Under review as a conference paper at ICLR 2024

DISTPAR: TENSOR PARTITIONING FOR DISTRIBUTED
NEURAL NETWORK COMPUTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing distributed training systems suffer from the difficulties of adapting to di-
verse model architectures and balancing the trade-off between computational and
communication costs. We introduce Distributed Partitioning (DistPar), a frame-
work that allows users to develop parallel models with the ease of writing single-
device programs. We establish the basic properties of tensor partitioning, which
significantly expand the search space for optimal parallel strategies. The process
of distributing global tensors from a single-device perspective is driven by the in-
novative use of collective communication primitives and their extensions which
represent conversions between arbitrary tensor distribution properties. To further
address the challenge of parallel scheme optimization, we carry out a cost func-
tion that considers both computational and communication costs. Guided by the
cost function, the best-performing parallel scheme is automatically selected with
configurable parameters, thus simplifying the process of developing parallel mod-
els. We demonstrate state-of-the-art results on extensive experiments. Moreover,
DistPar reaches 50% higher throughput in large-scale face recognition tasks and
a 20% improvement in language modeling tasks compared with data parallelism
provided by PyTorch. This performance improvement aligns with the expected
speedup and is particularly notable as the number of computing devices increases.
The code will be released at https://github.com/DistPar.

1 INTRODUCTION

In recent years, deep learning has been widely applied in many fields such as image, speech, and
natural language processing (Angelova et al., 2015 Ba et al., 2015} [Frome et al., |2013} |Gonzalez-
Dominguez et al., 2015; |[Hinton et al.| 2012} [Heigold et al., 2013} |Karpathy et al., 2014; |Le| 2013;
Maddison et al., 2015). With the increasing demand for training efficiency and data processing
capabilities of deep learning, single-device training systems, although useful in certain scenarios,
may struggle to meet the requirements. Hence, the distributed training approach has become an
effective way to improve computing power constantly.

Distributed deep learning’s performance relies primarily on efficient collective communication to
adapt to different given computational devices (Yuan et al.| |2022; |Lepikhin et al., [2020). Existing
deep learning parallelism libraries have made great efforts on it. Typically, parallelization strategies
in the context of distributed deep learning include two main aspects: data parallelism and model
parallelism. Data parallelism, the former, entails the further subdivision of a mini-batch of data,
subsequently distributed across computational nodes, which facilitates the training of substantial
volumes of data (Baruah et al.l [2022} Shallue et al., 2018; [Nguyen & Wahib| 2021} Herlihy et al.,
20215 |[Krizhevsky, [2014). Model parallelism, the latter, is conventionally applied to partition neural
networks into segments that are subsequently deployed across computational nodes (Dean et al.,
2012 Narayanan et al.,|2021; Huang et al., 2018; |Harlap et al., 2018; |Shoeybi et al., 2020; Xu et al.},
20215 [Wang et al.l 2021; Bian et al., [2021a). Based on the parallelism strategies mentioned, we
believe a comprehensive approach that aggregates them with each other, enables faster computation
and efficient utilization of computational devices.

Existing parallelism libraries like Pytorch, its DistributedDataParallel interface is challenging to
users, because it requires users to design the communicative module of parallelism strategies man-
ually. Hence, it’s necessary for us to design a set of parallel operation semantics from the bottom to
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achieve an end-to-end structure so that users can handle parallel training tasks on multiple devices
with the same ease as a single device.

Our unified strategy, DistPar, introduces a set of tensor partitioning attributes aimed at instructing the
allocation of global logical tensors to specific physical devices—referred to as physical tensors for
simplicity. DistPar merges these devices into a coherent logical supercomputer, allowing developers
to handle parallel training tasks on multiple devices as simply as a single device. This enhanced
accessibility for individual users, so they can focus on more top-level design.

The process of distributing global tensors from a single-device perspective is driven by the inno-
vative use of collective communication primitives and their extensions which represent conversions
between arbitrary tensor distribution properties. This capability is integrated into DistPar through
the inclusion of pass layers. Therefore, DistPar effectively enhances the extensibility, enabling to be
adaptive to different model structure and computational device.

