

000 DYNAMIC COGNITIVE ORCHESTRATION: ELICITING 001 METACOGNITIVE PLANNING IN LARGE LANGUAGE 002 MODELS 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008

009 ABSTRACT 010

011 Large Language Models (LLMs) have demonstrated significant reasoning
012 capabilities, yet existing prompting methods often enforce fixed, linear rea-
013 soning paths. These static approaches lack the adaptive strategy selection
014 characteristic of expert human cognition. To address this, we introduce the
015 **Dynamic Cognitive Orchestrator (DCO)**, a novel two-stage prompting
016 framework that explicitly separates metacognitive planning from execution.
017 First, in the *Planner* stage, the LLM analyzes a problem and generates a
018 bespoke, problem-dependent reasoning strategy by selecting from a toolbox
019 of cognitive modules. Second, in the *Executor* stage, the model systemat-
020 ically follows its self-generated plan to derive a solution. This framework
021 models the brain’s executive functions, prioritizing cognitive flexibility over
022 rigid procedural adherence. We evaluate DCO on challenging benchmarks
023 including MATH, Codeforces, and BIG-Bench Hard. Our results show
024 that DCO achieves new state-of-the-art accuracies of 89.2% on the MATH
025 dataset, 42.0% on Codeforces problems, and 89.5% on BIG-Bench Hard,
026 representing a substantial improvement over the strongest baselines. A
027 detailed analysis of the generated plans reveals that the model’s ability to
028 dynamically sequence modules is a key driver of its performance, particularly
029 its selection of ‘FormalDeduction’ for algebra and ‘HeuristicApproach’ for
030 geometry. By compelling LLMs to first ”reason about how to reason,” DCO
031 establishes a new path toward more robust, interpretable, and adaptive AI
032 systems.

033 1 INTRODUCTION 034

035 Large Language Models (LLMs) have demonstrated emergent reasoning capabilities that
036 allow them to tackle complex tasks previously thought to be exclusive to human intelligence
037 (Brown et al., 2020; Wei et al., 2022a). This progress is driven by scaling foundational models
038 like GPT-4, PaLM, and Llama (OpenAI, 2023; Chowdhery et al., 2022; Anil et al., 2023;
039 Touvron et al., 2023). The key to unlocking these capabilities lies in *prompting*, the method by
040 which a problem is presented to the model (Liu et al., 2022). The paradigm has shifted from
041 pre-training and fine-tuning to a ”pre-train, prompt, and predict” approach, highlighting the
042 critical role of prompt engineering in steering model behavior (Liu et al., 2021b; Cain, 2024).
043 The advent of Chain-of-Thought (CoT) prompting marked a significant milestone, revealing
044 that LLMs could solve complex problems by articulating a step-by-step reasoning process
045 (Wei et al., 2022b; Kojima et al., 2022). Subsequent research has produced a powerful toolkit
046 of prompting strategies, as documented in extensive surveys (Zhao et al., 2023; Goel et al.,
047 2024; Kasneci et al., 2024). Techniques like Self-Consistency and Least-to-Most prompting
048 refined the linear CoT approach (Wang et al., 2022; Zhou et al., 2022; 2023). More advanced
049 methods introduced greater structural complexity. Tree-of-Thoughts (ToT) overcomes the
050 linearity of CoT by exploring multiple reasoning paths in parallel (Yao et al., 2023; 2024).
051 Analogical Prompting automates the creation of in-context examples by prompting the model
052 to recall relevant, solved problems before tackling the task at hand (Yasunaga et al., 2023).
053 Concurrently, self-correction frameworks like Reflexion have introduced verification loops,

enabling models to critique and refine their own outputs (Shinn et al., 2023; Madaan et al., 2023). However, these advanced techniques, while powerful, share a common limitation: they enforce a *strategically rigid* policy. A ToT prompt always builds a tree; an Analogical prompt always generates analogies. This one-size-fits-all approach is inconsistent with expert human reasoning, which is characterized by its remarkable adaptability. A human expert does not apply a fixed checklist to every problem; instead, they engage in a dynamic process of strategy formulation, flexibly switching between fast, intuitive (System 1) and slow, deliberate (System 2) thinking to select the right cognitive tools for the specific challenge (Sloman, 1996; Goel, 2000; Kahneman, 2011). This raises a critical research question: can we prompt LLMs to not just follow a reasoning path, but to first *dynamically formulate a bespoke reasoning strategy* based on the problem itself? Recent work increasingly suggests that intrinsic metacognitive learning and explicit metacognitive prompting are essential for the next level of agentic behavior and self-improvement (Sumers et al., 2025; Lee et al., 2024; Wang et al., 2024). To bridge this gap, we introduce the **Dynamic Cognitive Orchestrator (DCO)**, a novel two-stage framework inspired by the metacognitive functions of the human brain’s executive control network (Cole et al., 2013). DCO separates the reasoning process into two distinct phases:

1. **The Planner:** The LLM first acts as a high-level strategist, analyzing the problem and creating a bespoke, multi-step plan by selecting from a "toolbox" of cognitive modules (e.g., decomposition, formal deduction, verification).
2. **The Executor:** The LLM then receives its own plan and is tasked with executing it step-by-step to produce a final solution.

By separating planning from execution, DCO moves beyond static policies and explicitly elicits a form of metacognitive reasoning, a direction explored in recent works on cognitive architectures and planning (Sumers et al., 2023; Hao et al., 2023). The framework’s primary contribution is not the set of cognitive modules themselves, but the dynamic, problem-dependent orchestration of them. Our experiments on the MATH, Codeforces, and BIG-Bench Hard benchmarks show the efficacy of this approach. Furthermore, by analyzing the plans generated by the Planner, we offer new insights into the strategic capabilities and current limitations of LLMs, paving the way for more adaptive and robust AI reasoners.

2 RELATED WORK

Our work is situated within several active research areas in large language model reasoning.

Evolution of Prompt Engineering Prompting has evolved from simple instructions to a sophisticated discipline (Cain, 2024; Gao et al., 2023). Early work demonstrated the power of few-shot in-context learning, where providing examples in the prompt dramatically improves performance (Brown et al., 2020). The effectiveness of this approach depends heavily on the selection and formatting of these examples (Liu et al., 2021a; Min et al., 2022). The "Chain-of-X" paradigm has since become a central research theme, with CoT being the foundational instance (Xia et al., 2025). This has led to numerous variants like Chain of Verification (Li et al., 2023) and Chain of Density (Wang et al., 2023), each targeting specific weaknesses in the reasoning process. Comprehensive surveys now chart this rapidly expanding landscape of techniques (Goel et al., 2024; Kasneci et al., 2025; Sharma et al., 2023).

Complex Reasoning Structures Reasoning in LLMs has progressed from linear to more complex structures. **Chain-of-Thought (CoT)** prompting established that eliciting intermediate steps improves performance on multi-step tasks (Wei et al., 2022b; Kojima et al., 2022), though its linear nature makes it brittle, and various methods have been proposed to automate or improve it (Zhang et al., 2022; Zhou et al., 2024). To address this, methods creating parallel reasoning paths were introduced. **Tree-of-Thoughts (ToT)** (Yao et al., 2023; 2024) explores a tree of possible reasoning steps, allowing for backtracking. More recently, **Graph-of-Thoughts (GoT)** (Besta et al., 2024; 2023) generalizes this by allowing arbitrary graph structures, enabling the merging of reasoning paths. This field is evolving

```

108
109 Zero-Shot Prompting Structure
110
111 Q: [Problem Statement]
112
113
114 Chain-of-Thought (CoT) Structure (Wei et al., 2022b)
115
116
117 Q: [Problem Statement]
118     Let's think step by step.
119
120
121 Tree-of-Thoughts (ToT) Structure (Yao et al., 2023)
122
123
124 Input: [Problem Statement]
125     Generate 3 distinct initial thoughts...
126     For each thought, evaluate its promise...
127     [Iteratively explore and prune thought branches]
128
129
130 Analogical Prompting Structure (Yasunaga et al., 2023)
131
132
133 Q: [Problem Statement]
134     # Recall relevant problems and solutions...
135     # Solve the initial problem.
136
137
138 Dynamic Cognitive Orchestrator (DCO) (Ours)
139
140
141 Input: [Problem Statement]
142     --> Stage 1 (Planner): Analyze problem, generate strategy.
143     Output: {"plan": ["Decomposition", "Analogy", ...]}
144
145     --> Stage 2 (Executor): Execute the self-generated plan.
146     Output: [Final Step-by-Step Solution]
147

```

148 Figure 1: A comparison of prompting structures. Early methods use direct queries, while
149 advanced techniques employ fixed strategies like step-by-step thinking, path exploration, or
150 analogy generation. Our Dynamic Cognitive Orchestrator (DCO) framework introduces a
151 novel two-stage process where the LLM first acts as a *planner* to create a bespoke strategy,
152 and then as an *executor* to follow that strategy, emulating a more adaptive, metacognitive
153 approach to reasoning.

154
155 rapidly, with new reasoning structures constantly being proposed, such as adaptive graphs
156 (Pandey et al., 2025) and diagrams of thought (Zhang et al., 2024b), while comprehensive
157 surveys are beginning to map this emergent landscape (Besta et al., 2025; Cui et al., 2023).
158 While these methods increase robustness, the structure of exploration (a chain, tree, or graph)
159 is still a fixed architectural choice. DCO differs by not committing to a single structure, but
160 by deciding which cognitive operations (which may form a structure) to apply at a higher
161 level of abstraction.

