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Abstract
Federated learning (FL) has emerged as an impor-
tant machine learning paradigm where a global
model is trained based on the private data from
distributed clients. However, federated model can
be biased due to the spurious correlation or distri-
bution shift over subpopulations, and it may dis-
proportionately advantage or disadvantage some
of the subpopulations, leading to the problem of
unfairness and non-robustness. In this paper, we
formulate the problem of multi-level fairness and
robustness on FL to train a global model perform-
ing well on existing clients, different subgroups
formed by sensitive attribute(s), and newly added
clients at the same time. To solve this problem,
we propose a unified optimization objective from
the view of federated uncertainty set with theo-
retical analyses. We also develop an efficient fed-
erated optimization algorithm named Federated
Mirror Descent Ascent with Momentum Accelera-
tion (FMDA-M) with convergence guarantee. Ex-
tensive experimental results show that FMDA-M
outperforms the existing FL algorithms on multi-
level fairness and robustness.

1. Introduction
Federated learning (FL) has emerged as an important ma-
chine learning paradigm where distributed clients (e.g., a
large number of mobile devices or several organizations)
collaboratively train a shared global model while keeping
private data on clients (McMahan et al., 2017). However,
federated model can be biased because of possible spurious
correlation and distribution shift over data subpopulations.
As a result, the model performance may degrade signifi-
cantly on some data subpopulations and bring the problem
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Figure 1. Illustration of three levels in fair FL scenario. (a) client-
level fairness: P (Y = Ŷ |ci) = P (Y = Ŷ |cj) for ∀ i, j; (b)
attribute-level fairness: P (Y = Ŷ |ai) = P (Y = Ŷ |aj) for ∀ i, j;
(c) agnostic distribution fairness: P (Y = Ŷ |c′i) = P (Y = Ŷ |c′j)
for ∀ i, j. The groups are formed by existing clients index, sensi-
tive attribute(s), and index of newly added clients with unknown
distribution, respectively.

of unfairness and non-robustness, which becomes an in-
creasing concern, especially in some high-stakes scenarios
such as loan approvals, healthcare, etc (Kairouz et al., 2019).
How to train an unbiased federated model with fair and
robust performance is of paramount importance, and has
become an important research theme in recent years (Mohri
et al., 2019; Li et al., 2019a; Wang et al., 2021).

It is unfair that the federated model disproportionately ad-
vantages or disadvantages some of the clients, since the
purpose of clients participating in FL is to get a better model
(client-level fairness, Fig. 1(a)). Motivated by it, recent
research mainly focus on encouraging the federated model
to have similar performance over different clients (Mohri
et al., 2019; Li et al., 2019a; Wang et al., 2021). However,
a federated model trained by client-level method may still
suffer from ethical issues in real applications due to neglect
of fairness at other levels. For example, consider a scenario
that several banks (clients) participate in FL to collabora-
tively train a loan approval model. Different banks will
have different customer demographic compositions (formed
by sensitive attribute(s), such as gender). Consider a feder-
ated model trained by client-level method, which can treat
different banks fairly. Although the model may perform
well on male subpopulation, it is also unfair that the model
cannot make accurate decision for female subpopulation
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(attribute-level fairness, Fig. 1(b)). Moreover, the fairness
of federated model on those banks that newly participate
in FL (agnostic distribution fairness, Fig. 1(c)) is also not
guaranteed. A model violating any of the above fairness
may lead to serious ethical problems, which naturally leads
us to ask: Can we propose a unified FL framework to train
a federated model achieving client-level, attribute-level and
agnostic distribution fairness at the same time?

In fact, a model with good fairness (e.g. a model with similar
performance among subpopulations) yet low performance is
meaningless. The overall performance is a common metric,
but in many real applications (e.g., medical diagnosis and
credit evaluations), we are more concerned about FL model
robustness, i.e. the worst-performing subpopulation.

In this paper, we focus on the problem of multi-level fairness
and robustness on FL to train a federated model perform-
ing well on all subpopulations including existing clients,
the subgroups formed by sensitive attribute(s), and newly
added clients at the same time. To address this problem,
we propose a unified risk towards fair and robust FL from
the view of federated uncertainty set (Delage & Ye, 2010;
Wiesemann et al., 2014; Duchi & Namkoong, 2017). Theo-
retically, we prove that the proposed unified risk provides
an upper bound for both client-level and attribute-level risks,
which helps to deal with complex distribution shifts and
thus guarantee fairness and robustness at multiple levels
simultaneously. We also develop an efficient federated opti-
mization algorithm named Federated Mirror Descent Ascent
with Momentum Acceleration (FMDA-M) to optimize the
proposed risk with convergence guarantee. Empirically, the
advantages of our proposed FMDA-M method, in terms of
multi-level fairness and robustness which refers to the worst
performance in groups, are demonstrated under different
kinds of distribution shift on three real-world datasets.

2. Problem Formulation
2.1. Preliminary on Federated Learning

Suppose that there are N clients in FL and each client
i ∈ {1, 2, . . . , N} is associated with a local dataset Dc

i =
{(xc

i,1, y
c
i,1), . . . , (x

c
i,nc

i
, yci,nc

i
)}, where nc

i is the sample
size of client i. Let D = {Dc

1, · · · , Dc
N} be the full dataset

with sample size n =
∑N

i=1 n
c
i . Let P c

i and P denote
the data-generating distribution of each client data Dc

i and
whole data D over X×Y, respectively. In general, the basic
goal of FL is to learn a global model with parameters θ ∈ Θ
that performs well on distribution P (in terms of average
performance) without accessing the private data of clients.

2.2. Multi-level Fairness and Robustness on FL

In this section, we first define metrics and introduce three
levels in FL setting. Then we formulate the problem of

multi-level fairness and robustness on FL.

2.2.1. FAIRNESS AND ROBUSTNESS METRICS

Suppose that the full dataset D is divided into M groups:
D = {Dg

1 , D
g
2 , . . . , D

g
M}. We let P g

i denote the data-
generating distribution of Dg

i . We first define Disparity of
a FL model across groups {Dg

i |i = 1, 2, . . . ,M} as:

Disparity =
√

1
M

∑M
i=1(Acc(D

g
i )−Avg Acc)2, (1)

where Acc(Dg
i ) is the predictive accuracy on group Dg

i , and
Avg Acc = 1

M

∑M
i=1 Acc(Dg

i ). In this paper, following
the difference principle on distributive justice and stabil-
ity (Rawls, 2001), we view the performance of federated
model as the resource which is supposed to be allocated into
groups fairly. Specifically, we define fairness by Disparity,
and the smaller Disparity, the fairer of a FL model.

Besides, we are also concerned about FL model robustness.
Robustness in FL refers to the performance of the worst
group with the following definition:

Robustness = min
i

Acc(Dg
i ). (2)

In this paper, we focus on improving both the fairness (in
terms of Disparity) and Robustness of the FL model.

2.2.2. MULTIPLE LEVELS IN FEDERATED SETTING

Suppose that the groups {Dg
1 , D

g
2 , . . . , D

g
M} are formed by

a given sensitive variable S. Note that the sensitive variable
S can be defined flexibly, and different sensitive variables
S correspond to different problems. In this paper, we focus
on the following three common cases: 1) client level: S
specified as the index of existing clients; 2) attribute level:
S specified as sensitive attribute; 3) agnostic distribution:
S specified as the index of (potential) newly added clients
with agnostic distribution. We argue that a model violating
any of the above fairness/robustness definitions may lead
to serious ethical problems in reality, which motivates us to
achieve multi-level fairness and robustness simultaneously.

2.2.3. MULTI-LEVEL FAIRNESS AND ROBUSTNESS

Now we propose a novel and meaningful problem as below:

Problem 1 (Multi-level Fairness and Robustness on FL).
Let the sensitive variable S be specified as existing client
index c, the protected attribute(s) a, and newly added client
index ad, respectively, then the dataset D can be split into
groups {Dc

k|k = 1, 2, . . . ,M c}, {Da
k |k = 1, 2, . . . ,Ma},

and {Dad
k |k = 1, 2, . . . ,Mad}, respectively. The task is

to learn a federated model with small Disparity and large
Robustness on {Dc

k}, {Da
k}, and {Dad

k } simultaneously.
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3. Unified Risk and Federated Optimization
In this section, we first propose a unified risk to guarantee
multi-level fairness and robustness on FL. Then we develop
an efficient federated optimization algorithm for it.