To further address the challenge of parallel scheme optimization, DistPar assesses the cost in a
comprehensive manner, which combines the conversion of parallel attributes across various paral-
lelization strategies. At the meantime, to simplify the process of designing and selecting the best
scheme, we provide a configurable parameter so that users can easily optimize computational cost
and communication cost collaboratively and automatically. Evidently, the cost design helps users to
adapt to different computational devices and design their own parallelism program easily.

The overall contributions are as follows:

e We present a novel tensor partitioning strategy, DistPar, aimed at generating a comprehensive
range of parallelization strategies.

e We employ meticulously designed intermediate primitives to facilitate the automatic transforma-
tion of distributed properties within the context of physical tensors. These mechanisms naturally
support arbitrary parallelization combinations.

e We introduce cost hyperparameter to generate different parallelization strategies, enabling the user
to evolve the selection of optimal parallelization schemes.

e We prove that DistPar attains state-of-the-art performance in standard benchmark assessments.

2 RELATED WORKS

Numerous distributed parallelism strategies exist, with data parallelism and model parallelism being
as the most widely adopted approaches.

Data parallelism involves dividing a mini-batch of data into smaller segments and distributing them
to different computational nodes (Baruah et al., 2022} |Shallue et al.,|2018;|Nguyen & Wahib} 2021}
Herlihy et al.| [2021}; Krizhevskyl [2014). In data parallelism (Krizhevskyl 2014)), each device retains
a complete copy of the distributed neural network (DNN) model and processes a portion of the en-
tire training dataset. This approach enables the training of large datasets, thereby enhancing both
the scale and speed of training. However, data parallelism introduces inter-device communication
overhead during the synchronization process when model weights are updated. This issue can be-
come more apparent as the model size increases, which poses some challenges to the scalability and
compatibility of data parallelism.

Model parallelism offers an alternative to data parallelism by directly partitioning DNN models
across devices. With model parallelism (Kingma & Bal 2017} |[Fang et al., 2023)), weight parameters
within the model are distributed among the available workers, which are typically GPUs. This
approach consists of two main components: tensor parallelism and pipeline parallelism.

Tensor parallelism involves splitting tensors across an array of devices, typically occurring between
the forward and backward propagation phases (Shoeybi et al, 2020} Xu et al.l |2021; [Wang et al.,
20215 Bian et al., 2021a; Wang et al., [2021}; Bian et al., 2021b; |(Cannonl [1969; Berntsen, [1989;
van de Geijn & Watts| [1995; [Solomonik & Demmel, 2011). Megatron-LM(Shoeybi et al., [2020)
introduced 1D tensor parallelism, which divides the linear layer along either the column or row
dimensions. When employing tensor parallelism, communication tends to be frequent, and the data
volume transferred during these communications is often substantial.

Pipeline parallelism divides the model on a layer basis, occurring at the junction of adjacent
stages (Huang et al., 2018}, [Harlap et al., 2018} |L1 & Hoefler, 2021). Recent developments, such



Under review as a conference paper at ICLR 2024

as GPipe(Huang et al., |2018)), have introduced pipeline parallelism, which involves synchronous
weight updates. In this case, communication remains frequent but typically involves smaller data
volumes. Due to the inherent characteristics of pipeline parallelism, amounts of device idle time
called bubbles are generated.

Comparison. To reduce communication volume, tensor parallelism is preferred. Meanwhile, to im-
prove peer-to-peer communication, pipeline parallelism is a suitable choice. However, it is equally
important to note that bubbles cost a significant amount of time. To mitigate this, it is recommended
to limit the number of pipeline stages to the number of micro-batches. In practice, when the level of
tensor parallelism matches the number of devices, performance tends to reach its peak.

Other optimized strategies, as demonstrated in previous studies (Jia et al.,|2018azb), concentrate on
tensor-related refinements along multiple axes to determine the most optimal parallelization strategy.

Achieving high throughput at a large scale demands innovative and intricate design across various
facets. This includes the intelligent partitioning of computational graphs onto devices to minimize
data transfer over the network while minimizing device idle time. It also involves the implementation
of communication optimizations specific to the domain.

