Under review as a conference paper at ICLR 2026

LEARNING MIXTURES OF LINEAR DYNAMICAL SYS-
TEMS (MOLDS) VIA HYBRID TENSOR-EM METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Linear dynamical systems (LDSs) have been powerful tools for modeling high-
dimensional time-series data across many domains, including neuroscience. How-
ever, a single LDS often struggles to capture the heterogeneity of neural data,
where trajectories recorded under different conditions can have variations in their
dynamics. Mixtures of linear dynamical systems (MoLDS) provide a path to model
these variations in temporal dynamics for different observed trajectories. How-
ever, MoLDS remains difficult to apply in complex and noisy settings, limiting its
practical use in neural data analysis. Tensor-based moment methods can provide
global identifiability guarantees for MoLDS, but their performance degrades under
realistic noise and complexity. Commonly used expectation-maximization (EM)
methods offer flexibility in fitting latent models but are highly sensitive to initial-
ization and prone to poor local minima. Here, we propose a tensor-based moment
method that provides identifiability guarantees for learning MoLDS, which can
be followed by EM updates to combine the strengths of both approaches. The
novelty in our approach lies in the construction of moment tensors using the input-
output data, on which we then apply Simultaneous Matrix Diagonalization (SMD)
to recover globally consistent estimates of mixture weights and system parame-
ters. These estimates can then be refined through a full Kalman EM algorithm,
with closed-form updates for all LDS parameters. We validate our framework on
synthetic benchmarks and real-world datasets. On synthetic data, the proposed
Tensor-EM method achieves more reliable recovery and improved robustness com-
pared to either pure tensor or randomly initialized EM methods. We then apply this
method to two neural datasets from non-human primates doing reaching tasks. For
both datasets, our method successfully models and clusters different conditions as
separate subsystems. These results demonstrate that MoLDS provides an effective
framework for modeling complex neural data in different brain regions, and that
Tensor-EM is a principled and reliable approach to MoLDS learning for these
applications.

1 INTRODUCTION

Neuroscience experiments now produce large volumes of high-dimensional time-series datasets,
calling for new computational tools to uncover the dynamical principles underlying brain function
(Paninski & Cunningham| 2018 [Stringer & Pachitariu, 2024} \Urai et al., [2022). These recorded
data often originate from multiple, distinct underlying dynamical processes, yet the identity of the
generating system at any given time is unknown. Estimating and recovering the parameters and
dynamics of such latent systems from these mixed neural trajectories is a central challenge in system
identification and machine learning (Ljung} (1998} | Durbin & Koopman, [2012; Bishop) 2006)).

Classical mixture models, such as mixtures of Gaussians (MoG) (Dempster et al.,|1977) and mixtures
of linear regressions (MLR) (De Veauxl,[1989), provide valuable tools for modeling these heteroge-
neous data. However, they are primarily designed for static settings and do not explicitly capture
temporal dependencies, limiting their applicability to sequential data where temporal dynamics are
central. In contrast, dynamical models such as linear dynamical systems (LDS) and their extensions,
(recurrent) switching LDS (SLDS) and decomposed LDS (dLDS) (Ghahramani & Hinton| 2000} [Foxl,
2009; |[Linderman et al., 2017; Mudrik et al., 2024]), are suitable for time-series data modeling with

Under review as a conference paper at ICLR 2026

latent states and potential regime switches. Switching models typically target a single long trajectory
and are prone to solutions that contain frequent switching; they are not suitable when the goal is to
learn parameters of multiple distinct LDSs from independent trials, which is precisely the common
structure in neural experiments.

Mixtures of linear dynamical systems (MoLDS) (Chen & Poor, [2022; Bakshi et al., [2023)) effectively
address this setting by treating each trajectory as originating from a single latent LDS. Inference
of MoLDS aims to uncover the number of subsystems, their parameters, and the mixture weights
from collections of input-output trajectories. This formulation enables direct parameter recovery and
interpretability, making it appealing for many applications, including large-scale neural data analysis.
Neural datasets usually have large numbers of recordings across behavioral or task conditions, with
many trials under each condition. An important question is whether neural populations reuse common
latent dynamics across conditions or exhibit distinct dynamics for different behaviors (Vyas et al.|
2020; Athalye et al., [2023). MoLDS can provide a principled way to explore this question: by
identifying shared and condition-specific latent dynamics, it can reveal the mixture structure of all
trials in the dataset and offer a comprehensive view of the underlying dynamical motifs.

For inference of MoLDS, tensor-based moment methods are commonly employed, where high-order
statistical moments of the input-output data are reorganized into structured tensors, and their decom-
position provides estimates of mixture weights and LDS parameters. The appeal of these algebraic
approaches lies in their global identifiability: unlike iterative optimization methods that navigate
non-convex landscapes, tensor decomposition exploits the algebraic structure of moments to directly
recover parameters through polynomial equation systems that admit unique solutions under ideal
conditions (Anandkumar et al., 2014). However, their practical performance is often limited because
moment estimates become imperfect in realistic, noisy datasets, leading to degraded parameter recov-
ery Kuleshov et al.|(2015). In parallel, likelihood-based approaches such as expectation-maximization
(EM) have long been widely used for fitting classical mixture models and SLDS. EM provides a
flexible iterative procedure for jointly estimating latent states, mixture weights, and system param-
eters through local likelihood optimization. While powerful and widely adopted, EM suffers from
well-known sensitivity to initialization and susceptibility to poor local minima (Xu & Jordan,|1996;
Bishop| |2006). These limitations become particularly problematic in the MoLDS setting where the
parameter space is high-dimensional and the likelihood surface is highly multimodal.

Here, we propose a hybrid Tensor-EM framework that strategically combines global initialization with
local refinement. We first apply tensor decomposition based on Simultaneous Matrix Diagonalization
(SMD) Kuleshov et al.| (2015) to obtain stable and accurate initial estimates. We then use these esti-
mates to initialize a full Kalman filter-smoother EM procedure, which refines all parameters through
closed-form updates over all trajectories. This hybrid approach harnesses the global identifiability of
tensor methods for robust initialization, while leveraging EM’s superior local optimization, to achieve
both reliability and accuracy.

We validate this framework on both synthetic and real-world datasets. On synthetic benchmarks, the
proposed Tensor-EM method achieves more reliable recovery and improved robustness compared to
(i) pure tensor methods and (ii)) EM with random initialization. Next, we analyze neural recordings
from two different experiments: (1) Recordings from monkey somatosensory cortex during center-out
reaches in different directions, where Tensor-EM identifies distinct dynamical clusters corresponding
to the reaching directions, matching supervised LDS fits per direction but achieved in a fully unsuper-
vised manner; (2) Recordings from the dorsal premotor cortex while a monkey performs reaches in
continuously distributed directions, where Tensor-EM succeeds in parsing the different trials into
direction-specific dynamical models. These results establish MoLDS as an effective framework for
modeling heterogeneous neural systems, and demonstrate that Tensor-EM provides a principled and
reliable solution for learning MoL.DS in both synthetic and challenging real-world settings.

2 RELATED WORK

Mixtures models. Mixture models (e.g., MoG and MLR) capture heterogeneity but not explicit
temporal structure (Dempster et al.,|1977; De Veaux |1989; |Li & Liang, |2018). Importantly, MoLDS
is related to MLR through lagged-input representations: by augmenting inputs with their past values,
an MLR model can approximate certain temporal dependencies. Through this connection, MoLDS
inherits useful algorithmic tools, including spectral tensor methods and optimization approaches

Under review as a conference paper at ICLR 2026

(Anandkumar et al.,[2014; Y1 et al., [2016; [Pal et al.| [2022} [Li & Liang}, |2018)), while maintaining its
superior modeling capacity for dynamical systems.

LDS models and their variants. LDS models have been widely used to model time-series data,
and several extensions have been developed to better handle nonstationarity and nonlinear structures.
SLDS methods (Ghahramani & Hintonl 2000; Linderman et al., [2017) model long trajectories that
switch between different dynamical regimes over time, requiring joint inference of both continuous
latent states and discrete mode sequences. The dLDS method (Mudrik et al.| 2024} |Chen et al.|
2024) captures more gradual or overlapping changes by expressing dynamics as sparse, time-varying
combinations of basis operators. These frameworks are designed for long, nonstationary sequences
where the dynamics themselves evolve over time. In contrast, the MoLDS setting assumes that each
short trajectory is well described by a single LDS drawn from a collection of LDS components. The
goal then is to identify the set of latent dynamical systems and assign trials to those components,
rather than modeling intra-trial dynamics changes.

Tensor methods and EM. Tensor decomposition methods offer a principled algebraic approach to
parameter estimation in latent variable models, with polynomial-time algorithms and theoretical iden-
tifiability guarantees (Anandkumar et al., 2014). Recent work in tensor-based MoLDS learning has
explored different moment construction strategies and decomposition algorithms. Early approaches
applied Jennrich’s algorithm directly to input-output moments (Bakshi et al.l [2023)), while more
recent work incorporates temporal lag structure using the MLR reformulation and the robust tensor
power method (Rui & Dahleh| 2025). Our approach adopts the Simultaneous Matrix Diagonalization
(SMD) method (Kuleshov et al.| [2015)), which operates on whitened tensor slices and offers improved
numerical stability and robustness to noise, which are critical advantages in the challenging MoLDS
setting.