3.1. Unified Risk for Multi-level Fair and Robust FL

The essential issue of the existing single-level methods (in-
cluding client level and attribute level) lies in the cases they
consider are not bad enough, so that they cannot deal with
complex distribution shifts or spurious correlation. From
the view of distributionally robust optimization (DRO), we
should construct a wide enough uncertainty set that not only
contains the client level and attribute level, but also contains
the worse cases to help to adapt to newly added clients.

As one possible way, we specify S as the combination of the
client index and the given sensitive attribute(s). Specifically,
we divide the local dataset Dc

i of client i into subgroups
Dc

i = {Du
i,1, D

u
i,2, . . . , D

u
i,Mi

} and consider the potential
distribution shifts over them, where Mi is the number of
subgroups on client i. Suppose that the samples of Du

i,k are
drawn from the distribution Pu

i,k. Then we define:

Runified(θ) := sup
Q∈Qu

{
E(x,y)∼Q[ℓ(θ, (x, y))]

}
,

Qu :={
∑N

i=1

∑Mi

k=1
λu
i,kP

u
i,k : λu ∈ ∆M−1},

(3)

where M =
∑N

i=1 Mi is the total number of subgroups and
λu
i,k is the weight of k-th subgroup on client i.

3.2. Tractable and Efficient Federated Optimization

To optimize the proposed risk, we first introduce the em-
pirical risk on k-th group of client i defined as fi,k(θ) :=
E(x,y)∼P̂u

i,k
[ℓ(θ; (x, y))], where P̂u

i,k is the empirical dis-
tribution over samples of group Du

i,k. Then, with the
techniques of DRO (Wiesemann et al., 2014; Duchi &
Namkoong, 2017; Namkoong & Duchi, 2016), the prob-
lem of minimizing the risk in Eq. (3) can be rewritten as:

min
θ

max
λu∈∆M−1

{F (θ,λu) :=
∑N

i=1

∑Mi

k=1 λ
u
i,kfi,k(θ)}, (4)

To solve this minimax problem, we can alternately optimize
model parameters θ and weights λu. Instead of gradient
ascent, we adopt mirror ascent method to update λu. It is
impractical to naively extend the mirror method to federated
setting, since frequent communication is not allowed in FL.
So we use an estimation technique to execute mirror update.
Besides, we choose the negative entropy function h(x) =∑n

i=1 (xi lnxi − xi) for simplified calculation. Then we
can update λu as the following:

(λu
i,k)

(r+1) =
(λu

i,k)
(r)eγEv

(r)
i,k∑N

i=1

∑Mi

k=1(λ
u
i,k)

(r)eγEv
(r)
i,k

, (5)

where r is global communication round, E is the number of
local iterations, γ is stepsize, and vi,k is loss of subgroup
Du

i,k. The proposed update rule makes our algorithm more
practical by significantly reducing computation complexity
and communication cost.

Since communication costs are the principal constraint in FL
(McMahan et al., 2017), we explore to further improve the
convergence rate of the above federated algorithm by lever-
aging momentum acceleration techniques (Nesterov, 1983;
Li et al., 2017; Ochs, 2018). Specifically, we additionally
update model parameters as below:

θ(r+1)E = θ̃(r+1)E + βθ(θ̃
(r+1)E − θ̃rE), (6)

and update group weights according to the following rule:

(λu)(r+1) = (λu)(r) + βλ((λ̃
u)(r+1) − (λu)r), (7)

where βθ and βλ are momentum coefficients. The second
terms of step (6) and step (7) are momentum terms, which
contains historical gradient information and helps speed up
the convergence of our algorithm.

The details of Federated Mirror Descent Ascent with Mo-
mentum Acceleration (FMDA-M) are in Appendix.

4. Theoretical Analysis
In this section, we provide theoretical analysis for our pro-
posed unified risk and convergence guarantee for FMDA-M.

Theorem 4.1. Let P̂ c
i , P̂ a

i and P̂u
i,k be the empirical distri-

butions over samples of local dataset Dc
i , Da

i , and group
Du

i,k respectively, Q̂c := {
∑N

i=1 λ
c
i P̂

c
i : λc ∈ ∆N−1}

be the client-level uncertainty set, Q̂a := {
∑A

i=1 λ
a
i P̂

a
i :

λa ∈ ∆A−1} be the attribute-level uncertainty set, and
Q̂u := {

∑N
i=1

∑Mi

k=1 λ
u
i,kP̂

u
i,k : λu ∈ ∆M−1} be the uni-

fied uncertainty set. We have

Q̂c ⊆ Q̂u, Q̂a ⊆ Q̂u. (8)

Moreover, let R̂client(θ), R̂attribute(θ) and R̂unified(θ) be
the empirical risks based on uncertainty sets Q̂c, Q̂a and Q̂u

respectively. We have

R̂client(θ) ≤ R̂unified(θ), R̂attribute(θ) ≤ R̂unified(θ). (9)

Furthermore, assume that ∃ i and k, and j (j ̸= i) s.t. the
attribute of samples from Du

i,k is same as Du
j,k but P̂u

i,k ̸=
P̂u
j,k, and P̂u

i,k ̸= P̂ c
l for ∀ l, then we have

(Q̂c ∪ Q̂a) ⊊ Q̂u. (10)

See Appendix for the proof. Theorem 4.1 shows that both
client-level and attribute-level uncertainty sets are subsets
of our proposed unified uncertainty set. Therefore, our
proposed risk (3) provides an upper bound for both client-
level risk and attribute-level risk, thereby optimizing it can
guarantee client-level fairness and attribute-level fairness si-
multaneously. Actually, our proposed risk also considers the
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worse cases that the set union of client-level uncertainty set
and attribute-level uncertainty set does not contain, which
helps to deal with more complex distribution shifts and adapt
to those newly added clients with agnostic distributions.

Theorem 4.2. Let Ru
i,j(θ) := E(x,y)∼Pu

i,j
[ℓ(θ; (x, y))]

be a risk defined on Du
i,j , λu ∈ ∆M−1 be the group

weights, M be the total number of groups, R̄u(θ) be the
average of group risks, di,j := (Ru

i,j(θ) − R̄u(θ))2 and
Var(Ru

i,j(θ)) := 1
M

∑N
i=1

∑Mi

j=1 di,j be the variance of

group risks. If ∥Mλu − 1∥22 ≤ min
i,j

{
∑N

i=1

∑Mi
j=1 di,j

di,j
}, then

there exists a constant C > 0 such that

Runified(θ) = R̄u(θ) + C
√

Vari∈[N ],j∈[Mi](R
u
i,j(θ)). (11)

See Appendix for the proof. The theorem above shows that
our proposed risk Runified can be viewed as a combination of
the average risk that helps improve the average performance
and the variance term that encourages the model to have a
uniform performance across different subgroups.

Theorem 4.3. Suppose that each function fi,k is convex and
L-smooth, global function F is linear in λ and L-smooth
and the gradient w.r.t. θ and λ, model parameters θ, the
variance of stochastic gradient method w.r.t. θ and λ are
bounded. If we optimize (4) using FMDA-M algorithm
with local iterations E = O(T

1
4 ), learning rate for model

parameters η = O(T− 1
2 ) and stepsize for group weights

γ = O(T− 1
2 ), and then it holds that

εT ≤ O(T− 1
2 ). (12)

See Appendix for the proof. Here we give the convergence
rate of the proposed FMDA-M algorithm in convex setting.

5. Experiments
In this section, we validate the effectiveness of our method
on a real-world, large-scale, and challenging dataset. Addi-
tional experiment results and discussion are in Appendix.

5.1. Experimental Setup

Federated Dataset. We use ACS (Ding et al., 2021), which
is collected from US Census surveys and consists of more
than 1,500,000 samples. The goal is to predict whether an
individual earns greater than 50,000 US dollars a year. We
consider 50 states as clients in FL and choose gender as the
sensitive attribute. We also evaluate different methods on
Fashion-MNIST (Xiao et al., 2017), Digit-Five (Xu et al.,
2018; Peng et al., 2019; Zhao et al., 2020), and Adult (Dua
& Graff, 2017) datasets, and the details are in Appendix.

