the ith row of the matrix W wT
i . Then define the

following group-convolutional network:

NNG−CNN (x) =
1

|G|
∑
i

αi

∑
g∈G

σ((wi ∗ x)(g)− bi)

NNG−CNN is an h-channel group convolutional network with a sigmoidal nonlinearity,
which pools over both group elements and channels.

NNG−CNN (x) =
1

|G|
∑
i

αi

∑
g∈G

σ((wi ∗ x)(g)− bi)

=
1

|G|
∑
g∈G

∑
i

αiσ(w
T
i gx− bi)

=
1

|G|
∑
g∈G

αTσ(Wgx− b)

=
1

|G|
∑
g∈G

NNBarron(gx)

For any function f , let fg(x) = f(gx). Although NNBarron(gx) ̸= NNBarron(x), we can
extend its error guarantee to NNG−CNN as follows:(∫

|f(x)−NNG−CNN (x)|2
)1/2

dx = ||f −NNG−CNN ||

= || 1

|G|
∑
g∈G

fg − 1

|G|
∑
g∈G

NNg
Barron||

≤ 1

|G|
∑
g∈G

||fg −NNg
Barron||

=
1

|G|
∑
g∈G

||f −NNBarron||

≤
√
ϵ

Here, we used Jensen’s inequality and the integration change of variable x 7→ gx, enabled
by the orthogonality of g and the assumption X = gX for all g.

By appropriately modifying the final linear layer of the NNG−CNN architecture de-
scribed above, we obtain the following analogous theorem for equivariant functions.

Theorem 18 Let G be a finite subgroup of O(n) acting orthogonally on Rn, as well as
acting on Rm via a linear representation ρ. Let f : Rn → Rm be a G-equivariant function8.

8. As in Theorem 16, we could again state this theorem for subsets of Rn and Rm on which G acts, but do
not do so for simplicity.
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Then there exists a two-layer group convolutional network NNG−CNN , with sigmoidal non-
linearity, with Θ(|G| · k) units and approximation error bounded as follows:

∫
x∈Rn

∥f(x)−NNG−CNN (x)∥2 ≤ D2

k

∑
s

Cs
f

Here, D is a uniform bound on the operator norm of the matrix ρ(g) over all g ∈ G, and
Cs
f is the Barron parameter of fs.

Proof The architecture of Theorem 16 averages the approximation given by Barron’s
Theorem over the group. For the equivariant case, it is then natural to approximate each
output dimension by Barron’s Theorem, and then to average in an equivariant way. This
will contribute an additional layer, to apply the representation ρ.

Formally, begin by approximating the sth output of f as NN s
Barron, defined by

NNBarron(x)
s = (αs)Tσ(W sx− bs) =

∑
i

αs
iσ(⟨ws

i , x⟩ − bs).

Letting Cs
f denote the Barron parameter of fs, NN s

Barron has Θ(k) hidden nodes and

squared L2 approximation error upper bounded by Θ(
Cs

f

k ). Then, define NNG−CNN as
follows:

NNG−CNN (x) :=
1

|G|
∑
g∈G

ρ(g−1)NNBarron(gx)

One can verify that NNG−CNN is equivariant:

NNG−CNN (hx) =
1

|G|
∑
g∈G

ρ(g−1)NNBarron(ghx)

=
1

|G|
∑
k∈G

ρ(hk−1)NNBarron(kx)

=
1

|G|
∑
k∈G

ρ(h)ρ(k−1)NNBarron(kx)

= ρ(h)NNG−CNN (x)
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Moreover, its error is bounded as follows:

(∫
x∈Rn

∥f(x)−NNG−CNN (x)∥2
)1/2

=

(∫
x∈Rn

∥∥∥f(x)− 1

|G|
∑
g∈G

ρ(g−1)NNBarron(gx)
∥∥∥2)1/2

=

(∫
x∈Rn

∥∥∥ 1

|G|
∑
g∈G

(
ρ(g−1)f(gx)− ρ(g−1)NNBarron(gx)

)∥∥∥2)1/2

≤ 1

|G|
∑
g∈G

(∫
x∈Rn

∥∥∥ρ(g−1)f(gx)− ρ(g−1)NNBarron(gx)
∥∥∥2)1/2

≤ D

|G|
∑
g∈G

(∫
x∈Rn

∥∥∥f(gx)−NNBarron(gx)
∥∥∥2)1/2

=
D

|G|
∑
g∈G

(∫
x∈Rn

∥∥∥f(x)−NNBarron(x)
∥∥∥2)1/2

≤ D

(
m∑
s=1

∫
x∈Rn

∣∣∣fs(x)−NN s
Barron(x)

∣∣∣2)1/2

≤ D

(
m∑
s=1

Cs
f

k

)1/2

Remark 19 Theorem 16 and Theorem 18 are stated for finite groups, but the proofs clearly
hold for infinite G, with each summation replaced by an integral over G with respect to the
Haar measure.

As a result of Theorem 16, the approximation error of NNG−CNN is equal to that
of NNBarron, but it is representable as a group-convolutional network with h channels.
This demonstrates not only that Barron’s Theorem extends to show universality of group-
convolutional networks for invariant functions, but more generally that the orbit-averaged
version of any two-layer net is representable as a group-convolutional net.