Unified strategy. Based on the comparisons mentioned earlier, we conclude there is an impera-
tive need for a unified strategy that amalgamates various advantages. A commonality observed in
existing parallelization strategies is the shared goal of optimizing the utilization of computational
resources and enhancing overall computational efficiency. However, it is crucial to acknowledge
that a single parallelization strategy often struggles to meet the efficiency requirements of complex
business models. These individual parallelization strategies fall short in planning and executing the
global logical computational graphs effectively. Therefore, a holistic approach to the entire process
is necessary. We have identified three key indicators—accessibility, compatibility, and communica-
tion cost—as crucial elements to facilitate comprehensive considerations.

3 METHODOLOGY

This section establishes the theoretical foundation for subsequent experiments detailed in Section
We also introduce the proposed intermediate primitives designed to optimize model communi-
cation cost. Moreover, we illustrate complex operations using intermediate primitives. To be clear,
we induce the transformations of distributed properties, offering a comprehensive perspective on
distributed computation and collective communication. Finally, we employ partition analysis to
quantitatively assess associated expenses in the theory.

3.1 DISTRIBUTED PROPERTIES

Many parallelism strategies suffer from the bottleneck to be adaptive to different model structures
and computational devices, so we need to design parallelism operation semantics from the bottom
of the distributed training system. In this way, we can satisfy arbitrary parallelism strategies and
their extensions. Distributed properties involve various parallel-related terms, with the goal of mod-
eling global distributed computation by parameterizing operator deployment schemes. Within the
modeling framework, developers have access to flexibly construct algorithmic models and configure
distributed attributes according to their preferences. Formally, distributed properties are defined as
a set of parameters associated with primitive operators. Their core framework involves the registra-
tion of operators along with their distributed attribute signatures. Here, we define the framework and
further explain it with a qualitative analysis. Specifically, we discuss four key distributed properties:
Placement, Scatter, Broadcast, and PartialReduce.

Placement of each operator in the logical graph specifies the devices where logical operators will
be deployed. In the case of common data parallelism, all operators are deployed to all devices.
Logically, all operators are designed to run on a single device, but in practice, they operate on
different devices based on their placement configuration.

Broadcast is a procedure that involves sending the complete data of a logical tensor to all other
computational nodes in the cluster, resulting in the creation of physical tensors that are copies of the
logical tensors. Its process ensures that each physical operator has access to the entire dataset stored
in the logical tensor. For convenience, we denote the Broadcast attribute as B.
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Scatter involves splitting data from a logical tensor into chunks and sending these chunks to devices
in a certain order. This creates local physical tensors. The Scatter property is characterized by a
single parameter for partitioning, denoted as S(0) for horizontal slicing and S(1) for vertical-axis
slicing. Scatter represents a one-to-multiple distribution similar to Broadcast. Their distinction is
that Broadcast sends identical copies to all devices, whereas Scatter sends different chunks to each
device. For simplicity, we denote Scatter as S.

PartialReduce signifies that the physical and logical tensors have matching shapes, but the values
in the physical tensors constitute a subset of those in the logical tensors. Figure [Ifa) illustrates
the characteristics of PartialReduce. The complete global logical tensor can be reconstructed by
reducing the physical tensor at the target location across all devices. Logically, the global logical
tensor Y is obtained by the logical tensors U and V. However, in the physical implementation,
component Uy of logical tensor U, sliced by S(1), and component V of logical tensor V, with S(0),
are deployed on device 0. They are utilized to execute the corresponding operator, yielding the local
physical tensor Y. Meanwhile, we use the same operation to obtain Y;. Consequently, Y can be
reconstructed by reducing Yj and Y;. Furthermore, Yy, Y7, and Y share an identical shape.