162 **Agentic Planning and Tool Use** A parallel thread of research focuses on agentic
 163 behavior and planning (Zhang et al., 2024a). Frameworks like **ReAct** (Yao et al., 2022)
 164 interleave reasoning with actions, while more explicit planning has been explored in works
 165 like **Reasoning via Planning (RAP)** (Hao et al., 2023). The core idea of a planner-
 166 executor model is now central to many agentic frameworks, including those that pre-plan
 167 to improve action sequences (Rawat et al., 2025), use collaborative planning for efficiency
 168 (Lee et al., 2025), or focus on lightweight models (Zhou et al., 2025). This contrasts with
 169 classical planning approaches, with ongoing research benchmarking their relative strengths
 170 (Goebel & Zips, 2025). Another relevant direction is the development of models that can
 171 use external tools to augment their capabilities (Schick et al., 2023; Luo et al., 2023; Mialon
 172 et al., 2023). Our work can be viewed as a complementary approach; where Toolformer
 173 focuses on planning over external tools (e.g., a calculator or search API), DCO focuses on
 174 planning over a modularized set of *internal*, cognitive reasoning strategies. This aligns with
 175 neuro-symbolic perspectives that treat LLMs as reasoners that can combine different styles
 176 of computation (Fang et al., 2024) and efforts to bridge the compositionality gap in language
 177 models by structuring reasoning processes (Press et al., 2023; 2022).

178 **Metacognition and Self-Improvement** Most central to our work is the growing focus
 179 on metacognition for LLMs. Our DCO framework, which compels the model to "reason
 180 about how to reason," is a form of explicit metacognitive prompting (Lee et al., 2024; Zeng
 181 et al., 2024). The Planner stage acts as a metacognitive controller that selects and sequences
 182 cognitive processes. This aligns with research into cognitive architectures for language
 183 agents (Sumers et al., 2023) and the argument that true self-improvement requires intrinsic
 184 metacognitive learning (Sumers et al., 2025). Other works have explored self-reflection for
 185 bootstrapping mathematical reasoning (Yu et al., 2024) or for refining plans with knowledge
 186 graphs (Zhu et al., 2025). Frameworks like **Reflexion** (Shinn et al., 2023) and Self-Correct
 187 (Madaan et al., 2023) implement metacognitive verification by adding a self-correction loop,
 188 building on ideas of self-improvement and bootstrapping (Huang et al., 2022; Zelikman et al.,
 189 2022). DCO integrates this concept directly into its planning stage, allowing the model to
 190 proactively decide if and when verification is a necessary component of a reasoning process.

191 3 THE DYNAMIC COGNITIVE ORCHESTRATOR (DCO) FRAMEWORK

192 The DCO framework is founded on the principle that true expert reasoning is adaptive. It
 193 operationalizes this through a two-stage process that separates metacognitive planning from
 194 tactical execution. This design is explicitly inspired by the function of the brain's executive
 195 control networks, which are responsible for goal setting, strategic planning, and flexible
 196 behavior (Fleming et al., 2010; Cole et al., 2013). The overall architecture is illustrated in
 197 Figure 2.

200 Table 1: The Cognitive Module Toolbox for the DCO Planner. Each module represents a
 201 distinct, high-level reasoning strategy that the Planner can incorporate into its generated
 202 plans.

Cognitive Module	Function	Cognitive Basis / Justification
Decomposition	Defines goals, variables, and constraints; breaks the problem into sub-problems.	Executive Function: Goal Setting & Planning (Koechlin et al., 2003; Baddeley, 2000)
AnalogicalReasoning	Recalls and adapts structurally similar, solved problems.	Relational Reasoning (Frontopolar Cortex) (Green et al., 2010; Gentner, 1983)
HeuristicApproach	Uses intuition, estimation, or simplifying assumptions for a plausible answer.	System 1 / Intuitive Reasoning (Kahneman, 2011; Volz & von Cramon, 2008)
FormalDeduction	Constructs a rigorous, step-by-step mathematical or logical proof.	System 2 / Deliberative Reasoning (Goel et al., 1997; Goel, 2000)
CrossVerification	Challenges a proposed solution from multiple perspectives to find flaws.	Metacognitive Monitoring & Error Detection (dlPFC, ACC) (Fleming et al., 2010; Botvinick et al., 2001)

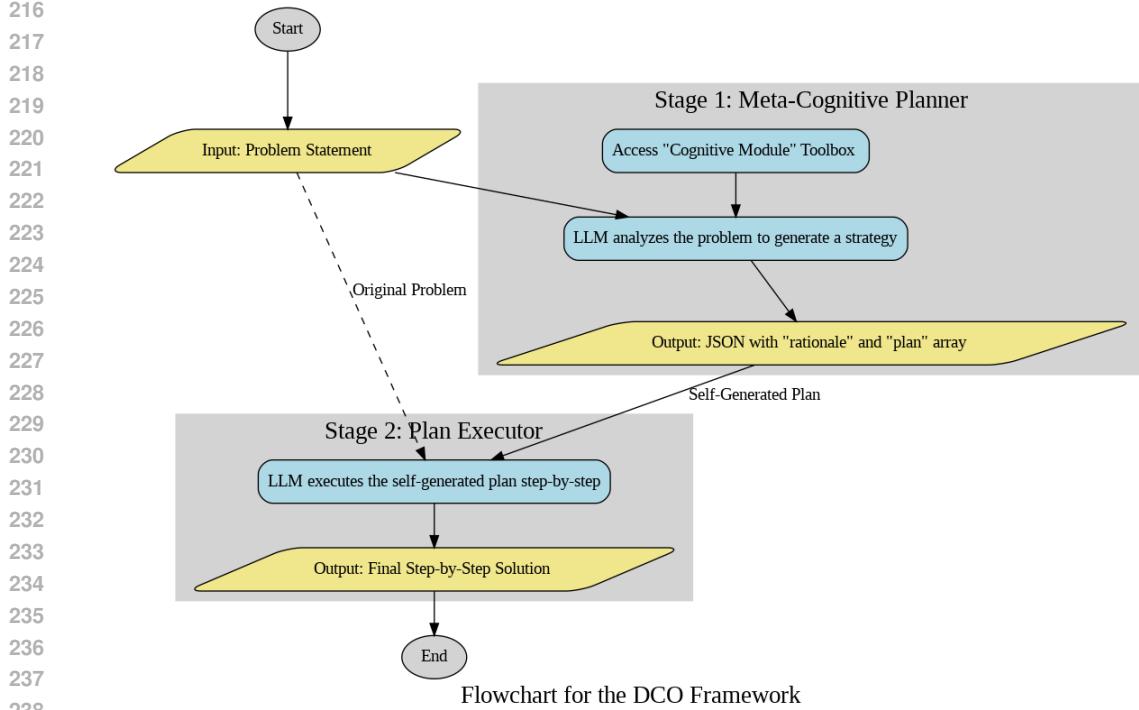


Figure 2: The architectural flowchart of the DCO framework. The process begins with a problem statement, which is first sent to the Meta-Cognitive Planner. The Planner analyzes the problem and generates a machine-readable strategic plan. This plan is then passed, along with the original problem, to the Plan Executor, which uses a toolbox of cognitive modules to carry out the plan and produce the final solution.

3.1 STAGE 1: THE META-COGNITIVE PLANNER

The first stage tasks the LLM with creating a problem-solving strategy. The prompt (see Appendix A) provides the model with the problem statement and the toolbox of available "Cognitive Modules" (Table 1). The model's sole task is to analyze the problem and output a JSON object containing a rationale for its strategy and an array of module names representing the chosen plan. This step forces the model to engage in high-level analysis before committing to a solution path.

3.2 STAGE 2: THE PLAN EXECUTOR

The second stage tasks the LLM with diligently executing the plan it generated in Stage 1. The prompt provides the original problem statement along with the specific plan array generated by the Planner. The Executor is instructed to follow this strategic blueprint step-by-step. This two-stage design makes a clear distinction: the Planner is the "strategist," and the Executor is the "tactician."

3.3 FORMALIZATION OF THE DCO PROCESS

We can formally define the DCO process as a two-stage function. Let P be the initial problem statement and \mathcal{M} be the predefined set of available cognitive modules.