Unfortunately, the architecture requires convolving over G, which either contributes a
factor of |G| additional neurons for a large finite group, or is not (obviously) computable and
requires special treatment, such as approximating the convolution in group Fourier space for
infinite groups. However, another way of interpreting this architecture is as replacing its first
nonlinear layer, σ(Wx−b), with a group-averaged version 1

|G|
∑

g∈G σ(Wgx−b). Theorem 7

(proven in Appendix A.6) demonstrates a special case in which this expression can be
computed analytically, thereby reducing the effective number of neurons in Theorem 16
from |G| · k to k.
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A.6. Proof of Theorem 7

The previous section demonstrated that any invariant function f with Barron parameter Cf

is representable by an invariant neural net, whose size scales with |G| but is not exponential
in the input dimension. The group-averaged architecture can be understood as an ordinary
two layer architecture with final pooling layer, but which crucially replaces the first layer —
usually composed of a linear layer with a pointwise nonlinearity — with a group-averaged
nonlinear function σ̄w,b(x) =

∫
g∈G σ(Wgx−b). It is this dependence on |G| which contributes

adversarially to the network size; if G is large, such as Sn with |Sn| = n!, or even infinite,
such as G = SO(n), this integral is intractable. It would therefore be of both theoretical
and practical interest to devise schemes for computing σ̄w,b(x) for common groups G in an
automatically differentiable and efficient manner.

Failure of Polynomials To alleviate this issue, one might hope to approximate the
nonlinearity (cosine, σ, indicator, or general sigmoidal) with a polynomial over the range of
inputs. This is because bounded-degree polynomials can be easily and analytically averaged
over compact groups as follows. First, write a polynomial of degree d in terms of its
homogeneous parts (using · to denote inner products between higher-dimensional tensors):

p(x) =
d∑

i=0

Ci · x⊗i.

Then, integration over the group takes a simple form:∫
g
p(gx) =

∫
g

d∑
i=0

Ci · (gx)⊗i

=
d∑

i=0

Ci ·
(∫

g
g⊗i
)
· x⊗i

Note then that
∫
g g

⊗i is simply the Reynolds operator corresponding to the ith tensor prod-
uct representation of the group. Using the Clebsch-Gordan decomposition, it is possible
to decompose g⊗i into irreducible representations, which are easy to integrate analytically
(in particular, as an orthonormal basis, they always integrate to 0 with the exception of
the trivial irreducible representation). Unfortunately, it is crucial for universal approxi-
mation results to use non-polynomial non-linearities. By approximating a non-polynomial
nonlinearity with a finite-degree polynomial, we impede universal approximation and, in
fact, can approximate multidimensional invariant functions no better than a multivariate
group-averaged Taylor expansion.

We return, then, to the problem of exactly computing σ̄w,b(x). This will depend greatly
on σ and G, and in fact, may not always be possible. However, we show that for σ(x) =
1(x ≥ 0) and G = SO(n), the function σ̄W,b is easily expressible in closed form.

Theorem 20 When averaged over the special orthogonal group in n dimensions, the non-
linear invariant function 1̄w,b(x) is expressible as follows:

1̄w,b(x) :=

∫
g∈SO(n)

1(wT gx− b ≥ 0) =
1

2
Isin(ϕ)2(

n− 1

2
,
1

2
).
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Here, ϕ = cos−1( b
||w||·||x||) and Ia(b, c) denotes the regularized incomplete beta function.

Proof Consider a fixed x, w, and b. Define an equivalence relation on SO(n) with respect
to x: g ∼ h if gx = hx. Therefore, if g ∼ h, then 1(wT gx − b) = 1(wThx − b). The
equivalence classes, denoted [g], of SO(n), can then be associated with vectors of length
equal to ||x||. Moreover, it is possible to integrate over a given equivalence class [g] using
the Haar measure on SO(n − 1). (Intuitively, any rotation in [g] simply must rotate x to
a specified n-dimensional vector, and then can perform any n − 1 dimensional rotation in
the orthogonal subspace to this vector.) Denote this set by B(0, ||x||). Then, the following
equality holds:∫

g∈SO(n)
1(wT gx− b) =

∫
v∈B(0,||x||)

∫
g∈SO(n) s.t. gx=v

1(wT gx− b ≥ 0)

=

∫
v∈B(0,||x||)

1(wT v − b ≥ 0)

Here, the integration over B(0, ||x||) is with respect to the uniform probability measure
on the sphere B(0, ||x||) in n dimensions. Moreover, the final expression has a simple
geometrical interpretation, which will give rise to the stated analytic form. In particular,
note the following:

1(wT v − b) = 1 ⇐⇒ wT v ≥ b

⇐⇒ cos∡(w, v) ≥ b

||w|| · ||v||

Therefore, the desired integral is simply equal to the fraction of the surface area of B(0, ||x||)
lying in the spherical cap of angle ϕ := cos−1( b

||w||·||x||) . Using the analytic form of the surface
area of high-dimensional spherical caps, expressed neatly in terms of the incomplete beta
function by Li (2011), yields the following expression for this integral:

πn/2rn−1

Γ(n2 )
Isin(ϕ)2(

n− 1

2
,
1

2
)

Finally, recall that the surface area of an r-radius sphere in n dimensions is given by
2πn/2rn−1

Γ(n/2) . As a result, the fraction of B(0, ∥x∥) lying in the relevant cap is given by

1

2
Isin(ϕ)2(

n− 1

2
,
1

2
)

Unfortunately, the regularized incomplete beta functions are not themselves easily ex-
pressible as small neural networks with standard nonlinearities. However, this quantity is
computable using predefined special functions in many programming languages. If com-
puted in an automatically differentiable manner, this makes practical the equivariant ar-
chitecture of the previous section for SO(n), an infinite group — albeit with a specialized
nonlinearity.

24


	Introduction
	Subgroups of Sn
	Rotations
	Conclusion
	Proofs
	Barron's Theorem (original)
	Fourier structure of invariant and equivariant functions
	Proof of thm:mainpermutationsTheoremTheorems
	Proof of thm:permutationspreciseTheoremTheorems
	Group-averaged Barron's theorem
	Proof of thm:mainrotationsTheoremTheorems