The combination of tensor initialization followed by EM-style refinement has been proven effective
in mixture model settings. In the MLR literature, tensor methods provide globally consistent initial
estimates that lie within the basin of attraction of the maximum likelihood estimator, which are
then refined using alternating minimization (Yi et al.||2016; Zhong et al., [2016} |(Chen et al.,|2021).
However, alternating minimization represents a simplified version of EM that uses hard assignments
rather than the probabilistic responsibilities essential for handling uncertainty in noisy settings. Our
work extends this paradigm to the more complex MoLDS setting by combining tensor initialization
with more powerful Kalman filter-smoother EM, including proper handling of latent state inference
and closed-form parameter updates.

Contributions. Our work makes both methodological and empirical contributions to MoLDS learning
and shows its practical utility in neuroscience settings. Methodologically, relative to existing MoLDS
tensor methods, our approach makes several key advances: (i) we employ SMD for more stable
decomposition of whitened moment tensors, (ii) we provide a principled initialization strategy for
noise parameters (), R) based on residual covariances, which was missing from prior tensor-based
approaches, and (iii) we integrate a complete EM procedure with responsibility-weighted sufficient
statistics for all LDS parameter updates. Compared to existing tensor-alternating minimization
pipelines for MLR, our method leverages the full complexity of Kalman filtering and smoothing,
which is essential for addressing the temporal dependencies and uncertainty quantification required
in real MoLDS applications.

Empirically, we demonstrate the successful applications of tensor-based MoLDS methods to com-
plex and real-world data analysis. While prior MoLDS tensor work has been limited to synthetic
evaluations, we show that our Tensor-EM framework can effectively analyze neural recordings from
different brain regions during distinct reaching tasks and successfully identify distinct dynamical
regimes corresponding to different movement directions in a fully unsupervised manner. This repre-
sents an important step toward making MoLDS a practical tool for important applications, particularly
in neuroscience, where capturing heterogeneous dynamics across experimental conditions is a central
challenge. Together, these methodological and empirical advances demonstrate that our Tensor-EM
MoLDS framework provides improved robustness and accuracy in both controlled and challenging
real-world settings.

Under review as a conference paper at ICLR 2026

3 MOoOLDS: MODEL AND TENSOR-EM METHOD

3.1 MIXTURE OF LINEAR DYNAMICAL SYSTEMS (MOLDS)

In the MoLDS setting (Figure , we observe N input-output trajectories {(u; 0.7, 1, Yi.01,—1) Jov1
each generated by one of K latent LDS components. Let z; € [K] denote the (unknown) component
for trajectory ¢, drawn i.i.d. as z; ~ Multinomial(p;.x), where py, € (0, 1) are the mixture weights

with Zszl pr = 1, indicating the probability of a trajectory being generated by component k.
Conditional on z; = k, the data is generated from the following LDS:

Tiy1 = Apxy + Brug + wy, wy ~ N (0, Qr), (1)
Yror1 = Crxy + Diuy + vy, Vg ~ N(O, Rk),)

with A e R"*"™, B e R™"*™ C) e RP*™ Dy e RP*™ and Qy = 0, R = 0. The goal of MoLDS
learning is to recover the mixture weights and LDS parameters {px, (A, Bk, Ck, Dk, Qr, Ri) }E_,.
These parameters are identifiable only up to two natural ambiguities: the ordering of the components
(permutation) and similarity transformations of the latent state realization (which leave the input-
output behavior unchanged). []_-]

To make this recovery possible, we adopt several standard conditions: (i) inputs are persistently
exciting, (ii) each LDS component is controllable and observable, and (iii) the components are
sufficiently separated to ensure identifiability (Bakshi et al., 2023} |Rui & Dahleh, [2025).

3.2 TENSOR-EM APPROACH OVERVIEW

Our approach (Algorithm[T)) consists of two stages: Mixture of
a tensor initialization stage (see Algorithm [3|in the Linear Dynamical @
Appendix), which provides globally consistent esti- systems (MoLDS)
mates of the mixture weights and system parameters,
and an EM refinement stage (see Algorithm[@), which Inputs
further improves these estimates to achieve statistical
efficiency. Between these two stages, a key step is the Sent
initialization of the noise parameters (Qy, Rx), since Neural
these are not identifiable from the tensor-based esti- observations
mates. We address this gap by estimating them from
the residual covariances computed using the tensor-
based parameter estimates (detailed in Appendix [D).

This Tensor-EM approach combines the global iden-
tifiability guarantees of algebraic methods with the
statistical optimality of likelihood-based inference.
This hybrid approach is particularly effective in chal-
lenging settings with limited data, high noise, or poor
component separation - scenarios where neither pure
tensor methods nor randomly initialized EM perform
reliably.

firing rate
5

“time
Figure 1: Overview of MoLDS and the appli-
cation to neural data analysis.

3.3 TENSOR INITIALIZATION FOR MOLDS

The tensor initialization leverages the key insight that MoLDS can be reformulated as MLR through
lagged input representations (Rui & Dahleh} [2025). This transformation exposes the mixture structure
in high-order moments, enabling algebraic recovery of component parameters via tensor decomposi-
tion (see Appendix [B|for details). The method works by exploiting the impulse-response (Markov
parameter) representation of LDSs. We first construct second- and third-order cross moments of the
lagged input—output data, denoted as Ms and M3

2|/\/2 J;v g (v @ —la), Mz = 6|N3 g:v U =), O

My =

"Formally, any invertible matrix M induces an equivalent realization via Ay, — M~ *A, M, By, — M !By,
Cy — CrM, and Dy, unchanged, yielding the same input-output mapping.

Under review as a conference paper at ICLR 2026

Algorithm 1 Tensor-EM Pipeline for MoLDS

Require: Trajectories {(w; 0.7,—1, ¥i,0.7,—1) } X1, truncation L, LDS order n, #components K
Ensure: Mixture weights {p;, }2, and LDS parameters {(Ay, By, Cy, Dy, Qx, Ri) Vi,

Stage 1: Tensor Initialization (Appendix Alg.[3)
Transform MoLDS to MLR via lagged inputs; construct moment tensors My, M3

Apply whitening and SMD to recover mixture weights {p, } and Markov parameters

Realize LDS matrices {(Ay, Bi, Ck, Di.)} via Ho-Kalman algorithm

Initialize noise parameters {(Q ;:))7 R’(fo))} from residual covariances (Appendix
Stage 2: EM Refinement (Appendix Alg.4)
repeat

E-step: Compute trajectory responsibilities v; via Kalman filter likelihoods

Run Kalman smoother to obtain responsibility-weighted sufficient statistics

M-step: Update mixture weights and all LDS parameters via closed-form MLE
until convergence in log-likelihood

10: return Refined parameters {py, (flk, By, Cy, Dy, O, Rk)}le

s e e

h e A

where N3 and N3 are two disjoint subsets of samples, 9; = Ys,¢ is the observed output, v; is the
normalized lagged input, I; and € are correction terms (see Appendix [B.2]for notations). Then we
apply whitening transformations W and decompose the resulting tensor into weights and Markov
parameter estimates. At last, we recover LDS state-space parameters through the Ho-Kalman
realization (Oymak & Ozay, 2019). The core mathematical insight is that if My and M3 are
appropriately constructed from sub-sampled lagged covariates, the whitened tensor

K
T = My(W,W,W) = > ppa®)

is symmetric and orthogonally decomposable, where o, € R¥ are the whitened representations
of the regression vectors (scaled Markov parameters) for each LDS component, and pj, are the
corresponding mixture weights. This decomposition is unique and recovers the mixture components
{ak, pr} up to permutation and sign. Importantly, we employ SMD (Kuleshov et al., 2015) for this
decomposition step, which is shown to be more stable empirically in Section[d.1] We then apply
the Ho-Kalman realization (Oymak & Ozay, |2019) to recover the state-space parameters for each
component, which are then used as principled initializations for the subsequent refinement stage. The
complete procedure is provided in Algorithm 3]in Appendix [B.4] together with the MoLDS-to-MLR
reformulation and tensor construction details in Appendix

3.4 EM REFINEMENT FOR MOLDS

The tensor initialization provides globally consistent estimates of mixture weights and system
matrices, but does not recover the noise parameters (Qy, Ry) nor achieve optimal statistical accuracy.
We therefore need to refine these estimates using a full Kalman filter-smoother EM algorithm that
maximizes the observed-data likelihood.

Our EM formulation extends classical mixture EM to the MoLDS setting by computing trajectory-wise
responsibilities via Kalman filter likelihoods, then updating parameters from responsibility-weighted
sufficient statistics (see Appendix [Cland Algorithm []for details). In brief, at iteration ¢, given current

parameters 6 = {(Pk, Ay, By, Cr, Dy, Qr, Rk)}le, the E-step computes responsibilities:

L0 _ exp(logpy” +1og p(yi0m—1 | wior—1,04))
ik = - J_.
25:1 GXP(logpgt) +log p(yi 0, —1 | Wi 0:1i—1, 9$t)))

&)

Next, we use a Kalman smoother to compute responsibility-weighted sufficient statistics S ,(f) for each
component. The M-step then updates all parameters via closed-form maximum likelihood estimates

(AT U ol pltl) Al Rty MLE-LDS(S“)) ()

Y = wa?i, vk € [K]. %

Under review as a conference paper at ICLR 2026

4 TENSOR-EM PERFORMANCE ON SYNTHETIC DATA

4.1 SMD-TENSOR METHOD PROVIDES MORE RELIABLE RECOVERY ON SIMULATED MOLDS

We demonstrate that the employed SMD-Tensor method reliably recovers parameters in synthetic
MoLDS with a small number of components, low latent dimensionality, and well-separated dynamics.
We empirically compare SMD-Tensor against the RTPM-Tensor baseline across a wide range of such
settings. Our results show that SMD-Tensor consistently outperforms RTPM-Tensor on multiple met-
rics. In particular, when the number of mixture components is small and sufficient data are available,
SMD achieves near-optimal recovery of both the mixture weights and the Markov parameters.