Evaluation Metrics. We evaluate models’ fairness and
robustness on attribute level, client level, and agnostic distri-
bution. In each kind of fairness, we use Disparity in Eq. (1)

Table 1. Experimental results on ASC dataset.
D: Disparity Client-level Attribute-level Agnostic
R: Robustness D R D R ∆EO D R
FedAvg[McMahan, AISTATS’17] 0.018 70.7 0.194 40.9 0.301 0.021 70.3
q-FFL [Li, ICLR’20] 0.017 71.4 0.188 41.7 0.291 0.022 70.9
TERM [Li, ICLR’21] 0.017 71.3 0.191 41.2 0.297 0.022 71.1
DRFA [Deng, NeurIPS’20] 0.017 71.8 0.194 40.8 0.303 0.020 71.8
FADE [Hong, KDD’21] 0.021 67.8 0.022 73.1 0.023 0.024 65.2
IndA (Individual-level) 0.018 70.4 0.172 43.5 0.272 0.021 71.6
FMDA-M (Ours) 0.017 72.1 0.019 74.3 0.021 0.019 72.7

to measure the degree of fairness, and use Robustness in
Eq. (2) to measure the robustness. Besides, we also report
Equalized Odds (EO) at attribute level. The average accu-
racy of the models are similar/comparable for all algorithms,
and reported in appendix.

Baselines. We compare the proposed FMDA-M algorithm
with the following baselines: (i) FedAvg (McMahan et al.,
2017): FedAvg is a commonly used algorithm in FL, which
minimizes an average risk. (ii) q-FFL (Li et al., 2019a)
(client level). (iii) TERM (Li et al., 2020) (client level). (iv)
DRFA (Deng et al., 2020) (client level, an improvement on
the AFL (Mohri et al., 2019)). (v) FADE (Hong et al., 2021)
(attribute level). (vi) Individual-level Algorithm (denoted
as IndA for convenience): We use the same algorithm as
FMDA-M to solve the individual-level problem with objec-
tive (13) as a compared baseline.

Results and Discussion. As shown in Table 1, our proposed
FMDA-M outperforms all baselines in terms of multi-level
fairness and robustness on FL. For client level and attribute
level, we find that FMDA-M also outperforms single-level
baselines. We think the reason is that we adopts mirror
method, which prevents the weights from being too hard
to guarantee convergence stability. For agnostic distribu-
tion, FMDA-M also perform well due to the wider feder-
ated uncertainty set. We note that the performance gap
between attribute-level method and FMDA-M on client-
level fairness/robustness is not large, because the biased
among clients may not strong enough. We also find FMDA-
M achieves low EO, since EO can be viewed as a relaxed
version of our fairness notion if S is specified as the com-
bination of target label and sensitive attribute. Individual
method is ideal but impractical since it is usually leads to
the over pessimism problem in practice.

6. Conclusion
In this paper, we formulate the goal of multi-level fair-
ness and robustness on FL, which is to achieve client-level,
attribute-level and agnostic distribution fairness and robust-
ness simultaneously. To achieve it, we propose a unified
risk based on DRO and develop an efficient FMDA-M al-
gorithm. Both theoretical analysis and experimental results
demonstrate the effectiveness of our method.
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The appendix is organized as the following: We discuss related work in Section A. We briefly state the relationship between
our proposed fairness notion and other common fairness notions in section B. In section C, we discuss an ideal but impractical
method of individual level. We present the details of FMDA-M algorithm in section D. In section E, we give the proof of
our proposed theorems. At last, we provide additional experimental results and discussion in section F.

A. Related Work
Fairness in Machine Learning. Fairness in ML has attracted much attention, which can be divided into two branches:
individual fairness and group fairness (Zemel et al., 2013; Awasthi et al., 2020; Binns, 2020). Individual fairness encourages
the models to treat similar individuals similarly (Biega et al., 2018; Sharifi-Malvajerdi et al., 2019; Mukherjee et al., 2020),
while group fairness requires that the model treats different groups equally (Dwork et al., 2012; 2018). Here we mainly focus
the latter one, which is typically defined via some protected attribute(s) and a metric such as statistical parity, equalized
odds (Hardt et al., 2016), and predictive parity (Chouldechova, 2017). In this paper, we consider how to learn a fair global
model that achieves a uniform performance across groups in FL.

Federated Learning and Fairness. FL has received much attention as an important distributed learning paradigm (McMahan
et al., 2017). The scope of federated learning studies is broad, which includes statistical challenges (Zhao et al., 2018; Yu
et al., 2020), privacy protection (Truex et al., 2019), systematic challenges (Konečnỳ et al., 2016b;a; Suresh et al., 2017),
fairness (Mohri et al., 2019; Li et al., 2019a), etc (Kairouz et al., 2019; Yang et al., 2019). The existing studies of fairness
on FL can be divided into three categories: performance fairness across clients (Li et al., 2019a; Mohri et al., 2019; Deng
et al., 2020; Li et al., 2021), model fairness defined on sensitive attributes (Du et al., 2021) and incentive mechanism (Kang
et al., 2019; Zhan et al., 2020). The most relevant work is (Cui et al., 2021), which aims to address algorithm disparity
and performance inconsistency in client level. However, they focus on the client level and train a federated model with
similar performance and fairness metrics among different client, while the problem we study involves multiple levels.
Specifically, the attribute-level fairness they define is a local fairness notion (in each client), while ours is a global fairness
notion. Besides, we also pay attention to out-of-distribution fairness. In this paper, we focus on the performance fairness
across clients (including existing clients and newly added clients) and sensitive attribute(s).

Distributionally Robust Optimization. There has been a surge of interest in distributionally robust optimization (DRO),
which can deal with distribution shifts by considering a potential distribution set around the original distribution and
optimizing the worst case (Delage & Ye, 2010; Wiesemann et al., 2014). There are mainly two definitions of distance
between distributions in DRO: f -divergences and Wasserstein distance. The former method is effective when the support
of the distribution is fixed (Duchi & Namkoong, 2017; Namkoong & Duchi, 2016; Duchi & Namkoong, 2021), while
Wasserstein distance-based DRO considers the potential distributions with different supports and allows robustness to unseen
data, but is difficult to optimize (Sinha et al., 2018; Esfahani & Kuhn, 2018; Liu et al., 2021). Recently, some studies about
group DRO have emerged (Hu et al., 2018; Sagawa et al., 2020; Oren et al., 2019), which considers the distribution shifts
over groups. In this paper, we extend DRO to FL setting for unified group fairness.

B. Discussion of Fairness Notions
Note that there are a lot of fairness notions. We argue that different notions correspond to different practical meanings,
and there is no universally accepted fairness notion. Then we briefly discuss the relationship between our fairness notions
and others. First, different from Equalized Odds (EO) and so on, our fairness notion naturally supports multi-attribute
& multi-class settings, which is more practical. Then, for the binary setting, if we specify the sensitive variable S as
sensitive attribute, our notion will degrade to Accuracy Parity. If we specify the S as the combination of target label and
sensitive attribute, EO can be viewed as a relaxed version of our notion. Therefore, our notion is general and flexible. We
recommend setting S based on expert knowledge in practice.

C. Discussion of Individual-level Approach
Here we discuss an ideal but impractical way for unified group fairness by treating each sample as a group. Then, the
framework will degenerate to an individual-level fairness method with risk:

Rindividual(θ) := sup
Q∈Qind

{
E(x,y)∼Q[ℓ(θ, (x, y))]

}
,

Qind := {Q|Df (Q∥P ) ≤ r},
(13)
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where P is the data-generating distribution of full dataset D, f : R+ → R is a convex function with f(1) = 0, Df (Q∥P ) =∫
(X,Y)

f
(

dQ
dP

)
dP is f-divergence between distribution Q and P defined on (X,Y) and r is radius of uncertainty set Qind.

Note that the individual-level method is more capable of modeling the agnostic distribution by constructing a wide uncertainty
set around distribution P . Intuitively, it may help to guarantee unified group fairness.

Unfortunately, the uncertainty set defined on individual level is usually overwhelmingly large leading to the over pessimism
problem in practice (Hu et al., 2018; Sagawa et al., 2020; Liu et al., 2021). In fact, our proposed unified uncertainty set
Qu can be considered as a subset of Qind by imposing some structural constrains. Hence, By contrasting with risk (13),
our proposed risk (3) provides a relatively tight upper bound for both client-level risk and attribute-level risk, and help to
overcome this pessimism.

D. FMDA-M Algorithm
The details of our FMDA-M algorithm are summarized in Algorithm 1. FMDA-M consists of two main steps in each round:
update of model parameters (lines 2 to 15 in Algorithm 1) and update of group weights (lines 16 to 23 in Algorithm 1).

