

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING MIXTURES OF LINEAR DYNAMICAL SYSTEMS (MoLDS) VIA HYBRID TENSOR-EM METHOD

Anonymous authors

Paper under double-blind review

ABSTRACT

Linear dynamical systems (LDSs) have been powerful tools for modeling high-dimensional time-series data across many domains, including neuroscience. However, a single LDS often struggles to capture the heterogeneity of neural data, where trajectories recorded under different conditions can have variations in their dynamics. Mixtures of linear dynamical systems (MoLDS) provide a path to model these variations in temporal dynamics for different observed trajectories. However, MoLDS remains difficult to apply in complex and noisy settings, limiting its practical use in neural data analysis. Tensor-based moment methods can provide global identifiability guarantees for MoLDS, but their performance degrades under realistic noise and complexity. Commonly used expectation-maximization (EM) methods offer flexibility in fitting latent models but are highly sensitive to initialization and prone to poor local minima. Here, we propose a tensor-based moment method that provides identifiability guarantees for learning MoLDS, which can be followed by EM updates to combine the strengths of both approaches. The novelty in our approach lies in the construction of moment tensors using the input-output data, on which we then apply Simultaneous Matrix Diagonalization (SMD) to recover globally consistent estimates of mixture weights and system parameters. These estimates can then be refined through a full Kalman EM algorithm, with closed-form updates for all LDS parameters. We validate our framework on synthetic benchmarks and real-world datasets. On synthetic data, the proposed Tensor-EM method achieves more reliable recovery and improved robustness compared to either pure tensor or randomly initialized EM methods. We then apply this method to two neural datasets from non-human primates doing reaching tasks. For both datasets, our method successfully models and clusters different conditions as separate subsystems. These results demonstrate that MoLDS provides an effective framework for modeling complex neural data in different brain regions, and that Tensor-EM is a principled and reliable approach to MoLDS learning for these applications.

1 INTRODUCTION

Neuroscience experiments now produce large volumes of high-dimensional time-series datasets, calling for new computational tools to uncover the dynamical principles underlying brain function (Paninski & Cunningham, 2018; Stringer & Pachitariu, 2024; Urai et al., 2022). These recorded data often originate from multiple, distinct underlying dynamical processes, yet the identity of the generating system at any given time is unknown. Estimating and recovering the parameters and dynamics of such latent systems from these mixed neural trajectories is a central challenge in system identification and machine learning (Ljung, 1998; Durbin & Koopman, 2012; Bishop, 2006).

Classical mixture models, such as mixtures of Gaussians (MoG) (Dempster et al., 1977) and mixtures of linear regressions (MLR) (De Veaux, 1989), provide valuable tools for modeling these heterogeneous data. However, they are primarily designed for static settings and do not explicitly capture temporal dependencies, limiting their applicability to sequential data where temporal dynamics are central. In contrast, dynamical models such as linear dynamical systems (LDS) and their extensions, (recurrent) switching LDS (SLDS) and decomposed LDS (dLDS) (Ghahramani & Hinton, 2000; Fox, 2009; Linderman et al., 2017; Mudrik et al., 2024), are suitable for time-series data modeling with

latent states and potential regime switches. Switching models typically target a single long trajectory and are prone to solutions that contain frequent switching; they are not suitable when the goal is to learn parameters of multiple distinct LDSs from independent trials, which is precisely the common structure in neural experiments.

Mixtures of linear dynamical systems (MoLDS) (Chen & Poor, 2022; Bakshi et al., 2023) effectively address this setting by treating each trajectory as originating from a single latent LDS. Inference of MoLDS aims to uncover the number of subsystems, their parameters, and the mixture weights from collections of input-output trajectories. This formulation enables direct parameter recovery and interpretability, making it appealing for many applications, including large-scale neural data analysis. Neural datasets usually have large numbers of recordings across behavioral or task conditions, with many trials under each condition. An important question is whether neural populations reuse common latent dynamics across conditions or exhibit distinct dynamics for different behaviors (Vyas et al., 2020; Athalye et al., 2023). MoLDS can provide a principled way to explore this question: by identifying shared and condition-specific latent dynamics, it can reveal the mixture structure of all trials in the dataset and offer a comprehensive view of the underlying dynamical motifs.

For inference of MoLDS, tensor-based moment methods are commonly employed, where high-order statistical moments of the input-output data are reorganized into structured tensors, and their decomposition provides estimates of mixture weights and LDS parameters. The appeal of these algebraic approaches lies in their global identifiability: unlike iterative optimization methods that navigate non-convex landscapes, tensor decomposition exploits the algebraic structure of moments to directly recover parameters through polynomial equation systems that admit unique solutions under ideal conditions (Anandkumar et al., 2014). However, their practical performance is often limited because moment estimates become imperfect in realistic, noisy datasets, leading to degraded parameter recovery Kuleshov et al. (2015). In parallel, likelihood-based approaches such as expectation-maximization (EM) have long been widely used for fitting classical mixture models and SLDS. EM provides a flexible iterative procedure for jointly estimating latent states, mixture weights, and system parameters through local likelihood optimization. While powerful and widely adopted, EM suffers from well-known sensitivity to initialization and susceptibility to poor local minima (Xu & Jordan, 1996; Bishop, 2006). These limitations become particularly problematic in the MoLDS setting where the parameter space is high-dimensional and the likelihood surface is highly multimodal.

Here, we propose a hybrid Tensor-EM framework that strategically combines global initialization with local refinement. We first apply tensor decomposition based on Simultaneous Matrix Diagonalization (SMD) Kuleshov et al. (2015) to obtain stable and accurate initial estimates. We then use these estimates to initialize a full Kalman filter-smoother EM procedure, which refines all parameters through closed-form updates over all trajectories. This hybrid approach harnesses the global identifiability of tensor methods for robust initialization, while leveraging EM’s superior local optimization, to achieve both reliability and accuracy.

We validate this framework on both synthetic and real-world datasets. On synthetic benchmarks, the proposed Tensor-EM method achieves more reliable recovery and improved robustness compared to (i) pure tensor methods and (ii) EM with random initialization. Next, we analyze neural recordings from two different experiments: (1) Recordings from monkey somatosensory cortex during center-out reaches in different directions, where Tensor-EM identifies distinct dynamical clusters corresponding to the reaching directions, matching supervised LDS fits per direction but achieved in a fully unsupervised manner; (2) Recordings from the dorsal premotor cortex while a monkey performs reaches in continuously distributed directions, where Tensor-EM succeeds in parsing the different trials into direction-specific dynamical models. These results establish MoLDS as an effective framework for modeling heterogeneous neural systems, and demonstrate that Tensor-EM provides a principled and reliable solution for learning MoLDS in both synthetic and challenging real-world settings.

2 RELATED WORK

Mixtures models. Mixture models (e.g., MoG and MLR) capture heterogeneity but not explicit temporal structure (Dempster et al., 1977; De Veaux, 1989; Li & Liang, 2018). Importantly, MoLDS is related to MLR through lagged-input representations: by augmenting inputs with their past values, an MLR model can approximate certain temporal dependencies. Through this connection, MoLDS inherits useful algorithmic tools, including spectral tensor methods and optimization approaches

(Anandkumar et al., 2014; Yi et al., 2016; Pal et al., 2022; Li & Liang, 2018), while maintaining its superior modeling capacity for dynamical systems.

LDS models and their variants. LDS models have been widely used to model time-series data, and several extensions have been developed to better handle nonstationarity and nonlinear structures. SLDS methods (Ghahramani & Hinton, 2000; Linderman et al., 2017) model long trajectories that switch between different dynamical regimes over time, requiring joint inference of both continuous latent states and discrete mode sequences. The dLDS method (Mudrik et al., 2024; Chen et al., 2024) captures more gradual or overlapping changes by expressing dynamics as sparse, time-varying combinations of basis operators. These frameworks are designed for long, nonstationary sequences where the dynamics themselves evolve over time. In contrast, the MoLDS setting assumes that each short trajectory is well described by a single LDS drawn from a collection of LDS components. The goal then is to identify the set of latent dynamical systems and assign trials to those components, rather than modeling intra-trial dynamics changes.

Tensor methods and EM. Tensor decomposition methods offer a principled algebraic approach to parameter estimation in latent variable models, with polynomial-time algorithms and theoretical identifiability guarantees (Anandkumar et al., 2014). Recent work in tensor-based MoLDS learning has explored different moment construction strategies and decomposition algorithms. Early approaches applied Jennrich’s algorithm directly to input-output moments (Bakshi et al., 2023), while more recent work incorporates temporal lag structure using the MLR reformulation and the robust tensor power method (Rui & Dahleh, 2025). Our approach adopts the Simultaneous Matrix Diagonalization (SMD) method (Kuleshov et al., 2015), which operates on whitened tensor slices and offers improved numerical stability and robustness to noise, which are critical advantages in the challenging MoLDS setting.

The combination of tensor initialization followed by EM-style refinement has been proven effective in mixture model settings. In the MLR literature, tensor methods provide globally consistent initial estimates that lie within the basin of attraction of the maximum likelihood estimator, which are then refined using alternating minimization (Yi et al., 2016; Zhong et al., 2016; Chen et al., 2021). However, alternating minimization represents a simplified version of EM that uses hard assignments rather than the probabilistic responsibilities essential for handling uncertainty in noisy settings. Our work extends this paradigm to the more complex MoLDS setting by combining tensor initialization with more powerful Kalman filter-smoother EM, including proper handling of latent state inference and closed-form parameter updates.

Contributions. Our work makes both methodological and empirical contributions to MoLDS learning and shows its practical utility in neuroscience settings. Methodologically, relative to existing MoLDS tensor methods, our approach makes several key advances: (i) we employ SMD for more stable decomposition of whitened moment tensors, (ii) we provide a principled initialization strategy for noise parameters (Q, R) based on residual covariances, which was missing from prior tensor-based approaches, and (iii) we integrate a complete EM procedure with responsibility-weighted sufficient statistics for all LDS parameter updates. Compared to existing tensor-alternating minimization pipelines for MLR, our method leverages the full complexity of Kalman filtering and smoothing, which is essential for addressing the temporal dependencies and uncertainty quantification required in real MoLDS applications.

Empirically, we demonstrate the successful applications of tensor-based MoLDS methods to complex and real-world data analysis. While prior MoLDS tensor work has been limited to synthetic evaluations, we show that our Tensor-EM framework can effectively analyze neural recordings from different brain regions during distinct reaching tasks and successfully identify distinct dynamical regimes corresponding to different movement directions in a fully unsupervised manner. This represents an important step toward making MoLDS a practical tool for important applications, particularly in neuroscience, where capturing heterogeneous dynamics across experimental conditions is a central challenge. Together, these methodological and empirical advances demonstrate that our Tensor-EM MoLDS framework provides improved robustness and accuracy in both controlled and challenging real-world settings.

159
160
161

162 3 MoLDS: MODEL AND TENSOR-EM METHOD

164 3.1 MIXTURE OF LINEAR DYNAMICAL SYSTEMS (MoLDS)

166 In the MoLDS setting (Figure 1), we observe N input-output trajectories $\{(u_{i,0:T_i-1}, y_{i,0:T_i-1})\}_{i=1}^N$,
 167 each generated by one of K latent LDS components. Let $z_i \in [K]$ denote the (unknown) component
 168 for trajectory i , drawn i.i.d. as $z_i \sim \text{Multinomial}(p_{1:K})$, where $p_k \in (0, 1)$ are the mixture weights
 169 with $\sum_{k=1}^K p_k = 1$, indicating the probability of a trajectory being generated by component k .
 170 Conditional on $z_i = k$, the data is generated from the following LDS:

$$171 \quad x_{t+1} = A_k x_t + B_k u_t + w_t, \quad w_t \sim \mathcal{N}(0, Q_k), \quad (1)$$

$$172 \quad y_{t+1} = C_k x_t + D_k u_t + v_t, \quad v_t \sim \mathcal{N}(0, R_k), \quad (2)$$

174 with $A_k \in \mathbb{R}^{n \times n}$, $B_k \in \mathbb{R}^{n \times m}$, $C_k \in \mathbb{R}^{p \times n}$, $D_k \in \mathbb{R}^{p \times m}$, and $Q_k \succeq 0$, $R_k \succeq 0$. The goal of MoLDS
 175 learning is to recover the mixture weights and LDS parameters $\{p_k, (A_k, B_k, C_k, D_k, Q_k, R_k)\}_{k=1}^K$.
 176 These parameters are identifiable only up to two natural ambiguities: the ordering of the components
 177 (permutation) and similarity transformations of the latent state realization (which leave the input-
 178 output behavior unchanged).¹

179 To make this recovery possible, we adopt several standard conditions: (i) inputs are persistently
 180 exciting, (ii) each LDS component is controllable and observable, and (iii) the components are
 181 sufficiently separated to ensure identifiability (Bakshi et al., 2023; Rui & Dahleh, 2025).