(a) Error vs Number of Trajectories (b) Error vs Trajectory Length (c) Best Error Heatmap
254 1 T=9 —e— T=120 254 1 N=9 —e= N=120
T=18 —e— T=240] N=18 —e— N=240

T=24 == T=480 N=24 =e= N=480
o T=30 == T=960

o T=60 =—e=— T=1280

o N=30 == N=960
- N=60 —e— N=1280

Mean Markov error

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 200 400 600 800 1000 1200
Number of trajectories (N) Trajectory length (T) N

(d) Error vs Number of Trajectories (e) Error vs Trajectory Length (f) Best Error Heatmap

25 T=9 —e— T=120 25 N=9 —e— N=120

T=18 —e— T=240 N=18 —e— N=240

v T=24 == T=480
o~ T=30" == T=0960
Fo—-T=E0

»~ N=24 == N=480
—o— N=30 =e= N=960
—e— N£1280

Mean Markov error

0.0 0.0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 200 400 600 800 1000 1200
Number of trajectories (N) Trajectory length (T) N
Error Difference
(9) Method Comparison (h) (RTPM - SMD) 0] SMD: Parameter Recovery
] 1
25 77 1200 LY
o 7 s N
R 1000 2 | -
520 o’ g |
g Yy 0 S | e
< ights=[0.335, 0.326, 0.322] Est1
g 15 2% wge?ameter' ecove - True2
o @ . FPaameter flecovery, -+ e
7
° -~ - True3
o 10 , ? ° || TN 2
° - 28| =Est3
z e A 3 00 w i}
° E
05 ,//) 200 g os N g
b 0. N
0.04” SaEaHD=091700 191 0%) Wweights=[0.336, 0.352, 0.326]
00 05 10 15 20 25 200 400 600 800 1000 1200 [1 2 3
RTPM Mean Error N Coefficient index

Figure 2: Comparison of SMD-Tensor and RTPM-Tensor methods for MoLDS: (a,b) Mean
Markov parameter estimation errors for the SMD method decrease as the number of trajectories
as IV and/or T increase; (c) Heatmap of the best trial result across all (N, T') configurations. (d-f)
Corresponding results for the RTPM method.(g) Difference in mean Markov errors between RTPM
and SMD (positive values indicate SMD performs better). (h) Scatter plot comparing mean Markov
errors of RTPM vs. SMD across configurations, with SMD outperforming in 91% of cases. (i)
Example recovery for N = T' = 1280, where SMD recovers both mixture weights and Markov
parameters more accurately.

The first row of Figure[2]reports results for a K’ = 3 mixture model with LDS dimensions n = 2, m =
p = 1. The LDS parameters are randomly generated, with eigenvalues of A constrained to lie inside
the unit circle. We vary the trajectory length 7" and the number of trajectories N, and for each (N, T")
configuration. We run multiple independent trials, calculating the discrepancy between estimated and
true Markov parameters. The second row of Figure 2] shows the result for RTPM-Tensor. It is noticed
that the mean Markov parameter errors decrease with increasing trajectory length and number of
trajectories for both methods, but the trend is more pronounced and stable for SMD, as reflected in
the heat maps (Figure c,f)). Across nearly all (N, T') cases, SMD yields consistently lower errors
(Figures 2 g,h)). In cases with larger T and N, SMD achieves highly accurate recovery of both
mixture weights and Markov parameters (Figure 2[c1)), underscoring its robustness and reliability
for more complex conditions.

Under review as a conference paper at ICLR 2026

(a) Relative Accuracy Comparison (b) Markov Parameter Errors (c) Weight Errors
Markov (larger = better)
1.00

A
“ o. o.

0.5

8o
Aggregate o
Param Acc

0. 0.

\ 7 202
N 2, 02
\ ~e— Pure tensor 0.1
wi—=xz 1 [-
Acc Random-EM 0.0 0.0
)

\sO¥ sO¥
pure e 1ens°"EM“a“doﬂ\'EM pure T qsor “andoﬂ"EM

Markov Parameter Error
leight Err

(d) Aggregate Parameter Errors (e) Iteration Counts (f) Error vs Efficiency
(geom. mean of A,B,C)

2.0 @ Pure tensor
o @ Tensor-EM
© Random-EM)
o
20 :
05 10)
0.0 0 —Hh— °

0 10 20 0 0
EM Iterations

o
©

n
3

-
)

EM lterations

Aggregate Param Error

Markov Parameter Error

©c o o oo o 0o
&

N
()

o rensO’ M o EM o xenso’

% M EM
TensO ¢ 5ndo © e

pur pur s g p0do
Figure 3: Performance comparison of pure tensor, Tensor-EM, and random-initialized EM on a
simulated MoLDS: (a) Relative accuracy radar plot across metrics of Markov parameter accuracy,
weight accuracy, and aggregate parameter accuracy. (b-c) Tensor-EM achieves the lowest Markov
parameter and weight errors, while random EM performs the worst and shows high variability. (d)
reports aggregate parameter errors (geometric mean of A, B, C' errors). (e) Tensor-EM converges
in far fewer iterations than random EM, highlighting efficiency. (f) Error-efficiency plot shows that
Tensor-EM combines low error with moderate iteration cost, yielding robust and accurate recovery.

4.2 TENSOR-EM IMPROVES ROBUSTNESS AND ACCURACY FOR COMPLEX SYNTHETIC
MoLDS

In complex MoLDS settings with many components, purely tensor-based methods and randomly
initialized EM often fail to achieve accurate recovery, either due to noisy parameter estimates or
convergence to poor local optima. Our proposed Tensor-EM approach overcomes these limitations
by combining globally consistent tensor initialization with EM-based refinement, resulting in more
robust and accurate learning. We demonstrate these advantages in this section.

Figure [3| presents results on a simulated K = 6 MoLDS (n = 3, m = p = 2) with zero direct
feedthrough (D = 0). Across metrics including Markov parameter errors, mixture weight errors,
aggregate LDS parameter errors, and iteration counts, Tensor-EM consistently outperforms all base-
lines. It achieves substantially lower Markov and weight errors (panels b and c¢), while maintaining an
aggregate parameter error comparable to the pure tensor solution (panel d)E| At the same time, Tensor-
EM converges in much fewer iterations than random EM (e), leading to a better error-efficiency
tradeoff (f). The radar plot (a) summarizes these improvements, showing that Tensor-EM achieves
the most balanced performance across all evaluation metrics. These results highlight that Tensor-EM
effectively combines the strengths of tensor methods and EM and enable more reliable parameter
recovery in synthetic MoLDS settings where standalone tensor or randomly initialized EM approaches
often underperform.

5 TENSOR-EM MoLDS PROVIDES RELIABLE AND INTERPRETABLE
RECOVERY ON REAL-WORLD APPLICATIONS

We next apply the proposed MoLDS method to two real-world neural datasets.

5.1 AREA2 DATASET

’The aggregate parameter error, i.e., the geometric mean of A, B, C' errors, is a coarse summary: unlike
Markov parameter errors, it may be less precise since A, B, C' can differ by similarity transformations without
altering the underlying dynamics.

Under review as a conference paper at ICLR 2026

(a) Monkey Reach Trajectories Neuron 1001 Firing Rate

We first employ a neural dataset from a single record-
ing session of a macaque performing center-out :
reaches, with neural activity recorded from the so- % °
matosensory cortex (Figure Bp). During the experi- °
ment, the monkey used a manipulandum to direct
a cursor from the center of a display to one of
eight targets, and neural activity was recorded from
Brodmann’s area2 of the somatosensory cortex (see
(Chowdhury et al., |2020) for experimental details,
and (Miller, 2022)) for dataset location). The neu-
ral recordings consist of 65 single-unit spike times, b - T mea”

which are converted to spike rates. In addition to Figure 4: Neural datasets overview: (a)
neural data, the position of the monkey’s hand, cur- The Area2 Dataset contains neural trajectories
sor position, force applied to the manipulandum, and from monkey primary somatosensory cortex;
hand velocity were recorded during the experiment. reach trajectories and firing rate from multi-
There are 8 directions in the task, and each direction ple neurons. (b) The PMd Dataset contains
has multiple trials of input-output trajectories. For recordings from monkey dorsal premotor cor-
the MoLDS fitting, we extract the movement-related — t€X; hand speed and neurons’ rasters.
segment of each trial, defined as the window from 100 ms before to 500 ms after movement onset.
The 65-dimensional observations are reduced to 6-dimension by using the standard PCA, which
explains more than 90 percent variance of neural activities. These PCs are then taken as outputs,
while the hand velocity variables are taken as inputs. In addition, we also evaluate the dataset with 20
PCs using MoLDS, and consistent results are found (see Figure|l 1), which confirms the effectiveness
of the Tensor-EM algorithm to fit a MoLDS model on this dataset.

Hand X
(b) PMd Population Activity

PMdN#

We evaluate the MoLDS with Tensor-EM, Random-EM, and pure tensor methods using a standard
train/validation/test split of the dataset (see full pipeline in App. [E). For each hyperparameter setting
(including K'), models are trained on the training set and scored on the validation set using negative
log-likelihood (NLL), one-step-ahead RMSE, and BIC. The model used for test-time analysis is
the one minimizing validation BIC (we also report NLL/RMSE). For trial < and component k, we
compute a responsibility r;; o exp(ﬁ,(;)), where E,(;) is the one-step Kalman log-likelihood under
component k. For each movement direction, the dominant component is the arg max; of the mean
responsibility across its trials.

