Under review as a conference paper at ICLR 2025

DyNAMIC COGNITIVE ORCHESTRATION: ELICITING
METACOGNITIVE PLANNING IN LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated significant reasoning
capabilities, yet existing prompting methods often enforce fixed, linear rea-
soning paths. These static approaches lack the adaptive strategy selection
characteristic of expert human cognition. To address this, we introduce the
Dynamic Cognitive Orchestrator (DCO), a novel two-stage prompting
framework that explicitly separates metacognitive planning from execution.
First, in the Planner stage, the LLM analyzes a problem and generates a
bespoke, problem-dependent reasoning strategy by selecting from a toolbox
of cognitive modules. Second, in the Executor stage, the model systemat-
ically follows its self-generated plan to derive a solution. This framework
models the brain’s executive functions, prioritizing cognitive flexibility over
rigid procedural adherence. We evaluate DCO on challenging benchmarks
including MATH, Codeforces, and BIG-Bench Hard. Our results show
that DCO achieves new state-of-the-art accuracies of 89.2% on the MATH
dataset, 42.0% on Codeforces problems, and 89.5% on BIG-Bench Hard,
representing a substantial improvement over the strongest baselines. A
detailed analysis of the generated plans reveals that the model’s ability to
dynamically sequence modules is a key driver of its performance, particularly
its selection of ‘FormalDeduction® for algebra and ‘HeuristicApproach® for
geometry. By compelling LLMs to first ”reason about how to reason,” DCO
establishes a new path toward more robust, interpretable, and adaptive Al
systems.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated emergent reasoning capabilities that
allow them to tackle complex tasks previously thought to be exclusive to human intelligence
(Brown et al., [2020; |Wei et al.,|2022a)). This progress is driven by scaling foundational models
like GPT-4, PaLM, and Llama (OpenAl, [2023} [Chowdhery et al., |2022; |Anil et al.| [2023;
Touvron et al.| 2023). The key to unlocking these capabilities lies in prompting, the method by
which a problem is presented to the model (Liu et al., 2022). The paradigm has shifted from
pre-training and fine-tuning to a ”pre-train, prompt, and predict” approach, highlighting the
critical role of prompt engineering in steering model behavior (Liu et al. |2021b; |Cainl [2024]).
The advent of Chain-of-Thought (CoT) prompting marked a significant milestone, revealing
that LLMs could solve complex problems by articulating a step-by-step reasoning process
(Wei et al., 2022b} |Kojima et al. |2022)). Subsequent research has produced a powerful toolkit
of prompting strategies, as documented in extensive surveys (Zhao et al., [2023; |Goel et al.|
2024; [Kasneci et al., [2024). Techniques like Self-Consistency and Least-to-Most prompting
refined the linear CoT approach (Wang et all, 2022; |Zhou et al.| |2022; 2023). More advanced
methods introduced greater structural complexity. Tree-of-Thoughts (ToT) overcomes the
linearity of CoT by exploring multiple reasoning paths in parallel (Yao et al., [2023; |2024)).
Analogical Prompting automates the creation of in-context examples by prompting the model
to recall relevant, solved problems before tackling the task at hand (Yasunaga et al., |2023)).
Concurrently, self-correction frameworks like Reflexion have introduced verification loops,

Under review as a conference paper at ICLR 2025

enabling models to critique and refine their own outputs (Shinn et al., [2023; Madaan et al.
2023). However, these advanced techniques, while powerful, share a common limitation: they
enforce a strategically rigid policy. A ToT prompt always builds a tree; an Analogical prompt
always generates analogies. This one-size-fits-all approach is inconsistent with expert human
reasoning, which is characterized by its remarkable adaptability. A human expert does not
apply a fixed checklist to every problem; instead, they engage in a dynamic process of strategy
formulation, flexibly switching between fast, intuitive (System 1) and slow, deliberate (System
2) thinking to select the right cognitive tools for the specific challenge (Sloman| 1996} |Goel,
2000; [Kahneman|, [2011]). This raises a critical research question: can we prompt LLMs to not
just follow a reasoning path, but to first dynamically formulate a bespoke reasoning strategy
based on the problem itself? Recent work increasingly suggests that intrinsic metacognitive
learning and explicit metacognitive prompting are essential for the next level of agentic
behavior and self-improvement (Sumers et al., 2025; |Lee et al.l |2024; [Wang et al., [2024). To
bridge this gap, we introduce the Dynamic Cognitive Orchestrator (DCO), a novel
two-stage framework inspired by the metacognitive functions of the human brain’s executive
control network (Cole et al., [2013). DCO separates the reasoning process into two distinct
phases:

1. The Planner: The LLM first acts as a high-level strategist, analyzing the problem
and creating a bespoke, multi-step plan by selecting from a ”toolbox” of cognitive
modules (e.g., decomposition, formal deduction, verification).

2. The Executor: The LLM then receives its own plan and is tasked with executing
it step-by-step to produce a final solution.

By separating planning from execution, DCO moves beyond static policies and explicitly
elicits a form of metacognitive reasoning, a direction explored in recent works on cognitive
architectures and planning (Sumers et all 2023; [Hao et all [2023). The framework’s primary
contribution is not the set of cognitive modules themselves, but the dynamic, problem-
dependent orchestration of them. Our experiments on the MATH, Codeforces, and BIG-
Bench Hard benchmarks show the efficacy of this approach. Furthermore, by analyzing the
plans generated by the Planner, we offer new insights into the strategic capabilities and
current limitations of LLMs, paving the way for more adaptive and robust Al reasoners.

2 RELATED WORK
Our work is situated within several active research areas in large language model reasoning.

Evolution of Prompt Engineering Prompting has evolved from simple instructions
to a sophisticated discipline (Cain, 2024} (Gao et al,12023)). Early work demonstrated the
power of few-shot in-context learning, where providing examples in the prompt dramatically
improves performance (Brown et all [2020). The effectiveness of this approach depends
heavily on the selection and formatting of these examples (Liu et al.| 2021a; Min et al., |[2022]).
The ”Chain-of-X” paradigm has since become a central research theme, with CoT being
the foundational instance (Xia et al., |2025)). This has led to numerous variants like Chain
of Verification (Li et al.l 2023) and Chain of Density (Wang et al., [2023), each targeting
specific weaknesses in the reasoning process. Comprehensive surveys now chart this rapidly
expanding landscape of techniques (Goel et al., [2024} Kasneci et al.| 2025; |Sharma et al.,
2023)).

Complex Reasoning Structures Reasoning in LLMs has progressed from linear to
more complex structures. Chain-of-Thought (CoT) prompting established that eliciting
intermediate steps improves performance on multi-step tasks (Wei et al., [2022b; [Kojima et al.,
2022), though its linear nature makes it brittle, and various methods have been proposed to
automate or improve it (Zhang et al.| 2022; |Zhou et al.| 2024). To address this, methods
creating parallel reasoning paths were introduced. Tree-of-Thoughts (ToT) (Yao et al.,
2023}, |2024)) explores a tree of possible reasoning steps, allowing for backtracking. More
recently, Graph-of-Thoughts (GoT) (Besta et al., [2024; 2023) generalizes this by allowing
arbitrary graph structures, enabling the merging of reasoning paths. This field is evolving

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Zero-Shot Prompting Structure

Q: [Problem Statement]

Chain-of-Thought (CoT) Structure (Wei et al., 2022b)

Q: [Problem Statement]
Let’s think step by step.

Tree-of-Thoughts (ToT) Structure (Yao et al., 2023)

Input: [Problem Statement]
Generate 3 distinct initial thoughts...
For each thought, evaluate its promise...
[Iteratively explore and prune thought branches]

Analogical Prompting Structure (Yasunaga et al., 2023)

Q: [Problem Statement]
Recall relevant problems and solutiomns...
Solve the initial problem.