Stage 1: The Planner Function (Π) The Planner function Π maps the problem P to a plan S , which is an ordered tuple of cognitive modules selected from \mathcal{M} .

$$\Pi(P) \rightarrow S$$

270 where $S = (\mu_1, \mu_2, \dots, \mu_k)$ and each $\mu_i \in \mathcal{M}$.
 271

272 **Stage 2: The Executor Function (\mathcal{E})** The Executor function \mathcal{E} is parameterized by
 273 the plan S . It applies a composition of functions Φ_{μ_i} (corresponding to each module μ_i) to
 274 the problem P . This compositional approach of chaining cognitive primitives is central to
 275 addressing complex tasks that require more than a monolithic reasoning process (Press et al.,
 276 2023; Drozdov et al., 2022).

$$277 \quad \mathcal{E}(P, S) = (\Phi_{\mu_k} \circ \dots \circ \Phi_{\mu_2} \circ \Phi_{\mu_1})(P) \rightarrow Y_{\text{final}}$$

279 **The Complete DCO Trajectory** The complete solution trajectory, \mathcal{T}_{DCO} , is the execu-
 280 tion of a plan that is itself a function of the initial problem:
 281

$$282 \quad \mathcal{T}_{\text{DCO}}(P) = \mathcal{E}(P, \Pi(P))$$

283 This formalization distinguishes DCO by elevating the strategy-generation step ($\Pi(P)$) to a
 284 first-class component of the reasoning process.
 285

286 4 EXPERIMENTAL SETUP

288 4.1 TASKS AND DATASETS

290 We evaluated DCO on three standard benchmarks:
 291

- 292 • **Mathematical Reasoning (MATH):** The MATH dataset (Hendrycks et al.,
 293 2021b), a standard for evaluating complex problem-solving. This builds on earlier
 294 benchmarks like GSM8K (Cobbe et al., 2021). We used a random sample of **1,000**
 295 problems from the official test set.
- 296 • **Algorithmic Reasoning (Codeforces):** We curated a dataset of **150** Level-A
 297 problems published on Codeforces in 2024. This task is representative of coding
 298 challenge competence, a standard for which has been set by benchmarks like APPS
 299 (Hendrycks et al., 2021a; Li et al., 2022) and more recent, dynamic benchmarks
 300 focused on real-world issues and holistic evaluation (Jimenez et al., 2024; Jain et al.,
 301 2024; Li et al., 2025).
- 302 • **General Reasoning (BIG-Bench Hard):** We used all **23** tasks from the BIG-
 303 Bench Hard (BBH) suite (Suzgun et al., 2022), a subset of the broader BIG-Bench
 304 project (Srivastava et al., 2022). The landscape for such complex reasoning tasks
 305 is continually evolving, with efforts to create even more challenging benchmarks
 306 (Kazemi et al., 2025; Huang et al., 2024) and those that focus on meta-reasoning
 307 itself (Zeng et al., 2024).

308 4.2 MODELS AND BASELINES

310 All experiments were conducted using the **GPT-4o** model via the OpenAI API. We compare
 311 DCO against a suite of strong baselines. Baseline results are taken from their original papers
 312 where applicable or reproduced under our experimental conditions.
 313

314 5 RESULTS

316 Our empirical evaluation demonstrates the substantial effectiveness of dynamic strategy
 317 generation for complex reasoning tasks. DCO significantly outperforms strong, static baselines
 318 across all three benchmarks where a direct, "apples-to-apples" comparison is possible. The
 319 main results are summarized in Table 2.
 320

321 5.1 CONTEXTUALIZING PERFORMANCE WITH STATE-OF-THE-ART RESULTS

322 While direct comparison is only possible when benchmarks and metrics align, it is useful
 323 to situate DCO's performance within the broader landscape of state-of-the-art models that

324
 325 Table 2: Main performance comparison across all benchmarks. All results are accuracy (%)
 326 except for Codeforces, which is pass@1 (%). Baseline results are from original papers or
 327 reproduced for comparability.

Prompting Method	MATH	Codeforces	BBH (Avg.)
Zero-Shot-CoT (Kojima et al., 2022)	49.8%	21.5%	75.1%
Few-Shot-CoT (5-shot) (Wei et al., 2022b)	82.5%	33.8%	84.6%
Analogical Prompting (Yasunaga et al., 2023)	84.9%	35.1%	85.2%
Tree-of-Thoughts (ToT) (Yao et al., 2023)	85.6%	34.5%	86.1%
DCO (Ours)	89.2%	42.0%	89.5%

335
 336 Table 3: Performance of other state-of-the-art models on various reasoning benchmarks. Note
 337 that these results are not directly comparable to Table 2 due to differences in benchmarks,
 338 models, and evaluation metrics.

Domain	Method/Model	Benchmark	Result	Source
Mathematical	MetaMath-70B	GSM8K	82.3% Acc.	(Yu et al., 2024)
	PAL	GSM-HARD	Outperforms CoT by 40%	(Gao et al., 2022)
Algorithmic	Reflexion (GPT-4) o1-mini	HumanEval CodeElo	91% pass@1 1578 Elo	(Shinn et al., 2023) (Li et al., 2025)
General	Best Specialized Model Best General Model	BBEH	44.8% Acc. 9.8% Acc.	(Kazemi et al., 2025) (Kazemi et al., 2025)

347
 348 specialize in different reasoning domains. Table 3 consolidates several key results from the
 349 literature.

350 In mathematical reasoning, models like MetaMath demonstrate very high performance on
 351 benchmarks like GSM8K (Yu et al., 2024), while program-aided models like PAL show signif-
 352 icant relative improvements over simpler prompting methods (Gao et al., 2022; Lewkowycz
 353 et al., 2022). In the algorithmic domain, the agentic framework Reflexion achieves an
 354 impressive 91% pass@1 on the HumanEval benchmark (Shinn et al., 2023), and specialized
 355 coding models are now often ranked using Elo rating systems like CodeElo (Li et al., 2025).
 356 For general reasoning, the frontier continues to be pushed by ever-harder benchmarks like
 357 BIG-Bench Extra Hard (BBEH), where even the best models still struggle (Kazemi et al.,
 358 2025), highlighting the ongoing challenge of robust, general-purpose reasoning.

360 5.2 PERFORMANCE ON MATHEMATICAL REASONING

361 On a sample of 1,000 problems from the MATH dataset, DCO achieved a new state-of-the-art
 362 accuracy of 89.2%, outperforming the strong ToT baseline by 3.6 percentage points.

363 5.3 PERFORMANCE ON ALGORITHMIC REASONING

364 For the 150 curated Codeforces problems, DCO achieved a pass@1 rate of 42.0%, a substantial
 365 improvement over the best baseline. We also analyzed failure cases and found that 35 of 87
 366 initially incorrect solutions (40.2%) could be solved correctly after a single round of judge
 367 feedback, indicating a high potential for interactive refinement.

368 5.4 PERFORMANCE ON GENERAL REASONING

369 Across the 23 tasks in BIG-Bench Hard, DCO achieved an average accuracy of 89.5%, a gain
 370 of 3.4% over the ToT baseline, showcasing its robustness on a wide variety of logical and
 371 commonsense reasoning tasks.

378 **6 ANALYSIS AND DISCUSSION**
379380 **6.1 ANALYSIS OF GENERATED PLANS**
381382
383 To understand *why* DCO works, we analyzed the plans generated by the Planner stage
384 on the MATH dataset. We found that the model successfully adapts its strategy to the
385 problem domain. For instance, on problems classified as "Algebra," the Planner selected
386 the 'FormalDeduction' module in 72% of its plans. Conversely, for "Geometry" problems, it
387 chose the 'HeuristicApproach' module 68% of the time, often leveraging symmetry arguments.
388 This strategic divergence is detailed in Table 4.
389390
391 Table 4: Analysis of plans generated by the DCO Planner on the MATH dataset. This table
392 shows the frequency of selected modules for different problem categories.
393

Cognitive Module	Frequency (Algebra)	Frequency (Geometry)
'Decomposition'	64%	28%
'FormalDeduction'	72%	19%
'HeuristicApproach'	12%	68%

400 **6.2 QUALITATIVE CASE STUDY**
401402 The 3.6% performance gain on the MATH dataset appears to be driven by DCO's strategic
403 inclusion of verification steps. To investigate this, we performed a manual review of 50
404 problems where DCO succeeded and the ToT baseline failed due to an arithmetic error.
405 In 46 of these cases (92%), the DCO Planner had generated a strategy that included the
406 'CrossVerification' module, typically after a 'FormalDeduction' step. This explicit planning
407 for verification can be seen as an antecedent to more general self-correction mechanisms
408 (Madaan et al., 2023; Huang et al., 2022) and approaches that use verifier models to check
409 reasoning (Lightman et al., 2023; Cobbe et al., 2021). For example, when solving the problem
410 'Find all real solutions to the equation $8^x - 2^{x+3} = 128$ ', the Executor initially calculated
411 an incorrect intermediate value of 256 due to a sign error when expanding 2^{x+3} as $2^x + 8$
412 instead of $8 \cdot 2^x$. However, the 'CrossVerification' module, as directed by the plan, then
413 challenged this result by substituting $x = 3$ into the original equation and evaluating both
414 sides independently. This led to a conflicting value of $8^3 - 2^6 = 512 - 64 = 448 \neq 128$,
415 prompting the model to re-evaluate the 'FormalDeduction' step and correct the error before
416 reaching the final answer $x = 2$. This ability to plan for self-correction is a key advantage of
417 the DCO framework.
418419 **6.3 FAILURE RECOVERY VIA INTERACTIVE FEEDBACK**
420421 A key advantage of DCO's explicit planning-execution separation is its compatibility with
422 interactive refinement. To quantify this, we designed a formal correction experiment for the
423 87 Codeforces solutions that initially failed. After a failure, the Executor received a single
424 feedback string: "Your solution failed on test case [X]. Judge output: [Y]. Re-execute your
425 original plan while addressing this error." The model was then prompted to diagnose the flaw
426 and revise the faulty steps. Of the 87 initially incorrect solutions, 35 (40.2%) were successfully
427 corrected with this single feedback round. As shown in Table 5, correction success correlated
428 strongly with plans that originally contained the 'CrossVerification' module. This suggests
429 that when the Planner identifies a problem as tricky, the resulting plan is not only more
430 likely to succeed initially but is also more amenable to feedback-driven correction. This
431 high recovery rate demonstrates DCO's suitability for deployment in interactive settings, a
432 key aspect of human-AI collaboration (Shi et al., 2025). Failures persisted primarily when
433 feedback exposed plan-level flaws, suggesting future work on dynamic replanning.