Figure E] summarizes the results. As shown in Figure Eka), validation criteria consistently favor a
3-component MoLDS trained with Tensor-EM. Moreover, the one-step predictions ¢ closely track
observations y on the test data as in Figure 5[b). In Figure [5|c), the dominant-component maps reveal
three cross-trial clusters aligned with directions, and the usage fractions in (d) quantify the prevalence
of MoLDS components on the test set.

In this setup, we also compare the Tensor-EM MoLDS method with the supervised learning results
of LDS, where we train (1) one LDS on all trials where the monkey reaches in a specific direction
(per-dir LDS), and separately (2) a separate LDS fit on each trial regardless of reaching direction
(single-trial LDS). Finally, we cluster the parameters of the different LDS’s (per-dir or single-trial).
See Figure [8|in the Appendix for a representation of the clustered parameters and more details.

The per-direction LDS baseline closely matches the result of MoLDS with the Tensor-EM method
rather than Random-EM in trial groupings (see Figure[5|c)), and the impulse responses are highly
similar (see Figure|10|in the Appendix). We also train an SLDS in a similar unsupervised way as
MoLDS (no direction labels) and find that it does not yield meaningful cross-trial clusters here, while
it is effective for within-trial regime switches (see Figure []in Appendix). These highlight MoLDS’s
strength in capturing between-trial heterogeneity. In addition, when compared with the Random-EM
method, Tensor-EM offers a key advantage: the tensor initialization step yields a stable starting point
that reduces variability across runs, leading to more consistent parameter recovery and recovered
model structure as seen in Figure [5]a,c).

5.2 PMD DATASET

We next apply our method to recordings from monkey dorsal premotor cortex (PMd) during sequential
reaches, in which trial-wise movement directions are continuously distributed over the circle. Full

Under review as a conference paper at ICLR 2026

(a) validation metrics (b) Test 1-step predictions
NLL RMSE BIC
108 o | os ° = dim 0 dim 1 dim 5
o % T v 3 -
e P 2
07 108 o g
<, N
06 é o]
104 .0. } *0 0
5}
05 10° E
500
Components|
e k=3 | 04 - el 4 dim S
o K=4 . 4
> =
10 o K=5 | o3 o 10 %2 3
= 2
N Mot N e ot N e ot
M asor o e o o E et o B or e e Q9
o e PRt ST aando e 7 1 \ L/
Method Method Method s 0 \,
=2
500
t t t t
(c) Per-dir LDS vs MoLDS SLDS vs MoLDS Single-trial LDS vs MoLDS Random EM vs Tensor-EM
< 1.00
s
gors 0.60
g
=050
g 025 0.16 0.24
> 0.00
Comp 1 Comp 2 Comp 3

Figure 5: MoLDS application on Area2 Dataset: (a) Validation metrics for different K. (b) One-step
predictions for two example trials using corresponding LDS components from the MoLDS selected
by the lowest validation metrics. (c) Agreement between Tensor-EM MoLDS trial assignments
(outer ring) and per-direction LDS, SLDS, single-trial LDS, Random-EM MoLDS clusters (inner
rings in each polar plot); the SLDS-based method cannot provide meaningful cross-trial clusters. (d)
Tensor-EM MoLDS component usage fractions on held-out test trials.

(a) Validation metrics (b) Test 1-step predictions
NLL RMSE BIC
108 | . | dim 4 dim 6 dim 7. dim 14 dim 3 dim 11
. _ —y
3 =3 —
10¢ Components " 1 4 | N)
- v k2e| Vem %2 i
o oo 24 . k3 b 2 \
* K=4 10° =1 !
*o0
w R e 3
=5
e ot e ot ot
ot et e ot e e e ° 00 o 100 0 100
Method Method Method

(€) Angle bins-dominant component-PD arrows

=2)

Trial #95 (best k
s P

270" 210° — comp0 —— compl = comp2 == comp3
Tensor-EM Random-EM 0.09
0.08
(e) Component usage e
1o § 0.07
c 08 a
§ 5006
2 2
806 £
S ~ 005
204 0.35
3 0.24 0.04
202 052 0.18
003
0o o 2 4 6 8 10
Comp 0 Comp 1 Comp 2 Comp 3 lag

Figure 6: MoLDS application on PMd Dataset: (a) Validation metrics for different K (NLL,
RMSE, BIC). (b) One-step prediction on an example neural trial using the corresponding component
from the validation-chosen MoLDS. (c) Angle bins: dominant component; PD arrows (responsibility-
weighted). (d) Impulse response magnitude of Tensor-EM MoLDS components. (e) Tensor-EM
MoLDS component usage fractions on held-out test trials.

experimental details are in (Lawlor et al.,[2018b) and the dataset is provided in (Perich et al.| 2018).
The trials’ reach direction spans the full polar range rather than discrete directions as in the Area2

dataset. For the PMd dataset, we similarly extract movement-related activity by taking a fixed window
(—100 to 4500 ms) around the movement onset for each trial. We analyze PMd activity with the 5-
dimensional kinematic as inputs, i.e., (x-velocity, y-velocity, x-acceleration, y-acceleration, speed),
and the first 16 PCs as outputs. Following the Area2 protocol, we train MoLDS across hyperpa-
rameters on the PMd training split and select the model by validation criteria (NLL/RMSE/BIC).
Figure[f[a) reports validation results where the 4-component MoLDS trained with the Tensor-EM
method has better performance. Figure[6{b) shows test one-step-ahead reconstructions of the corre-
sponding component from this MoLDS fit.

Under review as a conference paper at ICLR 2026

To accommodate continuously distributed reach angles, we uniformly binned trials into 12 angular
bins based on their reach angles. For each bin, we assigned a dominant component based on the
highest mean responsibility. Figure[6{c) shows these bins colored by their dominant LDS component
and overlays responsibility-weighted preferred-direction (PD) arrows for each component, where
we also compare Tensor-EM and Random-EM MoLDS results. Figure [6[d) plots impulse-response
magnitude across lag of each component, revealing component-specific gains and temporal decay;
Appendix [E.2| (Figure [I4) further shows the decomposed responses across input channels. Figure [6fe)
reports Tensor-EM MoLDS component usage fractions on held-out test trials. Overall, the mixture
components of the PMd dataset specialize in distinct movement directions and exhibit distinct
dynamical response profiles.

6 CONCLUSION

MoLDS offers an interpretable way to model repeated, trajectory-level dynamics in heterogeneous
neural recordings. Here, we propose a Tensor-EM algorithm for inference of MoLDS; we use SMD
for tensor decomposition as an initialization with Kalman filter-smoother EM, to achieve reliable
parameter recovery and interpretable clustering of synthetic and real neural recordings. This hybrid
framework makes MoLDS practically usable for large, noisy datasets. As limitations, we note that we
have only explored synthetic and real-world cases where the data has linear dynamics - the synthetic
data is linear and the neural data consists of smoothed firing rates - and have not explored cases with a
high likelihood of model mismatch. Some strategies can be utilized to handle the nonlinearity within
the MoLDS framework, including segmenting trajectories into shorter sessions that are locally well-
approximated by linear dynamics and augmenting the linear models with nonlinear kernel features.
Except for these, other directions of MoLDS will be extending the framework to autonomous setups
and developing theoretical guarantees in simplified conditions. Nevertheless, our current results
demonstrate the practical value of MoLDS and provide a foundation for extending the Tensor-EM
approach of MoLDS to more complex and realistic dynamics analysis.

7 ETHICS STATEMENT

Here, we aim to make methodological and neuroscientific insights, and do not note any negative
societal or ethical implications.

8 REPRODUCIBILITY STATEMENT

Our work can be reproduced in a straightforward way. The datasets are provided in (Miller} 2022)
and (Perich et al.| 2018)), with all pre-processing techniques detailed in (Chowdhury et al.| [2020),
(Lawlor et al., [2018al), and the Appendix. Moreover, detailed algorithms and technical details are
provided for each step of the inference, with comprehensive pseudo-code for the implementation in
the main text and the Appendix.

REFERENCES

Animashree Anandkumar, Rong Ge, Daniel J Hsu, Sham M Kakade, Matus Telgarsky, et al. Tensor
decompositions for learning latent variable models. J. Mach. Learn. Res., 15(1):2773-2832, 2014.

Vivek R Athalye, Preeya Khanna, Suraj Gowda, Amy L Orsborn, Rui M Costa, and Jose M Carmena.
Invariant neural dynamics drive commands to control different movements. Current Biology, 33
(14):2962-2976, 2023.

Ainesh Bakshi, Allen Liu, Ankur Moitra, and Morris Yau. Tensor decompositions meet control
theory: learning general mixtures of linear dynamical systems. In International Conference on
Machine Learning, pp. 1549-1563. PMLR, 2023.

Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer, 2006.

Hengnu Chen, Lei Deng, Zheng Qu, Ling Liang, Tianyi Yan, Yuan Xie, and Guoqi Li. Tensor train
decomposition for solving large-scale linear equations. Neurocomputing, 464:203-217, 2021.

10

Under review as a conference paper at ICLR 2026

Yanxi Chen and H Vincent Poor. Learning mixtures of linear dynamical systems. In International
conference on machine learning, pp. 3507-3557. PMLR, 2022.