182 3.2 TENSOR-EM APPROACH OVERVIEW

184 Our approach (Algorithm 1) consists of two stages:
 185 a tensor initialization stage (see Algorithm 3 in the
 186 Appendix), which provides globally consistent esti-
 187 mates of the mixture weights and system parameters,
 188 and an EM refinement stage (see Algorithm 4), which
 189 further improves these estimates to achieve statistical
 190 efficiency. Between these two stages, a key step is the
 191 initialization of the noise parameters (Q_k, R_k), since
 192 these are not identifiable from the tensor-based esti-
 193 mates. We address this gap by estimating them from
 194 the residual covariances computed using the tensor-
 195 based parameter estimates (detailed in Appendix D).

196 This Tensor-EM approach combines the global iden-
 197 tifiability guarantees of algebraic methods with the
 198 statistical optimality of likelihood-based inference.
 199 This hybrid approach is particularly effective in chal-
 200 lenging settings with limited data, high noise, or poor
 201 component separation - scenarios where neither pure
 202 tensor methods nor randomly initialized EM perform
 203 reliably.

204 3.3 TENSOR INITIALIZATION FOR MOLDS

206 The tensor initialization leverages the key insight that MoLDS can be reformulated as MLR through
 207 lagged input representations (Rui & Dahleh, 2025). This transformation exposes the mixture structure
 208 in high-order moments, enabling algebraic recovery of component parameters via tensor decomposi-
 209 tion (see Appendix B for details). The method works by exploiting the impulse-response (Markov
 210 parameter) representation of LDSs. We first construct second- and third-order cross moments of the
 211 lagged input-output data, denoted as M_2 and M_3

$$212 \quad M_2 = \frac{1}{2|\mathcal{N}_2|} \sum_{j \in \mathcal{N}_2} \tilde{y}_j^2 (v_j \otimes v_j - I_d), \quad M_3 = \frac{1}{6|\mathcal{N}_3|} \sum_{j \in \mathcal{N}_3} \tilde{y}_j^3 (v_j^{\otimes 3} - \mathcal{E}(v_j)), \quad (3)$$

215 ¹Formally, any invertible matrix M induces an equivalent realization via $A_k \mapsto M^{-1} A_k M$, $B_k \mapsto M^{-1} B_k$,
 $C_k \mapsto C_k M$, and D_k unchanged, yielding the same input-output mapping.



Figure 1: Overview of MoLDS and the application to neural data analysis.

216 **Algorithm 1** Tensor-EM Pipeline for MoLDS

217 **Require:** Trajectories $\{(u_{i,0:T_i-1}, y_{i,0:T_i-1})\}_{i=1}^N$, truncation L , LDS order n , #components K
 218 **Ensure:** Mixture weights $\{\hat{p}_k\}_{k=1}^K$ and LDS parameters $\{(\hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k, \hat{Q}_k, \hat{R}_k)\}_{k=1}^K$
 219 **Stage 1: Tensor Initialization** (Appendix Alg. 3)
 220 1: Transform MoLDS to MLR via lagged inputs; construct moment tensors M_2, M_3
 221 2: Apply whitening and SMD to recover mixture weights $\{\hat{p}_k\}$ and Markov parameters
 222 3: Realize LDS matrices $\{(\hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k)\}$ via Ho-Kalman algorithm
 223 4: Initialize noise parameters $\{(\hat{Q}_k^{(0)}, \hat{R}_k^{(0)})\}$ from residual covariances (Appendix D)
 224 **Stage 2: EM Refinement** (Appendix Alg. 4)
 225 5: **repeat**
 226 6: **E-step:** Compute trajectory responsibilities $\gamma_{i,k}$ via Kalman filter likelihoods
 227 7: Run Kalman smoother to obtain responsibility-weighted sufficient statistics
 228 8: **M-step:** Update mixture weights and all LDS parameters via closed-form MLE
 229 9: **until** convergence in log-likelihood
 230 10: **return** Refined parameters $\{\hat{p}_k, (\hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k, \hat{Q}_k, \hat{R}_k)\}_{k=1}^K$

232
 233 where \mathcal{N}_2 and \mathcal{N}_3 are two disjoint subsets of samples, $\tilde{y}_j = y_{i,t}$ is the observed output, v_j is the
 234 normalized lagged input, I_d and \mathcal{E} are correction terms (see Appendix B.2 for notations). Then we
 235 apply whitening transformations W and decompose the resulting tensor into weights and Markov
 236 parameter estimates. At last, we recover LDS state-space parameters through the Ho-Kalman
 237 realization (Oymak & Ozay, 2019). The core mathematical insight is that if M_2 and M_3 are
 238 appropriately constructed from sub-sampled lagged covariates, the whitened tensor

239
 240
$$\hat{T} = M_3(W, W, W) = \sum_{k=1}^K p_k \alpha_k^{\otimes 3} \quad (4)$$

 241

242 is symmetric and orthogonally decomposable, where $\alpha_k \in \mathbb{R}^K$ are the whitened representations
 243 of the regression vectors (scaled Markov parameters) for each LDS component, and p_k are the
 244 corresponding mixture weights. This decomposition is unique and recovers the mixture components
 245 $\{\alpha_k, p_k\}$ up to permutation and sign. Importantly, we employ SMD (Kuleshov et al., 2015) for this
 246 decomposition step, which is shown to be more stable empirically in Section 4.1. We then apply
 247 the Ho-Kalman realization (Oymak & Ozay, 2019) to recover the state-space parameters for each
 248 component, which are then used as principled initializations for the subsequent refinement stage. The
 249 complete procedure is provided in Algorithm 3 in Appendix B.4, together with the MoLDS-to-MLR
 250 reformulation and tensor construction details in Appendix B.

251 3.4 EM REFINEMENT FOR MOLDS
 252

253 The tensor initialization provides globally consistent estimates of mixture weights and system
 254 matrices, but does not recover the noise parameters (Q_k, R_k) nor achieve optimal statistical accuracy.
 255 We therefore need to refine these estimates using a full Kalman filter-smoother EM algorithm that
 256 maximizes the observed-data likelihood.

257 Our EM formulation extends classical mixture EM to the MoLDS setting by computing trajectory-wise
 258 responsibilities via Kalman filter likelihoods, then updating parameters from responsibility-weighted
 259 sufficient statistics (see Appendix C and Algorithm 4 for details). In brief, at iteration t , given current
 260 parameters $\hat{\theta}^{(t)} = \{(\hat{p}_k, \hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k, \hat{Q}_k, \hat{R}_k)\}_{k=1}^K$, the E-step computes responsibilities:

261
 262
$$\gamma_{i,k}^{(t)} = \frac{\exp(\log \hat{p}_k^{(t)} + \log p(y_{i,0:T_i-1} | u_{i,0:T_i-1}, \hat{\theta}_k^{(t)}))}{\sum_{r=1}^K \exp(\log \hat{p}_r^{(t)} + \log p(y_{i,0:T_i-1} | u_{i,0:T_i-1}, \hat{\theta}_r^{(t)}))}. \quad (5)$$

 263

264 Next, we use a Kalman smoother to compute responsibility-weighted sufficient statistics $S_k^{(t)}$ for each
 265 component. The M-step then updates all parameters via closed-form maximum likelihood estimates

266
$$(\hat{A}_k^{(t+1)}, \hat{B}_k^{(t+1)}, \hat{C}_k^{(t+1)}, \hat{D}_k^{(t+1)}, \hat{Q}_k^{(t+1)}, \hat{R}_k^{(t+1)}) = \text{MLE-LDS}(S_k^{(t)}), \quad (6)$$

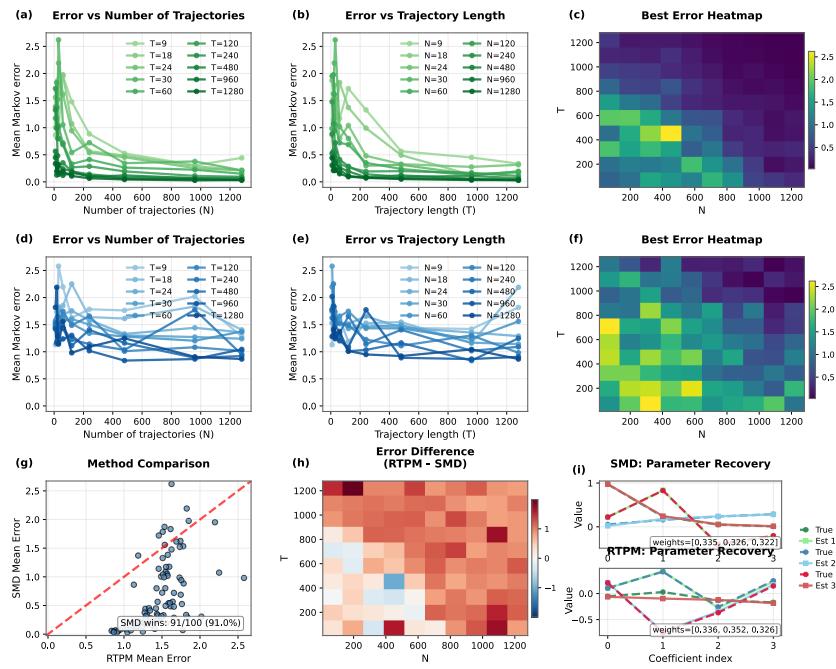
 267

268
$$\hat{p}_k^{(t+1)} = \frac{1}{N} \sum_i \gamma_{i,k}^{(t)}, \quad \forall k \in [K]. \quad (7)$$

 269

270 4 TENSOR-EM PERFORMANCE ON SYNTHETIC DATA
271
272273 4.1 SMD-TENSOR METHOD PROVIDES MORE RELIABLE RECOVERY ON SIMULATED MoLDS
274
275

276 We demonstrate that the employed SMD-Tensor method reliably recovers parameters in synthetic
277 MoLDS with a small number of components, low latent dimensionality, and well-separated dynamics.
278 We empirically compare SMD-Tensor against the RTPM-Tensor baseline across a wide range of such
279 settings. Our results show that SMD-Tensor consistently outperforms RTPM-Tensor on multiple met-
280 rics. In particular, when the number of mixture components is small and sufficient data are available,
281 SMD achieves near-optimal recovery of both the mixture weights and the Markov parameters.
282
283



305 **Figure 2: Comparison of SMD-Tensor and RTPM-Tensor methods for MoLDS:** (a,b) Mean
306 Markov parameter estimation errors for the SMD method decrease as the number of trajectories
307 as N and/or T increase; (c) Heatmap of the best trial result across all (N, T) configurations.
308 (d-f) Corresponding results for the RTPM method. (g) Difference in mean Markov errors between RTPM
309 and SMD (positive values indicate SMD performs better). (h) Scatter plot comparing mean Markov
310 errors of RTPM vs. SMD across configurations, with SMD outperforming in 91% of cases. (i)
311 Example recovery for $N = T = 1280$, where SMD recovers both mixture weights and Markov
312 parameters more accurately.
313
314

315 The first row of Figure 2 reports results for a $K = 3$ mixture model with LDS dimensions $n = 2, m =$
316 $p = 1$. The LDS parameters are randomly generated, with eigenvalues of A constrained to lie inside
317 the unit circle. We vary the trajectory length T and the number of trajectories N , and for each (N, T)
318 configuration. We run multiple independent trials, calculating the discrepancy between estimated and
319 true Markov parameters. The second row of Figure 2 shows the result for RTPM-Tensor. It is noticed
320 that the mean Markov parameter errors decrease with increasing trajectory length and number of
321 trajectories for both methods, but the trend is more pronounced and stable for SMD, as reflected in
322 the heat maps (Figure 2(c,f)). Across nearly all (N, T) cases, SMD yields consistently lower errors
323 (Figures 2(g,h)). In cases with larger T and N , SMD achieves highly accurate recovery of both
mixture weights and Markov parameters (Figure 2(c1)), underscoring its robustness and reliability
for more complex conditions.