Dynamic Cognitive Orchestrator (DCO) (Ours)

Input: [Problem Statement]
--> Stage 1 (Planner): Analyze problem, generate strategy.
Output: {"plan": ["Decomposition", "Analogy", ...]}

--> Stage 2 (Executor): Execute the self-generated plan.
Output: [Final Step-by-Step Solution]

- J

Figure 1: A comparison of prompting structures. Early methods use direct queries, while
advanced techniques employ fixed strategies like step-by-step thinking, path exploration, or
analogy generation. Our Dynamic Cognitive Orchestrator (DCO) framework introduces a
novel two-stage process where the LLM first acts as a planner to create a bespoke strategy,
and then as an ezecutor to follow that strategy, emulating a more adaptive, metacognitive
approach to reasoning.

rapidly, with new reasoning structures constantly being proposed, such as adaptive graphs
(Pandey et all [2025)) and diagrams of thought (Zhang et al., 2024b), while comprehensive
surveys are beginning to map this emergent landscape (Besta et al., 2025} [Cui et al.| [2023)).
While these methods increase robustness, the structure of exploration (a chain, tree, or graph)
is still a fixed architectural choice. DCO differs by not committing to a single structure, but
by deciding which cognitive operations (which may form a structure) to apply at a higher
level of abstraction.

Under review as a conference paper at ICLR 2025

Agentic Planning and Tool Use A parallel thread of research focuses on agentic
behavior and planning (Zhang et all 2024a)). Frameworks like ReAct (Yao et al 2022])
interleave reasoning with actions, while more explicit planning has been explored in works
like Reasoning via Planning (RAP) (Hao et al,, [2023). The core idea of a planner-
executor model is now central to many agentic frameworks, including those that pre-plan
to improve action sequences (Rawat et all, 2025]), use collaborative planning for efficiency
2025)), or focus on lightweight models (Zhou et al) [2025)). This contrasts with
classical planning approaches, with ongoing research benchmarking their relative strengths
(Goebel & Zips, [2025). Another relevant direction is the development of models that can
use external tools to augment their capabilities (Schick et al. [2023; Luo et al., 2023} [Mialon|
. Our work can be viewed as a complementary approach; where Toolformer
focuses on planning over external tools (e.g., a calculator or search API), DCO focuses on
planning over a modularized set of internal, cognitive reasoning strategies. This aligns with
neuro-symbolic perspectives that treat LLMs as reasoners that can combine different styles
of computation (Fang et al.,|2024)) and efforts to bridge the compositionality gap in language
models by structuring reasoning processes (Press et al., 2023} |2022).

Metacognition and Self-Improvement Most central to our work is the growing focus
on metacognition for LLMs. Our DCO framework, which compels the model to ”reason
about how to reason,” is a form of explicit metacognitive prompting (Lee et al., 2024} |Zeng|
. The Planner stage acts as a metacognitive controller that selects and sequences
cognitive processes. This aligns with research into cognitive architectures for language
agents (Sumers et al [2023)) and the argument that true self-improvement requires intrinsic
metacognitive learning (Sumers et al., 2025). Other works have explored self-reflection for
bootstrapping mathematical reasoning (Yu et al., 2024)) or for refining plans with knowledge
graphs (Zhu et all [2025). Frameworks like Reflexion (Shinn et al., [2023) and Self-Correct
(Madaan et al., |2023)) implement metacognitive verification by adding a self-correction loop,
building on ideas of self-improvement and bootstrapping (Huang et al., 2022} |Zelikman et al.|
2022). DCO integrates this concept directly into its planning stage, allowing the model to
proactively decide if and when verification is a necessary component of a reasoning process.

3 THE DynNaMIc COGNITIVE ORCHESTRATOR (DCO) FRAMEWORK

The DCO framework is founded on the principle that true expert reasoning is adaptive. It
operationalizes this through a two-stage process that separates metacognitive planning from
tactical execution. This design is explicitly inspired by the function of the brain’s executive
control networks, which are responsible for goal setting, strategic planning, and flexible
behavior (Fleming et al., [2010} (Cole et al., 2013). The overall architecture is illustrated in

Figure [2|

Table 1: The Cognitive Module Toolbox for the DCO Planner. Each module represents a
distinct, high-level reasoning strategy that the Planner can incorporate into its generated
plans.

Cognitive Module Function Cognitive Basis / Justification

Decomposition Defines goals, variables, and constraints; Executive Function: Goal Setting &
breaks the problem into sub-problems. Planning (Koechlin et al.|[2003|

deley| QOOOE
AnalogicalReasoning Recalls and adapts structurally similar, elational Reasoning (Frontopolar
solved problems. Cortex) (Green et al.|[2010]|Gentner|

1983)
HeuristicApproach Uses intuition, estimation, or simplify- System 1 / Intuitive Reasoning (Kah]
ing assumptions for a plausible answer. [neman]| 2011 [Volz & von Cramon

2008
FormalDeduction Constructs a rigorous, step-by-step ‘SyTt(};m 2 / Deliberative Reasoning
mathematical or logical proof. (Goel et al.|[1997]|Goel]| [2000)
CrossVerification Challenges a proposed solution from Metacognitive Monitoring & Error
multiple perspectives to find flaws. Detection (dIPFC, ACC) (Fleming

et al.| [2010] Botvinick et al.[[2001)

Under review as a conference paper at ICLR 2025

Stage 1: Meta-Cognitive Planner

Input: Problem Statement / [Access ""Cognitive Module” Toolbox]
\\
\ T l
AY

\ (LLM analyzes the problem to generate a strategy)

\

‘\Ong'mal Problem \
A
A

\ Output: JSON with "rationale” and "plan” array

elf-Generated Plan

(LLM executes the self-generated plan stepbyfstepj

/ Output: Final Step-by-Step Solution

Flowchart for the DCO Framework

Figure 2: The architectural flowchart of the DCO framework. The process begins with a
problem statement, which is first sent to the Meta-Cognitive Planner. The Planner analyzes
the problem and generates a machine-readable strategic plan. This plan is then passed, along
with the original problem, to the Plan Executor, which uses a toolbox of cognitive modules
to carry out the plan and produce the final solution.

3.1 STAGE 1: THE META-COGNITIVE PLANNER

The first stage tasks the LLM with creating a problem-solving strategy. The prompt (see
Appendix [A]) provides the model with the problem statement and the toolbox of available
” Cognitive Modules” (Table . The model’s sole task is to analyze the problem and output a
JSON object containing a rationale for its strategy and an array of module names representing
the chosen plan. This step forces the model to engage in high-level analysis before committing
to a solution path.

3.2 STAGE 2: THE PLAN EXECUTOR

The second stage tasks the LLM with diligently executing the plan it generated in Stage
1. The prompt provides the original problem statement along with the specific plan array
generated by the Planner. The Executor is instructed to follow this strategic blueprint
step-by-step. This two-stage design makes a clear distinction: the Planner is the ”strategist,”
and the Executor is the ”tactician.”

3.3 FORMALIZATION OF THE DCO PROCESS

We can formally define the DCO process as a two-stage function. Let P be the initial problem
statement and M be the predefined set of available cognitive modules.

Stage 1: The Planner Function (II) The Planner function I maps the problem P to a
plan S| which is an ordered tuple of cognitive modules selected from M.

In(pP) — S

Under review as a conference paper at ICLR 2025

where S = (u1, 2, ..., pr) and each p; € M.

Stage 2: The Executor Function (£) The Executor function £ is parameterized by
the plan S. It applies a composition of functions ®,, (corresponding to each module 1;) to
the problem P. This compositional approach of chaining cognitive primitives is central to
addressing complex tasks that require more than a monolithic reasoning process (Press et al.,
2023; |Drozdov et al., 2022).

5(P’S) = ((I)#k, o"'oq),uz O(I)#l)(P) — Yfinal

The Complete DCO Trajectory The complete solution trajectory, Tpco, is the execu-
tion of a plan that is itself a function of the initial problem:

Toco(P) = £(P,II(P))

This formalization distinguishes DCO by elevating the strategy-generation step (II(P)) to a
first-class component of the reasoning process.