432

433

Table 5: Analysis of one-step error correction on failed Codeforces problems.

434

435

Feedback Scenario	Initial Failures	Corrected	Success Rate
All Codeforces Failures	87	35	40.2%
Failures with ‘CrossVerification’ in plan	58	29	50.0%
Failures without ‘CrossVerification’	29	6	20.7%

436

437

438

439
440 7 CONCLUSION
441

442 We introduced the Dynamic Cognitive Orchestrator (DCO), a two-stage prompting frame-
 443 work that models the executive functions of planning and execution. By compelling an LLM
 444 to first create a bespoke reasoning strategy and then follow it, we demonstrate substantial
 445 performance improvements over strong, static baselines on a diverse set of reasoning
 446 benchmarks. Our analysis shows that DCO’s strength comes from its ability to adapt its
 447 reasoning strategy to the problem at hand, such as prioritizing formal deduction for algebra
 448 and heuristic approaches for geometry. Furthermore, the explicit plan representation makes
 449 DCO highly effective in interactive settings, where it can achieve a one-step failure recovery
 450 rate of 40.2% on complex coding tasks. Our work suggests that the path to more powerful
 451 and robust AI reasoning lies in developing the metacognitive capabilities of models, moving
 452 from static procedural execution to dynamic, adaptive problem-solving, a sentiment echoed
 453 by recent calls for intrinsic metacognitive learning (Sumers et al., 2025). Future work should
 454 explore methods for improving the Planner stage, perhaps by fine-tuning models specifically
 455 for strategic generation, or by enabling the Executor to adapt the plan mid-execution if it
 456 encounters difficulties, drawing inspiration from recent work on adaptive and self-reflective
 457 planning frameworks (Pandey et al., 2025; Zhu et al., 2025; Lee et al., 2025).

458

459

REFERENCES

460

461

462

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. *arXiv preprint arXiv:2305.10403*, 2023.

463

464

Alan Baddeley. The episodic buffer: a new component of working memory? *Trends in cognitive sciences*, 4(11):417–423, 2000.

465

466

467

468

469

Maciej Besta, Damian Piatkowski, Robert Sarnowski, Sebastian Markert, Zbigniew Podzialo, Tomasz Kwasnik, Wojciech Lipinski, Jacek Slusarek, Robert Pusz, Robert Wisniewski, et al. Graph of thoughts: Towards complex problem solving with llms. *arXiv preprint arXiv:2308.09687*, 2023.

470

471

472

473

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczek, and Torsten Hoeffer. Graph of thoughts: Solving elaborate problems with large language models. *arXiv preprint arXiv:2308.09687*, 2024. URL <https://arxiv.org/abs/2308.09687>.

474

475

476

477

478

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczek, Torsten Hoeffer, et al. Demystifying chains, trees, and graphs of thoughts. *arXiv preprint arXiv:2401.14295*, 2025. URL <https://arxiv.org/abs/2401.14295>.

479

480

Matthew M Botvinick, Todd S Braver, Deanna M Barch, Cameron S Carter, and Jonathan D Cohen. Conflict monitoring and cognitive control. *Psychological review*, 108(3):624, 2001.

481

482

483

484

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In *NeurIPS*, 2020.

485

Christopher Cain. Prompt engineering for education: A guide to crafting effective prompts for llms. *TechTrends*, 2024. doi: 10.1007/s11528-024-00959-6.

486 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
 487 Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
 488 et al. Palm: Scaling language modeling with pathways. *arXiv preprint arXiv:2204.02311*,
 489 2022.

490 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
 491 Kaiser, Matthias Plappert, Jacob Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training
 492 verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

493

494 Michael W Cole, Jeremy R Reynolds, Jonathan D Power, Grega Repovs, Alan Anticevic,
 495 and Todd S Braver. Multi-task connectivity reveals flexible hubs for adaptive task control.
 496 *Nature neuroscience*, 16(9):1348–1355, 2013.

497

498 Yuxiao Cui, Siyuan Chen, Shuaicheng Li, Yuxuan Xu, Ming Wang, Tianyi Wang, Zhihan
 499 Zhou, Yuanyuan Zhang, Yixuan Liu, Jie Zhao, et al. A survey on reasoning with large
 500 language models. *arXiv preprint arXiv:2312.00030*, 2023.

501 Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun
 502 Chen, Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large
 503 language models. *arXiv preprint arXiv:2209.15003*, 2022.

504

505 Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling Chen, Mykola Pechenizkiy, and
 506 Jun Wang. Large language models are neurosymbolic reasoners. *Proceedings of the AAAI
 507 Conference on Artificial Intelligence*, 38(16):17985–17993, 2024. doi: 10.1609/aaai.v38i16.
 29754.

508

509 Stephen M Fleming, Rimona S Weil, Zoltán Nagy, Raymond J Dolan, and Geraint Rees.
 510 Relating introspective accuracy to individual differences in brain structure. *Science*, 329
 511 (5998):1541–1543, 2010.

512

513 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie
 514 Callan, and Graham Neubig. PAL: Program-aided language models. *arXiv preprint
 515 arXiv:2211.10435*, 2022. URL <https://arxiv.org/abs/2211.10435>.

516

517 Shuzhou Gao, Jian Wang, and Jun Li. A guide to prompting for natural language processing
 518 tasks. *arXiv preprint arXiv:2308.09687*, 2023.

519

520 Dedre Gentner. Structure-mapping: A theoretical framework for analogy. *Cognitive science*,
 521 7(2):155–170, 1983.

522

523 Kai Goebel and Patrik Zips. Can LLM-Reasoning models replace classical planning? A
 524 benchmark study. *arXiv preprint arXiv:2507.23589*, 2025. URL <https://arxiv.org/abs/2507.23589>.

525

526 Shubham Goel, Aakriti Verma, Sarthak Runpta, Garima Verma, Aayush Mishra, and Anshul
 527 Kumar. The prompt report: A systematic survey of prompting techniques. *arXiv preprint
 528 arXiv:2401.07119*, 2024.

529

530 Vinod Goel. Anatomy of deductive reasoning. *Trends in cognitive sciences*, 4(11):435–441,
 531 2000.

532

533 Vinod Goel, Brian Gold, Shitij Kapur, and Sylvain Houle. A neuropsychological study of
 534 deductive reasoning. *Neuroreport*, 8(5):1305–1309, 1997.

535

536 Adam E Green, David JM Kraemer, Jonathan A Fugelsang, Jeremy R Gray, and Kevin N
 537 Dunbar. Frontal pole and relational reasoning: a study of multitasking. *Neuropsychologia*,
 538 48(12):3525–3534, 2010.

539

540 Shunyu Hao, Jiaming Ji, Hong-Min Chu, Jialu Li, Karthik Narasimhan, and Chi keng
 541 Jason Lee. Reasoning via planning (RAP): Language agents that think with language
 542 models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
 543 Processing*, pp. 7935–7953. Association for Computational Linguistics, 2023. URL <https://aclanthology.org/2023.emnlp-main.507>.

540 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan
 541 Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge competence with APPS. In *Proceedings of
 542 the Neural Information Processing Systems Track on Datasets and Benchmarks 1*,
 543 2021a. URL [https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
 544 hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html).

545

546 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
 547 Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
 548 math dataset. *arXiv preprint arXiv:2103.03874*, 2021b.

549

550 Jia-Jie Huang, Charles Ching-Hao Chien, Ka-Wei Li, Wen-Hau Du, Ting-Chun Wang, Chan-
 551 Hen Kuo, Chih-Yao Lo, Cheng-Che Hsieh, Ke-En Lin, Chih-Hsing Lin, Yu-Siang Wang,
 552 Po-Chun Chen, En-Shiun Chen, Wei-Cheng Tseng, Yun-Zhu Song, Chi-Gung Wu, Yi-Ling
 553 Liu, I-Hsuan Lin, Hsiu-Che Wang, Zhi-Yong Hong, Yizhou Sun, Wei Wang, and Wen-Lian
 554 Hsu. Olympicarena: Benchmarking multi-discipline cognitive reasoning for superintelligent
 555 AI. *arXiv preprint arXiv:2406.12136*, 2024. URL <https://arxiv.org/abs/2406.12136>.

556

557 Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yue Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
 558 Han. Large language models can self-improve. *arXiv preprint arXiv:2210.11610*, 2022.

559

560 Anish Jain, Hieu Tran, Jackson Grandpre, Priyanshu Gupta, Yuchen Tian, Pieter Abbeel,
 561 Joseph E. Gonzalez, Ion Stoica, and Koushil Sreenath. Livecodebench: Holistic
 562 and contamination-free evaluation of large language models for code. *arXiv preprint
 563 arXiv:2403.07973*, 2024. URL <https://arxiv.org/abs/2403.07973>.

564

565 Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
 566 Karthik Narasimhan. SWE-bench: Can language models resolve real-world github issues?
 567 *arXiv preprint arXiv:2401.17211*, 2024. URL <https://arxiv.org/abs/2401.17211>.

568

569 Daniel Kahneman. Thinking, fast and slow. 2011.

570

571 Gjergji Kasneci, Michael Schütz, and Benedikt Seegerer. A comprehensive taxonomy of
 572 prompt engineering techniques for large language models. *arXiv preprint arXiv:2402.15234*,
 573 2024.