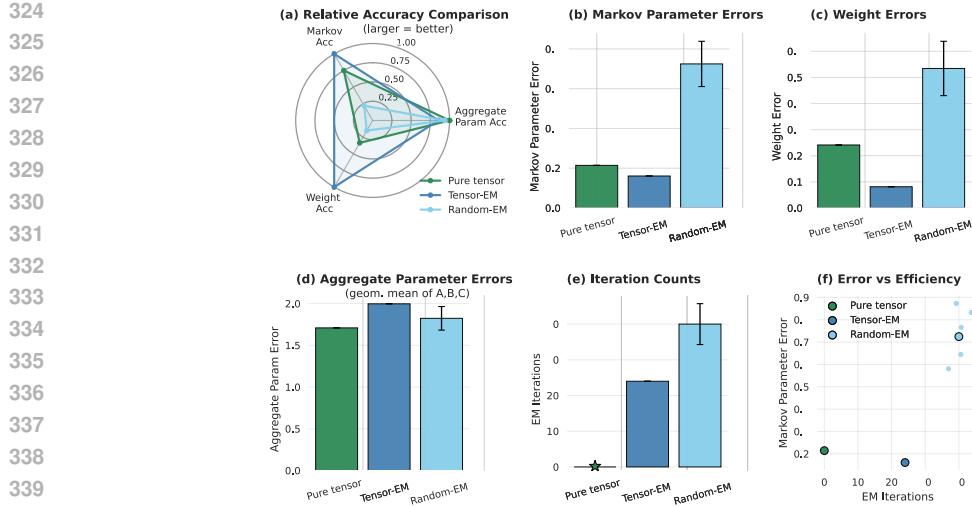


Figure 3: Performance comparison of pure tensor, Tensor-EM, and random-initialized EM on a simulated MoLDS: (a) Relative accuracy radar plot across metrics of Markov parameter accuracy, weight accuracy, and aggregate parameter accuracy. (b-c) Tensor-EM achieves the lowest Markov parameter and weight errors, while random EM performs the worst and shows high variability. (d) reports aggregate parameter errors (geometric mean of A, B, C errors). (e) Tensor-EM converges in far fewer iterations than random EM, highlighting efficiency. (f) Error-efficiency plot shows that Tensor-EM combines low error with moderate iteration cost, yielding robust and accurate recovery.

4.2 TENSOR-EM IMPROVES ROBUSTNESS AND ACCURACY FOR COMPLEX SYNTHETIC MoLDS

In complex MoLDS settings with many components, purely tensor-based methods and randomly initialized EM often fail to achieve accurate recovery, either due to noisy parameter estimates or convergence to poor local optima. Our proposed Tensor-EM approach overcomes these limitations by combining globally consistent tensor initialization with EM-based refinement, resulting in more robust and accurate learning. We demonstrate these advantages in this section.

Figure 3 presents results on a simulated $K = 6$ MoLDS ($n = 3, m = p = 2$) with zero direct feedthrough ($D = 0$). Across metrics including Markov parameter errors, mixture weight errors, aggregate LDS parameter errors, and iteration counts, Tensor-EM consistently outperforms all baselines. It achieves substantially lower Markov and weight errors (panels b and c), while maintaining an aggregate parameter error comparable to the pure tensor solution (panel d).² At the same time, Tensor-EM converges in much fewer iterations than random EM (e), leading to a better error-efficiency tradeoff (f). The radar plot (a) summarizes these improvements, showing that Tensor-EM achieves the most balanced performance across all evaluation metrics. These results highlight that Tensor-EM effectively combines the strengths of tensor methods and EM and enable more reliable parameter recovery in synthetic MoLDS settings where standalone tensor or randomly initialized EM approaches often underperform.

5 TENSOR-EM MoLDS PROVIDES RELIABLE AND INTERPRETABLE RECOVERY ON REAL-WORLD APPLICATIONS

We next apply the proposed MoLDS method to two real-world neural datasets.

5.1 AREA2 DATASET

²The aggregate parameter error, i.e., the geometric mean of A, B, C errors, is a coarse summary: unlike Markov parameter errors, it may be less precise since A, B, C can differ by similarity transformations without altering the underlying dynamics.

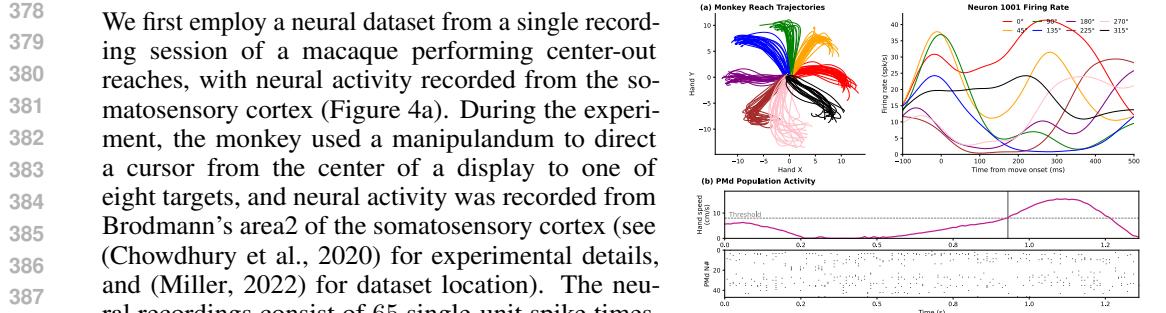


Figure 4: Neural datasets overview: (a) The Area2 Dataset contains neural trajectories from monkey primary somatosensory cortex; reach trajectories and firing rate from multiple neurons. (b) The PMd Dataset contains recordings from monkey dorsal premotor cortex; hand speed and neurons’ rasters.

378 We first employ a neural dataset from a single recording session of a macaque performing center-out reaches, with neural activity recorded from the somatosensory cortex (Figure 4a). During the experiment, the monkey used a manipulandum to direct a cursor from the center of a display to one of eight targets, and neural activity was recorded from Brodmann’s area2 of the somatosensory cortex (see (Chowdhury et al., 2020) for experimental details, and (Miller, 2022) for dataset location). The neural recordings consist of 65 single-unit spike times, which are converted to spike rates. In addition to neural data, the position of the monkey’s hand, cursor position, force applied to the manipulandum, and hand velocity were recorded during the experiment. There are 8 directions in the task, and each direction has multiple trials of input-output trajectories. For the MoLDS fitting, we extract the movement-related

389 segment of each trial, defined as the window from 100 ms before to 500 ms after movement onset. The 65-dimensional observations are reduced to 6-dimension by using the standard PCA, which 390 explains more than 90 percent variance of neural activities. These PCs are then taken as outputs, 391 while the hand velocity variables are taken as inputs. In addition, we also evaluate the dataset with 20 392 PCs using MoLDS, and consistent results are found (see Figure 11), which confirms the effectiveness 393 of the Tensor-EM algorithm to fit a MoLDS model on this dataset.

395 We evaluate the MoLDS with Tensor-EM, Random-EM, and pure tensor methods using a standard 396 train/validation/test split of the dataset (see full pipeline in App. E). For each hyperparameter setting 397 (including K), models are trained on the training set and scored on the validation set using negative 398 log-likelihood (NLL), one-step-ahead RMSE, and BIC. The model used for test-time analysis is 399 the one minimizing validation BIC (we also report NLL/RMSE). For trial i and component k , we 400 compute a responsibility $r_{ik} \propto \exp(\ell_k^{(i)})$, where $\ell_k^{(i)}$ is the one-step Kalman log-likelihood under 401 component k . For each movement direction, the dominant component is the $\arg \max_k$ of the mean 402 responsibility across its trials.

403 Figure 5 summarizes the results. As shown in Figure 5(a), validation criteria consistently favor a 404 3-component MoLDS trained with Tensor-EM. Moreover, the one-step predictions \hat{y}_t closely track 405 observations y on the test data as in Figure 5(b). In Figure 5(c), the dominant-component maps reveal 406 three cross-trial clusters aligned with directions, and the usage fractions in (d) quantify the prevalence 407 of MoLDS components on the test set.

408 In this setup, we also compare the Tensor-EM MoLDS method with the supervised learning results 409 of LDS, where we train (1) one LDS on all trials where the monkey reaches in a specific direction 410 (per-dir LDS), and separately (2) a separate LDS fit on each trial regardless of reaching direction 411 (single-trial LDS). Finally, we cluster the parameters of the different LDS’s (per-dir or single-trial). 412 See Figure 8 in the Appendix for a representation of the clustered parameters and more details.

413 The per-direction LDS baseline closely matches the result of MoLDS with the Tensor-EM method 414 rather than Random-EM in trial groupings (see Figure 5(c)), and the impulse responses are highly 415 similar (see Figure 10 in the Appendix). We also train an SLDS in a similar unsupervised way as 416 MoLDS (no direction labels) and find that it does not yield meaningful cross-trial clusters here, while 417 it is effective for within-trial regime switches (see Figure 9 in Appendix). These highlight MoLDS’s 418 strength in capturing between-trial heterogeneity. In addition, when compared with the Random-EM 419 method, Tensor-EM offers a key advantage: the tensor initialization step yields a stable starting point 420 that reduces variability across runs, leading to more consistent parameter recovery and recovered 421 model structure as seen in Figure 5(a,c).

422 5.2 PMD DATASET

423 We next apply our method to recordings from monkey dorsal premotor cortex (PMd) during sequential 424 reaches, in which trial-wise movement directions are *continuously distributed* over the circle. Full 425

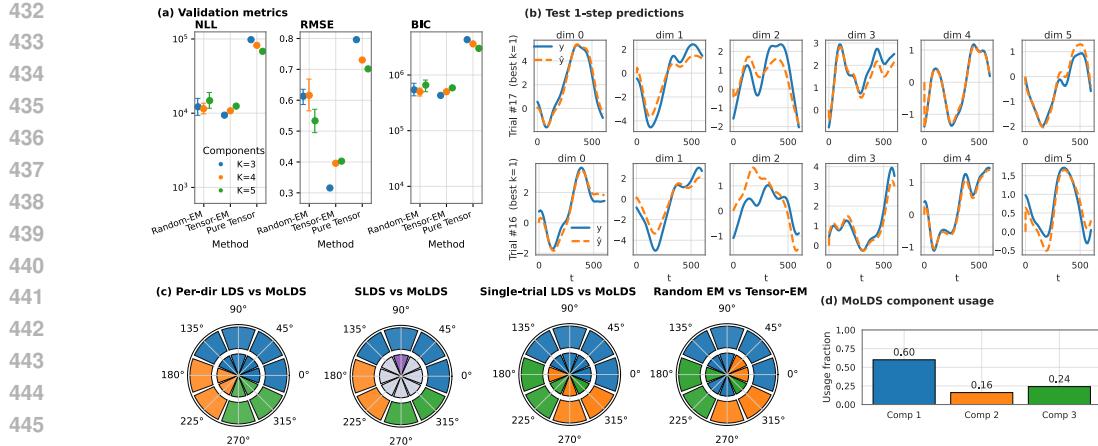


Figure 5: **MoLDS application on Area2 Dataset:** (a) Validation metrics for different K . (b) One-step predictions for two example trials using corresponding LDS components from the MoLDS selected by the lowest validation metrics. (c) Agreement between Tensor-EM MoLDS trial assignments (outer ring) and per-direction LDS, SLDS, single-trial LDS, Random-EM MoLDS clusters (inner rings in each polar plot); the SLDS-based method cannot provide meaningful cross-trial clusters. (d) Tensor-EM MoLDS component usage fractions on held-out test trials.