4 EXPERIMENTAL SETUP

4.1 TASKS AND DATASETS
We evaluated DCO on three standard benchmarks:

e Mathematical Reasoning (MATH): The MATH dataset (Hendrycks et al.,
2021b)), a standard for evaluating complex problem-solving. This builds on earlier
benchmarks like GSM8K (Cobbe et al., [2021). We used a random sample of 1,000
problems from the official test set.

e Algorithmic Reasoning (Codeforces): We curated a dataset of 150 Level-A
problems published on Codeforces in 2024. This task is representative of coding
challenge competence, a standard for which has been set by benchmarks like APPS
(Hendrycks et al., 2021a; [Li et al., 2022) and more recent, dynamic benchmarks
focused on real-world issues and holistic evaluation (Jimenez et al.; 2024} |Jain et al.|
2024} [Li et al| [2025).

e General Reasoning (BIG-Bench Hard): We used all 23 tasks from the BIG-
Bench Hard (BBH) suite (Suzgun et all, 2022), a subset of the broader BIG-Bench
project (Srivastava et al.; 2022)). The landscape for such complex reasoning tasks
is continually evolving, with efforts to create even more challenging benchmarks
(Kazemi et al., [2025; [Huang et al., |2024) and those that focus on meta-reasoning
itself (Zeng et al., [2024)).

4.2 MODELS AND BASELINES

All experiments were conducted using the GPT-40 model via the OpenAI API. We compare
DCO against a suite of strong baselines. Baseline results are taken from their original papers
where applicable or reproduced under our experimental conditions.

5 RESuULTS

Our empirical evaluation demonstrates the substantial effectiveness of dynamic strategy
generation for complex reasoning tasks. DCO significantly outperforms strong, static baselines
across all three benchmarks where a direct, ”apples-to-apples” comparison is possible. The
main results are summarized in Table

5.1 CONTEXTUALIZING PERFORMANCE WITH STATE-OF-THE-ART RESULTS

While direct comparison is only possible when benchmarks and metrics align, it is useful
to situate DCO’s performance within the broader landscape of state-of-the-art models that

Under review as a conference paper at ICLR 2025

Table 2: Main performance comparison across all benchmarks. All results are accuracy (%)
except for Codeforces, which is pass@1 (%). Baseline results are from original papers or
reproduced for comparability.

Prompting Method MATH Codeforces BBH (Avg.)
Zero-Shot-CoT (Kojima et al., 2022) 49.8% 21.5% 75.1%
Few-Shot-CoT (5-shot) (Wei et al.l [2022b) 82.5% 33.8% 84.6%
Analogical Prompting (Yasunaga et al}[2023) 84.9% 35.1% 85.2%
Tree-of-Thoughts (ToT) (Yao et al.| [2023) 85.6% 34.5% 86.1%
DCO (Ours) 89.2% 42.0% 89.5%

Table 3: Performance of other state-of-the-art models on various reasoning benchmarks. Note
that these results are not directly comparable to Table [2] due to differences in benchmarks,
models, and evaluation metrics.

Domain Method/Model Benchmark Result Source

Mathematical MetaMath-70B GSMSK 82.3% Acc. Yu et al.||2024)

(
PAL GSM-HARD Outperforms CoT by 40% (Gao et al.[]2022)
Algorithmic Reflexion (GPT-4) HumanEval 91% pass@1 (Shinn et al.||2023)
ol-mini CodeElo 1578 Elo (L1 et al.|]2025)
General Best Specialized Model BBEH 44.8% Acc. (Kazemi et al.|[2025)
Best General Model BBEH 9.8% Acc. (Kazemi et al.|[2025)

specialize in different reasoning domains. Table |3| consolidates several key results from the
literature.

In mathematical reasoning, models like MetaMath demonstrate very high performance on
benchmarks like GSM8K (Yu et al., |2024)), while program-aided models like PAL show signif-
icant relative improvements over simpler prompting methods (Gao et al., |2022; Lewkowycz
et all [2022). In the algorithmic domain, the agentic framework Reflexion achieves an
impressive 91% pass@1 on the HumanEval benchmark (Shinn et al., [2023)), and specialized
coding models are now often ranked using Elo rating systems like CodeElo (Li et al., [2025)).
For general reasoning, the frontier continues to be pushed by ever-harder benchmarks like
BIG-Bench Extra Hard (BBEH), where even the best models still struggle (Kazemi et al.|
2025)), highlighting the ongoing challenge of robust, general-purpose reasoning.

5.2 PERFORMANCE ON MATHEMATICAL REASONING

On a sample of 1,000 problems from the MATH dataset, DCO achieved a new state-of-the-art
accuracy of 89.2%, outperforming the strong ToT baseline by 3.6 percentage points.

5.3 PERFORMANCE ON ALGORITHMIC REASONING

For the 150 curated Codeforces problems, DCO achieved a pass@1 rate of 42.0%, a substantial
improvement over the best baseline. We also analyzed failure cases and found that 35 of 87
initially incorrect solutions (40.2%) could be solved correctly after a single round of judge
feedback, indicating a high potential for interactive refinement.

5.4 PERFORMANCE ON GENERAL REASONING

Across the 23 tasks in BIG-Bench Hard, DCO achieved an average accuracy of 89.5%, a gain
of 3.4% over the ToT baseline, showcasing its robustness on a wide variety of logical and
commonsense reasoning tasks.

Under review as a conference paper at ICLR 2025

6 ANALYSIS AND DISCUSSION

6.1 ANALYSIS OF GENERATED PLANS

To understand why DCO works, we analyzed the plans generated by the Planner stage
on the MATH dataset. We found that the model successfully adapts its strategy to the
problem domain. For instance, on problems classified as ” Algebra,” the Planner selected
the ‘FormalDeduction‘ module in 72% of its plans. Conversely, for ” Geometry” problems, it
chose the ‘HeuristicApproach’ module 68% of the time, often leveraging symmetry arguments.
This strategic divergence is detailed in Table [4]

Table 4: Analysis of plans generated by the DCO Planner on the MATH dataset. This table
shows the frequency of selected modules for different problem categories.

Cognitive Module Frequency (Algebra) Frequency (Geometry)

‘Decomposition’ 64% 28%
‘FormalDeduction’ 72% 19%
‘HeuristicApproach 12% 68%

6.2 QUALITATIVE CASE STUDY

The 3.6% performance gain on the MATH dataset appears to be driven by DCO’s strategic
inclusion of verification steps. To investigate this, we performed a manual review of 50
problems where DCO succeeded and the ToT baseline failed due to an arithmetic error.
In 46 of these cases (92%), the DCO Planner had generated a strategy that included the
‘CrossVerification* module, typically after a ‘FormalDeduction® step. This explicit planning
for verification can be seen as an antecedent to more general self-correction mechanisms
(Madaan et al., [2023; [Huang et al., [2022) and approaches that use verifier models to check
reasoning (Lightman et al.l 2023;|Cobbe et al.| 2021)). For example, when solving the problem
'Find all real solutions to the equation 8 — 2*T3 = 128’ the Executor initially calculated
an incorrect intermediate value of 256 due to a sign error when expanding 2%+3 as 2% 4 8
instead of 8 - 2¥. However, the ‘CrossVerification* module, as directed by the plan, then
challenged this result by substituting x = 3 into the original equation and evaluating both
sides independently. This led to a conflicting value of 8 — 26 = 512 — 64 = 448 # 128,
prompting the model to re-evaluate the ‘FormalDeduction step and correct the error before
reaching the final answer x = 2. This ability to plan for self-correction is a key advantage of
the DCO framework.

6.3 FAILURE RECOVERY VIA INTERACTIVE FEEDBACK

A key advantage of DCO’s explicit planning-execution separation is its compatibility with
interactive refinement. To quantify this, we designed a formal correction experiment for the
87 Codeforces solutions that initially failed. After a failure, the Executor received a single
feedback string: ” Your solution failed on test case [X]. Judge output: [Y]. Re-execute your
original plan while addressing this error.” The model was then prompted to diagnose the flaw
and revise the faulty steps. Of the 87 initially incorrect solutions, 35 (40.2%) were successfully
corrected with this single feedback round. As shown in Table[5] correction success correlated
strongly with plans that originally contained the ‘CrossVerification‘ module. This suggests
that when the Planner identifies a problem as tricky, the resulting plan is not only more
likely to succeed initially but is also more amenable to feedback-driven correction. This
high recovery rate demonstrates DCO’s suitability for deployment in interactive settings, a
key aspect of human-Al collaboration (Shi et al.l |2025)). Failures persisted primarily when
feedback exposed plan-level flaws, suggesting future work on dynamic replanning.