3.2 CONVERSIONS OF DISTRIBUTED PROPERTIES

This section derives the intermediate primitives and their variants, such as complex operation con-
struction, and conversions between distributed properties, and also mentions the crucial intermediate
primitives for converting diverse distributed attributes and evaluating the associated communication
cost. The optimal parallel strategy selection relies on minimizing communication overhead. Con-
verting tensor distributed attributes between devices incurs overhead, except when executed on the
same device, in S2P, which eliminates communication costs. However, cross-device communi-
cation cost in conversions is proportional to the size of the logical tensor T. Furthermore, induced
from the modeling, we introduce existing intermediate primitives. The combinations of primitives
and various conversions between distributed properties have been shown in Appendix A.1, and the
complex operations are included in Appendix A.2.
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Figure 1: An example of a PartialReduce procedure(a), where PartialReduce is denoted as P, and the
behavior of 12P(b), 12 P is an atomic operation deploying a global logic tensor to a local reduction,
where one device places a physical tensor, a copy of the global logic tensor, other devices only place
physical tensors that have the same shape as the global logic tensor but with all values set to zero.

3.3 IMMEDIATE INFERENCE

Immediate inference involves deducing the distributed properties of the output from the attributes of
the input tensor. Table 1 in Appendix A.1 illustrates the process of directly inferrable distribution
using the matmul operator, where each case of the input’s properties is specified, and the valid
output’s distributed properties are inferred. It takes a global logical tensor as input and infers the
distributed attributes of local physical tensors across all devices. If the inference depends on the
assistance of intermediate primitives, we select the most cost-effective primitive to insert between the
input and the local physical tensor beforehand. When two adjacent operators establish a producer-
consumer relationship and the distributed properties of the output tensor from the producer operator
do not align with the properties required by the consumer operator, DistPar needs to dynamically
derive intermediate transformation primitives. These primitives are automatically inserted between
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the producer and consumer operators through the pass layers to ensure alignment. We present an
example of inferring the intermediate primitive AllGather in Appendix A.1.2

3.4 CoOST DESIGN

The overall cost is evaluated based on both computational cost and communication cost. To be
specific, in order to optimize computational cost and communication cost collaboratively, we need
to characterize the trade-off between them. Therefore, we introduce the ratio of computational cost
to communication cost, which is denoted by beta.

Computational Cost in DistPar is simplified to the sum of the elements of the input and output
tensors corresponding to different parallelization strategies, due to the fact that DistPar assumes all
parallelization strategies use the same operator library.

Communication Cost is defined as the total communications across multiple devices. In our imple-
mentation, communication cost is estimated using the conversion cost that results from the conver-
sions of distributed properties. Details are revealed in Appendix A.1.

4 EXPERIMENTS

In this section, we conduct a comparative analysis of DistPar, TensorFlow, and Pytorch to demon-
strate the effectiveness of DistPar.

4.1 SYSTEM PERFORMANCE

Setup. We conducted a comparative evaluation, analyzing ResNet-50 pre-trained on the ImageNet-
2012 dataset (Heigold et al., |2013)) for image recognition and the BERT-Base model (Karpathy
et al., |2014) for query answering in natural language processing tasks. We assessed the throughput
and speedup of these models implemented with DistPar, as well as the data parallelism libraries of
PyTorch and TensorFlow. It is worth noting that our emphasis is on system performance metrics
rather than learning objectives.
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Figure 2: Training speed for 2 models using 32-bit floats. Throughput is measured in images per
second for the ResNet-50 and in sentences per second for the BERT Base model. The fastest speed
for each model is shown in the group of green rectangles in subplots (a) and (c). Larger batch sizes
narrow the distance between DistPar’s speedup curve and the ideal curve, indicating that DistPar can
effectively leverage system scalability with large-scale datasets in subplots (b) and (d).
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Analysis. We analyze the system performance in view of throughput and speedup. On mainstream
models for various tasks, namely ResNet-50 in Figure |Zka)(b) and BERT in Figure |ch)(d), we con-
ducted a comparative evaluation on the performance of DistPar’s automatically selected parallelism
strategy against data parallelism in PyTorch and TensorFlow frameworks.