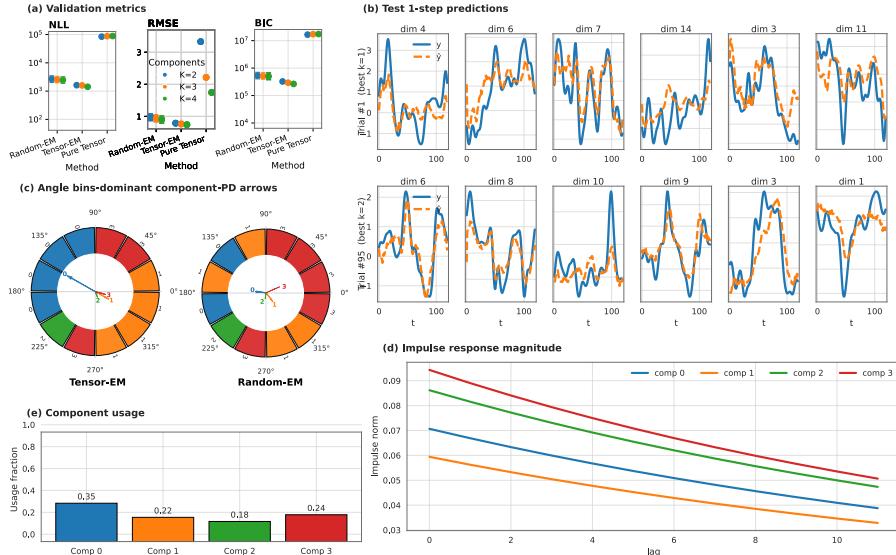


Figure 6: **MoLDS application on PMd Dataset:** (a) Validation metrics for different K (NLL, RMSE, BIC). (b) One-step prediction on an example neural trial using the corresponding component from the validation-chosen MoLDS. (c) Angle bins: dominant component; PD arrows (responsibility-weighted). (d) Impulse response magnitude of Tensor-EM MoLDS components. (e) Tensor-EM MoLDS component usage fractions on held-out test trials.

experimental details are in (Lawlor et al., 2018b) and the dataset is provided in (Perich et al., 2018). The trials' reach direction spans the full polar range rather than discrete directions as in the Area2 dataset. For the PMd dataset, we similarly extract movement-related activity by taking a fixed window (-100 to $+500$ ms) around the movement onset for each trial. We analyze PMd activity with the 5-dimensional kinematic as inputs, i.e., (x-velocity, y-velocity, x-acceleration, y-acceleration, speed), and the first 16 PCs as outputs. Following the Area2 protocol, we train MoLDS across hyperparameters on the PMd training split and select the model by validation criteria (NLL/RMSE/BIC). Figure 6(a) reports validation results where the 4-component MoLDS trained with the Tensor-EM method has better performance. Figure 6(b) shows test one-step-ahead reconstructions of the corresponding component from this MoLDS fit.

To accommodate continuously distributed reach angles, we uniformly binned trials into 12 angular bins based on their reach angles. For each bin, we assigned a dominant component based on the highest mean responsibility. Figure 6(c) shows these bins colored by their dominant LDS component and overlays responsibility-weighted preferred-direction (PD) arrows for each component, where we also compare Tensor-EM and Random-EM MoLDS results. Figure 6(d) plots impulse-response magnitude across lag of each component, revealing component-specific gains and temporal decay; Appendix E.2 (Figure 14) further shows the decomposed responses across input channels. Figure 6(e) reports Tensor-EM MoLDS component usage fractions on held-out test trials. Overall, the mixture components of the PMd dataset specialize in distinct movement directions and exhibit distinct dynamical response profiles.

6 CONCLUSION

MoLDS offers an interpretable way to model repeated, trajectory-level dynamics in heterogeneous neural recordings. Here, we propose a Tensor-EM algorithm for inference of MoLDS; we use SMD for tensor decomposition as an initialization with Kalman filter-smoother EM, to achieve reliable parameter recovery and interpretable clustering of synthetic and real neural recordings. This hybrid framework makes MoLDS practically usable for large, noisy datasets. As limitations, we note that we have only explored synthetic and real-world cases where the data has linear dynamics - the synthetic data is linear and the neural data consists of smoothed firing rates - and have not explored cases with a high likelihood of model mismatch. Some strategies can be utilized to handle the nonlinearity within the MoLDS framework, including segmenting trajectories into shorter sessions that are locally well-approximated by linear dynamics and augmenting the linear models with nonlinear kernel features. Except for these, other directions of MoLDS will be extending the framework to autonomous setups and developing theoretical guarantees in simplified conditions. Nevertheless, our current results demonstrate the practical value of MoLDS and provide a foundation for extending the Tensor-EM approach of MoLDS to more complex and realistic dynamics analysis.

7 ETHICS STATEMENT

Here, we aim to make methodological and neuroscientific insights, and do not note any negative societal or ethical implications.

8 REPRODUCIBILITY STATEMENT

Our work can be reproduced in a straightforward way. The datasets are provided in (Miller, 2022) and (Perich et al., 2018), with all pre-processing techniques detailed in (Chowdhury et al., 2020), (Lawlor et al., 2018a), and the Appendix. Moreover, detailed algorithms and technical details are provided for each step of the inference, with comprehensive pseudo-code for the implementation in the main text and the Appendix.

REFERENCES

Animashree Anandkumar, Rong Ge, Daniel J Hsu, Sham M Kakade, Matus Telgarsky, et al. Tensor decompositions for learning latent variable models. *J. Mach. Learn. Res.*, 15(1):2773–2832, 2014.

Vivek R Athalye, Preety Khanna, Suraj Gowda, Amy L Orsborn, Rui M Costa, and Jose M Carmen. Invariant neural dynamics drive commands to control different movements. *Current Biology*, 33(14):2962–2976, 2023.

Ainesh Bakshi, Allen Liu, Ankur Moitra, and Morris Yau. Tensor decompositions meet control theory: learning general mixtures of linear dynamical systems. In *International Conference on Machine Learning*, pp. 1549–1563. PMLR, 2023.

Christopher M Bishop. *Pattern recognition and machine learning*, volume 4. Springer, 2006.

Hengnu Chen, Lei Deng, Zheng Qu, Ling Liang, Tianyi Yan, Yuan Xie, and Guoqi Li. Tensor train decomposition for solving large-scale linear equations. *Neurocomputing*, 464:203–217, 2021.

540 Yanxi Chen and H Vincent Poor. Learning mixtures of linear dynamical systems. In *International*
 541 *conference on machine learning*, pp. 3507–3557. PMLR, 2022.
 542

543 Yenho Chen, Noga Mudrik, Kyle A Johnsen, Sankaraleengam Alagapan, Adam S Charles, and
 544 Christopher Rozell. Probabilistic decomposed linear dynamical systems for robust discovery of
 545 latent neural dynamics. *Advances in Neural Information Processing Systems*, 37:104443–104470,
 546 2024.

547 Raeed H Chowdhury, Joshua I Glaser, and Lee E Miller. Area 2 of primary somatosensory cortex
 548 encodes kinematics of the whole arm. *Elife*, 9:e48198, 2020.
 549

550 Richard D De Veaux. Mixtures of linear regressions. *Computational Statistics & Data Analysis*, 8(3):
 551 227–245, 1989.

552 Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
 553 via the em algorithm. *Journal of the royal statistical society: series B*, 39(1):1–22, 1977.
 554

555 James Durbin and Siem Jan Koopman. *Time series analysis by state space methods*. Oxford university
 556 press, 2012.

557 Emily Beth Fox. *Bayesian nonparametric learning of complex dynamical phenomena*. PhD thesis,
 558 Massachusetts Institute of Technology, 2009.
 559

560 Zoubin Ghahramani and Geoffrey E Hinton. Parameter estimation for linear dynamical systems.
 561 1996.

562 Zoubin Ghahramani and Geoffrey E Hinton. Variational learning for switching state-space models.
 563 *Neural computation*, 12(4):831–864, 2000.
 564

565 Volodymyr Kuleshov, Arun Chaganty, and Percy Liang. Tensor factorization via matrix factorization.
 566 In *Artificial Intelligence and Statistics*, pp. 507–516. PMLR, 2015.
 567

568 Patrick N. Lawlor, Matthew G. Perich, Lee E. Miller, and Konrad P. Kording. Linear-nonlinear-time-
 569 warp-poisson models of neural activity. *Journal of Computational Neuroscience*, 45(3):173–191,
 570 October 2018a. ISSN 1573-6873.

571 Patrick N Lawlor, Matthew G Perich, Lee E Miller, and Konrad P Kording. Linear-nonlinear-time-
 572 warp-poisson models of neural activity. *Journal of computational neuroscience*, 45(3):173–191,
 573 2018b.

574 Yuanzhi Li and Yingyu Liang. Learning mixtures of linear regressions with nearly optimal complexity.
 575 In *Conference On Learning Theory*, pp. 1125–1144. PMLR, 2018.
 576

577 Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
 578 Bayesian learning and inference in recurrent switching linear dynamical systems. In *Artificial*
 579 *intelligence and statistics*, pp. 914–922. PMLR, 2017.

580 Lennart Ljung. System identification. In *Signal analysis and prediction*, pp. 163–173. Springer, 1998.

582 Lee Miller. Area2 bump: macaque somatosensory area 2 spiking activity during reaching with per-
 583 turbations, 2022. URL <https://dandisarchive.org/dandiset/000127/0.220113.0359>.

586 Noga Mudrik, Yenho Chen, Eva Yezerski, Christopher J Rozell, and Adam S Charles. Decomposed
 587 linear dynamical systems (dlds) for learning the latent components of neural dynamics. *Journal of*
 588 *Machine Learning Research*, 25(59):1–44, 2024.

589 Samet Oymak and Necmiye Ozay. Non-asymptotic identification of lti systems from a single
 590 trajectory. In *2019 American control conference (ACC)*, pp. 5655–5661. IEEE, 2019.
 591

592 Soumyabrata Pal, Arya Mazumdar, Rajat Sen, and Avishek Ghosh. On learning mixture of linear
 593 regressions in the non-realizable setting. In *International Conference on Machine Learning*, pp.
 17202–17220. PMLR, 2022.

594 Liam Paninski and John P Cunningham. Neural data science: accelerating the experiment-analysis-
 595 theory cycle in large-scale neuroscience. *Current opinion in neurobiology*, 50:232–241, 2018.
 596

597 Matthew G. Perich, Patrick N. Lawlor, Konrad P. Kording, and Lee E. Miller. Extracellular neural
 598 recordings from macaque primary and dorsal premotor motor cortex during a sequential reaching
 599 task, 2018. URL <http://crcns.org/data-sets/motor-cortex/pmd-1>.

600 Maryann Rui and Munther Dahleh. Finite sample analysis of tensor decomposition for learning
 601 mixtures of linear systems. In *7th Annual Learning for Dynamics & Control Conference*, pp.
 602 1313–1325. PMLR, 2025.

603 Carsen Stringer and Marius Pachitariu. Analysis methods for large-scale neuronal recordings. *Science*,
 604 386(6722):eabd7429, 2024.

605 Anne E Urai, Brent Doiron, Andrew M Leifer, and Anne K Churchland. Large-scale neural recordings
 606 call for new insights to link brain and behavior. *Nature neuroscience*, 25(1):11–19, 2022.

608 Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through
 609 neural population dynamics. *Annual review of neuroscience*, 43(1):249–275, 2020.

610 Lei Xu and Michael I Jordan. On convergence properties of the em algorithm for gaussian mixtures.
 611 *Neural computation*, 8(1):129–151, 1996.

613 Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture of many random linear
 614 equations by tensor decomposition and alternating minimization. *arXiv preprint arXiv:1608.05749*,
 615 2016.

616 Kai Zhong, Prateek Jain, and Inderjit S Dhillon. Mixed linear regression with multiple components.
 617 *Advances in neural information processing systems*, 29, 2016.

619 A LLM USAGE STATEMENT

621 We used LLMs to assist with language editing in parts of the manuscript. All LLM’s suggestions
 622 were manually verified and edited by the authors.