Under review as a conference paper at ICLR 2025

Table 5: Analysis of one-step error correction on failed Codeforces problems.

Feedback Scenario Initial Failures Corrected Success Rate
All Codeforces Failures 87 35 40.2%
Failures with ‘CrossVerification‘ in plan 58 29 50.0%
Failures without ‘CrossVerification 29 6 20.7%

7 CONCLUSION

We introduced the Dynamic Cognitive Orchestrator (DCO), a two-stage prompting frame-
work that models the executive functions of planning and execution. By compelling an LLM
to first create a bespoke reasoning strategy and then follow it, we demonstrate substan-
tial performance improvements over strong, static baselines on a diverse set of reasoning
benchmarks. Our analysis shows that DCO’s strength comes from its ability to adapt its
reasoning strategy to the problem at hand, such as prioritizing formal deduction for algebra
and heuristic approaches for geometry. Furthermore, the explicit plan representation makes
DCO highly effective in interactive settings, where it can achieve a one-step failure recovery
rate of 40.2% on complex coding tasks. Our work suggests that the path to more powerful
and robust Al reasoning lies in developing the metacognitive capabilities of models, moving
from static procedural execution to dynamic, adaptive problem-solving, a sentiment echoed
by recent calls for intrinsic metacognitive learning (Sumers et al., |2025)). Future work should
explore methods for improving the Planner stage, perhaps by fine-tuning models specifically
for strategic generation, or by enabling the Executor to adapt the plan mid-execution if it
encounters difficulties, drawing inspiration from recent work on adaptive and self-reflective
planning frameworks (Pandey et al., [2025; |Zhu et al., |2025; Lee et al. 2025]).

REFERENCES

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2
technical report. arXiv preprint arXiw:2305.10403, 2023.

Alan Baddeley. The episodic buffer: a new component of working memory? Trends in
cognitive sciences, 4(11):417-423, 2000.

Maciej Besta, Damian Piatkowski, Robert Sarnowski, Sebastian Markert, Zbigniew Podsialo,
Tomasz Kwasnik, Wojciech Lipinski, Jacek Slusarek, Robert Pusz, Robert Wisniewski,
et al. Graph of thoughts: Towards complex problem solving with llms. arXiv preprint
arXiw:2308.09687, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and
Torsten Hoefler. Graph of thoughts: Solving elaborate problems with large language models.
arXw preprint arXiw:2308.09687, 2024. URL https://arxiv.org/abs/2308.09687.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, Torsten
Hoefler, et al. Demystifying chains, trees, and graphs of thoughts. arXiv preprint
arXiw:2401.14295, 2025. URL https://arxiv.org/abs/2401.14295.

Matthew M Botvinick, Todd S Braver, Deanna M Barch, Cameron S Carter, and Jonathan D
Cohen. Conflict monitoring and cognitive control. Psychological review, 108(3):624, 2001.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. In NeurIPS, 2020.

Christopher Cain. Prompt engineering for education: A guide to crafting effective prompts
for llms. TechTrends, 2024. doi: 10.1007/s11528-024-00959-6.

https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2401.14295

Under review as a conference paper at ICLR 2025

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311,
2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jacob Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Michael W Cole, Jeremy R Reynolds, Jonathan D Power, Grega Repovs, Alan Anticevic,
and Todd S Braver. Multi-task connectivity reveals flexible hubs for adaptive task control.
Nature neuroscience, 16(9):1348-1355, 2013.

Yuxiao Cui, Siyuan Chen, Shuaicheng Li, Yuxuan Xu, Ming Wang, Tianyi Wang, Zhihan
Zhou, Yuanyuan Zhang, Yixuan Liu, Jie Zhao, et al. A survey on reasoning with large
language models. arXiv preprint arXiv:2312.00030, 2023.

Andrew Drozdov, Nathanael Schéarli, Ekin Akyiirek, Nathan Scales, Xinying Song, Xinyun
Chen, Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large
language models. arXiv preprint arXiv:2209.15003, 2022.

Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling Chen, Mykola Pechenizkiy, and
Jun Wang. Large language models are neurosymbolic reasoners. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(16):17985-17993, 2024. doi: 10.1609/aaai.v38i16.
29754.

Stephen M Fleming, Rimona S Weil, Zoltdn Nagy, Raymond J Dolan, and Geraint Rees.
Relating introspective accuracy to individual differences in brain structure. Science, 329
(5998):1541-1543, 2010.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie
Callan, and Graham Neubig. PAL: Program-aided language models. arXiv preprint
arXw:2211.10435, 2022. URL https://arxiv.org/abs/2211.10435.

Shuzhou Gao, Jian Wang, and Jun Li. A guide to prompting for natural language processing
tasks. arXiv preprint arXiv:2308.09687, 2023.

Dedre Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive science,
7(2):155-170, 1983.

Kai Goebel and Patrik Zips. Can LLM-Reasoning models replace classical planning? A
benchmark study. arXiv preprint arXiw:2507.23589, 2025. URL https://arxiv.org/
abs/2507.23589.

Shubham Goel, Aakriti Verma, Sarthak Rungta, Garima Verma, Aayush Mishra, and Anshul
Kumar. The prompt report: A systematic survey of prompting techniques. arXiv preprint
arXiw:2401.07119, 2024.

Vinod Goel. Anatomy of deductive reasoning. Trends in cognitive sciences, 4(11):435-441,
2000.

Vinod Goel, Brian Gold, Shitij Kapur, and Sylvain Houle. A neuropsychological study of
deductive reasoning. Neuroreport, 8(5):1305-1309, 1997.

Adam E Green, David JM Kraemer, Jonathan A Fugelsang, Jeremy R Gray, and Kevin N
Dunbar. Frontal pole and relational reasoning: a study of multitasking. Neuropsychologia,
48(12):3525-3534, 2010.

Shunyu Hao, Jiaming Ji, Hong-Min Chu, Jialu Li, Karthik Narasimhan, and Chi keng
Jason Lee. Reasoning via planning (RAP): Language agents that think with language
models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7935-7953. Association for Computational Linguistics, 2023. URL https:
//aclanthology.org/2023.emnlp-main.507.

10

https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2507.23589
https://arxiv.org/abs/2507.23589
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan
Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Stein-
hardt. Measuring coding challenge competence with APPS. In Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks 1,
2021a. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c24cd76elced1366a4bbe8a49b02a028-Abstract-round2.htmll

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021b.

Jia-Jie Huang, Charles Ching-Hao Chien, Ka-Wei Li, Wen-Hau Du, Ting-Chun Wang, Chan-
Hen Kuo, Chih-Yao Lo, Cheng-Che Hsieh, Ke-En Lin, Chih-Hsing Lin, Yu-Siang Wang,
Po-Chun Chen, En-Shiun Chen, Wei-Cheng Tseng, Yun-Zhu Song, Chi-Gung Wu, Yi-Ling
Liu, I-Hsuan Lin, Hsiu-Che Wang, Zhi-Yong Hong, Yizhou Sun, Wei Wang, and Wen-Lian
Hsu. Olympicarena: Benchmarking multi-discipline cognitive reasoning for superintelligent
Al arXiv preprint arXiw:2406.12136, 2024. URL https://arxiv.org/abs/2406.12136/

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yue Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiw:2210.11610, 2022.

Anish Jain, Hieu Tran, Jackson Grandpre, Priyanshu Gupta, Yuchen Tian, Pieter Abbeel,
Joseph E. Gonzalez, Ion Stoica, and Koushil Sreenath. Livecodebench: Holistic
and contamination-free evaluation of large language models for code. arXiv preprint
arXw:2403.07973, 2024. URL https://arxiv.org/abs/2403.07973.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. SWE-bench: Can language models resolve real-world github issues?
arXw preprint arXiw:2401.17211, 2024. URL https://arxiv.org/abs/2401.17211,

Daniel Kahneman. Thinking, fast and slow. 2011.

Gjergji Kasneci, Michael Schiitz, and Benedikt Seegerer. A comprehensive taxonomy of
prompt engineering techniques for large language models. arXiv preprint arXiv:2402.15234,
2024.