Algorithm 1 FMDA-M algorithm
Input: Number of local iterations E, total number of iterations T , number of rounds R = T/E, stepsizes η, γ, momentum
coefficients βθ, βλ, sampling size of clients K, initialized model parameters θ(0) and weight of k-th group of client i λu

i,k
(0),

k = 1, 2, . . . ,Mi, i = 1, 2, . . . , N .
1: for r = 0, 1, . . . , R− 1 do
2: Server samples a subset of clients U (r) ⊂ [N ] with size of K according to probability λc

i
(r) =

∑Mi

j=1 λ
u
i,k

(r)

3: Server samples t′ from rE + 1 to (r + 1)E uniformly
4: Server broadcasts θ(rE) and λu

i,k
(r) to corresponding client i ∈ U (r)

5: for client i ∈ U (r) do
6: Set local model parameters θ(rE)

i = θ(rE)

7: for t = rE, rE + 1, ..., (r + 1)E − 1 do
8: Select a group Du

i,k with probability λu
i,k

(r)/λc
i
(r)

9: Sample data ξ
(t)
i from Du

i,k uniformly

10: Update model: θ(t+1)
i = θ

(t)
i − η∇l

(
θ
(t)
i ; ξ

(t)
i

)
11: end for
12: end for
13: Client i ∈ U (r) sends θ((r+1)E)

i and θ
(t′)
i to the server

14: Server computes: θ̃(r+1)E = 1
K

∑
i∈U(r) θ

((r+1)E)
i

15: Server updates global model parameters with momentum: θ(r+1)E = θ̃(r+1)E + βθ(θ̃
(r+1)E − θ̃rE)

16: Server computes: θ(t
′) = 1

K

∑
i∈U(r) θ

(t′)
i

17: Server samples a subset of clients U (r)
∗ ⊂ [N ] with size of K uniformly

18: Server broadcasts θ(t
′) to client i ∈ U

(r)
∗

19: for client i ∈ U
(r)
∗ do do

20: Compute loss v(r)i,k of model θ(t
′) on a minibatch of each group Du

i,k

21: end for

22: Server computes: (λ̃u
i,k)

(r+1) =
(λu

i,k)
(r)e

γEv
(r)
i,k∑N

i=1

∑Mi
k=1(λ

u
i,k)

(r)e
γEv

(r)
i,k

23: Server updates global weights with momentum: (λu)(r+1) = (λu)(r) + βλ((λ̃
u)(r+1) − (λu)r)

24: end for
25: return θ(T ), λu

i,k
(R) (k = 1, 2, . . . ,Mi, i = 1, 2, . . . , N )
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E. Proof
E.1. Proof of Theorem 4.1

Proof. For ∀Q ∈ Q̂c, it can be expressed as follows:

Q =

N∑
i=1

λc
i P̂

c
i

=

N∑
i=1

Mi∑
k=1

λc
i

nu
i,k

nc
i

P̂u
i,k,

(14)

where nu
i,k is the sample size of group Du

i,k, nc
i is the sample size of local dataset Dc

i ,
∑N

i λc
i = 1 and λc

i ≥ 0,

i = 1, 2, . . . , N . If we let λu
i,k := λc

i
nu
i,k

nc
i

, it is obvious that
∑N

i=1

∑Mi

k=1 λ
c
i
nu
i,k

nc
i

= 1 and λc
i
nu
i,k

nc
i

≥ 0, i = 1, 2, . . . , N ,

k = 1, 2, . . . ,Mi, and thus Q ∈ Q̂u. So we have
Q̂c ⊆ Q̂u. (15)

Note that the feasible set (uncertainty set) of client-level empirical risk R̂client is a subset of that of group-level empirical
risk R̂group, so we have

R̂client(θ) ≤ R̂unified(θ). (16)

Similarly, we also have
Q̂a ⊆ Q̂u, (17)

and
R̂attribute(θ) ≤ R̂unified(θ). (18)

Let the assumption in Theorem 4.2 hold: ∃ i and k, and j (j ̸= i) s.t. the attribute of samples from Du
i,k is same as Du

j,k but
P̂u
i,k ̸= P̂u

j,k, and P̂u
i,k ̸= P̂ c

l for ∀ l. Note that P̂u
i,k /∈ Q̂c, P̂u

i,k /∈ Q̂a and P̂u
i,k ∈ Q̂u. Therefore, we have

(Q̂c ∪ Q̂a) ⊊ Q̂u. (19)

E.2. Relationship between Unified Uncertainty Set Q̂u and Individual-level Uncertainty Set Q̂ind

Our proposed unified uncertainty set Q̂u can be considered as a subset of Q̂ind imposing some structural constrains.
Compared with individual-level risk, our proposed group-based unified risk provides a relatively tight upper bound for both
client-level risk and attribute-level risk. We give theoretical analysis as the following:

Proof. For ∀Q ∈ Q̂u, it can be expressed as follows:

Q =

N∑
i=1

Mi∑
k=1

λu
i,kP̂

u
i,k. (20)

Without loss of generality, if we define convex function f(t) as f(t) := t · logt, then we have

Df

(
Q∥P̂

)
= Df

(
N∑
i=1

Mi∑
k=1

λu
i,kP̂

u
i,k∥

N∑
i=1

Mi∑
k=1

nu
i,k

n
P̂u
i,k

)

=

N∑
i

Mi∑
k

λu
i,k · log

λu
i,k

nu
i,k/n

.

(21)

So if
∑N

i=1

∑Mi

k=1 λ
u
i,klog(

n
nu
i,k

λu
i,k) ≤ r, we have Q ∈ Q̂ind and thus

Q̂u ⊆ Q̂ind. (22)
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Note that the feasible set (uncertainty set) of group-level unified empirical risk R̂unified is a subset of that of individual-level
empirical risk R̂ind, so we have

R̂unified(θ) ≤ R̂ind(θ). (23)

E.3. Proof of Theorem 4.2

Proof. Recall that the group-level risk Rgroup(θ) is defined as

Rgroup(θ) := sup
Q∈Qg

{
E(x,y)∼Q[ℓ(θ, (x, y))]

}
,

Qg := {
M∑
i=1

λg
iP

g
i : λg ∈ ∆M−1}.

(24)

With the techniques of distributional robustness optimization (Wiesemann et al., 2014; Duchi & Namkoong, 2017; Namkoong
& Duchi, 2016), the problem of minimizing the risk in Eq. (24) can be rewritten as:

min
θ∈Θ

max
λi

M∑
i=1

λg
iR

g
i (θ),

s.t.

M∑
i=1

λg
i = 1, λg

i ≥ 0.

(25)

Inspired by (Duchi & Namkoong, 2017), we introduce an instrumental variable u defined as

u := λg − 1

K
1, (26)

where λg = (λg
1, λ

g
2, . . . , λM ) and u = (u1, u2, . . . , uM ). Then the objective function of Eq. (25) can be rewritten as

M∑
i=1

λg
iR

g
i (θ)

=

M∑
i=1

uiR
g
i (θ) +

1

M

M∑
i=1

R
g
i (θ)

=

M∑
i=1

uiR
g
i (θ) + R̄g(θ)

=
M∑
i=1

ui(R
g
i (θ)− R̄g(θ)) + R̄g(θ).

(27)

With Cauchy–Schwarz inequality, we have

M∑
i=1

ui(R
g
i (θ)− R̄g(θ)) + R̄g(θ)

≤

√√√√ M∑
i=1

u2
i

√√√√ M∑
i=1

(Rg
i (θ)− R̄g(θ))2 + R̄g(θ)

=R̄g(θ) +

√√√√ M∑
i=1

u2
i

√
Var(Rg

i (θ)).

(28)

The equality is attained if and only if

ui =

√
∥u∥22∑M
i=1 di

· (Rg
i (θ)− R̄g(θ)). (29)
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Recall that ui = λg
i − 1

M , which requires that for ∀i,√
∥u∥22∑M
i=1 di

· (Rg
i (θ)− R̄g(θ)) ≥ − 1

M
. (30)

If ∥Mλg − 1∥22 ≤ min
i

{
∑M

i=1 di

di
}, then for ∀i, we have√

∥u∥22 · di∑M
i=1 di

≤ 1

M
, (31)

and thus Eq. (30) holds.

E.4. Proof of Theorem 4.3

We analyze the convergence rate of Algorithm 1 by bounding the error εT defined as:

εT = max
λu

E[F (θ̄(T ),λu)]−min
θ

E[F (θ, λ̄u(T )
)], (32)

where T is the number of total iterations, θ̄(T ) is the average of global model parameters of T iterations and λ̄u(T ) is the
average of group weights of T iterations. Before it, we first introduce some technical lemmas.