624 B TENSOR INITIALIZATION DETAILS

626 In this section, we provide a brief introduction to MoLDS’s connection to MLR and the tensor-based
 627 moment method for MoLDS (see (Bakshi et al., 2023; Rui & Dahleh, 2025) for more details).

630 B.1 MOLDS TO MLR REFORMULATION

631 The key insight enabling tensor methods for MoLDS is that any linear dynamical system can
 632 be equivalently represented through its *impulse response* (also called Markov parameters), which
 633 describe how the system responds to unit impulses in its inputs. This representation allows us to
 634 reformulate MoLDS as MLR, making algebraic moment-based methods applicable. We now briefly
 635 introduce this process following the formulation in (Rui & Dahleh, 2025).

637 **Step 1: Impulse response representation.** For notational brevity, we assume an LDS with m -
 638 dimensional inputs and a scalar output ($p = 1$), and zero feedthrough ($D_k = 0$). The extension to
 639 multiple outputs ($p > 1$) is straightforward. The system parameters are (A_k, B_k, C_k) . Its impulse
 640 response, also called the sequence of Markov parameters, is defined by

$$641 g_k(j) = C_k A_k^{j-1} B_k \in \mathbb{R}^m, \quad j = 1, 2, 3, \dots,$$

642 so that $g_k(1) = C_k B_k$, $g_k(2) = C_k A_k B_k$, etc.

644 The sequence $\{g_k(j)\}$ captures the system’s memory: $g_k(j)$ specifies how an input applied j steps in
 645 the past influences the current output. Given an input sequence $\{u_t\}$, the output can be expressed as
 646 the infinite convolution

$$647 y_t = \sum_{j=1}^{\infty} g_k(j) u_{t-j} + \text{noise terms.}$$

648 In practice, this sum is truncated after L terms, since $g_k(j)$ decays exponentially for stable systems.
 649 We denote the stacked first L impulse responses by
 650

$$651 \quad g_k^{(L)} = [g_k(1)^\top, g_k(2)^\top, \dots, g_k(L)^\top]^\top \in \mathbb{R}^{Lm}. \\ 652$$

653 **Step 2: Lagged input construction.** To exploit the impulse response representation, we construct
 654 *lagged input vectors* that collect recent input history. For trajectory i at time $t \geq L$, define
 655

$$656 \quad \bar{u}_{i,t} = [u_{i,t}^\top, u_{i,t-1}^\top, \dots, u_{i,t-L+1}^\top]^\top \in \mathbb{R}^{Lm}. \\ 657$$

658 This vector stacks the most recent L inputs (the current input and the previous $L-1$), so that $\bar{u}_{i,t}$
 659 has dimension Lm and aligns with the stacked impulse responses $g_k^{(L)}$. With this construction, the
 660 truncated output becomes
 661

$$662 \quad y_{i,t} \approx \langle g_{k_i}^{(L)}, \bar{u}_{i,t} \rangle + \text{noise terms},$$

663 where k_i denotes the (unknown) component generating trajectory i .
 664

665 With the above input construction, consecutive lagged vectors $\bar{u}_{i,t}$ and $\bar{u}_{i,t+1}$ share $L-1$ input entries,
 666 which induces strong statistical dependence and complicates the estimation of higher-order moments.
 667 To mitigate this, we sub-sample the time indices with a stride L , i.e.,
 668

$$669 \quad t \in \{L, 2L, 3L, \dots, T\}.$$

670 This construction ensures that the resulting lagged vectors are non-overlapping. Under standard input
 671 assumptions (e.g., i.i.d. or persistently exciting inputs), the sub-sampled vectors are approximately
 672 independent, which is crucial for consistent moment estimation.
 673

674 **Step 4: Normalization and MLR formulation.** To apply tensor methods, the covariates must have
 675 unit variance. We therefore normalize each lagged input by the input standard deviation,
 676

$$677 \quad v_j = \frac{\bar{u}_{i,t}}{\sigma_u}, \quad \sigma_u^2 = \mathbb{E}[\|u_t\|^2],$$

678 and flatten the dataset via the re-indexing map $(i, t) \mapsto j$. This yields the mixture of linear regressions
 679 (MLR) form
 680

$$681 \quad \tilde{y}_j = \langle v_j, \beta_{k_j} \rangle + \eta_j + \xi_j,$$

682 where
 683

- $\tilde{y}_j = y_{i,t}$ is the observed output,
- $v_j \in \mathbb{R}^{Lm}$ is the normalized lagged input (covariate),
- $\beta_{k_j} = \sigma_u g_{k_j}^{(L)} \in \mathbb{R}^{Lm}$ is the scaled Markov parameter vector (regression coefficient),
- $k_j \in \{1, \dots, K\}$ is the (unknown) component index,
- η_j captures process and observation noise,
- ξ_j accounts for truncation error from ignoring impulse responses beyond lag L .

684 **Step 5: Mixture structure.** Since each trajectory originates from one of K latent LDS components
 685 with probabilities $\{p_k\}_{k=1}^K$, the regression model inherits the same mixture structure:
 686

$$687 \quad \mathbb{P}[k_j = k] = p_k.$$

688 Thus the learning task reduces to recovering the mixture weights $\{p_k\}$ and regression vectors $\{\beta_k\}$
 689 from the dataset $\{(v_j, \tilde{y}_j)\}$. Once these regression parameters are estimated, the corresponding
 690 state-space models (A_k, B_k, C_k) can be reconstructed via the Ho-Kalman realization algorithm
 691 (Oymak & Ozay, 2019).

692 This reformulation is crucial: it transforms the original problem of identifying a mixture of LDSs
 693 into the algebraic problem of learning an MLR model, for which polynomial-time tensor methods
 694 with identifiability and sample-complexity guarantees are available (Rui & Dahleh, 2025).
 695

702 B.2 MOMENT CONSTRUCTION AND WHITENING
703

704 Let $d = Lm$ denote the dimension of the lagged input vectors. We partition the sample indices into
705 two disjoint subsets \mathcal{N}_2 and \mathcal{N}_3 for constructing second- and third-order moments, respectively as in
706 (Rui & Dahleh, 2025). The empirical moments are defined as
707

$$708 M_2 = \frac{1}{2|\mathcal{N}_2|} \sum_{j \in \mathcal{N}_2} \tilde{y}_j^2 (v_j \otimes v_j - I_d), \quad M_3 = \frac{1}{6|\mathcal{N}_3|} \sum_{j \in \mathcal{N}_3} \tilde{y}_j^3 (v_j^{\otimes 3} - \mathcal{E}(v_j)),$$

712 where I_d is the $d \times d$ identity and
713

$$714 \mathcal{E}(v) = \sum_{r=1}^d (v \otimes e_r \otimes e_r + e_r \otimes v \otimes e_r + e_r \otimes e_r \otimes v),$$

718 with e_r the r -th standard basis vector in \mathbb{R}^d . These corrections ensure that the resulting tensors are
719 centered and symmetric.
720

At the population level, these moments satisfy
721

$$722 \mathbb{E}[M_2] = \sum_{k=1}^K p_k \beta_k \beta_k^\top, \quad \mathbb{E}[M_3] = \sum_{k=1}^K p_k \beta_k^{\otimes 3},$$

726 so they encode the regression vectors $\{\beta_k\}$ and mixture weights $\{p_k\}$.
727

728 To obtain an orthogonally decomposable form, we perform whitening. Let $M_2 \approx U \Sigma U^\top$ be the
729 rank- K eigendecomposition, and define
730

$$731 W = U_{(:,1:K)} \Sigma_{1:K}^{-1/2},$$

733 so that $W^\top M_2 W \approx I_K$. Applying W along each mode of M_3 yields the whitened tensor
734

$$736 \hat{T} = M_3(W, W, W) = \sum_{k=1}^K p_k \alpha_k^{\otimes 3}, \quad \alpha_k := W^\top \beta_k.$$

740 This tensor is symmetric and orthogonally decomposable. We then apply Simultaneous Matrix
741 Diagonalization (SMD) (B.3) (Kuleshov et al., 2015) to recover $\{\alpha_k, p_k\}$. Finally, we unwhiten
742 to obtain $\beta_k = W^{-\top} \alpha_k$, and recover the state-space parameters (A_k, B_k, C_k) via Ho-Kalman
743 realization (Oymak & Ozay, 2019).
744

745 B.3 SIMULTANEOUS MATRIX DIAGONALIZATION
746

747 This section provides the Simultaneous Matrix Diagonalization (SMD) method for tensor decom-
748 position (Kuleshov et al., 2015) in Algorithm 2. SMD recovers tensor components by reducing the
749 problem to joint matrix diagonalization, exploiting linear algebraic structure to recover all components
750 simultaneously rather than sequentially as in RTPM.
751

752 **Jacobi Joint Diagonalization (JJD).** Given matrices $\{M_\ell\}_{\ell=1}^{L_0}$, JJD finds an orthogonal matrix
753 U such that $U^\top M_\ell U$ is as close to diagonal as possible for all ℓ simultaneously. We use the
754 Jacobi rotation-based algorithm that iteratively applies Givens rotations to minimize the off-diagonal
755 Frobenius norm $\sum_\ell \|U^\top M_\ell U - \text{diag}(U^\top M_\ell U)\|_F^2$. Convergence is declared when the relative
756 change in this objective falls below 10^{-8} .
757

756 **Algorithm 2** Simultaneous Matrix Diagonalization (SMD) for Tensor Decomposition

757

758 **Require:** Noisy symmetric tensor $\widehat{T} \in \mathbb{R}^{K \times K \times K}$; number of random probes $L_0 \geq 2$.

759 **Ensure:** Factor estimates $\{\hat{\alpha}_i\}_{i=1}^K$ and weights $\{\hat{p}_i\}_{i=1}^K$ such that $\widehat{T} \approx \sum_{i=1}^K \hat{p}_i \hat{\alpha}_i^{\otimes 3}$.

760 **Stage 1: random projections → simultaneous diagonalization**

761 1: Sample $\{w_\ell\}_{\ell=1}^{L_0}$ i.i.d. from the unit sphere \mathbb{S}^{K-1} .

762 2: Form projected matrices $\mathcal{M}^{(0)} \leftarrow \{\widehat{T}(I, I, w_\ell)\}_{\ell=1}^{L_0}$, where $\widehat{T}(I, I, w) = \sum_{r=1}^K w_r \widehat{T}(:, :, r)$.

763 3: Compute an approximate joint diagonalizer via **JJD**: $U^{(0)} \leftarrow \text{JJD}(\mathcal{M}^{(0)})$.

764 4: Set $V^{(0)} \leftarrow (U^{(0)})^{-1}$.

765 **Stage 2: inverse-guided projections → refinement**

766 5: Build $\mathcal{M}^{(1)} \leftarrow \{\widehat{T}(I, I, v_i^{(0)})\}_{i=1}^K$, where $v_i^{(0)}$ is the i -th column of $V^{(0)}$.

767 6: Refine with **JJD**: $U^{(1)} \leftarrow \text{JJD}(\mathcal{M}^{(1)})$.

768 7: Let $\hat{\alpha}_i$ be the i -th column of $U^{(1)}$ and normalize to $\|\hat{\alpha}_i\|_2 = 1$.

769 8: **for** $i = 1$ to K **do**

770 9: $\hat{p}_i \leftarrow \langle \widehat{T}, \hat{\alpha}_i \otimes \hat{\alpha}_i \otimes \hat{\alpha}_i \rangle$.

771 10: **end for**

772 11: **return** $\{\hat{\alpha}_i\}_{i=1}^K, \{\hat{p}_i\}_{i=1}^K$.

774

B.4 TENSOR INITIALIZATION ALGORITHM

775

776 With the MLR reformulation and the SMD tensor method, the full algorithm of tensor initialization

777 for MoLDS can be provided now.