eThroughput Comparison Figure[Ja) and (c) illustrate the variation in the throughput performance
of the three libraries as the number of computational devices changes. When comparing the through-
put of DistPar-implemented ResNet-50 models with 16 and 32 computational devices, it is observed
that they outperform the suboptimal PyTorch implementation by 1500 and 2300 images/second, re-
spectively. In the case of BERT-base models, the respective throughput improvements are 500 and
750 sentences/second. As depicted in Figure[2{a) and (c), which illustrate the throughput of DistPar
across various numbers of computational devices, it’s evident that DistPar consistently outperforms
the comparative frameworks. Furthermore, this advantage becomes more obvious as the scale of
computational devices increases. These findings underscore the superior overall throughput perfor-
mance of DistPar, owing to its designed and selected global parallelization strategy in comparison
to the data parallelism strategy employed by the comparative frameworks.

eSpeedup Comparison Figure [2(b) and (d) illustrate the variation in the speedup performance of
the three libraries as the number of computational devices changes. With the increase in the num-
ber of devices, it becomes more evident that both the ResNet-50 model(b) and the BERT model(d)
implemented with DistPar(blue curve) closely approach the ideal system(black curve), while Ten-
sorFlow (green curve) follows DistPar as the next best option. For ResNet-50 model(b) and BERT
model(d), when the number of computational devices reaches 32, they achieve speedups 2 and 5
times higher than PyTorch(red curve), respectively. This indicates that when dealing with a larger
number of computational devices, the performance improvement of DistPar over PyTorch’s data
parallelism strategy becomes more notable. These results collectively highlight that, in comparison
to the baselines, DistPar exhibits enhanced system scalability. From the figure, it’s clear that Dist-
Par outperforms the existing TensorFlow and PyTorch. When batch sizes get larger, the distance
between DistPar’s speedup curve and the ideal curve is narrowed, indicating that DistPar can effec-
tively leverage system scalability with large-scale datasets, showcasing its promising adaptability.
In summary, DistPar can boost the system’s overall performance including throughput and speedup,
and achieve promising results compared with popular deep learning parallelism libraries.

4.2 HYPERPARAMETER OPTIMIZATION

Setup. This experiment demonstrates DistPar’s optimization of parallelization strategies, as Figure
[3] shows. The definition of overall cost can be found in Section [3.4} Specifically, the evaluating
environment is configured with 4 * NVIDIA GeForce GTX 1080 GPU.

70.0%

10, 3065. 35306] 64.75%
3000
60.0% Baseline 59.28%

» m DistPar
1,2163.018489] / 50.0%

—e— Lenet
—e— Alexnet

2000

40.0%

SPEEDUP

7
S
S

—e— Vgglé
—e— Mobi lenetv2 30.0%

1000

20.0%

Throughput (MB/s)

10.0% 7.48% 8.41%

64l 2.79% 2.83% 523%
¢ 2.83% 9
o001 123 1037157] 1.99% -
0 0.0% I
Lenet

0 0.01 0.1 1 10 100 max veglé
Beta

(@ (b)

o
S
S

mobilenetv2 Alexnet

Figure 3: Results of the hyperparameter optimization experiment. Since the values of beta corre-
sponding to the maximum throughput vary on different models, we can select the optimal parallelism
strategy for each model by adjusting the value of beta (a). Compared with the cost design of base-
lines that only takes communication cost into account, DistPar has notably better performance due
to its collaborative optimization on both computational cost and communication cost (b).
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Analysis. DistPar exhibits varying parallelization strategies based on the ratio of computational
cost to communication cost, denoted as the hyperparameter beta. This leads to different distribution
characteristics of input and output tensors for the operators comprising the model. For different
models, the beta value corresponding to the maximum throughput varies. For LeNet, AlexNet,
Vggl6, and MobileNetV2, the beta values corresponding to their respective maximum throughputs
are 10, 1, 0.1, and 0.01, with the corresponding speedup percentages being 7.48%, 64.75%, 2.83%,
and 8.41%. The results highlight that DistPar adapts its parallelization strategy based on beta, re-
sulting in different throughput outcomes. It is worth noting that the beta value corresponding to the
maximum throughput is not consistent with the baseline which only considers the communication
cost. This implies that, compared to a baseline approach that only considers communication cost,
DistPar effectively leverages both computational and communication costs to guide its paralleliza-
tion strategy selection. In summary, DistPar empowers users to optimize parallelization strategies
for different models by fine-tuning the hyperparameter beta. This enables the selection of the paral-
lelization strategy that corresponds to the maximum throughput for each model.