Yenho Chen, Noga Mudrik, Kyle A Johnsen, Sankaraleengam Alagapan, Adam S Charles, and
Christopher Rozell. Probabilistic decomposed linear dynamical systems for robust discovery of
latent neural dynamics. Advances in Neural Information Processing Systems, 37:104443—-104470,
2024.

Raeed H Chowdhury, Joshua I Glaser, and Lee E Miller. Area 2 of primary somatosensory cortex
encodes kinematics of the whole arm. Elife, 9:e48198, 2020.

Richard D De Veaux. Mixtures of linear regressions. Computational Statistics & Data Analysis, 8(3):
227-245, 1989.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B, 39(1):1-22, 1977.

James Durbin and Siem Jan Koopman. Time series analysis by state space methods. Oxford university
press, 2012.

Emily Beth Fox. Bayesian nonparametric learning of complex dynamical phenomena. PhD thesis,
Massachusetts Institute of Technology, 2009.

Zoubin Ghahramani and Geoffrey E Hinton. Parameter estimation for linear dynamical systems.
1996.

Zoubin Ghahramani and Geoffrey E Hinton. Variational learning for switching state-space models.
Neural computation, 12(4):831-864, 2000.

Volodymyr Kuleshov, Arun Chaganty, and Percy Liang. Tensor factorization via matrix factorization.
In Artificial Intelligence and Statistics, pp. 507-516. PMLR, 2015.

Patrick N. Lawlor, Matthew G. Perich, Lee E. Miller, and Konrad P. Kording. Linear-nonlinear-time-

warp-poisson models of neural activity. Journal of Computational Neuroscience, 45(3):173-191,
October 2018a. ISSN 1573-6873.

Patrick N Lawlor, Matthew G Perich, Lee E Miller, and Konrad P Kording. Linear-nonlinear-time-

warp-poisson models of neural activity. Journal of computational neuroscience, 45(3):173-191,
2018b.

Yuanzhi Li and Yingyu Liang. Learning mixtures of linear regressions with nearly optimal complexity.
In Conference On Learning Theory, pp. 1125-1144. PMLR, 2018.

Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
Bayesian learning and inference in recurrent switching linear dynamical systems. In Artificial
intelligence and statistics, pp. 914-922. PMLR, 2017.

Lennart Ljung. System identification. In Signal analysis and prediction, pp. 163—173. Springer, 1998.

Lee Miller. Area2 bump: macaque somatosensory area 2 spiking activity during reaching with per-
turbations, 2022. URL https://dandiarchive.org/dandiset/000127/0.220113\
0359.

Noga Mudrik, Yenho Chen, Eva Yezerets, Christopher J Rozell, and Adam S Charles. Decomposed
linear dynamical systems (dlds) for learning the latent components of neural dynamics. Journal of
Machine Learning Research, 25(59):1-44, 2024.

Samet Oymak and Necmiye Ozay. Non-asymptotic identification of Iti systems from a single
trajectory. In 2019 American control conference (ACC), pp. 5655-5661. IEEE, 2019.

Soumyabrata Pal, Arya Mazumdar, Rajat Sen, and Avishek Ghosh. On learning mixture of linear

regressions in the non-realizable setting. In International Conference on Machine Learning, pp.
17202-17220. PMLR, 2022.

11

https://dandiarchive.org/dandiset/000127/0.220113.0359
https://dandiarchive.org/dandiset/000127/0.220113.0359

Under review as a conference paper at ICLR 2026

Liam Paninski and John P Cunningham. Neural data science: accelerating the experiment-analysis-
theory cycle in large-scale neuroscience. Current opinion in neurobiology, 50:232-241, 2018.

Matthew G. Perich, Patrick N. Lawlor, Konrad P. Kording, and Lee E. Miller. Extracellular neural
recordings from macaque primary and dorsal premotor motor cortex during a sequential reaching
task, 2018. URL http://crcns.org/data-sets/motor-cortex/pmd-1.

Maryann Rui and Munther Dahleh. Finite sample analysis of tensor decomposition for learning
mixtures of linear systems. In 7th Annual Learning for Dynamics & Control Conference, pp.
1313-1325. PMLR, 2025.

Carsen Stringer and Marius Pachitariu. Analysis methods for large-scale neuronal recordings. Science,
386(6722):eadp7429, 2024.

Anne E Urai, Brent Doiron, Andrew M Leifer, and Anne K Churchland. Large-scale neural recordings
call for new insights to link brain and behavior. Nature neuroscience, 25(1):11-19, 2022.

Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through
neural population dynamics. Annual review of neuroscience, 43(1):249-275, 2020.

Lei Xu and Michael I Jordan. On convergence properties of the em algorithm for gaussian mixtures.
Neural computation, 8(1):129-151, 1996.

Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture of many random linear
equations by tensor decomposition and alternating minimization. arXiv preprint arXiv:1608.05749,
2016.

Kai Zhong, Prateek Jain, and Inderjit S Dhillon. Mixed linear regression with multiple components.
Advances in neural information processing systems, 29, 2016.

A LLM USAGE STATEMENT

We used LLMs to assist with language editing in parts of the manuscript. All LLM’s suggestions
were manually verified and edited by the authors.

B TENSOR INITIALIZATION DETAILS

In this section, we provide a brief introduction to MoLDS’s connection to MLR and the tensor-based
moment method for MoLDS (see (Bakshi et al.,[2023; [Ru1 & Dahleh, [2025) for more details).

B.1 MOoLDS 1O MLR REFORMULATION

The key insight enabling tensor methods for MoLDS is that any linear dynamical system can
be equivalently represented through its impulse response (also called Markov parameters), which
describe how the system responds to unit impulses in its inputs. This representation allows us to
reformulate MoLDS as MLR, making algebraic moment-based methods applicable. We now briefly
introduce this process following the formulation in (Rui & Dahlehl [2025).

Step 1: Impulse response representation. For notational brevity, we assume an LDS with m-
dimensional inputs and a scalar output (p = 1), and zero feedthrough (Dj, = 0). The extension to
multiple outputs (p > 1) is straightforward. The system parameters are (A, By, Cy). Its impulse
response, also called the sequence of Markov parameters, is defined by

g(j) = CxAl7'B, € R™, j=1,23,...,
so that gk(l) = Cy By, gk(Q) = C, A, By, etc.

The sequence {gx(j)} captures the system’s memory: gx(j) specifies how an input applied j steps in
the past influences the current output. Given an input sequence {u;}, the output can be expressed as
the infinite convolution

[e]
e = Y gk(j) ur—; + noise terms.
=1

12

http://crcns.org/data-sets/motor-cortex/pmd-1

Under review as a conference paper at ICLR 2026

In practice, this sum is truncated after L terms, since g (j) decays exponentially for stable systems.
We denote the stacked first L impulse responses by

ot = g, k@) T, gn(L)T]T € RE™,

Step 2: Lagged input construction. To exploit the impulse response representation, we construct
lagged input vectors that collect recent input history. For trajectory ¢ at time ¢ > L, define

Uip = [uIt,uZt_l, . 7UiT,t—L+1]T e Rt™,
This vector stacks the most recent L inputs (the current input and the previous L — 1), so that @;
has dimension Lm and aligns with the stacked impulse responses g,EL). With this construction, the
truncated output becomes
Vit A <g,(ff), U; ¢) + noise terms,
where k; denotes the (unknown) component generating trajectory .

With the above input construction, consecutive lagged vectors ; ; and u; ¢41 share L—1 input entries,
which induces strong statistical dependence and complicates the estimation of higher-order moments.
To mitigate this, we sub-sample the time indices with a stride L, i.e.,

te{L,2L,3L, ..., T}

This construction ensures that the resulting lagged vectors are non-overlapping. Under standard input
assumptions (e.g., i.i.d. or persistently exciting inputs), the sub-sampled vectors are approximately
independent, which is crucial for consistent moment estimation.

Step 4: Normalization and MLR formulation. To apply tensor methods, the covariates must have
unit variance. We therefore normalize each lagged input by the input standard deviation,

ﬂ/,
v = =, o2 = Efjlul?],

and flatten the dataset via the re-indexing map (4, ¢) — j. This yields the mixture of linear regressions
(MLR) form

U; = (vj,Br;) +n5 + &5,
where

* y; = Y, is the observed output,

*v; € RL™ is the normalized lagged input (covariate),
* B, = 0u g,(cf) € RE™ is the scaled Markov parameter vector (regression coefficient),
* k; € {1,..., K} is the (unknown) component index,

* 7); captures process and observation noise,

* ¢, accounts for truncation error from ignoring impulse responses beyond lag L.

Step 5: Mixture structure. Since each trajectory originates from one of K latent LDS components
with probabilities {pj } X, the regression model inherits the same mixture structure:

Plk; = k] = pr.

Thus the learning task reduces to recovering the mixture weights {py } and regression vectors { Sy, }
from the dataset {(v;,7;)}. Once these regression parameters are estimated, the corresponding
state-space models (A, B, C) can be reconstructed via the Ho-Kalman realization algorithm
(Oymak & Ozay, |2019).

This reformulation is crucial: it transforms the original problem of identifying a mixture of LDSs
into the algebraic problem of learning an MLR model, for which polynomial-time tensor methods
with identifiability and sample-complexity guarantees are available (Rui & Dahleh, |2025).