778

779 **Algorithm 3** Tensor Initialization for MoLDS

780

781 **Require:** Trajectories $\{(u_{i,0:T_i-1}, y_{i,0:T_i-1})\}_{i=1}^N$, truncation L , LDS order n , #components K

782 **Ensure:** Estimates of mixture weights $\hat{p}_{1:K}$ and LDS params $\{(\hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k)\}_{k=1}^K$

783 **(A) MoLDS → MLR design & sub-sampling**

784 1: **for** $i = 1 : N$ **do**

785 2: **for** $t \in \{L, 2L, \dots, T_i\}$ **do**

786 3: $\bar{u}_{i,t} \leftarrow [u_{i,t}^\top, u_{i,t-1}^\top, \dots, u_{i,t-L+1}^\top]^\top \in \mathbb{R}^{Lm}$

787 4: Append sample (v_j, \tilde{y}_j) with $v_j \leftarrow \bar{u}_{i,t}/\sigma_u, \tilde{y}_j \leftarrow y_{i,t}$

788 5: **end for**

789 6: **end for**

790 7: Partition samples: $\{1, \dots, M\} = \mathcal{N}_2 \dot{\cup} \mathcal{N}_3$ where $M = \sum_i \lfloor T_i/L \rfloor$

791 **(B) Moment construction**

792 8: $M_2 \leftarrow \frac{1}{2|\mathcal{N}_2|} \sum_{j \in \mathcal{N}_2} \tilde{y}_j^2 (v_j \otimes v_j - I_d)$

793 9: $M_3 \leftarrow \frac{1}{6|\mathcal{N}_3|} \sum_{j \in \mathcal{N}_3} \tilde{y}_j^3 (v_j^{\otimes 3} - \mathcal{E}(v_j))$ where $d = Lm$

794 **(C) Symmetric whitening and tensor formation**

795 10: Compute rank- K SVD: $M_2 \approx U \Sigma U^\top$, set $W \leftarrow U_{(:,1:K)} \Sigma_{1:K}^{-1/2}$

796 11: Form whitened tensor: $\widehat{T} \leftarrow M_3(W, W, W) \in \mathbb{R}^{K \times K \times K}$

797 **(D) Tensor decomposition & recovery**

798 12: Apply SMD to \widehat{T} to recover $\{\hat{\alpha}_k, \hat{p}_k\}_{k=1}^K$ (Appendix Alg 2)

799 13: Unwhiten: $\hat{\beta}_k \leftarrow W^{-\top} \hat{\alpha}_k$ and recover Markov params $\hat{g}_k^{(L)} \leftarrow \hat{\beta}_k/\sigma_u$

800 **(E) State-space realization**

801 14: **for** $k = 1 : K$ **do**

802 15: Build Hankel matrix from $\{\hat{g}_k^{(h)}\}_{h=1}^L$ and apply Ho-Kalman algorithm

803 16: Recover state-space parameters $(\hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k)$

804 17: **end for**

805 18: **return** $\{\hat{p}_k\}_{k=1}^K$ and $\{(\hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k)\}_{k=1}^K$

806

807

808 Under standard identifiability and excitation conditions, RTPM-based tensor decomposition provably

809 recovers the parameters $\{\beta_k\}$ with finite-sample guarantees (Rui & Dahleh, 2025). Simultaneous

810 matrix diagonalization (SMD) enjoys analogous guarantees in the orthogonal-tensor setting and,

810 in practice, tends to be more numerically stable and noise-robust (Kuleshov et al., 2015). These
 811 advantages lead to improved parameter estimates during the tensor initialization stage (Figure 2, main
 812 paper), which in turn can provide a stronger starting point for the subsequent EM refinement.
 813

815 C EM FOR MoLDS: COMPLETE TECHNICAL DETAILS

816 C.1 OVERVIEW AND STRUCTURE

820 This appendix provides complete technical details for our EM formulation for MoLDS. The EM
 821 algorithm for MoLDS alternates between two phases: (i) an E-step that computes trajectory-wise
 822 responsibilities via Kalman filter likelihoods and extracts sufficient statistics via Kalman smoothing,
 823 and (ii) an M-step that updates all parameters using closed-form maximum likelihood estimates from
 824 responsibility-weighted statistics. The algorithm is detailed in Algorithm 4.
 825

826 C.2 COMPLETE EM ALGORITHM

828 The EM procedure operates on trajectories $\{(u_{i,0:T_i-1}, y_{i,0:T_i-1})\}_{i=1}^N$ with current parameter esti-
 829 mates $\hat{\theta}^{(t)} = \{(\hat{p}_k, \hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k, \hat{Q}_k, \hat{R}_k)\}_{k=1}^K$ at iteration t .
 830

831 **E-step Computations.** For each trajectory i and component k , we compute:

$$833 \quad \ell_{i,k} = \log p(y_{i,0:T_i-1} | u_{i,0:T_i-1}, \hat{\theta}_k^{(t)}) , \quad (8)$$

$$835 \quad \alpha_{i,k} = \log \hat{p}_k^{(t)} + \ell_{i,k} , \quad (9)$$

$$837 \quad \gamma_{i,k} = \frac{\exp(\alpha_{i,k})}{\sum_{r=1}^K \exp(\alpha_{i,r})}, \quad \sum_{k=1}^K \gamma_{i,k} = 1. \quad (10)$$

840 The likelihood $\ell_{i,k}$ is computed via the Kalman filter, while responsibilities $\gamma_{i,k}$ use the log-sum-exp
 841 trick for numerical stability. Subsequently, the Kalman smoother computes per-trajectory sufficient
 842 statistics $S_{i,k}$, which are aggregated as:
 843

$$844 \quad S_k = \sum_{i=1}^N \gamma_{i,k} S_{i,k}. \quad (11)$$

848 **M-step Updates.** Mixture weights and LDS parameters are updated via:
 849

$$851 \quad \hat{p}_k^{(t+1)} = \frac{1}{N} \sum_{i=1}^N \gamma_{i,k} , \quad (12)$$

$$854 \quad \hat{\theta}_k^{(t+1)} = \text{MLE-LDS}(S_k) , \quad (13)$$

856 where the closed-form LDS parameter updates are derived in C.3.
 857

858 **Convergence.** The algorithm monitors the observed-data log-likelihood:
 859

$$860 \quad \mathcal{L}^{(t+1)} = \sum_{i=1}^N \log \sum_{k=1}^K \hat{p}_k^{(t+1)} p(y_{i,0:T_i-1} | u_{i,0:T_i-1}, \hat{\theta}_k^{(t+1)}) , \quad (14)$$

863 and terminates when the relative improvement falls below the threshold ε .

864
865 **Algorithm 4** EM Refinement for MoLDS
866 **Require:** Trajectories $\{(u_{i,0:T_i-1}, y_{i,0:T_i-1})\}_{i=1}^N$; initial parameters $\hat{\theta}^{(0)}$; max iterations EM_max;
867 tolerance ε
868 **Ensure:** Refined mixture weights and LDS parameters
869 1: **for** iter = 1 to EM_max **do**
870 **E-step: Compute responsibilities and sufficient statistics**
871 2: **for** $i = 1 : N$ **do**
872 3: **for** $k = 1 : K$ **do**
873 4: Compute $\ell_{i,k}$ via Kalman filter on $(u_{i,0:T_i-1}, y_{i,0:T_i-1})$ using $\hat{\theta}_k^{(\text{iter}-1)}$
874 5: Set $\alpha_{i,k} \leftarrow \log \hat{p}_k^{(\text{iter}-1)} + \ell_{i,k}$
875 6: Run Kalman smoother to compute sufficient statistics $S_{i,k}$
876 7: **end for**
877 8: Compute $\text{lse}_i \leftarrow \log \sum_{r=1}^K \exp(\alpha_{i,r})$ and responsibilities $\gamma_{i,k} \leftarrow \exp(\alpha_{i,k} - \text{lse}_i)$
878 9: **end for**
879 10: Aggregate responsibility-weighted statistics: $S_k \leftarrow \sum_{i=1}^N \gamma_{i,k} S_{i,k}$ for each k
880 **M-step: Update all parameters**
881 11: Update mixture weights: $\hat{p}_k^{(\text{iter})} \leftarrow \frac{1}{N} \sum_{i=1}^N \gamma_{i,k}$ for all k
882 12: **for** $k = 1 : K$ **do**
883 13: Update LDS parameters $(\hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k, \hat{Q}_k, \hat{R}_k)$ from S_k (see C.3)
884 14: **end for**
885 **Convergence check**
886 15: Compute observed log-likelihood: $\mathcal{L}^{(\text{iter})} \leftarrow \sum_{i=1}^N \text{lse}_i$
887 16: **Stop if** $(\mathcal{L}^{(\text{iter})} - \mathcal{L}^{(\text{iter}-1)}) / |\mathcal{L}^{(\text{iter}-1)}| < \varepsilon$
888 17: **end for**
889 18: **Return** $\{\hat{p}_k, (\hat{A}_k, \hat{B}_k, \hat{C}_k, \hat{D}_k, \hat{Q}_k, \hat{R}_k)\}_{k=1}^K$

890
891 **C.3 CLOSED-FORM M-STEP UPDATES**

892 The M-step updates follow standard LDS maximum likelihood estimation (Ghahramani & Hinton,
893 1996). For simplicity, we present the case $D_k = 0$ (no direct feedthrough) and drop component and
894 iteration indices (k, t) for readability:

895 We solve the normal equations with optional ridge regularization $\lambda > 0$ to obtain system matrices for
896 each component.

897 $[A \quad B] = [S_{xx-} \quad S_{xu-}] \left(\begin{bmatrix} S_{x-x-} & S_{u-x-}^\top \\ S_{u-x-} & S_{u-u-} \end{bmatrix} + \lambda I \right)^{-1}, \quad (15)$

898 $C = S_{yx} (S_{xx} + \lambda I)^{-1}. \quad (16)$

902 And the noise covariances are

903 $R = \frac{1}{T} (S_{yy} - CS_{yx}^\top - S_{yx}C^\top + CS_{xx}C^\top), \quad (17)$

904 $Q = \frac{1}{N} \left(S_{xx,\text{curr}} - AS_{xx-}^\top - BS_{xu-}^\top - (AS_{xx-}^\top + BS_{xu-}^\top)^\top \right. \quad (18)$

905 $\left. + AS_{x-x-}A^\top + AS_{u-x-}^\top B^\top + BS_{u-x-}A^\top + BS_{u-u-}B^\top \right). \quad (19)$

906 Here, all $S_{\cdot \cdot}$ are the sufficient statistics.

911 **C.4 COMPUTATIONAL COMPLEXITY**

913 Each EM iteration requires $O(NKn^3T)$ operations:

915 • Kalman filtering: $O(n^3T)$ per trajectory-component pair, total $O(NKn^3T)$
916 • Kalman smoothing: $O(n^3T)$ per trajectory-component pair, total $O(NKn^3T)$
917 • M-step updates: $O(Kn^3)$ for matrix inversions

918 Tensor initialization significantly reduces the iteration count compared to random initialization,
 919 which substantially improves computational efficiency. The tensor initialization phase requires $O(d^3)$
 920 operations where $d = Lm$ is the MLR dimension, making it negligible in the whole Tensor-EM
 921 pipeline.

923 D INITIALIZING (Q, R) AFTER TENSOR INITIALIZATION

925 The tensor stage yields $\{\hat{A}_z, \hat{B}_z, \hat{C}_z, \hat{p}_z\}_{z=1}^K$ but not the noise covariances $\{\hat{Q}_z, \hat{R}_z\}$. We initialize
 926 (Q_z, R_z) from data for each component z as follows.
 927

928 *Step 1 (labels/weights; optional).* Assign labels by selecting, for each trajectory i , the component z
 929 with the smallest one-step prediction MSE under $(\hat{A}_z, \hat{B}_z, \hat{C}_z)$, and set $w_{i,z} = 1$ for that component
 930 and $w_{i,r} = 0$ for all $r \neq z$.

931 *Step 2 (state back-projection).* For each z and trajectory i , decode provisional latents with a ridge
 932 pseudo-inverse:

$$933 \hat{x}_{i,t}^{(z)} = (\hat{C}_z^\top \hat{C}_z + \lambda I)^{-1} \hat{C}_z^\top (y_{i,t} - \hat{D}_z u_{i,t}),$$

935 where we recommend $\lambda = 10^{-6} \max(\text{diag}(\hat{C}_z^\top \hat{C}_z))$ for numerical stability.