Lemma E.1. The stochastic gradient u(t) defined as

u(t) :=
1

K

∑
i∈U(⌊ t

E
⌋)

∇fi(θ
(t)
i ; ξ

(t)
i )

=
1

K

∑
i∈U(⌊ t

E
⌋)

Mi∑
j=1

λu
i,k

(⌊ t
E ⌋)

λc
i
(⌊ t

E ⌋) ∇fi,k(θ
(t)
i ; ξ

(t)
i )

(33)

is unbiased, and its variance is bounded, which implies:

E
ξ
(t)
i ,U(⌊ t

E
⌋)

 1

K

∑
i∈U(⌊ t

E
⌋)

Mi∑
j=1

λg
i,k

(⌊ t
E ⌋)

λc
i
(⌊ t

E ⌋) ∇fi,k(θ
(t)
i ; ξ

(t)
i )


=E

U(⌊ t
E

⌋)

ū(t) :=
1

K

∑
i∈U(⌊ t

E
⌋)

Mi∑
j=1

λu
i,k

(⌊ t
E ⌋)

λc
i
(⌊ t

E ⌋) ∇fi,k(θ
(t)
i )


=E

 N∑
i=1

Mi∑
j=1

λg
i,k

(⌊ t
E ⌋)∇fi,k(θ

(t)
i )

 ,

(34)

E
[
∥u(t) − ū(t)∥22

]
≤ B2

K
, (35)

where B > 0 is a constant bound.

Proof. The stochastic gradient u(t) is unbiased due to the fact that we sample the groups according to λu(⌊ t
E ⌋). The variance

term is due to the assumption in Theorem 5.1.

Inspired by (Li et al., 2019b), we introduce the gradient dissimilarity Γ defined as

Γ := sup
θ,p∈∆N−1,i∈[N ]

N∑
j=1

pj∥∇fi(θ)−∇fj(θ)∥22, (36)

where fi(θ) is the local objective of client i.
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Lemma E.2. Define δ(t) := 1
K

∑
i∈U(⌊ t

E
⌋) ∥θ(t)i − θ(t)∥22. For FMDA-M, the expected average squared norm distance of

local models θ(t)i , i ∈ U (⌊ t
E ⌋) and θ(t) is bounded as follows:

1

T

T∑
t=0

E
[
δ(t)
]
≤ 10η2E2

(
B2 +

B2

K
+ Γ

)
. (37)

where expectation is taken over sampling of devices at each iteration.

Proof. Considering rE ≤ t ≤ (r + 1)E, we have:

E[δ(t)]

=E[
1

K

∑
i∈U(⌊ t

E
⌋)

∥θ(t)i − θ(t)∥22]

≤E[
1

K

∑
i∈U(⌊ t

E
⌋)

E∥θ(rE) −
t−1∑
s=rE

η∇fi(θ
(s)
i ; ξ

(s)
i )−

(
θ(rE) − 1

K

∑
i′∈U

t−1∑
s=rE

η∇fi′(θ
(s)
i′ ; ξ

(s)
i′ )

)
∥22]

=E[
1

K

∑
i∈U(⌊ t

E
⌋)

∥
t−1∑
s=rE

η∇fi(θ
(s)
i ; ξ

(s)
i )− 1

K

∑
i′∈U(⌊ t

E
⌋)

t−1∑
s=rE

η∇fi′(θ
(s)
i′ ; ξ

(s)
i′ )∥22]

≤E[
1

K

∑
i∈U(⌊ t

E
⌋)

η2E

(r+1)E∑
s=rE

∥∇fi(θ
(s)
i ; ξ

(s)
i )− 1

K

∑
i′∈U(⌊ t

E
⌋)

∇fi′(θ
(s)
i′ ; ξ

(s)
i′ )∥22]

=η2EE[
1

K

∑
i∈U(⌊ t

E
⌋)

(r+1)E∑
s=rE

∥∇fi(θ
(s)
i ; ξ

(s)
i )−∇fi(θ

(s)
i ) +∇fi(θ

(s)
i )−∇fi(θ

(s)) +∇fi(θ
(s))

− 1

K

∑
i′∈U(⌊ t

E
⌋)

∇fi′(θ
(s)) +

1

K

∑
i′∈U(⌊ t

E
⌋)

∇fi′(θ
(s))− 1

K

∑
i′∈U(⌊ t

E
⌋)

∇fi′(θ
(s)
i′ )

+
1

K

∑
i′∈U(⌊ t

E
⌋)

∇fi′(θ
(s)
i′ )− 1

K

∑
i′∈U(⌊ t

E
⌋)

∇fi′(θ
(s)
i′ ; ξ

(s)
i′ )∥22]

(38)

Using Jensen’s inequality, we have:

E[δ(t)] ≤5η2E

(r+1)E∑
s=rE

(B2 + L2E[
1

K

∑
i∈U(⌊ t

E
⌋)

∥∥∥θ(s)i − θ(s)
∥∥∥2] + L2E[

1

K

∑
i′∈U(⌊ t

E
⌋)

∥∥∥θ(s)i′ − θ(s)
∥∥∥2
2
]

+ E[
1

K

∑
i′∈U(⌊ t

E
⌋)

∥∥∥∇fi(θ
(s))−∇fi′(θ

(s))
∥∥∥2
2
] +

B2

K
)

≤5η2E

(r+1)E∑
s=rE

(B2 + 2L2E[δ(s)] + Γ +
B2

K
).

(39)

Then we sum the above equation over t = rE to (r + 1)E to get:

(r+1)E∑
t=rE

E[δ(t)] ≤5η2E

(r+1)E∑
t=rE

(r+1)E∑
s=rE

(
B2 + 2L2E[δ(s)] + Γ +

B2

K

)

=5η2E2

(r+1)E∑
s=rE

(
B2 + 2E[δ(s)] + Γ +

B2

K

)

≤10η2E2

(r+1)E∑
s=rE

(
B2 + Γ +

B2

K

)
.

(40)
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Now we sum the above equation over r = 0 to R− 1, and we have:

1

T

T∑
t=0

E
[
δ(t)
]
≤ 10η2E2

(
B2 +

B2

K
+ Γ

)
. (41)

Lemma E.3. For FMDA-M, under the same conditions as in Theorem 5.1, for all θ, we have:

E∥θ(t+1) − θ∥22 ≤E∥θ(t) − θ∥22 − 2ηE
[
F (θ(t),λu(⌊ t

E ⌋))− F (θ,λu(⌊ t
E ⌋))

]
+ LηE

[
δ(t)
]
+ η2E∥ū(t) − u(t)∥22 + η2B2 + E∥βθ(θ̃

(t+1) − θ̃t)∥22.
(42)

Proof. According to the stochastic gradient method, we have

E∥θ(t+1) − θ∥22 =E
∥∥∥θ(t) + βθ(θ̃

(t+1) − θ̃t)− ηu(t) − θ
∥∥∥2
2

≤E∥θ(t) − ηū(t) − θ∥22 + η2E∥ū(t) − u(t)∥22 + E∥βθ(θ̃
(t+1) − θ̃t)∥22

≤E∥θ(t) − θ∗∥22 + E[−2η⟨ū(t), θ(t) − θ∗⟩] + η2E∥ū(t)∥22
+ E∥ū(t) − u(t)∥22 + E∥βθ(θ̃

(t+1) − θ̃t)∥22.

(43)

We first bound the second term in Eq. (43) by the properties of smoothness and convexity:

E[−2η⟨ū(t), θ(t) − θ∗⟩] =E
U(⌊ t

E
⌋)

 1

K

∑
i∈U(⌊ t

E
⌋)

(−2η
〈
∇fi(θ

(t)
i ), θ(t) − θ

(t)
i

〉
)


+E

U(⌊ t
E

⌋)

 1

K

∑
i∈U(⌊ t

E
⌋)

(−2η
〈
∇fi(θ

(t)
i ), θ

(t)
i − θ∗

〉
)


≤E

U(⌊ t
E

⌋)

2η
K

∑
i∈U(⌊ t

E
⌋)

[
fi(θ

(t)
i )− fi(θ

(t))
]

+ E
U(⌊ t

E
⌋)

2η
K

∑
i∈U(⌊ t

E
⌋)

[
L

2
∥θ(t) − θ

(t)
i ∥22

]
+ E

U(⌊ t
E

⌋)

2η
K

∑
i∈U(⌊ t

E
⌋)

[
fi(θ)− fi(θ

(t)
i )
]

=E
U(⌊ t

E
⌋)

2η
K

∑
i∈U(⌊ t

E
⌋)

[
fi(θ)− fi(θ

(t))
]+ E

U(⌊ t
E

⌋)

2η
K

∑
i∈U(⌊ t

E
⌋)

[
L

2
∥θ(t) − θ

(t)
i ∥22

]
=−2ηE

[
N∑
i=1

λ
(⌊ t

E ⌋)
i fi(θ

(t))− λ
(⌊ t

E ⌋)
i fi(θ)

]
+ LηE

[
δ(t)
]

=−2ηE
[
F (θ(t),λu(⌊ t

E ⌋))− F (θ,λu(⌊ t
E ⌋))

]
+ LηE

[
δ(t)
]
.