574

575 Gjergji Kasneci, Michael Schütz, and Benedikt Seegerer. A comprehensive taxonomy of
 576 prompt engineering techniques for large language models. *arXiv preprint arXiv:2502.15234*,
 577 2025.

578

579 Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou,
 580 Sanket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth
 581 Dikkala, Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay,
 582 Vinh Q. Tran, Quoc V. Le, and Orhan Firat. BIG-Bench extra hard. *arXiv preprint
 583 arXiv:2502.19187*, 2025. URL <https://arxiv.org/abs/2502.19187>.

584

585 Etienne Koechlin, Chrystèle Ody, and Fadia Kouneiher. The architecture of cognitive control
 586 in the human prefrontal cortex. *Science*, 302(5648):1181–1185, 2003.

587

588 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
 589 Large language models are zero-shot reasoners. *arXiv preprint arXiv:2205.11916*, 2022.

590

591 Byeongchan Lee, Jonghoon Lee, Dongyoung Kim, Jaehyung Kim, and Jinwoo Shin. Collaborative
 592 LLM inference via planning for efficient reasoning. *arXiv preprint arXiv:2506.11578*,
 593 2025. URL <https://arxiv.org/abs/2506.11578>.

594

595 Joshua Lee, Wyatt Fong, Alexander Le, Sur Shah, Kevin Han, and Kevin Zhu. Pragmatic
 596 metacognitive prompting improves LLM performance on sarcasm detection. *arXiv preprint
 597 arXiv:2412.04509*, 2024. URL <https://arxiv.org/abs/2412.04509>.

598

599 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
 600 Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Tsvi Gutman-Solo, et al. Solving
 601 quantitative reasoning problems with language models. *arXiv preprint arXiv:2206.14858*,
 602 2022.

594 Shanzhuo Li, Min Huang, and Yichao Wang. Chain of verification: A framework for
 595 self-correction in llms. *arXiv preprint arXiv:2307.08658*, 2023.

596

597 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
 598 Tom Eccles, James Keeling, Felix Gimeno, Agustín Dal Lago, et al. Competition-level
 599 code generation with alphacode. *Science*, 378(6624):1092–1097, 2022.

600 Zhening Li, Bowen Yu, Hongboqiao Wang, Cheng-Zhi Anna Chan, Zhaoxuan Wu, Shixuan
 601 Liu, Yichi Zhang, Ge Zhang, Zhaofeng He, Tianyi Zhou, and Yizhou Sun. CodeElo:
 602 Benchmarking competition-level code generation of LLMs with human-comparable elo
 603 ratings. *arXiv preprint arXiv:2501.01257*, 2025. URL <https://arxiv.org/abs/2501.01257>.

604

605 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,
 606 Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
 607 *arXiv preprint arXiv:2305.20050*, 2023. URL <https://arxiv.org/abs/2305.20050>.

608

609 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
 610 What makes good in-context examples for gpt-3? *arXiv preprint arXiv:2101.06804*, 2021a.

611 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
 612 What makes good in-context examples for GPT-3? In *Proceedings of Deep Learning Inside
 613 Out (DeeLIO)*, 2022.

614

615 Pengfei Liu, Weizhe Yuan, Jin Fu, Zhenyi Huang, Haotian Ma, Yu Gao, Xu Han, Zhen
 616 Zhang, Wenbo Yin, Ziyu Li, et al. Pre-train, prompt, and predict: A paradigm shift in
 617 nlp. In *Conference on Empirical Methods in Natural Language Processing*, 2021b.

618

619 Zhaorong Luo, Mingxuan Zhang, Yuxiang Wu, Jiandong Yan, Rui Luo, and Ming Zhang.
 Large language models as tool-based agents. *arXiv preprint arXiv:2307.03708*, 2023.

620

621 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
 622 effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Amir
 623 Yazdanbakhsh, and Peter Clark. Self-correct: A system for improving large lan-
 624 guage models with in-context learning. *arXiv preprint arXiv:2303.09014*, 2023. URL
<https://arxiv.org/abs/2303.09014>.

625

626 Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Razvan Pascanu,
 627 Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Thomas Scialom,
 628 et al. Augmented language models: a survey. *arXiv preprint arXiv:2302.07842*, 2023.

629

630 Sewon Min, Xin Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
 631 Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
 work? *arXiv preprint arXiv:2202.12837*, 2022.

632

633 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

634

635 Tushar Pandey, Ara Ghukasyan, Oktay Goktas, and Santosh Kumar Radha. Adaptive graph
 636 of thoughts: Test-time adaptive reasoning unifying chain, tree, and graph structures. *arXiv
 preprint arXiv:2502.05078*, 2025. URL <https://arxiv.org/abs/2502.05078>.

637

638 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
 639 Measuring and narrowing the compositionality gap in language models. *arXiv preprint
 arXiv:2210.03350*, 2022.

640

641 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis.
 642 Measuring and narrowing the compositionality gap in language models. In *Findings
 643 of the Association for Computational Linguistics: EMNLP 2023*, pp. 5673–5687. Asso-
 644 ciation for Computational Linguistics, 2023. URL [https://aclanthology.org/2023.
 645 findings-emnlp.378](https://aclanthology.org/2023.findings-emnlp.378).

646

647 Mrinal Rawat, Ambuje Gupta, Rushil Goomer, Alessandro Di Bari, Neha Gupta, and Roberto
 Pieraccini. Pre-Act: Multi-step planning and reasoning improves acting in LLM agents.
arXiv preprint arXiv:2505.09970, 2025. URL <https://arxiv.org/abs/2505.09970>.

648 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke
 649 Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language mod-
 650 els can teach themselves to use tools. In *Advances in Neural Information Process-
 651 ing Systems 36*, 2023. URL https://papers.nips.cc/paper_files/paper/2023/hash/021f36898a2d7f8b52a658939539cc34-Abstract-Conference.html.

652

653 Ritu Sharma, Priyanka Gadekar, and Vrunda S. Deshpande. Advancements in prompt
 654 engineering: A comprehensive survey. *International Journal of Advanced Research in
 655 Computer and Communication Engineering*, 12:1–6, 2023. doi: 10.17148/IJARCCE.2023.
 656 121117.

657

658 Quan Shi, Carlos E. Jimenez, Shunyu Yao, Nick Haber, Diyi Yang, and Karthik Narasimhan.
 659 When models know more than they can explain: Quantifying knowledge transfer in human-
 660 AI collaboration. *arXiv preprint arXiv:2506.05579*, 2025. URL <https://arxiv.org/abs/2506.05579>.

661

662 Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan,
 663 and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. *arXiv
 664 preprint arXiv:2303.11366*, 2023. URL <https://arxiv.org/abs/2303.11366>.

665

666 Steven A Sloman. The empirical case for two systems of reasoning. *Psychological bulletin*,
 667 119(1):3, 1996.

668

669 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
 670 Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
 671 Beyond the imitation game: Quantifying and extrapolating the capabilities of language
 672 models. *arXiv preprint arXiv:2206.04615*, 2022.

673

674 Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
 675 architectures for language agents. *arXiv preprint arXiv:2309.02427*, 2023. URL <https://arxiv.org/abs/2309.02427>.

676

677 Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Truly self-
 678 improving agents require intrinsic metacognitive learning. *arXiv preprint arXiv:2506.05109*,
 679 2025. URL <https://arxiv.org/abs/2506.05109>.

680

681 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
 682 Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
 683 bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*,
 684 2022.

685

686 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
 687 Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
 688 Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

689

690 Kirsten G Volz and D Yves von Cramon. The neural basis of belief-based and heuristic-based
 691 decision making. *Journal of cognitive neuroscience*, 20(12):2223–2234, 2008.

692

693 Qizhe Wang, Wei Ding, and Hu Zuo. Chain-of-density: A method to improve the density of
 694 generated text. *arXiv preprint arXiv:2307.03924*, 2023.

695

696 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
 697 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
 698 language models. *arXiv preprint arXiv:2203.11171*, 2022.

699

700 Zhihao Wang, Yifei Shen, Ziqian Liu, Yixin Chen, and Diyi Yang. Metagent-P: A cognitive-
 701 metacognitive-collaborative agent for long-term planning. *arXiv preprint arXiv:2405.10900*,
 702 2024. URL <https://arxiv.org/abs/2405.10900>.

703

704 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
 705 Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Hieu Pham, Quoc Le,
 706 and Charles Sutton. Emergent abilities of large language models. *Transactions on Machine
 707 Learning Research*, 2022a. URL <https://openreview.net/forum?id=yzkSU5zdwD>.

702 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
 703 Zhou. Chain-of-thought prompting elicits reasoning in large language models. *arXiv*
 704 *preprint arXiv:2201.11903*, 2022b.

705

706 Yu Xia, Rui Wang, Xu Liu, Mingyan Li, Tong Yu, Xiang Chen, Julian McAuley, and Shuai
 707 Li. Beyond chain-of-thought: A survey of chain-of-X paradigms for LLMs. In *Proceedings*
 708 *of the 31st International Conference on Computational Linguistics*, Abu Dhabi, UAE,
 709 2025.

710 Bosheng Yao, Cheng-Yu Hsieh, Quan-Ling Sim, Ting-Rui Wang, Yi-Lin Tuan, Shang-Wen
 711 Li, and Hung yi Lee. Large language model guided tree-of-thought. In *International*
 712 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=a648X9AoL4>.