936 *Step 3 (residual covariances).* Define

$$938 \eta_{i,t}^{(z)} = \hat{x}_{i,t+1}^{(z)} - \hat{A}_z \hat{x}_{i,t}^{(z)} - \hat{B}_z u_{i,t}, \quad \varepsilon_{i,t}^{(z)} = y_{i,t} - \hat{C}_z \hat{x}_{i,t}^{(z)} - \hat{D}_z u_{i,t}.$$

939 With $T_i^{\text{tr}} = T_i - 1$, set

$$941 \hat{Q}_z^{(0)} = \frac{\sum_i w_{i,z} \sum_{t=0}^{T_i-2} \eta_{i,t}^{(z)} \eta_{i,t}^{(z)\top}}{\sum_i w_{i,z} T_i^{\text{tr}}}, \quad \hat{R}_z^{(0)} = \frac{\sum_i w_{i,z} \sum_{t=0}^{T_i-1} \varepsilon_{i,t}^{(z)} \varepsilon_{i,t}^{(z)\top}}{\sum_i w_{i,z} T_i}.$$

944 *Step 4 (positive semidefinite projection).* Symmetrize and project to the positive semidefinite cone:

$$945 \hat{Q}_z^{(0)} \leftarrow \Pi_{\succeq 0}(\frac{1}{2}(\hat{Q}_z^{(0)} + \hat{Q}_z^{(0)\top})), \quad \hat{R}_z^{(0)} \leftarrow \Pi_{\succeq 0}(\frac{1}{2}(\hat{R}_z^{(0)} + \hat{R}_z^{(0)\top})),$$

947 where $\Pi_{\succeq 0}(M)$ projects matrix M to the nearest positive semidefinite matrix via eigendecomposition:
 948 if $M = U \Lambda U^\top$, then $\Pi_{\succeq 0}(M) = U \max(\Lambda, 0) U^\top$.

949 This yields $(\hat{Q}_z^{(0)}, \hat{R}_z^{(0)})$ for each component z , providing a stable initialization for the first E-step;
 950 subsequent EM iterations refine (Q_z, R_z) from responsibility-weighted sufficient statistics.
 951

952 E TENSOR-EM MoLDS APPLICATION ON NEURAL DATASET DETAILS

953 E.1 AREA2 DATASET

956 **Dataset introduction.** We evaluate our methods on a neural population dataset recorded from the
 957 motor cortex (Area2) of a rhesus macaque. The task is a center-out reaching paradigm where the
 958 subject applies force to a manipulandum in response to cues. Neural activity was recorded with a
 959 Utah array, and spike counts were extracted from thresholded multiunit activity. The dataset provides
 960 simultaneously measured behavioral covariates (applied force, hand kinematics) alongside the neural
 961 recordings.

963 **Data preparation for MoLDS.** Following the Neural Latents Benchmark preprocessing, we first
 964 apply principal component analysis (PCA) to reduce the neural activity to p latent dimensions (here
 965 we use $p = 6, 20$). The behavioral force signals (6D) are used as exogenous inputs. For MoLDS
 966 training, we constructed input-output trials of the form (u_t, y_t) , where $u_t \in \mathbb{R}^6$ corresponds to
 967 force inputs and $y_t \in \mathbb{R}^p$ are PCA-reduced neural outputs. Each reaching direction corresponds to
 968 a separate trial. We split the dataset into non-overlapping `train`, `val`, and `test` sets, ensuring
 969 balanced coverage across each direction.

970 We checked the variance explained by PCA and found that the first six PCs capture over 90% of the
 971 total variance for each direction, while the first 20 PCs explain nearly all of it. This indicates that
 972 PCA preserves the essential structure of the neural activity. The following figure illustrates this.

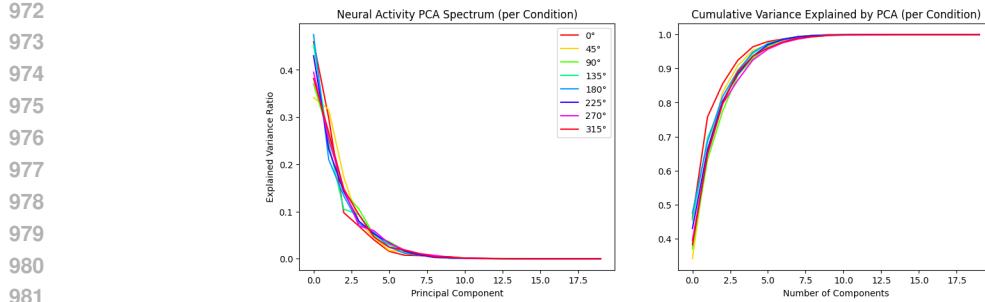


Figure 7: Area2 neural activity PCA spectrum.

Tensor-EM MoLDS train/val/test setup. For model initialization, we computed input-output moment tensors from the training data and applied SMD to obtain globally consistent estimates of system parameters and mixture weights. These estimates were used to initialize a full Kalman filter-smoother EM refinement, which updates all LDS parameters in closed form. We trained MoLDS models with different numbers of mixture components $K \in 3, 4, 5$, latent dimension $n \in 3, 4, 5$, and lag parameters $L \in 16, 24$. Validation data is used for model selection by comparing negative log-likelihood (NLL), root mean squared error (RMSE), and Bayesian Information Criterion (BIC).

- **NLL:** sum of Gaussian-innovation log-likelihoods.
- **RMSE:** root mean squared error of one-step predictions \hat{y}_t vs. y_t .
- **BIC:** $BIC = -2 \text{NLL} + p_\theta \log N_{\text{obs}}$, where p_θ is the total parameter count and N_{obs} the number of observed outputs.

The best configuration was tested on the held-out `test` set.

Per-trial responsibilities. We compute responsibilities for each trial under component k

$$r_{ik} \propto \exp(\ell_k^{(i)}), \quad \sum_{k=1}^K r_{ik} = 1,$$

where $\ell_k^{(i)}$ is the one-step Kalman log-likelihood of trial i under component k . Global usage is summarized by $\text{usage}_k = \frac{1}{N} \sum_i r_{ik}$.

Analyses.

1. **Validation metrics.** We plot BIC/NLL/RMSE across K and initializations (Tensor vs. Random) to assess stability and choose capacity.
2. **Representative predictions.** We visualize \hat{y}_t vs. y_t for representative test trials (all p outputs).
3. **Direction organization & component usage.** In a polar wheel with one wedge per discrete direction, we color each wedge by the dominant component (highest mean r_{ik} among trials in that wedge).
4. **Markov response comparison.** For each component, we calculate $g_k(\tau) = C_k A_k^\tau B_k \in \mathbb{R}^{p \times m}$, $\tau = 0, \dots, L-1$ (omit D_k for clarity). Plot $\|g_k(\tau)\|_F$ for all components on a single axis to compare gain/decay.
5. **Global geometry of dynamics.** Vectorize all $\{g_k(\tau)\}_{k,\tau}$, run PCA across that set, and scatter the first two PCs; use color to encode lag τ and marker/edge to encode component. Components typically form distinct, smoothly evolving trajectories.

Supervised per-direction LDS fitting baseline. Because Area2 uses *discrete* directions, we also fit a single LDS per direction using the same observation space. We compute each supervised model's impulse response, cluster the per-direction vectors, and align clusters to MoLDS components via a Hungarian assignment on centroid distances. A polar plot (inner = supervised clusters, outer = MoLDS predictions) confirms that unsupervised MoLDS recovers direction-consistent dynamics.

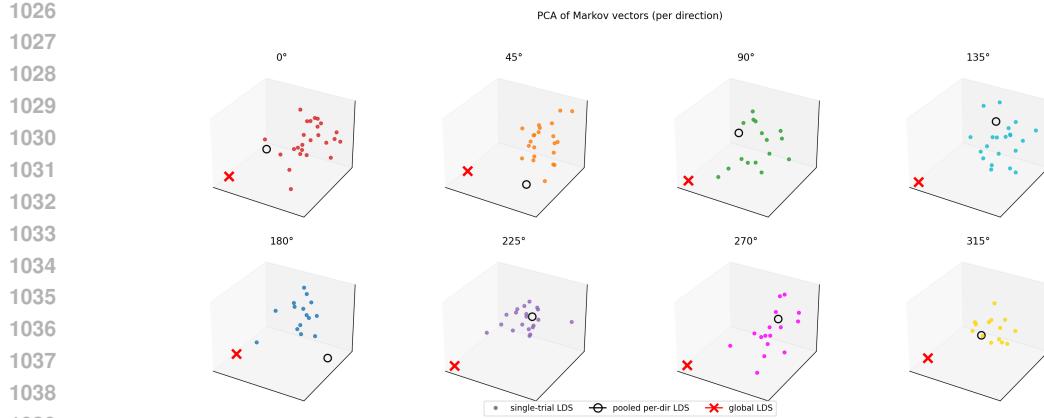


Figure 8: Markov parameters representation of LDS models from different fitting methods.

Single-trial LDS fitting baseline. In addition, we also fit an LDS for each single trial. We compute the average LDS impulse response in each direction and compare the obtained clusters as compared to the per-direction LDS. Following the same procedure as in per-dir LDS fitting, we compare the clusters of single-trial LDS fitting with MoLDS components as well. We have examined the trial-to-trial variability of the Area2 dataset by comparing their full Markov parameter vectors between single-trial, per-dir, and single global LDS fits. As shown in the figure ??, by evaluating the first three PCs of the Markov vectors, single-trial LDSs within each direction form compact clusters, and the pooled per-direction LDS lies near the cluster center for most directions. In contrast, these single-trial LDS are very far from a global LDS fitted on all trials. This indicates that within-direction variability is mild, and the per-direction LDS provides a stable summary of the underlying dynamics rather than an oversimplification. We also performed clustering directly on independently fitted single-trial LDSs. These LDSs naturally cluster by movement direction, even without pooling, demonstrating that direction-specific dynamical signatures are already present at the single-trial level. Moreover, by comparing with the per-dir LDS and MoLDS fit, these single-trial LDS fit-based clusters are very similar, with only two directions being switched between clusters (see Figure 12). Together, these analyses show that while the per-direction LDS is not a perfect “gold standard,” it is a reasonable and stable reference, and our comparisons to MoLDS capture meaningful structure in the data.

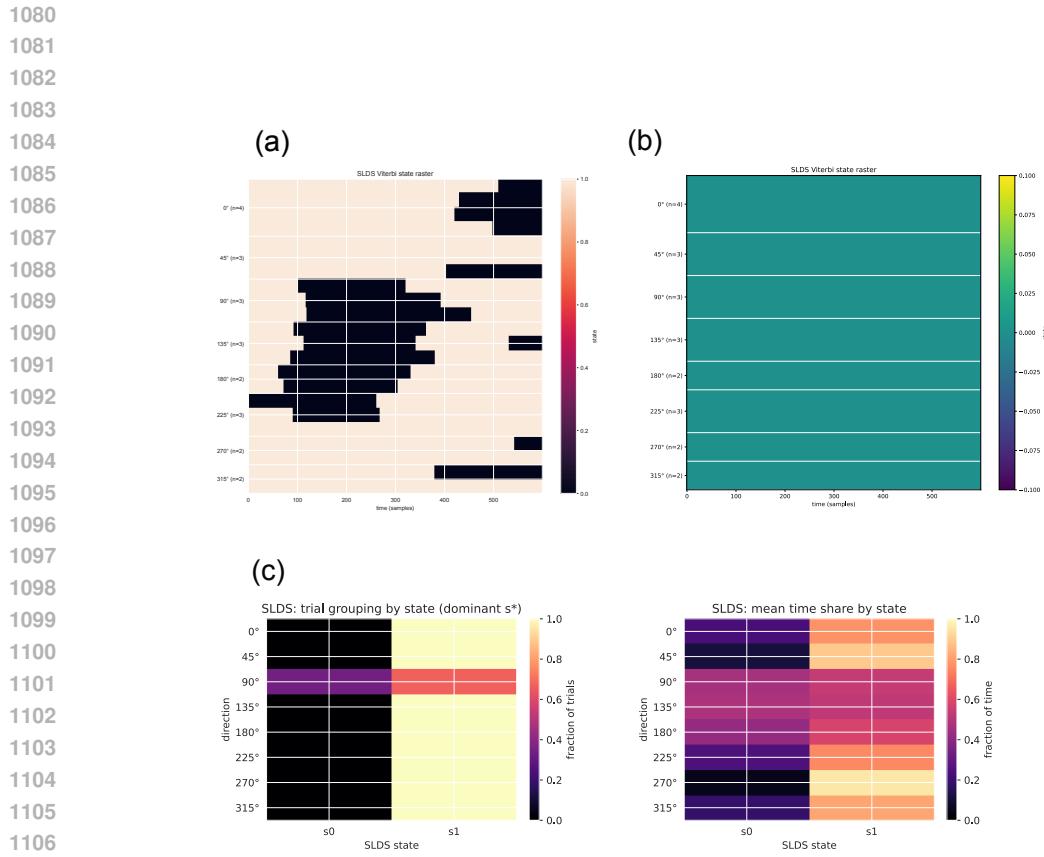
SLDS comparison. We fit switching LDS (SLDS) models with $S \in 1, 2, 3$ discrete states to the training set (Gaussian emissions, 6-D force inputs, mild or strong sticky transitions). Validation NLL/BIC selected $S = 2$ SLDS. We then decoded the test set with Viterbi and summarized the inferred state sequences (Figure 9). Panel (a) shows that within-trial switches are infrequent and tend to occur in similar temporal regions across trials. In panel (b, left), grouping test trials by their dominant state s^* reveals that the same state dominates most directions, with only a mild departure around dir-90. The mean time-share view (b, right) tells the same story: state composition looks broadly similar across directions. Consistent with this, a “collapsed” SLDS that uses only each trial’s dominant state achieves nearly the same predictive metrics as the fully segmented model, indicating that within-trial switching adds little in this dataset. These results support our interpretation that the primary structure is between trials (by direction), not within trials.