4.3 SCALABILITY ANALYSIS

Setup. In order to observe the DistPar’s implementation of the large-scale face recognition insight-
face model, we conduct a series of separate experiments. The throughput on the insightface model
was evaluated on different batch sizes and the number of categories. The configured with 8 GPUs of
NVIDIA Tesla V100, FP32. Moreover, data parallelization with Broadcast and model paralleliza-
tion with S1. To explore more cases, we vary the batch size and parallelization options for the fully
connected layer of the last layer of the insightface model. As shown in Figure ]
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Figure 4: Performances of DistPar, data parallelization, and model parallelization, with batch_size
fixed to 8 and 64. As the number of categories and the batch size vary, DistPar shows an identical
pattern of prioritizing data parallelism when the number of categories is small and tends to select
model parallelism when it is gradually increasing. DistPar can outperform data parallelism by 120%
and 50% within batchsize fixed to 8 and 64 respectively, which confirms that DistPar is able to auto-
matically plan and select the better parallelization scheme that is adaptive to different computational
resources according to different tasks.

Analysis. Based on the Insightface model structure for face recognition tasks, we analyze the impact
of changes in the number of categories on the selection of DistPar parallelization strategies. When
the number of categories is small, data parallelism performs similarly to model parallelism and main-
tains a relatively good performance. However, as the number of categories increases, the throughput
of data parallelism decreases. On the other hand, the performance of the model parallelism strat-
egy remains stable. For DistPar, when the number of categories is low, it favors data parallelism.
However, as the number of categories increases, DistPar tends to choose model parallelism as the
overall strategy. These experimental results confirm that DistPar has the capability to select the op-
timal parallelization strategy that matches different numbers of categories effectively. Furthermore,
we analyze the impact of batch size on the selection of DistPar parallelization strategies. When the
batch size is small, DistPar exhibits better compared to data parallelism and model parallelism. As
the batch size increases, the performance of DistPar remains competitive with model parallelism.
It’s worth noting that when the batch size is 128, DistPar’s performance is slightly lower than that
of model parallelism. However, by adjusting the hyperparameter beta, DistPar can be fine-tuned to

—e—Model




Under review as a conference paper at ICLR 2024

match the performance of model parallelism. These experimental results confirm that DistPar can
adapt to different batch sizes and select the optimal parallelization strategy accordingly.

4.4 OPTIMIZATION SPACE

Setup. We conducted comparative experiments on the last three fully connected layers of the
VGG16 network using DistPar with the manual configuration strategy provided by PyTorch, which
involves a potential combination of all parallel strategies, DistPar implements an optimal paralleliza-
tion strategy suitable for the last three layers.

Analysis From the experiments, the throughput of the data parallelism strategy DDD configured in
PyTorch is the lowest, as shown in Figure 5] By introducing some degree of model parallelism,
the overall performance of VGG16 is improved. Considering the large dimension of the first fully
connected layer, configuring it with the SO parallelization strategy yields favorable results. The
results indicate that the manually configured optimal parallelization strategy in PyTorch is RCR,
confirming that the SO parallelization strategy is best suited for the first fully connected layer.

veg

Throughput(MB/s)

R CCR RCC CRR CCC CRC RRR RRC RCD CRD RRD CCD RDR RDC CDR CDC RDD CDD DCR DCC DRR DRC DCD DRD DDR DDC DDD

Parallelism strategies

Figure 5: Performance evaluation of all possible parallelism strategies. where ”Auto” describes
the DistPar strategy, "R” represents SO parallelism, ”C” represents S1 parallelism, and ”D” repre-
sents data parallelism. Specifically, the PyTorch configuration using the RCR parallel strategy, as
illustrated in the figure, describes the optimal setup: the first fully connected layer employs SO par-
allelism, the second layer utilizes S1 parallelism, and the third layer again adopts SO parallelism.