(44)
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Then we bound the third term in Eq. (43) as follows:

η2E∥ū(t)∥22

=η2E∥ 1

K

∑
i∈U(⌊ t

E
⌋)

Mi∑
j=1

λu
i,k

(⌊ t
E ⌋)

λc
i
(⌊ t

E ⌋) ∇fi,k(θ
(t)
i )∥22

=η2E

∥∥∥∥∥∥ 1

K

∑
i∈U(⌊ t

E
⌋)

∇fi(θ
(t)
i )

∥∥∥∥∥∥
2

2

≤η2
1

K

∑
i∈U(⌊ t

E
⌋)

E
∥∥∥∇fi(θ

(t)
i )
∥∥∥2
2

≤η2B2.

(45)

By plugging Eq. (44), Eq. (45) and Eq. (51) back to Eq. (43), we have:

E∥θ(t+1) − θ∥22 ≤E∥θ(t) − θ∥22 − 2ηE
[
F (θ(t),λu(⌊ t

E ⌋))− F (θ,λu(⌊ t
E ⌋))

]
+ LηE

[
δ(t)
]
+ η2E∥ū(t) − u(t)∥22 + η2B2 + E∥βθ(θ̃

(t+1) − θ̃t)∥22.
(46)

Lemma E.4. The stochastic gradient at λu generated by Algorithm 1 is unbiased, and its variance is bounded, which
implies:

E[Eγv] =

(r+1)E∑
t=rE+1

γ∇λuF (θ(t),λu), (47)

E[∥Eγv −
(r+1)E∑
t=rE+1

γ∇λuF (θ(t),λu)∥22] ≤ γ2E2B
2

K
, (48)

where B > 0 is a constant bound.

Proof. The stochastic gradient at λu is unbiased due to we sample the groups uniformly. The variance term is due to the
assumption in Theorem 5.1.

Lemma E.5. For FMDA-M, under the assumption of Theorem 5.1, assuming the function h is an α-strongly convex function,
then the following holds true for any λu ∈ ∆m−1:

E[Dh(λ
u||(λu)(r+1))] ≤E[Dh(λ

u||(λu)(r))]−
(r+1)E∑
t=rE+1

E[2γ(F (θ(t),λu(⌊ t
E ⌋))− F (θ(t),λg))]

+
γ

2α
E∥

(r+1)E∑
t=rE+1

∇λuF (θ(t),λu)∥22 + E∥Eγv(r) −
(r+1)E∑
t=rE+1

γ∇λuF (θ(t),λu)∥22.

(49)

Proof. The proof is based on the update rule of mirror ascent and others are similar to Lemma E.1.

Note that we can pick the right function h to make the assumption hold.

Now we can give the proof of Theorem 5.1.
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Proof. With above lemmas, we can prove the Theorem 5.1. By the convexity of global function w.r.t. θ and its linearity in
terms of λu, we have:

E[F (θ̄,λu)− E[F (θ, λ̄u)]

≤ 1

T

T∑
t=1

{
E
[
F (θ(t),λu)

]
− E

[
F (θ,λu(⌊ t

E ⌋))
]}

≤ 1

T

T∑
t=1

{E
[
F (θ(t),λu)

]
− E

[
F (θ(t),λu(⌊ t

E ⌋))
]
+ E

[
F (θ(t),λu(⌊ t

E ⌋))
]
− E

[
F (θ,λu(⌊ t

E ⌋))
]
}

≤ 1

T

T∑
t=1

E{F (θ(t),λu(⌊ t
E ⌋))− F (θ,λu(⌊ t

E ⌋))}+ 1

T

R−1∑
r=0

(r+1)E∑
t=rE+1

E{F (θ(t),λu)− F (θ(t),λu(⌊ t
E ⌋))}.

(50)

We first bound the first term in Eq. (50). Sum the last term in Eq. (43) over t = 0 to T − 1 to get:

T−1∑
t=0

E∥βθ(θ̃
(t+1) − θ̃(t))∥22 =

T−1∑
t=0

E∥βt+1
θ (θ̃(1) − θ̃(0))∥22

≤β2
θ (1− β2T

θ )

1− β2
θ

E∥θ̃(1) − θ̃(0)∥22

≤B

(51)

Then we plug Lemma E.1 and E.2 into Lemma E.3 and sum over t = 1 to T to get:

1

T

T∑
t=1

E(F (θ(t),λu(⌊ t
E ⌋))− F (θ,λu(⌊ t

E ⌋))) ≤ 1

2Tη
E∥ θ(0) − θ∥2 + 5Lη2E2

(
B2 +

B2

K
+ Γ

)
+

ηB2

2
+

ηB2

2K
+

B

T

≤D2
W

2Tη
+ 5Lη2E2

(
B2 +

B2

K
+ Γ

)
+

ηB2

2
+

ηB2

2K
+

B

T
.

(52)

To bound the second term in Eq. (50), plugging Lemma E.4 into Lemma E.5, we have:

1

T

R−1∑
r=0

(r+1)E∑
t=rE+1

E(F (θ(t),λu)− F (θ(t),λu(⌊ t
E ⌋))) ≤ 1

γT
Dh(λ

u||(λu)(0)) +
γE

2
B2 +

γEB2

2K

≤B2

γT
+

γEB2

2
+

γEB2

2K
.

(53)

Taking max over λu, min over θ, we have

min
θ

max
λu∈∆m−1

E[F (θ̄,λu)− E[F (θ, λ̄u)] ≤ B2

2Tη
+ 5Lη2E2

(
B2 +

B2

K
+ Γ

)
+

ηB2

2

+
ηB2

2K
+

B

T
+

B2

γT
+

γEB2

2
+

γEB2

2K
.

(54)

Plugging in E = O(T
1
4 ), η = O(T− 1

2 ), and γ = O(T− 1
2 ), we complete the proof.

max
λu∈∆m−1

E[F (w̄,λu)]−min
θ

E[F (w, λ̄u)] ≤ O(T− 1
2 ), (55)
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(a) FM: IID

33
00

300

300

300

A1

C1

3300

3000

300

0

6000

600

300

300

300

300

300

300

300

33
00

300

300

300

300

300

300

300

300

300

33
00

300

300

300

300

300

300

300

300

300

33
00

300

300

300

300

300

300

33
00

300

300

300

300

300

300

33
00

300

300

300

300

300

33
00

300

300

300

300

33
00

300

300

300

300

33
00

300

33
00

C2

C3

C4

C5

C6

C7

C8

C9

C10

A2 A3 A4 A9 A10A5 A6 A7 A8

300 300 300 300 300 300 300 300

300 300 300 300 300 300 300

300 300 300 300 300 300

300 300 300 300 300

300 300 300 300

300 300 300

300 300

300

(b) FM: Weakly Non-IID
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(c) FM: Strongly Non-IID
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(d) FM: Extremely Non-IID
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(e) D5: IID
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(f) D5: Weakly Non-IID
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(g) D5: Strongly Non-IID
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(h) D5: Extremely Non-IID
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(j) Adult: Weakly Non-IID
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(k) Adult: Strongly Non-IID
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(l) Adult: Extremely Non-IID

Figure 2. Various training distribution settings on Fashion-MNIST (FM), Digit-Five (D5) and Adult datasets. The numbers are sample
sizes of each subgroup.