13

Under review as a conference paper at ICLR 2026

B.2 MOMENT CONSTRUCTION AND WHITENING

Let d = Lm denote the dimension of the lagged input vectors. We partition the sample indices into
two disjoint subsets N and N3 for constructing second- and third-order moments, respectively as in
(Rui & Dahleh, [2025). The empirical moments are defined as

My = 2|./\/—2| Z y] ’U] ®vj I)v M; = 6|N3| Z _] vj))7

where I is the d x d identity and
d
Ew) = Z(v@e,«@er + e QuRe, + er®er®v),
r=1

with e,. the r-th standard basis vector in R?. These corrections ensure that the resulting tensors are
centered and symmetric.

At the population level, these moments satisfy

K K
= > BBy, EMs] =Y pBE
=1

k=1

so they encode the regression vectors {3x } and mixture weights {py }.

To obtain an orthogonally decomposable form, we perform whitening. Let My ~ UXU " be the
rank- K eigendecomposition, and define

W = Uy Sl

so that W T MyW ~ Ix. Applying W along each mode of M3 yields the whitened tensor

K
T = Ms(WW,W) = > prai® ap:=WTh
k=1

This tensor is symmetric and orthogonally decomposable. We then apply Simultaneous Matrix
Diagonalization (SMD) (Kuleshov et al.l 2015) to recover {ay, py }. Finally, we unwhiten
to obtain [, = W~ Tay, and recover the state-space parameters (Ay, B, Cy) via Ho-Kalman
realization (Oymak & Ozay, |[2019).

B.3 SIMULTANEOUS MATRIX DIAGONALIZATION

This section provides the Simultaneous Matrix Diagonalization (SMD) method for tensor decom-
position (Kuleshov et al.,2015) in Algorithm[2] SMD recovers tensor components by reducing the
problem to joint matrix diagonalization, exploiting linear algebraic structure to recover all components
simultaneously rather than sequentially as in RTPM.

Jacobi Joint Diagonalization (JJD). Given matrices {M, g} /21, 1JD finds an orthogonal matrix
U such that U T M,U is as close to diagonal as possible for all ¢ simultaneously. We use the
Jacobi rotation-based algorithm that iteratively applies Givens rotations to minimize the off-diagonal
Frobenius norm Y, ||U T M,U — diag(U " M,U)||%. Convergence is declared when the relative
change in this objective falls below 108

14

Under review as a conference paper at ICLR 2026

Algorithm 2 Simultaneous Matrix Diagonalization (SMD) for Tensor Decomposition

Require: Noisy symmetric tensor 7' € R¥*K XK number of random probes Lo > 2.

Ensure: Factor estimates {d&;}1£ | and weights {p; }X, such that 7' ~ Zfi P a3

Stage 1: random projections — simultaneous diagonalization

Sample {wg}ZLZ"1 i.i.d. from the unit sphere S¥—1.

Form projected matrices M(®) « {T'(I, I, wy) ZL:‘)I, where T'(I, I, w) = Zfil wrT(:,).
Compute an approximate joint diagonalizer via JJD: U(©) « JJ D(M(O)).

Set V(O — (U©)-1,

Stage 2: inverse-guided projections — refinement

R A

5: Build MM « {T'(I, 1, UEO)) K |, where vgo) is the i-th column of V(9.
6: Refine with JJD: UM « JID(M D).

7: Let & be the i-th column of U(Y) and normalize to ||G;||o = 1.

8: fori=1to K do

9: D <T7 G; Qa4 ® CAYl>

10: end for

11: return {&; } 5, {pi} K.

B.4 TENSOR INITIALIZATION ALGORITHM

With the MLR reformulation and the SMD tensor method, the full algorithm of tensor initialization
for MoLDS can be provided now.

Algorithm 3 Tensor Initialization for MoLDS

Require: Trajectories {(ULO:Ti—ly yi,O;Ti_1)}£\Ll, truncation L, LDS order n, #components K

Ensure: Estimates of mixture weights p1.x and LDS params {(flk, By, Cy, ﬁk)}le
(A) MoLDS — MLR design & sub-sampling

1: fori =1:N do

2: fort € {L,2L,...,T;} do

3: Uiy [u) yuly sl p] € RE™

4: Append sample (vj, §;) With v; <= U; /0y, Jj < Vit

5: end for

6: end for

7: Partition samples: {1,..., M} = No UN3 where M =" .|T;/L]

(B) Moment construction
1 ~

My = oy 2 jens, §5 (v @5 — L)
9: M3 + mzjejvgg]? (vj®3 — &(vj)) where d = Lm

(C) Symmetric whitening and tensor formation
10: Compute rank-K SVD: My ~ USU T, set W U(:J:K)E;}(/Q
11: Form whitened tensor: T' < Mz(W, W, W) € REXExEK

(D) Tensor decomposition & recovery

12: Apply SMD to 7T to recover {éw, pr} 5, (Appendix Alg

13: Unwhiten: Bk < W~Ta and recover Markov params @(f)

(E) State-space realization
14: for k =1:K do N
15: Build Hankel matrix from {§,E)}5:1 and apply Ho-Kalman algorithm

e

— Bk/au

16: Recover state-space parameters (flk, By, C’k, ﬁk)
17: end for S
18: return {ﬁk‘}g:l and {(Ak,Bk,Ck,Dk)}le

Under standard identifiability and excitation conditions, RTPM-based tensor decomposition provably
recovers the parameters {3} with finite-sample guarantees (Rui & Dahleh}2025). Simultaneous
matrix diagonalization (SMD) enjoys analogous guarantees in the orthogonal-tensor setting and,

15

Under review as a conference paper at ICLR 2026

in practice, tends to be more numerically stable and noise-robust (Kuleshov et al. [2015)). These
advantages lead to improved parameter estimates during the tensor initialization stage (Figure 2] main
paper), which in turn can provide a stronger starting point for the subsequent EM refinement.

C EM FOR MOLDS: COMPLETE TECHNICAL DETAILS

C.1 OVERVIEW AND STRUCTURE

This appendix provides complete technical details for our EM formulation for MoLDS. The EM
algorithm for MoLDS alternates between two phases: (i) an E-step that computes trajectory-wise
responsibilities via Kalman filter likelihoods and extracts sufficient statistics via Kalman smoothing,
and (ii) an M-step that updates all parameters using closed-form maximum likelihood estimates from
responsibility-weighted statistics. The algorithm is detailed in Algorithm []

C.2 COMPLETE EM ALGORITHM

The EM procedure operates on trajectories {(u@o;Ti —1, yi,o:Ti—l)}f\Ll with current parameter esti-
mates 0 = {(px, Ag, By, Cx, Dy, Qx, Ry) }<_, at iteration ¢.

E-step Computations. For each trajectory ¢+ and component k, we compute:

b= 1ng(yi,O:Ti71 | wi0:1—1, é;(f)) ,)

= 1Og13§f) + i ks)
eXpl Qi k

%kz—jil———f §:%k—1 (10)

> e explai,)

The likelihood /; j, is computed via the Kalman filter, while responsibilities +; 5, use the log-sum-exp
trick for numerical stability. Subsequently, the Kalman smoother computes per-trajectory sufficient
statistics .S; 1., which are aggregated as:

N

Sk =Y Vik Sik- (11)

i=1

M-step Updates. Mixture weights and LDS parameters are updated via:

oY = Z%m (12)
") — MLE-LDS(S}), (13)

where the closed-form LDS parameter updates are derived in[C.3]

Convergence. The algorithm monitors the observed-data log-likelihood:

Lo+ = Zlogz o (yi,o:Ti—l | ui,O:Tifl’él(cHl)) ’ (o
’L 1

and terminates when the relative improvement falls below the threshold €.

16

Under review as a conference paper at ICLR 2026

Algorithm 4 EM Refinement for MoLDS

Require: Trajectories {(w; 0.1,—1, Yi.0.7;—1) }.21; initial parameters 6(©): max iterations EM_max;

tolerance ¢

Ensure: Refined mixture weights and LDS parameters
1: for iter = 1 to EM_max do

—

SYRXIIUN AN

E-step: Compute responsibilities and sufficient statistics
fori=1: Ndo

fork=1:Kdo

Compute /; ;. via Kalman filter on (u; 0.7;—1, Yi,0:7;—1) using égter_l)

Set o f, 1og]3](:ter_1) + ik
Run Kalman smoother to compute sufficient statistics .5; j
end for
Compute lse; + long=1 exp(o) and responsibilities ; , < exp(a r — Ise;)

end for
Aggregate responsibility-weighted statistics: Sy < Zf\il Vi,k Six for each k
M-step: Update all parameters

11: Update mixture weights: ﬁ,glter) — % Zi\; i,k forall k
12: fork=1:Kdo o
13: Update LDS parameters (A, By, Ck, Dy, Qk, Ri) from S, (see
14: end for
Convergence check
15: Compute observed log-likelihood: £t <« vazl Ise;
16 Stop if (ﬁ(iter) _ E(iter—l))/|£(iter—1)| <e
17: end for

18: Return {py, (A, By, C, Di, Qi, R},

C.3 CLOSED-FORM M-STEP UPDATES

The M-step updates follow standard LDS maximum likelihood estimation (Ghahramani & Hinton,
1996)). For simplicity, we present the case Dy, = 0 (no direct feedthrough) and drop component and
iteration indices (k, t) for readability:

We solve the normal equations with optional ridge regularization A > 0 to obtain system matrices for
each component.

A B]=[Ss- Seu] ([gz_i_ EZT-Z-} +)\I) o (15)
C = Sy (Suu + AL (16)
And the noise covariances are
R= %(Syy —C8,), — SyaCT +C8CT), a7
Q = - (Svecuws — ASL, ~ BS], —(4SL, +BS],)" (18)

+AS, AT+ AST BT + BS, - AT + BSTWBT). (19)

Here, all S. . are the sufficient statistics.