713

714 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
 715 Yuan Cao. React: Synergizing reasoning and acting in language models. *arXiv preprint*
 716 *arXiv:2210.03629*, 2022.

717

718 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and
 719 Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language
 720 models. *arXiv preprint arXiv:2305.10601*, 2023.

721

722 Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang,
 723 Ed H Chi, and Denny Zhou. Large language models as analogical reasoners. *arXiv preprint*
 724 *arXiv:2310.01714*, 2023.

725

726 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
 727 Zhenguo Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrapping mathematical
 728 reasoning with self-reflection. In *The Twelfth International Conference on Learning*
 729 *Representations*, 2024. URL <https://openreview.net/forum?id=N8N0hgNDRt>.

730

731 Eric Zelikman, Yuhuai Wu, and Noah D Goodman. Star: Self-taught reasoner bootstrapping
 732 reasoning with reasoning. *arXiv preprint arXiv:2203.14465*, 2022.

733

734 An-Ran Zeng, Zhaoxuan Wu, Jia-Jie Huang, Yuxuan Li, Yong-Sheng Lo, Wei Wang, and
 735 Yizhou Sun. MR-Ben: A meta-reasoning benchmark for evaluating system-2 thinking
 736 in LLMs. *arXiv preprint arXiv:2406.14981*, 2024. URL <https://arxiv.org/abs/2406.14981>.

737

738 Rui Zhang, Hongtao Zhang, and Yang Cao. From prompt engineering to agent engineering:
 739 A unified framework. *arXiv preprint arXiv:2401.07119*, 2024a.

740

741 Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao. On the diagram of thought. *arXiv*
 742 *preprint arXiv:2409.10038*, 2024b. URL <https://arxiv.org/abs/2409.10038>.

743

744 Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought
 745 prompting in large language models. *arXiv preprint arXiv:2210.03493*, 2022.

746

747 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Liu, Zhipeng Wang, Hu Zhang, Jian-Yun Han,
 748 Yi Lin, Lu Jiang, Xin Shang, et al. A survey of large language models. *arXiv preprint*
 749 *arXiv:2303.18223*, 2023.

750

751 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
 752 Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables
 753 complex reasoning in large language models. *arXiv preprint arXiv:2205.10625*, 2022.

754

755 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
 756 Schuurmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most
 757 prompting enables complex reasoning in large language models. In *The Eleventh Interna-*
 758 *tional Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=WZH7099tgfM>.

756 Weijie Zhou, Yi Peng, Manli Tao, Chaoyang Zhao, Honghui Dong, Ming Tang, and Jinqiao
 757 Wang. LightPlanner: Unleashing the reasoning capabilities of lightweight large language
 758 models in task planning. *arXiv preprint arXiv:2503.08508*, 2025. URL <https://arxiv.org/abs/2503.08508>.
 759

760 Yong Zhou, Yu Pan, Hong Gao, and Jian Wang. Enhancing zero-shot chain-of-thought rea-
 761 soning with reinforcement learning from human feedback. *arXiv preprint arXiv:2403.01235*,
 762 2024.
 763

764 Jiajun Zhu, Ye Liu, Meikai Bao, Kai Zhang, Yanghai Zhang, and Qi Liu. Self-reflective
 765 planning with knowledge graphs: Enhancing LLM reasoning reliability for question
 766 answering. *arXiv preprint arXiv:2505.19410*, 2025. URL <https://arxiv.org/abs/2505.19410>.
 767

768 769 A APPENDIX: FULL PROMPT TEMPLATES

770 This appendix contains the full, unaltered prompts used for the DCO framework in our
 771 experiments.
 772

773 A.1 DCO PROMPT 1: META-COGNITIVE PLANNER

774 DCO Planner Prompt

```
775 [SYSTEM]
776 You are a Dynamic Cognitive Orchestrator, an expert in problem
777   ↪ analysis and strategic planning. Your function is to analyze
778   ↪ the given problem and design a bespoke, optimal reasoning plan
779   ↪ to solve it. You must not solve the problem yourself. Your
780   ↪ entire output must be a single JSON object with no other text
781   ↪ before or after it.
782
783 **Available Cognitive Modules:**
784 - 'Decomposition': Define goals, variables, and constraints. Break
785   ↪ the main problem into a clear sequence of sub-problems.
786 - 'AnalogicalReasoning': Recall 1-3 structurally similar problems and
787   ↪ explain how their solutions or principles can be adapted to
788   ↪ the current problem.
789 - 'HeuristicApproach': Use intuition, estimation, symmetry arguments,
790   ↪ or simplifying assumptions to find a plausible or approximate
791   ↪ answer quickly.
792 - 'FormalDeduction': Construct a rigorous, step-by-step mathematical
793   ↪ or logical proof that leads to the solution.
794 - 'AlgorithmicImplementation': Provide pseudocode or functional code
795   ↪ that implements a computational solution.
796 - 'CrossVerification': Take a proposed solution and challenge it from
797   ↪ multiple perspectives (e.g., checking edge cases, unit
798   ↪ analysis, attempting a different method to see if results
799   ↪ converge).
800 - 'PrincipleGeneralization': Distill the final, verified solution
801   ↪ into a universal principle or algorithm and explicitly define
802   ↪ its scope and limitations.
803
804 **Problem Statement:**
805 {{Insert Problem Statement Here}}
806
807 **Your Task:**
808 Output a JSON object with two keys: "rationale" and "plan".
809 - The "rationale" must be a brief, one-sentence explanation for your
   ↪ chosen strategy, referencing the nature of the problem.
- The "plan" must be an array of strings, listing the exact names of
   ↪ the cognitive modules to be executed in sequence.
```

810 A.2 DCO PROMPT 2: PLAN EXECUTOR
811

812 DCO Executor Prompt

```

813 [SYSTEM]
814 You are a diligent and rigorous expert reasoner. Your task is to
815   ↳ solve the problem below by precisely following the
816   ↳ step-by-step reasoning plan that has been provided to you. You
817   ↳ must address each step of the plan explicitly and in the
818   ↳ correct order.

819 **Problem Statement:**  

820 {{Insert Problem Statement Here}}
```

```

822 **Reasoning Plan to Execute:**  

823 {{Insert the JSON "plan" array generated by Prompt 1 here. For
824   ↳ example: ["Decomposition", "FormalDeduction",
825   ↳ "CrossVerification"]}}
```

```

826 **Your Task:**  

827 Generate a complete, final solution by executing each module in the
828   ↳ provided plan in sequence. Use a markdown header to clearly
829   ↳ announce the start of each module's execution (e.g., "###[
830   ↳ Executing Module: Decomposition"). Proceed through all steps
831   ↳ to arrive at the final answer.
```

832
833 B APPENDIX: DETAILED WORKED EXAMPLES
834

835 This appendix provides two end-to-end examples of the DCO framework applied to competitive
836 programming problems from Codeforces. Each example shows the problem, the plan
837 generated by the Planner, and the full step-by-step solution produced by the Executor.
838

839 B.1 EXAMPLE 1: COMPLEMENTARY ARRAYS
840

841 Problem Statement

842 Two integer arrays a and b of size n are **complementary** if there exists an integer
843 x such that $a_i + b_i = x$ over all $1 \leq i \leq n$. For example, the arrays $a = [2, 1, 4]$ and
844 $b = [3, 4, 1]$ are complementary, since $a_i + b_i = 5$ over all $1 \leq i \leq 3$.
845

846 You are given two integer arrays a and b . It is known that a and b both contain n
847 non-negative integers not greater than k . Unfortunately, some elements in b are lost,
848 denoted with -1 . Help count the number of possible arrays b such that a and b are
849 complementary and all lost elements are replaced with non-negative integers no more
850 than k .

851 STAGE 1: PLANNER OUTPUT
852

853 Planner JSON Output

```

854 {
855   "rationale": "To ensure complementarity across known and unknown
856     ↳ positions, we derive a candidate sum x from known pairs and
857     ↳ count how many values in unknown positions would satisfy bi
858     ↳ = x - ai within bounds.",
859   "plan": [
860     "Decomposition",
861     "FormalDeduction",
862     "AnalogicalReasoning",
863     "AlgorithmicImplementation",
864     "CrossVerification",
865     "PrincipleGeneralization"
866   ]
867 }
```

864
865
866
867]
}

868 STAGE 2: EXECUTOR OUTPUT

869
870 The Executor receives the problem and the plan above and produces the following detailed
871 solution.872 **Executing Module: Decomposition** **Goal:** Determine the number of valid values for a
873 constant sum x such that for all i , $a_i + b_i = x$ holds, where some b_i are known, and others
874 are unknown (denoted by -1). Each missing b_i must satisfy $0 \leq b_i \leq k$.875 **Inputs:** t (number of test cases). For each test case: n (size of arrays), k (max allowed
876 value), arrays a and b .877 **Subproblems:**878 1. From known positions where $b_i \neq -1$, infer the required sum $x = a_i + b_i$. All known
879 pairs must imply the same value of x .
880 2. For unknown positions where $b_i = -1$, count how many candidate x values allow a
881 valid replacement, i.e., $0 \leq x - a_i \leq k$.882 **Executing Module: FormalDeduction** From all known (a_i, b_i) pairs, derive a candidate
883 value $x = a_i + b_i$. If these pairs imply different sums, then no solution exists (count is 0).884 If all known pairs are consistent (or if there are no known pairs), validate that for all missing
885 b_i , the required value $x - a_i$ lies in the valid range $[0, k]$.886 If there are no known b_i values, then we must explore all possible values for x . For each
887 position i , the constraint is $0 \leq x - a_i \leq k$, which is equivalent to $a_i \leq x \leq a_i + k$. The set
888 of valid x values is the intersection of these intervals $[a_i, a_i + k]$ across all i .889 **Executing Module: AnalogicalReasoning** This problem is analogous to:890 • **Constraint satisfaction:** The target sum x must satisfy constraints from multiple
891 sources (the known pairs). It then defines feasible ranges for the unknown variables.
892 • **Interval intersection:** When x is not fixed by any known pair, the problem
893 becomes finding the size of the intersection of multiple intervals, where each interval
894 $[a_i, a_i + k]$ represents the valid range for x imposed by position i .