F. Additional Experimental Results
F.1. Additional Federated Datasets.

(1) Fashion-MNIST (FM) dataset (Xiao et al., 2017): FM is a classical image classification dataset containing 60,000
training examples with 10 categories. For FM, we set the target label as the sensitive attribute and consider label distribution
shift across clients. As shown in Figure 2, we consider 4 different degrees of Non-IID settings: (a) IID, (b) weakly Non-IID,
(c) strongly Non-IID, (d) extremely Non-IID. We run our algorithm and compared baselines on FM dataset with logistic
regression model. (2) Digit-Five (D5) dataset (Xu et al., 2018; Peng et al., 2019; Zhao et al., 2020): D5 includes digit
images with 10 categories sampled from 5 domains. For D5, we set the domain (i.e. data collection source) as the sensitive
attribute and consider 4 different degrees of feature distribution shift across clients. We use a 2-layer CNN with a linear
classifier. (3) UCI Adult dataset(Dua & Graff, 2017): Adult is a census dataset with 32,561 examples, and each sample has
14 features (including race, gender and so on) and a target label indicating whether the income is greater or less than $50K.
For Adult, we set gender and income as the protected attributes and consider 4 different degrees of unbalance setting (i.e.
the amount of data varies greatly across both clients and attributes), which is hard to avoid in real FL scenario. We use a
logistic regression model to predict the income.
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Table 2. Experimental results of attribute-level fairness.
Metrics Robustness: Robustness (%) Fairness: Disparity

Dataset Method IID Weakly Strongly Extremely IID Weakly Strongly Extremely
Non-IID Non-IID Non-IID Non-IID Non-IID Non-IID

Centralized ERM 56.67±0.30 0.122±0.001
Centralized DRO 68.98±0.35 0.081±0.002

Fashion FedAvg 55.27±0.33 53.41±0.44 41.63±0.28 40.60±0.20 0.121±0.001 0.123±0.003 0.151±0.003 0.152±0.003
MNIST DRFA 61.90±0.53 61.50±0.87 56.11±0.44 65.63±0.47 0.107±0.001 0.109±0.002 0.119±0.003 0.101±0.001

IndA 55.04±0.85 58.46±0.99 45.91±0.81 51.35±0.61 0.139±0.006 0.136±0.006 0.145±0.006 0.130±0.007
FMDA-M (Ours) 68.06±0.42 66.60±0.68 68.31±0.38 67.72±0.23 0.082±0.002 0.086±0.002 0.085±0.002 0.087±0.002
Centralized ERM 83.07±0.48 0.059±0.001
Centralized DRO 84.48±0.47 0.046±0.002

Digit FedAvg 81.72±0.22 81.13±0.35 81.60±0.33 78.51±0.64 0.063±0.002 0.065±0.002 0.053±0.002 0.073±0.003
Five DRFA 81.22±0.34 82.02±0.33 82.05±0.50 81.08±0.32 0.064±0.001 0.062±0.001 0.058±0.001 0.060±0.001

IndA 81.14±0.28 81.03±0.38 81.14±0.21 78.99±0.51 0.067±0.003 0.067±0.002 0.065±0.002 0.070±0.004
FMDA-M (Ours) 85.10±0.23 83.91±0.24 84.20±0.22 81.98±0.36 0.043±0.001 0.044±0.002 0.054±0.001 0.051±0.001

Adult

Centralized ERM 20.85±0.47 0.318±0.003
Centralized DRO 70.42±0.56 0.031±0.003

FedAvg 20.26±0.29 25.82±0.49 20.70±0.42 66.04±0.36 0.322±0.002 0.290±0.002 0.323±0.003 0.063±0.001
DRFA 20.19±0.32 31.15±0.55 20.62±0.55 67.85±0.61 0.322±0.003 0.264±0.003 0.324±0.003 0.046±0.002
IndA 21.60±0.58 25.69±0.61 21.90±0.63 65.21±0.68 0.315±0.004 0.292±0.003 0.324±0.005 0.079±0.004

FMDA-M (Ours) 70.20±0.35 71.16±0.41 70.74±0.44 70.57±0.48 0.031±0.002 0.030±0.002 0.031±0.002 0.032±0.001

F.2. Additional Training Distribution Setting

Fashion-MNIST. For Fashion-MNIST, we set the target label as the sensitive attribute, which can take on 10 values. As
shown in the first row of Figure 2, we consider label distribution shift across clients and split the training dataset into 10
clients in 4 manners: (a) IID, (b) weakly Non-IID, (c) strongly Non-IID, (d) extremely Non-IID.

Digit-Five. For Digit-Five, we set the domain (i.e. data collection source) as the sensitive attribute, which can take on 5
values. As shown in the second row of Figure 2, we consider feature distribution shift across clients and split the training
dataset into 5 clients in 4 manners: (e) IID, (f) weakly Non-IID, (g) strongly Non-IID, (h) extremely Non-IID.

Adult. For Adult, we set the combination of gender and income (target label) as the sensitive attribute, which can take
on 4 values: high-income male, low-income male, high-income female, low-income female. As shown in the third row
of Figure 2, we consider both label distribution shift, feature distribution shift and unbalance across clients and split the
training dataset into 4 clients in 4 manners: (i) IID, (j) weakly Non-IID, (k) strongly Non-IID, (l) extremely Non-IID.

F.3. Hyper-parameter Setting

Fashion-MNIST. We use a logistic regression model to predict the target of images. We set the number of local iterations
E = 10, the number of rounds R = 500, batchsize is 50, learning rate for model parameters η=1e-2, stepsize for group
weights γ=1e-2 and momentum coefficients βθ = βλ = 0.4.

Digit-Five. We use a 2-layer CNN with a linear classifier to classify the images. We set the number of local iterations
E = 10, the number of rounds R = 500, batchsize is 50, learning rate for model parameters η=2e-2 and stepsize for group
weights γ=2e-2 and momentum coefficients βθ = βλ = 0.4.

Adult. We use a logistic regression model to predict the income. We set the number of local iterations E = 10, the number
of rounds R = 500, batchsize is 50, learning rate for model parameters η=1e-2 and stepsize for group weights γ=1e-2 and
momentum coefficients βθ = βλ = 0.4.

F.4. Results of Attribute-level Fairness

We evaluate the attribute-level fairness of models trained by FMDA-M and compared baselines. The results are reported in
Table 2. From the results, we observe that FMDA-M outperforms baselines on three datasets, in terms of both the metric
Disparity and Robustness. As we analyzed in the previous section, the client-level method is not flexible enough to deal
with distribution shifts over attributes, and the individual-level method is too conservative to perform well in practice. By
constructing an appropriate uncertainty set, FMDA-M achieves good performance which is very similar to centralized DRO,
even in Non-IID settings.

The results on Adult dataset demonstrate that the unbalance of dataset is a great challenge for training a fair model, especially
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Table 3. Experimental results of client-level fairness.
Metrics Robustness: Robustness (%) Fairness: Disparity

Dataset Method IID Weakly Strongly Extremely IID Weakly Strongly Extremely
Non-IID Non-IID Non-IID Non-IID Non-IID Non-IID

FedAvg 84.34±0.47 70.24±0.64 65.92±0.47 44.04±0.38 0.004±0.001 0.059±0.002 0.091±0.006 0.146±0.004
Fashion DRFA 84.39±0.45 71.25±0.88 70.93±0.80 66.54±0.68 0.004±0.001 0.055±0.003 0.064±0.002 0.099±0.002
MNIST IndA 83.82±0.71 72.75±1.03 69.69±1.09 53.00±1.06 0.004±0.001 0.057±0.003 0.081±0.008 0.125±0.006

FMDA-M (Ours) 81.05±0.36 72.78±0.63 73.82±0.59 68.45±0.28 0.005±0.001 0.039±0.002 0.042±0.002 0.069±0.002
FedAvg 90.58±0.30 84.79±0.42 84.42±0.33 74.97±0.40 0.001±0.000 0.035±0.001 0.054±0.002 0.083±0.005

Digit DRFA 90.23±0.34 86.02±0.59 83.23±0.41 79.86±0.30 0.001±0.000 0.031±0.001 0.052±0.002 0.060±0.002
Five IndA 89.61±0.58 84.13±0.77 82.97±0.71 77.64±0.99 0.002±0.001 0.036±0.002 0.056±0.003 0.074±0.004

FMDA-M (Ours) 87.81±0.25 86.18±0.36 85.45±0.37 81.34±0.34 0.001±0.000 0.023±0.001 0.037±0.002 0.048±0.003

Adult

FedAvg 82.11±0.43 68.61±0.48 77.95±0.49 66.89±0.44 0.004±0.001 0.091±0.004 0.055±0.003 0.067±0.002
DRFA 82.01±0.33 69.77±0.55 78.29±0.57 68.53±0.60 0.004±0.001 0.082±0.003 0.053±0.002 0.051±0.002
IndA 81.31±0.61 68.53±0.61 77.98±0.74 64.72±0.90 0.003±0.001 0.090±0.005 0.052±0.004 0.074±0.004

FMDA-M (Ours) 75.26±0.52 74.03±0.47 74.98±0.43 71.84±0.48 0.003±0.000 0.012±0.001 0.010±0.001 0.029±0.002
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Figure 3. Experimental results of robustness (the top row) and fairness (the bottom row) on agnostic distribution. IID, weakly Non-IID,
strongly Non-IID and extremely Non-IID are denoted by setting 0, setting 1, setting 2 and setting 3, respectively. The coordinate i → j of
horizontal axis means that we train a federated learning model in setting i and test it in setting j.

in FL where the data distribution of each client is unknown to others. We find that the overfitting appears in FedAvg,
DRFA and individual-level method due to the jumbo sample size of the low-income male group. By contrast, our proposed
FMDA-M samples from each subgroup according to the group weights, thus overcoming this challenge.