C.4 COMPUTATIONAL COMPLEXITY

Each EM iteration requires O(N Kn3T') operations:

« Kalman filtering: O(n3T) per trajectory-component pair, total O(N Kn3T)
+ Kalman smoothing: O(n3T) per trajectory-component pair, total O(N Kn>T')

 M-step updates: O(Kn?) for matrix inversions

17

Under review as a conference paper at ICLR 2026

Tensor initialization significantly reduces the iteration count compared to random initialization,
which substantially improves computational efficiency. The tensor initialization phase requires O(d?)
operations where d = Lm is the MLR dimension, making it negligible in the whole Tensor-EM
pipeline.

D INITIALIZING (@, R) AFTER TENSOR INITIALIZATION

The tensor stage yields {A., B,, C., p. }_, but not the noise covariances {Q., R.}. We initialize
(Q, R,) from data for each component z as follows.

Step 1 (labels/weights; optional). Assign labels by selectlng, for each trajectory ¢, the component z

with the smallest one-step prediction MSE under (AZ, BZ, C’), and set w; , = 1 for that component
and w; , = 0 forall r # z.

Step 2 (state back-projection). For each z and trajectory i, decode provisional latents with a ridge
pseudo-inverse:

~(z A A —1 A ~

x;t) = (C’ZTCZ + /\I) C’zT (yit — Dauiy),
where we recommend A = 109 max(diag(C_ C..)) for numerical stability.

Step 3 (residual covariances). Define

nz(zt) = Et—o—l A i‘z t Bzui,t; 55? =Yit — ézii'gzt) - Dzui,t-
With Titr =1T; — 1, set

z 2)T " z z
Z wzzZt =0 m t)nz t) RO — Z wzzzt zt) Et)
> wi T ’ : > wiz T .

Step 4 (positive semidefinite projection). Symmetrize and project to the positive semidefinite cone:
Q(O — H>o((Q(O) + Q(O)T)), Rio) — Hto(%(Rgo) + RgO)T)),

where IT- (M) projects matrix M to the nearest positive semidefinite matrix via eigendecomposition:
if M = UAU ", then Iy o(M) = U max(A,0)U .

Qv =

This yields (Q% (0) (0)) for each component z, providing a stable initialization for the first E-step;
subsequent EM 1terat10ns refine (@), R.) from responsibility-weighted sufficient statistics.

E TENSOR-EM MOLDS APPLICATION ON NEURAL DATASET DETAILS

E.1 AREA2 DATASET

Dataset introduction. We evaluate our methods on a neural population dataset recorded from the
motor cortex (Area2) of a rhesus macaque. The task is a center-out reaching paradigm where the
subject applies force to a manipulandum in response to cues. Neural activity was recorded with a
Utah array, and spike counts were extracted from thresholded multiunit activity. The dataset provides
simultaneously measured behavioral covariates (applied force, hand kinematics) alongside the neural
recordings.

Data preparation for MoLDS. Following the Neural Latents Benchmark preprocessing, we first
apply principal component analysis (PCA) to reduce the neural activity to p latent dimensions (here
we use p = 6, 20). The behavioral force signals (6D) are used as exogenous inputs. For MoLDS
training, we constructed input-output trials of the form (wuy, 1), where u; € RS corresponds to
force inputs and y; € R? are PCA-reduced neural outputs. Each reaching direction corresponds to
a separate trial. We split the dataset into non-overlapping train, val, and test sets, ensuring
balanced coverage across each direction.

We checked the variance explained by PCA and found that the first six PCs capture over 90% of the
total variance for each direction, while the first 20 PCs explain nearly all of it. This indicates that
PCA preserves the essential structure of the neural activity. The following figure illustrates this.

18

Under review as a conference paper at ICLR 2026

Neural Activity PCA Spectrum (per Condition) Cumulative Variance Explained by PCA (per Condition)
— 0 10

as°

%0°

135°

— 180°

— 25° 08

3 — 270°
— 315°

Explained Variance Ratio

00 25 50 75 100 125 150 175 00 25 50 75 100 125 150 175
Principal Component Number of Components

Figure 7: Area2 neural activity PCA spectrum.

Tensor-EM MoLDS train/val/test setup. For model initialization, we computed input-output
moment tensors from the training data and applied SMD to obtain globally consistent estimates
of system parameters and mixture weights. These estimates were used to initialize a full Kalman
filter-smoother EM refinement, which updates all LDS parameters in closed form. We trained MoLDS
models with different numbers of mixture components K € 3,4, 5, latent dimension n € 3,4, 5,
and lag parameters L € 16, 24. Validation data is used for model selection by comparing negative
log-likelihood (NLL), root mean squared error (RMSE), and Bayesian Information Criterion (BIC).

* NLL: sum of Gaussian-innovation log-likelihoods.
* RMSE: root mean squared error of one-step predictions ¢; vs. y.
e BIC: BIC = —2NLL + pg log Nyps, where py is the total parameter count and N,ps the

number of observed outputs.

The best configuration was tested on the held-out test set.

Per-trial responsibilities. 'We compute responsibilities for each trial under component k
‘ K
Tik X exp(é,(;)), Zrik =1,
k=1

where Eg) is the one-step Kalman log-likelihood of trial ¢ under component k. Global usage is
summarized by usage, = % >_; Tik-

Analyses.

1. Validation metrics. We plot BIC/NLL/RMSE across K and initializations (Tensor vs.
Random) to assess stability and choose capacity.

2. Representative predictions. We visualize ¢; vs. y; for representative test trials (all p
outputs).

3. Direction organization & component usage. In a polar wheel with one wedge per discrete
direction, we color each wedge by the dominant component (highest mean r;;, among trials
in that wedge).

4. Markov response comparison. For each component, we calculate gi(7) = C, AL By €
RP*™ 7 =0,...,L — 1 (omit Dy, for clarity). Plot ||gx(7)||r for all components on a
single axis to compare gain/decay.

5. Global geometry of dynamics. Vectorize all {g(7)}x, -, run PCA across that set, and
scatter the first two PCs; use color to encode lag 7 and marker/edge to encode component.
Components typically form distinct, smoothly evolving trajectories.

Supervised per-direction LDS fitting baseline. Because Area2 uses discrete directions, we also fit
a single LDS per direction using the same observation space. We compute each supervised model’s
impulse response, cluster the per-direction vectors, and align clusters to MoLDS components via
a Hungarian assignment on centroid distances. A polar plot (inner = supervised clusters, outer =
MoLDS predictions) confirms that unsupervised MoLDS recovers direction-consistent dynamics.

19

Under review as a conference paper at ICLR 2026

PCA of Markov vectors (per direction)

* single-trial LDS <©- pooled per-dir LDS -3¢ global LDS

Figure 8: Markov parameters representation of LDS models from different fitting methods.

Single-trial LDS fitting baseline. In addition, we also fit an LDS for each single trial. We compute
the average LDS impulse response in each direction and compare the obtained clusters as compared
to the per-direction LDS. Following the same procedure as in per-dir LDS fitting, we compare the
clusters of single-trial LDS fitting with MoLDS components as well. We have examined the trial-
to-trial variability of the Area2 dataset by comparing their full Markov parameter vectors between
single-trial, perd-dir, and single global LDS fits. As shown in the figure ??, by evaluating the first three
PCs of the Markov vectors, single-trial LDSs within each direction form compact clusters, and the
pooled per-direction LDS lies near the cluster center for most directions. In contrast, these single-trial
LDS are very far from a global LDS fitted on all trials. This indicates that within-direction variability
is mild, and the per-direction LDS provides a stable summary of the underlying dynamics rather
than an oversimplification. We also performed clustering directly on independently fitted single-trial
LDSs. These LDSs naturally cluster by movement direction, even without pooling, demonstrating
that direction-specific dynamical signatures are already present at the single-trial level. Moreover, by
comparing with the per-dir LDS and MoLDS fit, these single-trial LDS fit-based clusters are very
similar, with only two directions being switched between clusters (see Figure [I2)). Together, these
analyses show that while the per-direction LDS is not a perfect “gold standard,” it is a reasonable and
stable reference, and our comparisons to MoLDS capture meaningful structure in the data.

SLDS comparison. We fit switching LDS (SLDS) models with S € 1, 2, 3 discrete states to the
training set (Gaussian emissions, 6-D force inputs, mild or strong sticky transitions). Validation
NLL/BIC selected S = 2 SLDS. We then decoded the test set with Viterbi and summarized the
inferred state sequences (Figure [9). Panel (a) shows that within-trial switches are infrequent and
tend to occur in similar temporal regions across trials. In panel (b, left), grouping test trials by their
dominant state s* reveals that the same state dominates most directions, with only a mild departure
around dir-90. The mean time-share view (b, right) tells the same story: state composition looks
broadly similar across directions. Consistent with this, a “collapsed” SLDS that uses only each trial’s
dominant state achieves nearly the same predictive metrics as the fully segmented model, indicating
that within-trial switching adds little in this dataset. These results support our interpretation that the
primary structure is between trials (by direction), not within trials.

More results.

Impulse response comparison. We compare the direction-specific impulse response (Markov pa-
rameter) curves of the assigned MoLDS component and the corresponding single LDS fit for that
direction, which shows high similarity (see Figure|l10| where titles report cosine similarity).