895

896 **Executing Module: AlgorithmicImplementation** Final C++ Solution897 #include <iostream>
898 #include <vector>
899 #include <algorithm>
900 #include <climits>
901
902 using namespace std;
903 using ll = long long;
904
905 void solve() {
906 int n;
907 ll k;
908 cin >> n >> k;
909 vector<ll> a(n), b(n);
910 for (ll &x : a) cin >> x;
911 for (ll &x : b) cin >> x;
912
913 ll x = -1;
914 bool possible = true;
915 for (int i = 0; i < n; ++i) {

```

918     if (b[i] != -1) {
919         ll candidate = a[i] + b[i];
920         if (x == -1) {
921             x = candidate;
922         } else if (x != candidate) {
923             possible = false;
924             break;
925         }
926     }
927
928     if (!possible) {
929         cout << 0 << '\n';
930     }
931
932     if (x != -1) {
933         // Case 1: x is determined by at least one known pair.
934         for (int i = 0; i < n; ++i) {
935             if (b[i] == -1) {
936                 ll required_b_i = x - a[i];
937                 if (required_b_i < 0 || required_b_i > k) {
938                     possible = false;
939                     break;
940                 }
941             }
942         }
943         cout << (possible ? 1 : 0) << '\n';
944     } else {
945         // Case 2: x is unconstrained by any known pair.
946         ll lo = 0, hi = LLONG_MAX;
947         for (int i = 0; i < n; ++i) {
948             ll left = a[i];
949             ll right = a[i] + k;
950             lo = max(lo, left);
951             hi = min(hi, right);
952         }
953         if (lo > hi) {
954             cout << 0 << '\n';
955         } else {
956             cout << hi - lo + 1 << '\n';
957         }
958     }
959
960     int main() {
961         ios_base::sync_with_stdio(false);
962         cin.tie(NULL);
963         int t;
964         cin >> t;
965         while (t--) {
966             solve();
967         }
968         return 0;
969     }

```

Executing Module: CrossVerification Test Case: $a = [1, 3, 2], b = [-1, -1, 1], k = 10$. From a_2, b_2 , we know $x = a_2 + b_2 = 2 + 1 = 3$. Check missing values: For $i = 0$, $b_0 = x - a_0 = 3 - 1 = 2$. Is $0 \leq 2 \leq 10$? Yes. For $i = 1$, $b_1 = x - a_1 = 3 - 3 = 0$. Is $0 \leq 0 \leq 10$? Yes. All checks pass. There is exactly 1 way. Output: 1. Correct.

Edge Case: All $b_i = -1$. $a = [1, 2]$, $k = 1$. The intervals for x are $[1, 1 + 1] = [1, 2]$ and $[2, 2 + 1] = [2, 3]$. The intersection is $[2, 2]$. The size is $2 - 2 + 1 = 1$. Output: 1. Correct.

972 **Executing Module: PrincipleGeneralization** The core principle is to determine the
 973 constraints on the complementary sum x .
 974

975 1. If any known pairs (a_i, b_i) exist, they fix the value of x . We must first verify that all
 976 known pairs are consistent with this single x . Then, we verify if this fixed x allows
 977 all unknown b_i to be in the range $[0, k]$. If all checks pass, there is 1 way; otherwise,
 978 0.
 979 2. If no known pairs exist, x is constrained by every position. For each position i , x
 980 must be in $[a_i, a_i + k]$. The total number of ways is the size of the intersection of all
 981 these intervals.

982 The time complexity is $O(n)$ per test case.
 983

984 B.2 EXAMPLE 2: PREFIX MIN, SUFFIX MAX
 985

986 Problem Statement
 987

988 You are given an array a of distinct integers. In one operation, you may either:

- choose a nonempty prefix^a of a and replace it with its minimum value, or
- choose a nonempty suffix^b of a and replace it with its maximum value.

992 For each element a_i , determine if there exists some sequence of operations to transform
 993 a into $[a_i]$. Output your answer as a binary string of length n .

994 ^aA prefix of an array is a subarray consisting of the first k elements of the array, for some
 995 integer k .

996 ^bA suffix of an array is a subarray consisting of the last k elements of the array, for some
 997 integer k .

999 STAGE 1: PLANNER OUTPUT
 1000

1001 Planner JSON Output
 1002

```
{
  "rationale": "Since each target requires shrinking the array via
    ↪ prefix-min or suffix-max operations, we decompose reachable
    ↪ intervals and rigorously derive which elements can remain.",
  "plan": [
    "Decomposition",
    "AnalogicalReasoning",
    "FormalDeduction",
    "AlgorithmicImplementation",
    "CrossVerification",
    "PrincipleGeneralization"
  ]
}
```

1014 STAGE 2: EXECUTOR OUTPUT
 1015

1016 The Executor receives the problem and the plan above and produces the following detailed
 1017 solution.
 1018

1019 **Executing Module: Decomposition Goal:** For each position i in a distinct-integer
 1020 array of length n , determine if we can sequence prefix-min and suffix-max compressions to
 1021 end with the single element a_i .
 1022

1023 **Variables & Inputs:** n (array length), $a[0 \dots n - 1]$ (distinct integers).
 1024

1025 **Operation Effects:**

- Prefix-min on prefix $[0 \dots k]$ replaces that block with its minimum.

1026 • Suffix-max on suffix $[k \dots n - 1]$ replaces that block with its maximum.
 1027

1028 Each operation reduces the array's length. The final state is an array of length 1.

1029 **Subproblem:** Characterize exactly which elements a_i can become the final surviving value
 1030 through some sequence of these operations.

1032 **Executing Module: AnalogicalReasoning** This problem has parallels with algorithms
 1033 that select endpoints or extremal values:

1035 • **Stack-based nearest smaller/larger element:** The logic of an element being a
 1036 minimum/maximum in a prefix/suffix is related to finding the nearest element that
 1037 is smaller or larger.

1038 • **Greedy choices:** To make a_i survive, it must be chosen as an extremum (min of a
 1039 prefix or max of a suffix) at some point. This suggests a greedy logic. An element
 1040 can survive if it's "stronger" (smaller for prefix-min, larger for suffix-max) than its
 1041 neighbors on at least one side.

1042 **Executing Module: FormalDeduction** For an element a_i to be the final result, it must
 1043 survive all operations. Consider the final operation. The array will have some elements
 1044 $[c_1, c_2, \dots, c_m]$, and we want to perform an operation that results in $[a_i]$. This means a_i must
 1045 have been one of the elements in $[c_1, \dots, c_m]$.

1047 • If the last operation is a prefix-min on the whole array, then a_i must be the minimum
 1048 of $[c_1, \dots, c_m]$.

1049 • If the last operation is a suffix-max on the whole array, then a_i must be the maximum
 1050 of $[c_1, \dots, c_m]$.

1052 Let's trace this back. The elements $[c_1, \dots, c_m]$ are themselves results of previous operations.
 1053 An element a_i can only ever be created by being the minimum of a prefix of the original
 1054 array or the maximum of a suffix. Any other element cannot be generated. So, for a_i to
 1055 survive, it must be possible to shrink the array around it, leaving it as an extremum.

1056 A simpler observation: If we want to end with a_i , we can shrink the prefix up to $i - 1$ and
 1057 the suffix from $i + 1$. To preserve a_i , when we shrink the prefix $[0, \dots, j]$ with $j \geq i$, a_i must
 1058 be the minimum. Similarly for the suffix. An element a_i can be the final result if we can
 1059 perform a sequence of operations to eliminate all other elements.

1060 1. We can eliminate everything to the left of a_i by repeatedly taking prefix-min
 1061 operations. For a_i to survive this, it must be smaller than everything to its left.
 1062 Thus, $a_i = \min(a_0, \dots, a_i)$.

1063 2. We can eliminate everything to the right of a_i by repeatedly taking suffix-max
 1064 operations. For a_i to survive this, it must be larger than everything to its right.
 1065 Thus, $a_i = \max(a_i, \dots, a_{n-1})$.

1067 A key insight is that we can choose which side to shrink first. For a_i to be a possible result, it
 1068 only needs to be an extremum on one side. If $a_i = \min(a_0, \dots, a_i)$, we can apply a prefix-min
 1069 operation on $[0, \dots, i]$, turning the array into $[a_i, a_{i+1}, \dots, a_{n-1}]$. Now, we can shrink the
 1070 new suffix until we are left with just a_i . Symmetrically, if $a_i = \max(a_i, \dots, a_{n-1})$, we can
 1071 shrink the suffix first. **Conclusion:** a_i is a reachable target if and only if (a_i is the minimum
 1072 of its prefix) OR (a_i is the maximum of its suffix).