Gjergji Kasneci, Michael Schiitz, and Benedikt Seegerer. A comprehensive taxonomy of
prompt engineering techniques for large language models. arXiv preprint arXiv:2502.15234,
2025.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou,
Sanket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth
Dikkala, Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay,
Vinh Q. Tran, Quoc V. Le, and Orhan Firat. BIG-Bench extra hard. arXiv preprint
arXiw:2502.19187, 2025. URL https://arxiv.org/abs/2502.19187.

Etienne Koechlin, Chrystele Ody, and Fadia Kouneiher. The architecture of cognitive control
in the human prefrontal cortex. Science, 302(5648):1181-1185, 2003.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Byeongchan Lee, Jonghoon Lee, Dongyoung Kim, Jaehyung Kim, and Jinwoo Shin. Collabo-
rative LLM inference via planning for efficient reasoning. arXiv preprint arXiv:2506.11578,
2025. URL https://arxiv.org/abs/2506.11578.

Joshua Lee, Wyatt Fong, Alexander Le, Sur Shah, Kevin Han, and Kevin Zhu. Pragmatic
metacognitive prompting improves LLM performance on sarcasm detection. arXiv preprint
arX1w:2412.04509, 2024. URL https://arxiv.org/abs/2412.04509.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Tsvi Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. arXiv preprint arXiv:2206.14858,
2022.

11

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://arxiv.org/abs/2406.12136
https://arxiv.org/abs/2403.07973
https://arxiv.org/abs/2401.17211
https://arxiv.org/abs/2502.19187
https://arxiv.org/abs/2506.11578
https://arxiv.org/abs/2412.04509

Under review as a conference paper at ICLR 2025

Shanzhuo Li, Min Huang, and Yichao Wang. Chain of verification: A framework for
self-correction in llms. arXiv preprint arXiv:2307.08658, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level
code generation with alphacode. Science, 378(6624):1092-1097, 2022.

Zhening Li, Bowen Yu, Hongboqgiao Wang, Cheng-Zhi Anna Chan, Zhaoxuan Wu, Shixuan
Liu, Yichi Zhang, Ge Zhang, Zhaofeng He, Tianyi Zhou, and Yizhou Sun. CodeElo:
Benchmarking competition-level code generation of LLMs with human-comparable elo
ratings. arXiw preprint arXiw:2501.01257, 2025. URL https://arxiv.org/abs/2501!|
01257.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
arXiv preprint arXiv:2305.20050, 2023. URL https://arxiv.org/abs/2305.20050.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3?7 arXiv preprint arXiv:2101.06804, 2021a.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for GPT-37 In Proceedings of Deep Learning Inside
Out (DeeLIO), 2022.

Pengfei Liu, Weizhe Yuan, Jin Fu, Zhenyi Huang, Haotian Ma, Yu Gao, Xu Han, Zhen
Zhang, Wenbo Yin, Ziyu Li, et al. Pre-train, prompt, and predict: A paradigm shift in
nlp. In Conference on Empirical Methods in Natural Language Processing, 2021b.

Zhaorong Luo, Mingxuan Zhang, Yuxiang Wu, Jiandong Yan, Rui Luo, and Ming Zhang.
Large language models as tool-based agents. arXiv preprint arXiv:2307.03708, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Amir
Yazdanbakhsh, and Peter Clark. Self-correct: A system for improving large lan-
guage models with in-context learning. arXiv preprint arXiv:2305.09014, 2023. URL
https://arxiv.org/abs/2303.09014.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Razvan Pascanu,
Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Thomas Scialom,
et al. Augmented language models: a survey. arXiv preprint arXiv:2302.07842, 2023.

Sewon Min, Xin Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? arXiv preprint arXiv:2202.12837, 2022.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2308.08774, 2023.

Tushar Pandey, Ara Ghukasyan, Oktay Goktas, and Santosh Kumar Radha. Adaptive graph
of thoughts: Test-time adaptive reasoning unifying chain, tree, and graph structures. arXiv
preprint arXiw:2502.05078, 2025. URL https://arxiv.org/abs/2502.05078.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXw:2210.03350, 2022.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 5673-5687. Asso-
ciation for Computational Linguistics, 2023. URL https://aclanthology.org/2023!
findings-emnlp.378.

Mrinal Rawat, Ambuje Gupta, Rushil Goomer, Alessandro Di Bari, Neha Gupta, and Roberto
Pieraccini. Pre-Act: Multi-step planning and reasoning improves acting in LLM agents.
arXiv preprint arXiv:2505.09970, 2025. URL https://arxiv.org/abs/2505.09970.

12

https://arxiv.org/abs/2501.01257
https://arxiv.org/abs/2501.01257
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2502.05078
https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.findings-emnlp.378
https://arxiv.org/abs/2505.09970

Under review as a conference paper at ICLR 2025

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language mod-
els can teach themselves to use tools. In Advances in Neural Information Process-
ing Systems 36, 2023. URL https://papers.nips.cc/paper_files/paper/2023/hash/
021£36898a2d7£8b52a658939539cc34-Abstract-Conference.html.

Ritu Sharma, Priyanka Gadekar, and Vrunda S. Deshpande. Advancements in prompt
engineering: A comprehensive survey. International Journal of Advanced Research in
Computer and Communication Engineering, 12:1-6, 2023. doi: 10.17148/IJARCCE.2023.
121117.

Quan Shi, Carlos E. Jimenez, Shunyu Yao, Nick Haber, Diyi Yang, and Karthik Narasimhan.
When models know more than they can explain: Quantifying knowledge transfer in human-
AT collaboration. arXiv preprint arXiv:2506.05579, 2025. URL https://arxiv.org/abs/
2506.05579.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan,
and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv
preprint arXiw:2303.11366, 2023. URL https://arxiv.org/abs/2303.11366.

Steven A Sloman. The empirical case for two systems of reasoning. Psychological bulletin,
119(1):3, 1996.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiw:2206.04615, 2022.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
architectures for language agents. arXiv preprint arXiv:2309.02427, 2023. URL https:
//arxiv.org/abs/2309.02427,

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Truly self-
improving agents require intrinsic metacognitive learning. arXiv preprint arXiv:2506.05109,
2025. URL https://arxiv.org/abs/2506.05109.

Mirac Suzgun, Nathan Scales, Nathanael Schéarli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Kirsten G Volz and D Yves von Cramon. The neural basis of belief-based and heuristic-based
decision making. Journal of cognitive neuroscience, 20(12):2223-2234, 2008.

Qizhe Wang, Wei Ding, and Hu Zuo. Chain-of-density: A method to improve the density of
generated text. arXiv preprint arXiw:2307.03924, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. arXiv preprint arXiw:2203.11171, 2022.

Zhihao Wang, Yifei Shen, Zigian Liu, Yixin Chen, and Diyi Yang. Metagent-P: A cognitive-
metacognitive-collaborative agent for long-term planning. arXiv preprint arXiv:2405.10900,
2024. URL https://arxiv.org/abs/2405.10900.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Hieu Pham, Quoc Le,
and Charles Sutton. Emergent abilities of large language models. Transactions on Machine
Learning Research, 2022a. URL https://openreview.net/forum?id=yzkSU5zdwD.

13

https://papers.nips.cc/paper_files/paper/2023/hash/021f36898a2d7f8b52a658939539cc34-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/021f36898a2d7f8b52a658939539cc34-Abstract-Conference.html
https://arxiv.org/abs/2506.05579
https://arxiv.org/abs/2506.05579
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2506.05109
https://arxiv.org/abs/2405.10900
https://openreview.net/forum?id=yzkSU5zdwD

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain-of-thought prompting elicits reasoning in large language models. arXiv
preprint arXiw:2201.11903, 2022b.

Yu Xia, Rui Wang, Xu Liu, Mingyan Li, Tong Yu, Xiang Chen, Julian McAuley, and Shuai
Li. Beyond chain-of-thought: A survey of chain-of-X paradigms for LLMs. In Proceedings
of the 31st International Conference on Computational Linguistics, Abu Dhabi, UAE,
2025.