Results of MoLDS fitting using 20 PCs. We also applied the MoLDS method on the Area2 dataset
with 20 PCs, and found consistent results for the 6-PC fitting model as shown in Figure[TT}

Multi-step prediction In addition to the 1-step-ahead predictions presented in the main paper, we
also inspected multi-step and free-run predictions. A representative example is provided in Figure
[12] The model follows the true neural trajectory for several steps before diverging as it runs forward
without correction, which is the characteristic and expected pattern for stable linear dynamical

20

Under review as a conference paper at ICLR 2026

(a)

5LDS Viterbi state raster

0100
o 0075
. o050
o= oo
o000

“o0zs

~00s0

“oars

] 100 200 300 400 500 oo

time (samples)

SLDS Vierbi state raster

0w

0 (v=3)

sute

135)

100 ()

270 022)

318 (0e2)

SLDS: trial grouping by state (dominant s*) 10 SLDS: mean time share by state 10
[] : :

-0.8 -08

1\ o
©

c 0.6 5 c 06 S
£ 5 £ K
s 0.4 fé s 048

0.2 -0.2

- 0.0 -0.0

SLDS state SLDS state

Figure 9: SLDS result: Inferred switch states for all test trials with mild (a) and strong stickiness (b).
(a) Group trials and mean time by states with the mildly sticky SLDS fit.

Per-direction impulse curves vs nearest MoLDS component
= per-dir LDS == = MoLDS component

0° cos=0.77 45° cos=0.73 90° cos=0.75 135° co0s=0.50
0.03 0.04 0.06
£
s \ \ 0.06
< N 0.03 0.04
9002 [N N ~
© ~ ~ 0.04 [SQ
S ~ 0.02 ~ ~ ~
a ~ o ~o 0.02 ™
£o0.01 S ~o ~o ~~o
= ~~| o001 ~<| 0.02 ~. —_——~—
0 10 20 0 10 20 0 10 20 0 10 20
180° co0s=0.75 225° cos=0.63 270° cos=0.79 315° cos=0.55
0.06
£ 0.04 0.03
° 0.0a [AN o
3 ~ ~o 0.02 So L
3 SO 0.02 \\\ \\\ 0.01 S
£ 0.02 ‘~~~ ‘~~~_ 0.01 S Se~ee_
0 10 20 0 10 20 0 10 20 0 10 20
lag lag lag lag

Figure 10: Impulse response comparison between MoLDS components and per-dir LDS fit.

21

Under review as a conference paper at ICLR 2026

(a) Validation metrics (b) Test 1-step predictions

NLL RMSE BIC dim 1 dim 2
le6 18 le7 = 1

1.14 od q | 1 4
J 4.5 4 7]

1.0 164 ° g o)

0.9 4.0 -

© 0

|
-

0.84

Tri.

3.54

074 o k=3

. ke 124 3.0 0 500
0.6 4 2,54 S dim 1 dim 2
0.5 1.04 20 L ad 4 29
04 ot
0.4-.5.. s m® _g . 1 o® gz- 0
031 b : - L
v — — v — v 5 0- Py
W BV s N M s0t N M s0t =
“3n¢°m1e“sg(\“e<e“ ?\and"m'(e“s%‘me“e“ Rand"m'(e“s%‘me“e“ —24 .
T T T T
Method 500 0 500
(c2) Per-dir LDS | MoLDS (c1) Single-trial LDS | MoLDS
90° 90°

(d) MoLDS component usage

< 1.00
o
go7s 057
i 0.50
g 0.25 0.23 0.20
E]

0.00

Comp 1 Comp 2 Comp 3

Figure 11: MoLDS application on Area2 with 20 PCs: results are consistent with those presented
in the main text.

Trial #0 - k=1 - warm-up=100, block=5 —y (true)
== § (block, 5-step)
§ (full free-run)

dim 0 dim 1 dim 5

activity
!

time time time
dim 3 dim 2 dim 4

activity
activity

0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
time me time

Figure 12: Multi-step forward predictions of MoLDS on one trial of Area2 data: 1-step, 5-step vs
fully free run after 100ms warm-up.

systems. This behavior is consistent with LDS-based modeling and does not affect our use of MoLDS
for identifying shared local dynamical structure across trials.

Responsibility distribution. We analyzed the full responsibility distribution of MoLDS components
on held-out test trials to assess whether non-dominant components carry substantial probability.
Across all trials, the dominant responsibility is very large 0.976, while the second-largest responsibil-
ity is very small 0.023. This pattern is consistent across directions as shown in Figure[T3]

E.2 PMD DATASET

Dataset introduction. The dorsal premotor cortex (PMd) dataset contains single-trial reaches,
where time-aligned kinematics (position/velocity/acceleration) and multi-unit spikes, plus a reach

22

Under review as a conference paper at ICLR 2026

Dominant vs second component diagnostics

Distribution of domi [P resp ibilities Distribution of second component responsibilities
17.5 17.5
15.0 15.0
12.5 12.5
< 100 < 100
8 8
7.5 7.5
5.0 5.0
25 25
0.0 0.0
0.75 0.80 0.85 0.90 0.95 1.00 0.00 0.05 0.10 0.15 0.20 0.25
dominant responsibility second responsibility
Per-direction mean i vs resg ibility Counts of second component index per direction
1.0 3.0
= domihant @
<}
08 segond E2 25
> °
£ c
3 S 2.0
gos &
=3 é 1 1.5
S o4 £
€ 1.0
® @
E o, s
' a0 0.5
£
S
S
0.0 0.0
Do D1 D2 D3 D4 D5 D6 D7 DO D1 D2 D3 D4 D5 D6 D7
direction direction (0-7)

Figure 13: Area2 MoLDS fit dominant and second component analysis.

direction angle 6 € (—m, 7| are stored. For MoLDS, the input and observation are taken as

U = [vg, vy, Gz, ay, speed] € R, Y, € RS,

where speed = , /v2 + vg and Y; denotes PCA-reduced, z-scored firing rates. Here we use p = 16

PCs, which explain > 90% of neural activity. As in Area2 (App. [E.1), angles are used only for
analysis/visualization; MoLDS is trained without angle labels.

Tensor-EM MoLDS train/val/test setup. Training and selection mirror Area2: tensor or random
initialization followed by EM refinement; Model selection was performed on the validation split.
For PMd, we sweep K €{2,3,4}, ne{4,5,6}, and Markov horizon L € {12, 16, 24}. The selected
model in our experiments is K=4, n=>5, L=12.

Analysis idea. We reuse the analysis logic from Area2. As the direction angles are not discrete as
in Area2, we split them into 12 bins, and each bin is colored by the dominant component (largest
mean 7;, in the bin). Component-wise preferred directions are shown by responsibility-weighted
arrows

v = g ik [cos 6;,sin 6],
i

plotted as an inset (angle Zvy, length ||vg||). For each component, we examine the Markov parameter
blocks

gk(7) = Cr A} By, € RPX™, 7=0,...,L—1,

and plot (a) the compact magnitude curves ||gx(7)||r and (b) per-input energies Ej ;(7) =
llgr(7). |2 for j € {vz, vy, az,ay,speed}. For a global view, we also vectorize {gx(7)}x,-, run
PCA, and scatter the first two PCs.

Figure [T4](a) shows per-input energies versus lag, revealing input selectivity and decay rates. Fig-
ure [I4](b) visualizes the geometry of vectorized impulse blocks, where marker shape represents
component identity and color denotes the lag. These demonstrate that MoLDS components exhibit
separated clusters corresponding to component-specific dynamical subspaces.

23

Under review as a conference paper at ICLR 2026

(a) Input-wise energy per component (b) PCA of vectorized impulse blocks
comp 0 (marker = component, color = lag)
c — o —w —ax —ay — speed Components
5 0.04 "0" ® compo
o %00, W compl
2 0.02 A comp2
g 0.02 \ & comp3
s 10

comp 1

°
8

Impulse norm
°
19
2
o
g
8
®

&
S
§ x
comp 2 @ -0.02 g
£ 0.06 ~
5 4 4
S 0.04
H
0.02
E —0.04 A 2
N
comp 3 A
» o
£ 0.06 A
5 A
5 A
v 0.04
8 \ o Y
2
Eo002 % a
o 2 a4 6 8 10 -0.06 -0.04 -0.02 0.00 0.02 0.04
lag PC1 (42.5% var)

Figure 14: Input specificity and geometry of Markov responses: Left: input-wise energies versus
lags are shown per component. Right: PCA of vectorized impulse blocks (marker shape = component,
color = lags).

24

	Introduction
	Related Work
	MoLDS: Model and Tensor-EM Method
	Mixture of Linear Dynamical Systems (MoLDS)
	Tensor-EM Approach Overview
	Tensor Initialization for MoLDS
	EM Refinement for MoLDS

	Tensor-EM Performance on Synthetic Data
	SMD-tensor method provides more reliable recovery on simulated MoLDS
	Tensor-EM improves robustness and accuracy for complex synthetic MoLDS

	Tensor-EM MoLDS Provides Reliable and Interpretable Recovery on Real-world Applications
	Area2 dataset
	PMd Dataset

	Conclusion
	Ethics Statement
	Reproducibility Statement
	LLM Usage Statement
	Tensor Initialization Details
	MoLDS to MLR reformulation
	Moment construction and whitening
	Simultaneous Matrix Diagonalization
	Tensor Initialization Algorithm

	EM for MoLDS: Complete Technical Details
	Overview and Structure
	Complete EM Algorithm
	Closed-form M-step Updates
	Computational Complexity

	Initializing (Q,R) After Tensor Initialization
	Tensor-EM MoLDS Application on Neural Dataset Details
	Area2 Dataset
	PMd Dataset