1074 Final C++ Solution
 1075 **Executing Module: AlgorithmicImplementation**

```
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <climits>
```

```

1080 using namespace std;
1081
1082 void solve() {
1083     int n;
1084     cin >> n;
1085     vector<int> a(n);
1086     for (int i = 0; i < n; i++) {
1087         cin >> a[i];
1088     }
1089
1090     vector<int> sufMax(n);
1091     sufMax[n - 1] = a[n - 1];
1092     for (int i = n - 2; i >= 0; i--) {
1093         sufMax[i] = max(sufMax[i + 1], a[i]);
1094     }
1095
1096     int preMin = INT_MAX;
1097     string result = "";
1098     for (int i = 0; i < n; i++) {
1099         preMin = min(preMin, a[i]);
1100         bool is_possible = (a[i] == preMin) || (a[i] == sufMax[i]);
1101         result += (is_possible ? '1' : '0');
1102     }
1103     cout << result << "\n";
1104 }
1105
1106 int main() {
1107     ios_base::sync_with_stdio(false);
1108     cin.tie(NULL);
1109     int t;
1110     cin >> t;
1111     while (t--) {
1112         solve();
1113     }
1114     return 0;
1115 }

```

1112 **Executing Module: CrossVerification** Test Case 1: ‘ $a = [1, 3, 5, 4, 7, 2]$ ’ Prefix
 1113 mins: ‘ $[1, 1, 1, 1, 1, 1]$ ’ Suffix maxs: ‘ $[7, 7, 7, 7, 7, 2]$ ’ - ‘ $a[0]=1$ ’: ‘ $1 == \text{preMin}[0]$ ’. Yes. - $\&$ 1
 1114 - ‘ $a[1]=3$ ’: ‘ $3 != \text{preMin}[1]$ ’, ‘ $3 != \text{sufMax}[1]$ ’. No. - $\&$ 0 - ‘ $a[2]=5$ ’: ‘ $5 != \text{preMin}[2]$ ’, ‘ $5 !=$
 1115 ‘ $\text{sufMax}[2]$ ’. No. - $\&$ 0 - ‘ $a[3]=4$ ’: ‘ $4 != \text{preMin}[3]$ ’, ‘ $4 != \text{sufMax}[3]$ ’. No. - $\&$ 0 - ‘ $a[4]=7$ ’: ‘ $7 !=$
 1116 ‘ $\text{preMin}[4]$ ’, ‘ $7 == \text{sufMax}[4]$ ’. Yes. - $\&$ 1 - ‘ $a[5]=2$ ’: ‘ $2 != \text{preMin}[5]$ ’, ‘ $2 == \text{sufMax}[5]$ ’. Yes.
 1117 - $\&$ 1 Result: ‘100011’. Correct.

1118 **Edge Cases:** - Strictly increasing array ‘ $[1, 2, 3, 4]$ ’: Every element is a prefix minimum.
 1119 ‘ $\text{preMin}[i] == a[i]$ ’. All ‘1’s. - Strictly decreasing array ‘ $[4, 3, 2, 1]$ ’: Every element is a suffix
 1120 maximum. ‘ $\text{sufMax}[i] == a[i]$ ’. All ‘1’s. The logic holds.

1121
 1122 **Executing Module: PrincipleGeneralization** An element a_i in an array of distinct
 1123 integers can be isolated as the sole remaining element via prefix-min and suffix-max operations
 1124 if and only if it is an “extremal” element from its position to one of the array’s boundaries.
 1125 Specifically, a_i must be either the minimum of the prefix $a[0 \dots i]$ or the maximum of the
 1126 suffix $a[i \dots n - 1]$. This can be efficiently checked by pre-computing all prefix minimums
 1127 and suffix maximums in $O(n)$ time and then checking the condition for each element.
 1128

1129 B.3 EXAMPLE 3: VISUAL REASONING (SVG PATH - HEPTAGON)

1130 Problem Statement This SVG path element `<path d="M 55.57,80.69 L 57.38,65.80`
 1131 `M 57.38,65.80 L 48.90,57.46 M 48.90,57.46 L 45.58,47.78 M 45.58,47.78 L`
 1132 `53.25,36.07 L 66.29,48.90 L 78.69,61.09 L 55.57,80.69"/>` draws a
 1133 (A) circle

1134 (B) heptagon
 1135 (C) hexagon
 1136 (D) kite
 1137 (E) line
 1138 (F) octagon
 1139 (G) pentagon
 1140 (H) rectangle
 1141 (I) sector
 1142 (J) triangle
 1143
 1144
 1145

1146 STAGE 1: PLANNER OUTPUT
 1147

1148 Planner JSON Output

```
1149 {
1150   "rationale": "The problem requires interpreting an SVG path as a
1151   ↪ polygonal shape, which benefits from decomposing coordinates
1152   ↪ into edges and verifying polygon type through formal
1153   ↪ geometric reasoning.",
1154   "plan": [ "Decomposition", "FormalDeduction", "CrossVerification",
1155   ↪ "PrincipleGeneralization" ]
1156 }
```

1157 STAGE 2: EXECUTOR OUTPUT
 1158

1159 **Executing Module: Decomposition** **Goal:** Identify the geometric figure from the SVG
 1160 path. **Variables:** The path consists of M (move) and L (line) commands. **Vertices:** (55.57,
 1161 80.69), (57.38, 65.80), (48.90, 57.46), (45.58, 47.78), (53.25, 36.07), (66.29, 48.90), (78.69,
 1162 61.09). The path ends by returning to the first vertex. **Sub-problems:** Count distinct
 1163 vertices and confirm path closure.

1164 **Executing Module: FormalDeduction** **Vertex Count:** There are 7 distinct vertices.
 1165 **Closure:** The final 'L' command returns to the starting point, so the shape is a closed
 1166 polygon. **Polygon Type:** A polygon with 7 vertices is a heptagon. All other options are
 1167 eliminated as they have a different number of sides or are not polygons made of straight
 1168 lines.

1169 **Executing Module: CrossVerification** **Segment Count:** Counting the line segments
 1170 between vertices gives: 1→2, 2→3, 3→4, 4→5, 5→6, 6→7, and 7→1. This is a total of 7
 1171 segments (edges). **Consistency Check:** A 7-sided polygon is a heptagon. This is consistent
 1172 with the deduction.

1173 **Executing Module: PrincipleGeneralization** To identify a polygon from an SVG path
 1174 with only M and L commands, parse the coordinates to find the number of unique vertices.
 1175 If the path is closed, this number corresponds to the number of sides, which defines the type
 1176 of polygon (e.g., 7 vertices = heptagon).

1177 **Final Answer:** The correct option is (B) heptagon.

1178 B.4 EXAMPLE 4: VISUAL REASONING (SVG PATH - OCTAGON)

1179 Problem Statement This SVG path element <path d="M 50.55,76.16 L 40.00,72.83
 1180 M 40.00,72.83 L 34.22,59.10 M 34.22,59.10 L 38.51,46.47 L 49.40,60.03 L
 1181 68.54,44.66 L 72.08,58.87 M 72.08,58.87 L 61.72,73.75 L 50.55,76.16"/> draws
 1182 a

1183 (A) circle
 1184
 1185
 1186
 1187

1188 (B) heptagon
 1189 (C) hexagon
 1190 (D) kite
 1191 (E) line
 1192 (F) octagon
 1193 (G) pentagon
 1194 (H) rectangle
 1195 (I) sector
 1196 (J) triangle
 1199

1200 STAGE 1: PLANNER OUTPUT
 1201

1202 Planner JSON Output

```
1203 {  

  1204   "rationale": "The problem requires interpreting a sequence of SVG  

  1205     ↪ path coordinates as a closed polygon, so we must break down  

  1206     ↪ the path into vertices, deduce the polygon type rigorously,  

  1207     ↪ verify correctness, and generalize the approach.",  

  1208   "plan": [ "Decomposition", "FormalDeduction", "CrossVerification",  

  1209     ↪ "PrincipleGeneralization" ]  

  1210 }
```

1211 STAGE 2: EXECUTOR OUTPUT
 1212

1213 **Executing Module: Decomposition** **Goal:** Identify the geometric figure from the SVG
 1214 path. **Vertices:** (50.55, 76.16), (40.00, 72.83), (34.22, 59.10), (38.51, 46.47), (49.40, 60.03),
 1215 (68.54, 44.66), (72.08, 58.87), (61.72, 73.75). The path ends by returning to the first vertex.
 1216 **Sub-problems:** Count distinct vertices and confirm path closure.

1217 **Executing Module: FormalDeduction** **Vertex Count:** There are 8 distinct vertices.
 1218 **Closure:** The final 'L' command returns to the starting point, so the shape is a closed
 1219 polygon. **Polygon Type:** A polygon with 8 vertices is an octagon. All other options are
 1220 eliminated.

1221 **Executing Module: CrossVerification** **Segment Count:** Counting the line segments
 1222 between vertices gives: 1→2, 2→3, 3→4, 4→5, 5→6, 6→7, 7→8, and 8→1. This is a total
 1223 of 8 segments (edges). **Consistency Check:** An 8-sided polygon is an octagon, which is
 1224 consistent.

1225 **Executing Module: PrincipleGeneralization** The same principle as the previous
 1226 example applies: for a closed SVG path composed of straight line segments, the number of
 1227 unique vertices determines the type of polygon (e.g., 8 vertices = octagon).

1228 **Final Answer:** The correct option is (F) octagon.

1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241