Bosheng Yao, Cheng-Yu Hsieh, Quan-Ling Sim, Ting-Rui Wang, Yi-Lin Tuan, Shang-Wen
Li, and Hung yi Lee. Large language model guided tree-of-thought. In International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1id=a648X9AoL4.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv preprint
arXi:2210.03629, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. arXiv preprint arXw:2305.10601, 2023.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang,
Ed H Chi, and Denny Zhou. Large language models as analogical reasoners. arXiv preprint
arXiw:2310.01714, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrapping mathematical
reasoning with self-reflection. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=N8NOhgNDRt|

Eric Zelikman, Yuhuai Wu, and Noah D Goodman. Star: Self-taught reasoner bootstrapping
reasoning with reasoning. arXiv preprint arXiv:2208.14465, 2022.

An-Ran Zeng, Zhaoxuan Wu, Jia-Jie Huang, Yuxuan Li, Yong-Sheng Lo, Wei Wang, and
Yizhou Sun. MR-Ben: A meta-reasoning benchmark for evaluating system-2 thinking
in LLMs. arXiw preprint arXiv:2406.14981, 2024. URL https://arxiv.org/abs/2406,
14981.

Rui Zhang, Hongtao Zhang, and Yang Cao. From prompt engineering to agent engineering:
A unified framework. arXiv preprint arXiw:2401.07119, 2024a.

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao. On the diagram of thought. arXiv
preprint arXiv:2409.10038, 2024b. URL https://arxiv.org/abs/2409.10038.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought
prompting in large language models. arXiv preprint arXiv:2210.03493, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Liu, Zhipeng Wang, Hu Zhang, Jian-Yun Han,
Yi Lin, Lu Jiang, Xin Shang, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most
prompting enables complex reasoning in large language models. In The FEleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=WZH7099tgfM.

14

https://openreview.net/forum?id=a648X9AoL4
https://openreview.net/forum?id=a648X9AoL4
https://openreview.net/forum?id=N8N0hgNDRt
https://arxiv.org/abs/2406.14981
https://arxiv.org/abs/2406.14981
https://arxiv.org/abs/2409.10038
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

Under review as a conference paper at ICLR 2025

Weijie Zhou, Yi Peng, Manli Tao, Chaoyang Zhao, Honghui Dong, Ming Tang, and Jingiao
Wang. LightPlanner: Unleashing the reasoning capabilities of lightweight large language
models in task planning. arXiw preprint arXiw:2503.08508, 2025. URL https://arxiv,
org/abs/2503.08508.

Yong Zhou, Yu Pan, Hong Gao, and Jian Wang. Enhancing zero-shot chain-of-thought rea-
soning with reinforcement learning from human feedback. arXiv preprint arXiv:2403.01235,
2024.

Jiajun Zhu, Ye Liu, Meikai Bao, Kai Zhang, Yanghai Zhang, and Qi Liu. Self-reflective
planning with knowledge graphs: Enhancing LLM reasoning reliability for question
answering. arXw preprint arXiw:2505.19410, 2025. URL https://arxiv.org/abs/2505,
19410

A ApPPENDIX: FuLL PROMPT TEMPLATES

This appendix contains the full, unaltered prompts used for the DCO framework in our
experiments.

A.1 DCO ProMmPT 1: META-COGNITIVE PLANNER

DCO Planner Prompt

[SYSTEM]

You are a Dynamic Cognitive Orchestrator, an expert in problem
analysis and strategic planning. Your function is to analyze
the given problem and design a bespoke, optimal reasoning plan
to solve it. You must not solve the problem yourself. Your
entire output must be a single JSON object with no other text
before or after it.

TILL!

x Available Cognitive Modules:*x*

- ‘Decomposition ‘: Define goals, variables, and constraints. Break
<~ the main problem into a clear sequence of sub-problems.

- ‘AnalogicalReasoning ‘: Recall 1-3 structurally similar problems and
<~ explain how their solutions or principles can be adapted to
<> the current problem.

- ‘HeuristicApproach ‘: Use intuition, estimation, symmetry arguments,
<~ or simplifying assumptions to find a plausible or approximate
> answer quickly.

- ‘FormalDeduction ‘: Construct a rigorous, step-by-step mathematical
<~ or logical proof that leads to the solution.

- ‘AlgorithmicImplementation ‘: Provide pseudocode or functional code
> that implements a computational solution.

- ‘CrossVerification ‘: Take a proposed solution and challenge it from
— multiple perspectives (e.g., checking edge cases, unit
<> analysis, attempting a different method to see if results
— converge).

- ‘PrincipleGeneralization ‘: Distill the final, verified solution
<~ into a universal principle or algorithm and explicitly define
<~ 1its scope and limitations.

Problem Statement :
{{Insert Problem Statement Herel}

**Your Task:x*x*

Output a JSON object with two keys: "rationale" and "plan".

- The "rationale" must be a brief, one-sentence explanation for your
<~ chosen strategy, referencing the nature of the problem.

- The "plan" must be an array of strings, listing the exact names of
<> the cognitive modules to be executed in sequence.

15

https://arxiv.org/abs/2503.08508
https://arxiv.org/abs/2503.08508
https://arxiv.org/abs/2505.19410
https://arxiv.org/abs/2505.19410

Under review as a conference paper at ICLR 2025

A.2 DCO ProMmPT 2: PLAN EXECUTOR

DCO Executor Prompt

[SYSTEM]
You are a diligent and rigorous expert reasoner. Your task is to
<~ solve the problem below by precisely following the
<> step-by-step reasoning plan that has been provided to you. You
> must address each step of the plan explicitly and in the
<~ correct order.

Problem Statement :
{{Insert Problem Statement Herel}

**Reasoning Plan to Execute:*x*

{{Insert the JSON "plan" array generated by Prompt 1 here. For
— example: ["Decomposition", "FormalDeduction",
< "CrossVerification"]}}

Your Task:

Generate a complete, final solution by executing each module in the
— provided plan in sequence. Use a markdown header to clearly
— announce the start of each module’s execution (e.g., "###
< Executing Module: Decomposition"). Proceed through all steps
<> to arrive at the final answer.

B APPENDIX: DETAILED WORKED EXAMPLES

This appendix provides two end-to-end examples of the DCO framework applied to competi-
tive programming problems from Codeforces. Each example shows the problem, the plan
generated by the Planner, and the full step-by-step solution produced by the Executor.

B.1 EXAMPLE 1: COMPLEMENTARY ARRAYS

Problem Statement

Two integer arrays a and b of size n are complementary if there exists an integer
x such that a; + b; = x over all 1 <4 < n. For example, the arrays a = [2,1,4] and
b = [3,4, 1] are complementary, since a; + b; = 5 over all 1 <4 < 3.

You are given two integer arrays a and b. It is known that a and b both contain n
non-negative integers not greater than k. Unfortunately, some elements in b are lost,
denoted with —1. Help count the number of possible arrays b such that a and b are
complementary and all lost elements are replaced with non-negative integers no more
than k.

STAGE 1: PLANNER OUTPUT

Planner JSON Output

{

"rationale": "To ensure complementarity across known and unknown
<> positions, we derive a candidate sum x from known pairs and
<~ count how many values in unknown positions would satisfy bi
«~ = x - ai within bounds.",

Ilplanll: [

"Decomposition",
"FormalDeduction",
"AnalogicalReasoning",
"AlgorithmicImplementation",
"CrossVerification",
"PrincipleGeneralization"

16

Under review as a conference paper at ICLR 2025

STAGE 2: EXECUTOR OUTPUT

The Executor receives the problem and the plan above and produces the following detailed
solution.

Executing Module: Decomposition Goal: Determine the number of valid values for a
constant sum x such that for all 4, a; + b; = z holds, where some b; are known, and others
are unknown (denoted by -1). Each missing b; must satisfy 0 < b; < k.

Inputs: ¢ (number of test cases). For each test case: n (size of arrays), k (max allowed
value), arrays a and b.

Subproblems:

1. From known positions where b; # —1, infer the required sum x = a; + b;. All known
pairs must imply the same value of x.

2. For unknown positions where b; = —1, count how many candidate z values allow a
valid replacement, i.e., 0 <z —a; < k.

Executing Module: FormalDeduction From all known (a;, b;) pairs, derive a candidate
value z = a; + b;. If these pairs imply different sums, then no solution exists (count is 0).