Note that FMDA-M also outperforms DRFA in extremely Non-IID setting, where the unified group fairness optimized in our
FMDA-M is exactly the client-level fairness optimized in DRFA. The reason for this is that DRFA uses naive gradient ascent
method to update weights and the projection operator usually leads to the very hard weights, which may affect the stability
of algorithm. By contrast, our algorithm adopts Eq. (5) to generate smoother weights and it helps the model to converge.

F.5. Results of Client-level Fairness

We evaluate the client-level fairness of models trained by different algorithm and report the results in Table 3. We observe
that FMDA-M is able to guarantee the accuracy of the worst-performing client and decrease Disparity in most training
distribution settings. We also find that, unlike other methods of which the performance decreases significantly with increasing
degree of Non-IID, FMDA-M shows extremely stable performance under various settings, which is thanks to the weights
update rule (5) we adopt.

We note that Robustness of FMDA-M is slightly lower than FedAvg and DRFA in IID setting, because the distributions
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of clients are very similar and the Robustness will degrade to average accuracy, which is in line with the optimization
objective of FedAvg and DRFA. Indeed, our FMDA-M significantly improves client-level fairness in Non-IID settings (more
challenging and more common in reality), though occasionally with a small performance sacrifice in IID setting.

F.6. Results of Agnostic Distribution Fairness

To evaluate the agnostic distribution fairness, we simulate the newly added clients as follows: we train each federated model
in one of the the training distribution settings (e.g., IID setting), but test under other three settings (e.g., weakly Non-IID,
strongly Non-IID and extremely Non-IID settings) where the distributions of clients are different and agnostic from the
existing clients.

The results of agnostic distribution fairness are shown in Figure 3. We find that our FMDA-M outperforms compared
baselines in terms of both Robustness and Disparity in most cases, which illustrates that our FMDA-M is better adapted
to new distributions. As we state before, the proposed FMDA-M considers a larger uncertainty set but with appropriate
degrees of freedom, so the model trained by FMDA-M can deal with kinds of new distributions. However, the resulting
model can be overly pessimistic when the radius of uncertainty set is too large. Besides, the individual-level method is hard
to optimize, and that is why the individual-level method does not perform well.

F.7. Average Performance

Table 4 shows that the average accuracy of model over groups and clients are similar for all algorithms on Fashion-MNIST
and Digit-Five. On Adult, FMDA-M improves the average performance over groups, while the average accuracy over clients
of the FMDA-M is slightly lower than the compared baselines. There is a serious imbalance in Adult dataset. Specifically,
as shown in the third row of Figure 2, the sample size of low-income male group is much larger than high-income female
group. Our FMDA-M focuses on the performance of minority group. As we see in the previous experiments, our FMDA-M
improves the accuracy of the minority group by about 50% (Table 2). And it is inevitable that a bit of performance of majority
group will be lost. There is a large amount of data of low-income male group on clients, and thus the average accuracy
over clients will go down. Indeed, our FMDA-M significantly improves attribute-level fairness and shows extremely stable
performance on agnostic distribution, though occasionally with a small average performance sacrifice.

F.8. Efficiency and Ablation Study

To evaluate the efficiency of our FMDA-M algorithm and demonstrate how it works, we run the following algorithms on
Fashion-MNIST dataset in extremely Non-IID setting: (i) DRFA (Deng et al., 2020): DRFA algorithm is proposed to solve
the min-max problem in federated setting. (ii) FMDA. (iii) FMDA-M (β = βθ = βλ = 0.3). (iv) FMDA-M (β = βθ =
βλ = 0.5). Note that the above algorithms share the same optimization objective. We report the learning curves of models
in terms of attribute-level robustness and fairness over 300 rounds of communications, as shown in Figure 4. Results in
other settings are in the appendix.

The results show that the proposed FMDA outperforms DRFA in terms of convergence rate. The most likely reason is that
FMDA adopt mirror ascent based on Bregman divergence, instead of projection operation based on Euclidean distance, to
update the group weights, which prevents the weights from being too hard to guarantee convergence stability. We observe
that FMDA-M is more efficient and can achieve the same level as others with fewer number of communication rounds,
because the momentum term can modify the direction of the current gradients to accelerate convergence.

To demonstrate how the momentum term works, we do further experiments on Fashion-MNIST dataset. By denoting the
parameters of convergent federated model as θopt and denoting the parameters of current federated model as θcurrent, we
can define the optimal update direction as dopt = θcurrent − θopt. Then we can get the cosine similarity between dopt
and current gradient g, and the cosine similarity between dopt and the gradient modified by momentum dmod. The results
are shown in Figure 6. We observe that the gradient modified by momentum dmod is more similar to the optimal update
direction as dopt, which means that the momentum term can correct the gradients and accelerate the convergence.
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Figure 4. Experimental results of efficiency of different algorithms on Fashion-MNIST in extremely Non-IID setting at attribute level.

Table 4. Average accuracy of the global model over attributes and clients.
Metrics Average Accuracy over Attributes: Avg Acc (%) Average Accuracy over Clients: Avg Acc (%)

Dataset Method IID Weakly Strongly Extremely IID Weakly Strongly Extremely
Non-IID Non-IID Non-IID Non-IID Non-IID Non-IID

FedAvg 83.47±0.11 83.20±0.10 81.75±0.11 80.96±0.10 85.28±0.07 84.80±0.06 83.05±0.08 82.23±0.09
Fashion DRFA 83.46±0.16 83.13±0.11 81.83±0.12 81.04±0.23 85.31±0.10 84.79±0.12 83.19±0.13 82.44±0.15
MNIST IndA 82.92±0.37 82.73±0.32 81.47±0.21 81.46±0.39 84.30±0.13 84.76±0.11 82.77±0.15 82.86±0.18

FMDA-M (Ours) 82.31±0.25 82.63±0.20 81.24±0.18 80.56±0.22 81.95±0.18 84.03±0.12 82.73±0.18 81.83±0.13
FedAvg 89.36±0.26 88.89±0.24 89.46±0.30 88.11±0.25 90.80±0.10 90.37±0.09 90.53±0.13 89.03±0.14

Digit DRFA 89.17±0.20 89.03±0.24 89.06±0.19 87.93±0.24 90.31±0.12 90.58±0.08 89.69±0.16 89.09±0.16
Five IndA 88.03±0.31 87.95±0.29 88.34±0.34 87.38±0.35 89.87±0.19 89.84±0.14 89.74±0.15 88.77±0.20

FMDA-M (Ours) 88.94±0.21 88.01±0.28 88.18±0.20 86.64±0.24 88.78±0.12 89.31±0.16 89.34±0.18 88.96±0.13

Adult

FedAvg 64.49±0.19 66.27±0.15 64.52±0.16 73.79±0.22 82.38±0.15 80.52±0.16 83.36±0.12 73.81±0.23
DRFA 64.76±0.23 67.64±0.25 64.59±0.18 74.13±0.24 82.41±0.16 80.50±0.17 83.44±0.11 73.94±0.24
IndA 65.07±0.28 65.87±0.29 64.31±0.26 73.25±0.31 81.88±0.24 80.37±0.19 83.12±0.14 73.67±0.29

FMDA-M (Ours) 74.63±0.18 74.67±0.19 74.74±0.16 74.60±0.21 75.61±0.27 75.81±0.21 75.66±0.32 74.13±0.29
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(a) Robustness: IID
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(b) Robustness: Weakly Non-IID
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(c) Robustness: Strongly Non-IID
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(d) Fairness: IID
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(e) Fairness: Weakly Non-IID
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(f) Fairness: Strongly Non-IID

Figure 5. Efficiency of different algorithms on Fashion-MNIST in IID, weakly Non-IID and strongly Non-IID settings at attribute level.
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(b) Weakly Non-IID
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(c) Strongly Non-IID
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(d) Extremely Non-IID

Figure 6. Cosine similarity between optimal update direction dopt and original gradient g (and gradient modified by momentum dmod).