Compared to the manually configured PyTorch parallelization strategy, the DistPar strategy exhibits
significant performance improvements. In PyTorch’s manual configuration approach, only the dis-
tributed attributes affecting variable operations are determined, while the parallelization strategy
for intermediate tensors remains undetermined. Meanwhile, DistPar has the capability to compre-
hensively select and optimize parallelization strategies for intermediate tensors, analyzing operators
within the backward computation graph to determine the best parallelization strategy. In contrast to
Pytorch’s manual configuration approach, DistPar has a larger search space. In summary, compared
to manually configured PyTorch parallelization strategies, DistPar yields superior performance, re-
sulting from DistPar’s larger search space and its optimization capabilities.

4.5 PRIMITIVE-LEVEL OPTIMIZATION

Setup. DistPar offers multiple implementations for the same parallelization strategy. For exam-
ple, as shown in Figure 3(b) (see Appendix A.3), the S2B transformation can be realized using
both the AllGather approach and a combination of Gather and Broadcast. In order to investigate
how DistPar’s use of different implementations for the same parallelization strategy affects system
throughput performance, we evaluated the throughput performance of various collective communi-
cation operations, including ReduceScatter, AllGather, and AllReduce, as they vary with the scale of
computational devices, using the Enflame-CloudBlazer T10-16GB DCU in the same environment.

Analysis. In Figure[6] the results indicate that different communication primitives exhibit various
throughput performances at the same number of computational devices. The overall throughput
trends for all primitives show a pattern of initial decline followed by stabilization as the scale of
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computational devices increases. When there are 8 devices, the throughput of AllGather is 10.36
and 12.40 times higher than ReduceScatter and AllReduce, respectively. This suggests that when the
number of computational devices is relatively low, significant performance differences exist among
different communication primitives. As the number of devices increases to 320, these differences
are reduced to 1.03 and 1.0, respectively, indicating that the performance gap between different
primitives gradually narrows with the growth in the number of computational devices. This exper-
iment confirms that, when the number of computational devices is low, DistPar exhibits significant
performance variations based on different communication primitives, expanding the candidate space
for selecting the optimal strategy for the same parallelization strategy. When the number of com-
putational devices is high, DistPar’s implementations based on different communication primitives
for the same parallelization strategy tend to have stabilized performance differences, highlighting
DistPar’s ability to select the most stable and highest throughput implementation when there are a
significant number of computational devices.
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Figure 6: The throughputs for data parallelism with different tensor partition options in DistPar.
This figure illustrates throughputs of varied intermediate primitives are different under the same
device. Notably, throughputs for all primitives initially drop before plateauing. This decline is
due to the reduced communication bandwidth between devices as the parallel width of collective
communication widens, leading to less bandwidth utilization by individual intermediate primitives.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we propose DistPar, a unified approach for efficient tensor partitioning in parallel
computation of neural networks, and describe the methodology of determining solution spaces for
attribute conversions in distributed training systems. The results indicate that the proposed ten-
sor partitioning approach of DistPar supports flexible combinations of various parallelism strate-
gies. Furthermore, under the collaborative guidance of computational cost and communication cost,
DistPar enables users to select the parallelism strategy that yields the maximum throughput cor-
responding to different models. Hence, we believe DistPar is very promising in related domains.
However, there are potential limitations that need to be considered. We qualitatively discuss the
relationship between cluster communication performance and parallel width. As the parallel width
n of collective communication increases and the input data size |T'| remains constant, both the total
communication volume across devices and the memory savings on each device grow proportionally.
The time required for a specific collective communication is not affected by the parallel width n.
Consequently, as n increases, DistPar can utilize a bandwidth of size (n — 1) x |T'| for inter-device
communication. This benefits in two ways: Firstly, each device can process a smaller data portion,
I—Z:I, leading to faster computation; Secondly, memory savings increase by (n — 1) x |T'|, thus future
work needs to build the model of communication efficiency and communication bandwidth through
experimental simulation.
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