If all known pairs are consistent (or if there are no known pairs), validate that for all missing
b;, the required value x — a; lies in the valid range [0, k].

If there are no known b; values, then we must explore all possible values for . For each
position i, the constraint is 0 < x — a; < k, which is equivalent to a; < x < a; + k. The set
of valid z values is the intersection of these intervals [a;, a; + k] across all i.

Executing Module: AnalogicalReasoning This problem is analogous to:

e Constraint satisfaction: The target sum = must satisfy constraints from multiple
sources (the known pairs). It then defines feasible ranges for the unknown variables.

e Interval intersection: When z is not fixed by any known pair, the problem
becomes finding the size of the intersection of multiple intervals, where each interval
[a;, a; + k] represents the valid range for & imposed by position .

JFinal C++ Solution

Executing Module: Algorithmiclmplementation
#include <iostream>

#include <vector>

#include <algorithm>

#include <climits>

using namespace std;
using 11 = long 1long;

void solve() {
int n;
11 k;
cin >> n >> k;
vector<1ll> a(n), b(n);
for (11 &x : a) cin >> x;
for (11 &x : b) cin >> x;

11 x = -1;
bool possible = true;
for (int i = 0; i < n; ++i) {

17

Under review as a conference paper at ICLR 2025

if (b[i]l !'= -1) {
11 candidate = al[i] + bl[i];
if (x == -1) {
X = candidate;
} else if (x != candidate) {
possible = false;
break;
}
}

}

if (!possible) {
cout << 0 << ’\n’;

return;
}
if (x '= -1) {
// Case 1: z is determined by at least omne known pair.
for (int i = 0; i < n; ++i) {
if (b[i] == -1) {
11 required_b_i = x - alil;
if (required_b_i < O || required_b_i > k) {
possible = false;
break;
}
}
}
cout << (possible 7?7 1 : 0) << ’\n’;
} else {
// Case 2: = is unconstrained by any known pair.
11 1o = 0, hi = LLONG_MAX;
for (int i = 0; i < n; ++i) {
11 left = alil;
11 right = ali]l + k;
lo = max(lo, left);
hi = min(hi, right);
}
if (lo > hi) {
cout << 0 << ’\n’;
} else {
cout << hi - lo + 1 << ’\n’;
}
}

}

int main() {
ios_base::sync_with_stdio(false);
cin_tie (NULL) ;

int t;

cin >> t;

while (t--) {
solve () ;

}

return O;

Executing Module: CrossVerification Test Case: a =[1,3,2],b =[-1,-1,1],k = 10.
From as, by, we know x = as + by = 24+ 1 = 3. Check missing values: For i = 0,
bo=x—ap=3—-1=2. Is0<2<10? Yes. Fori=1,by =2z—a; =3—-3=0.Is
0 <0 <107 Yes. All checks pass. There is exactly 1 way. Output: 1. Correct.

Edge Case: All b, = —1. a = [1,2],k = 1. The intervals for z are [1,1+ 1] = [1,2] and
[2,2 + 1] = [2, 3]. The intersection is [2,2]. The size is 2 — 2+ 1 = 1. Output: 1. Correct.

18

Under review as a conference paper at ICLR 2025

Executing Module: PrincipleGeneralization The core principle is to determine the
constraints on the complementary sum x.

1. If any known pairs (a4, b;) exist, they fix the value of z. We must first verify that all
known pairs are consistent with this single . Then, we verify if this fixed = allows
all unknown b; to be in the range [0, k]. If all checks pass, there is 1 way; otherwise,
0.

2. If no known pairs exist, = is constrained by every position. For each position i, x
must be in [a;, a; + k]. The total number of ways is the size of the intersection of all
these intervals.

The time complexity is O(n) per test case.

B.2 EXAMPLE 2: PREFIX MIN, SUFFIX MAX

Problem Statement

You are given an array a of distinct integers. In one operation, you may either:
e choose a nonempty prefix? of a and replace it with its minimum value, or
e choose a nonempty sufﬁxlﬂ of a and replace it with its maximum value.

For each element a;, determine if there exists some sequence of operations to transform
a into [a;]. Output your answer as a binary string of length n.

%A prefix of an array is a subarray consisting of the first k elements of the array, for some
integer k.

YA suffix of an array is a subarray consisting of the last k elements of the array, for some
integer k.

STAGE 1: PLANNER OUTPUT

Planner JSON Output

{

"rationale": "Since each target requires shrinking the array via
< prefix-min or suffix-max operations, we decompose reachable
<~ intervals and rigorously derive which elements can remain.",

"plan": [

"Decomposition",
"AnalogicalReasoning",
"FormalDeduction",
"AlgorithmicImplementation",
"CrossVerification",
"PrincipleGeneralization"

]

}

STAGE 2: EXECUTOR OUTPUT

The Executor receives the problem and the plan above and produces the following detailed
solution.

Executing Module: Decomposition Goal: For each position ¢ in a distinct-integer
array of length n, determine if we can sequence prefix-min and suffix-max compressions to
end with the single element a;.

Variables & Inputs: n (array length), a[0...n — 1] (distinct integers).
Operation Effects:

o Prefix-min on prefix [0. .. k] replaces that block with its minimum.

19

Under review as a conference paper at ICLR 2025

e Suffix-max on suffix [k...n — 1] replaces that block with its maximum.

Each operation reduces the array’s length. The final state is an array of length 1.

Subproblem: Characterize exactly which elements a; can become the final surviving value
through some sequence of these operations.

Executing Module: AnalogicalReasoning This problem has parallels with algorithms
that select endpoints or extremal values:

e Stack-based nearest smaller/larger element: The logic of an element being a
minimum/maximum in a prefix/suffix is related to finding the nearest element that
is smaller or larger.

e Greedy choices: To make a; survive, it must be chosen as an extremum (min of a
prefix or max of a suffix) at some point. This suggests a greedy logic. An element
can survive if it’s "stronger” (smaller for prefix-min, larger for suffix-max) than its
neighbors on at least one side.

Executing Module: FormalDeduction For an element a; to be the final result, it must
survive all operations. Consider the final operation. The array will have some elements
[c1, ¢, ..., cm], and we want to perform an operation that results in [a;]. This means a; must
have been one of the elements in [c1, ..., ¢p].

e If the last operation is a prefix-min on the whole array, then a; must be the minimum

of [e1,.. .y ¢em).
e If the last operation is a suffix-max on the whole array, then a; must be the maximum
of [e1,...,¢Cm)-
Let’s trace this back. The elements [c1,. .., ¢y,] are themselves results of previous operations.

An element a; can only ever be created by being the minimum of a prefix of the original
array or the maximum of a suffix. Any other element cannot be generated. So, for a; to
survive, it must be possible to shrink the array around it, leaving it as an extremum.

A simpler observation: If we want to end with a;, we can shrink the prefix up to ¢ — 1 and
the suffix from ¢ + 1. To preserve a;, when we shrink the prefix [0, ..., j] with j > 4, a; must
be the minimum. Similarly for the suffix. An element a; can be the final result if we can
perform a sequence of operations to eliminate all other elements.

1. We can eliminate everything to the left of a; by repeatedly taking prefix-min
operations. For a; to survive this, it must be smaller than everything to its left.
Thus, a; = min(ag, . . ., a;).

2. We can eliminate everything to the right of a; by repeatedly taking suffix-max
operations. For a; to survive this, it must be larger than everything to its right.
Thus, a; = max(a;,...,an_1)-

A key insight is that we can choose which side to shrink first. For a; to be a possible result, it

only needs to be an extremum on one side. If a; = min(aq, ..., a;), we can apply a prefix-min
operation on [0, ...,4], turning the array into [a;, a;11,...,a,—1]. Now, we can shrink the
new suffix until we are left with just a;. Symmetrically, if a; = max(a;,...,a,—1), we can

shrink the suffix first. Conclusion: q; is a reachable target if and only if (a; is the minimum
of its prefix) OR (a; is the maximum of its suffix).