More results.

Impulse response comparison. We compare the direction-specific impulse response (Markov parameter) curves of the assigned MoLDS component and the corresponding single LDS fit for that direction, which shows high similarity (see Figure 10 where titles report cosine similarity).

Results of MoLDS fitting using 20 PCs. We also applied the MoLDS method on the Area2 dataset with 20 PCs, and found consistent results for the 6-PC fitting model as shown in Figure 11.

Multi-step prediction In addition to the 1-step-ahead predictions presented in the main paper, we also inspected multi-step and free-run predictions. A representative example is provided in Figure 12. The model follows the true neural trajectory for several steps before diverging as it runs forward without correction, which is the characteristic and expected pattern for stable linear dynamical



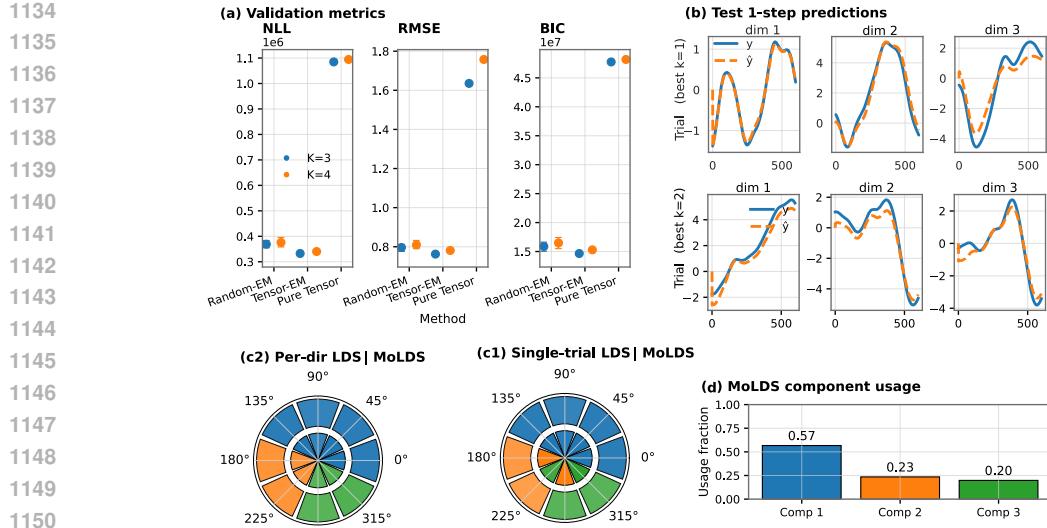


Figure 11: **MoLDS application on Area2 with 20 PCs:** results are consistent with those presented in the main text.

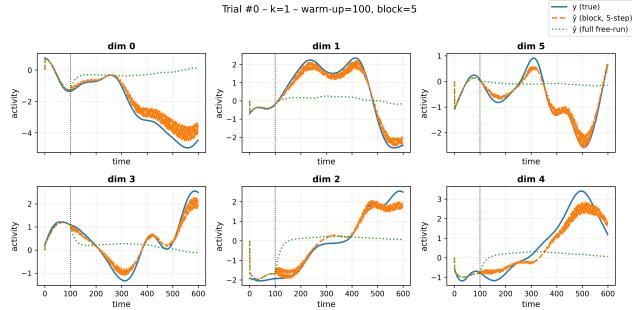


Figure 12: Multi-step forward predictions of MoLDS on one trial of Area2 data: 1-step, 5-step vs fully free run after 100ms warm-up.

systems. This behavior is consistent with LDS-based modeling and does not affect our use of MoLDS for identifying shared local dynamical structure across trials.

Responsibility distribution. We analyzed the full responsibility distribution of MoLDS components on held-out test trials to assess whether non-dominant components carry substantial probability. Across all trials, the dominant responsibility is very large 0.976, while the second-largest responsibility is very small 0.023. This pattern is consistent across directions as shown in Figure 13.

E.2 PMD DATASET

Dataset introduction. The dorsal premotor cortex (PMd) dataset contains single-trial reaches, where time-aligned kinematics (position/velocity/acceleration) and multi-unit spikes, plus a reach

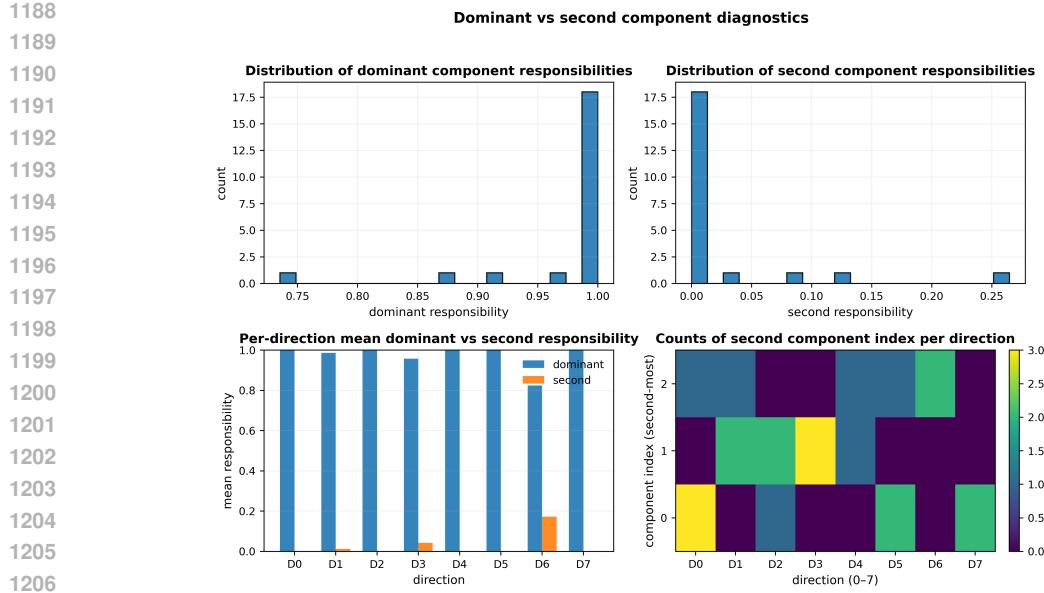


Figure 13: Area2 MoLDS fit dominant and second component analysis.

direction angle $\theta \in (-\pi, \pi]$ are stored. For MoLDS, the input and observation are taken as

$$U_t = [v_x, v_y, a_x, a_y, \text{speed}] \in \mathbb{R}^5, \quad Y_t \in \mathbb{R}^{16},$$

where $\text{speed} = \sqrt{v_x^2 + v_y^2}$ and Y_t denotes PCA-reduced, z -scored firing rates. Here we use $p = 16$ PCs, which explain $> 90\%$ of neural activity. As in Area2 (App. E.1), angles are used only for analysis/visualization; MoLDS is trained without angle labels.

Tensor-EM MoLDS train/val/test setup. Training and selection mirror Area2: tensor or random initialization followed by EM refinement; Model selection was performed on the validation split. For PMd, we sweep $K \in \{2, 3, 4\}$, $n \in \{4, 5, 6\}$, and Markov horizon $L \in \{12, 16, 24\}$. The selected model in our experiments is $K=4$, $n=5$, $L=12$.

Analysis idea. We reuse the analysis logic from Area2. As the direction angles are not discrete as in Area2, we split them into 12 bins, and each bin is colored by the dominant component (largest mean r_{ik} in the bin). Component-wise preferred directions are shown by responsibility-weighted arrows

$$v_k = \sum_i r_{ik} [\cos \theta_i, \sin \theta_i],$$

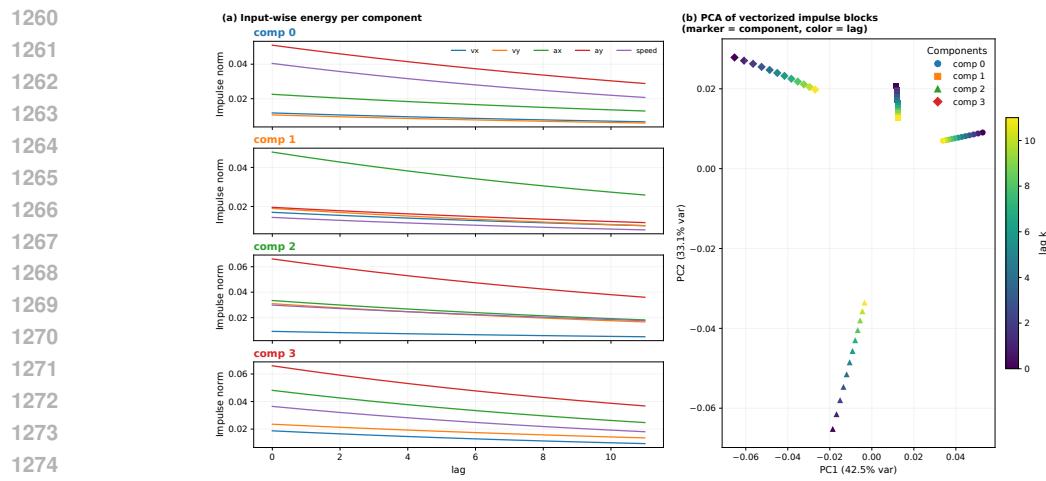
plotted as an inset (angle $\angle v_k$, length $\|v_k\|$). For each component, we examine the Markov parameter blocks

$$g_k(\tau) = C_k A_k^\tau B_k \in \mathbb{R}^{p \times m}, \quad \tau = 0, \dots, L-1,$$

and plot (a) the compact magnitude curves $\|g_k(\tau)\|_F$ and (b) per-input energies $E_{k,j}(\tau) = \|g_k(\tau)_{:,j}\|_2$ for $j \in \{v_x, v_y, a_x, a_y, \text{speed}\}$. For a global view, we also vectorize $\{g_k(\tau)\}_{k,\tau}$, run PCA, and scatter the first two PCs.

Figure 14(a) shows per-input energies versus lag, revealing input selectivity and decay rates. Figure 14(b) visualizes the geometry of vectorized impulse blocks, where marker shape represents component identity and color denotes the lag. These demonstrate that MoLDS components exhibit separated clusters corresponding to component-specific dynamical subspaces.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259



1275
 1276 **Figure 14: Input specificity and geometry of Markov responses:** Left: input-wise energies versus
 1277 lags are shown per component. Right: PCA of vectorized impulse blocks (marker shape = component,
 1278 color = lags).

1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295