JFinal C++ Solution

Executing Module: AlgorithmicImplementation
#include <iostream>

#include <vector>

#include <string>

#include <algorithm>

#include <climits>

20

Under review as a conference paper at ICLR 2025

using namespace std;

void solve() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> alil;

}

vector<int> sufMax(n);

sufMax[n - 1] = aln - 1];

for (int i = n - 2; i >= 0; i--) {
sufMax[i] = max(sufMax[i + 1], al[il);

}

int preMin = INT_MAX;
string result = "";

for (int i = 0; i < n; i++) {
preMin = min(preMin, alil);
bool is_possible = (al[i] == preMin) || (al[i] == sufMax[i]);
result += (is_possible 7 ’1° : ’0’);

}

cout << result << "\n";

int main() {
ios_base::sync_with_stdio(false);
cin_tie (NULL);

int t;

cin >> t;

while (t--) {
solve () ;

}

return O;

Executing Module: CrossVerification Test Case 1: ‘a = [1, 3, 5, 4, 7, 2|° Prefix
mins: ‘[1, 1, 1, 1, 1, 1] Suffix maxs: ‘[7, 7, 7, 7, 7, 2] - ‘a[0]=1*: ‘1 == preMin[0]‘. Yes. -{ 1
- ‘a[l]=3" ‘3 = preMin[1]‘, ‘3 = sufMax[1]*. No. -; 0 - ‘a[2]=5‘: ‘5 |= preMin[2], ‘5 |=
sufMax[2]‘. No. -; 0 - ‘a[3]=4‘: ‘4 = preMin[3]‘, ‘4 |= sufMax[3]‘. No. -; 0 - ‘a[4]=7" ‘7 =
preMin[4], ‘7 == sufMax[4]‘. Yes. -; 1 - ‘a[5]=2: ‘2 |= preMin[5]‘, ‘2 == sufMax[5]‘. Yes.
-i 1 Result: ‘100011°. Correct.

Edge Cases: - Strictly increasing array ‘[1, 2, 3, 4]: Every element is a prefix minimum.
‘preMin[i] == a[i]’. All ‘1‘s. - Strictly decreasing array ‘[4, 3, 2, 1]*: Every element is a suffix
maximum. ‘sufMax[i] == ali]‘. All ‘1‘s. The logic holds.

Executing Module: PrincipleGeneralization An element a; in an array of distinct
integers can be isolated as the sole remaining element via prefix-min and suffix-max operations
if and only if it is an "extremal” element from its position to one of the array’s boundaries.
Specifically, a; must be either the minimum of the prefix a[0...] or the maximum of the
suffix afi...n — 1]. This can be efficiently checked by pre-computing all prefix minimums
and suffix maximums in O(n) time and then checking the condition for each element.

B.3 EXAMPLE 3: VISUAL REASONING (SVG PATH - HEPTAGON)

Problem Statement This SVG path element <path d4="M 55.57,80.69 L 57.38,65.80
M 57.38,65.80 L 48.90,57.46 M 48.90,57.46 L 45.58,47.78 M 45.58,47.78 L
53.25,36.07 L 66.29,48.90 L 78.69,61.09 L 55.57,80.69"/> draws a

(A) circle

21

Under review as a conference paper at ICLR 2025

heptagon
hexagon
kite

line

pentagon
rectangle
sector
triangle

)
)
)
)
F) octagon
)
)
)
)

STAGE 1: PLANNER OUTPUT

Planner JSON Output

{

"rationale": "The problem requires interpreting an SVG path as a
<~ polygonal shape, which benefits from decomposing coordinates
<> into edges and verifying polygon type through formal
<~ geometric reasoning.",

"plan": ["Decomposition", "FormalDeduction", "CrossVerification",
— "PrincipleGeneralization"]

}

STAGE 2: EXECUTOR OUTPUT

Executing Module: Decomposition Goal: Identify the geometric figure from the SVG
path. Variables: The path consists of M (move) and L (line) commands. Vertices: (55.57,
80.69), (57.38, 65.80), (48.90, 57.46), (45.58, 47.78), (53.25, 36.07), (66.29, 48.90), (78.69,
61.09). The path ends by returning to the first vertex. Sub-problems: Count distinct
vertices and confirm path closure.

Executing Module: FormalDeduction Vertex Count: There are 7 distinct vertices.
Closure: The final ‘L‘ command returns to the starting point, so the shape is a closed
polygon. Polygon Type: A polygon with 7 vertices is a heptagon. All other options are
eliminated as they have a different number of sides or are not polygons made of straight
lines.

Executing Module: CrossVerification Segment Count: Counting the line segments
between vertices gives: 1—2, 2—3, 3—4, 4—5, 5—6, 6—7, and 7—1. This is a total of 7
segments (edges). Consistency Check: A 7-sided polygon is a heptagon. This is consistent
with the deduction.

Executing Module: PrincipleGeneralization To identify a polygon from an SVG path
with only M and L commands, parse the coordinates to find the number of unique vertices.
If the path is closed, this number corresponds to the number of sides, which defines the type
of polygon (e.g., 7 vertices = heptagon).

Final Answer: The correct option is (B) heptagon.

B.4 EXAMPLE 4: VISUAL REASONING (SVG PATH - OCTAGON)

Problem Statement This SVG path element <path d4="M 50.55,76.16 L 40.00,72.83
M 40.00,72.83 L 34.22,59.10 M 34.22,59.10 L 38.51,46.47 L 49.40,60.03 L
68.54,44.66 L 72.08,58.87 M 72.08,58.87 L 61.72,73.75 L 50.55,76.16"/> draws
a

(A) circle

22

Under review as a conference paper at ICLR 2025

(B) heptagon
(C) hexagon
(D) kite

line

pentagon
rectangle

)
)
)
)
F) octagon
)
)
) sector
) triangle
STAGE 1: PLANNER OUTPUT

Planner JSON Output

{

"rationale": "The problem requires interpreting a sequence of SVG
<> path coordinates as a closed polygon, so we must break down
< the path into vertices, deduce the polygon type rigorously,
<~ verify correctness, and generalize the approach.",

"plan": ["Decomposition", "FormalDeduction", "CrossVerification",
< "PrincipleGeneralization"]

STAGE 2: EXECUTOR OUTPUT

Executing Module: Decomposition Goal: Identify the geometric figure from the SVG
path. Vertices: (50.55, 76.16), (40.00, 72.83), (34.22, 59.10), (38.51, 46.47), (49.40, 60.03),
(68.54, 44.66), (72.08, 58.87), (61.72, 73.75). The path ends by returning to the first vertex.
Sub-problems: Count distinct vertices and confirm path closure.

Executing Module: FormalDeduction Vertex Count: There are 8 distinct vertices.
Closure: The final ‘L‘ command returns to the starting point, so the shape is a closed
polygon. Polygon Type: A polygon with 8 vertices is an octagon. All other options are
eliminated.

Executing Module: CrossVerification Segment Count: Counting the line segments
between vertices gives: 1—2, 2—3, 3—4, 4—5, 5—6, 6—7, 7—8, and 8—1. This is a total
of 8 segments (edges). Consistency Check: An 8-sided polygon is an octagon, which is
consistent.

Executing Module: PrincipleGeneralization The same principle as the previous
example applies: for a closed SVG path composed of straight line segments, the number of
unique vertices determines the type of polygon (e.g., 8 vertices = octagon).

Final Answer: The correct option is (F) octagon.

23

	Introduction
	Related Work
	The Dynamic Cognitive Orchestrator (DCO) Framework
	Stage 1: The Meta-Cognitive Planner
	Stage 2: The Plan Executor
	Formalization of the DCO Process

	Experimental Setup
	Tasks and Datasets
	Models and Baselines

	Results
	Contextualizing Performance with State-of-the-Art Results
	Performance on Mathematical Reasoning
	Performance on Algorithmic Reasoning
	Performance on General Reasoning

	Analysis and Discussion
	Analysis of Generated Plans
	Qualitative Case Study
	Failure Recovery via Interactive Feedback

	Conclusion
	Appendix: Full Prompt Templates
	DCO Prompt 1: Meta-Cognitive Planner
	DCO Prompt 2: Plan Executor

	Appendix: Detailed Worked Examples
	Example 1: Complementary Arrays
	Example 2: Prefix Min, Suffix Max
	Example 3: Visual Reasoning (SVG Path - Heptagon)
	Example 4: Visual Reasoning (SVG Path - Octagon)

