
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Dynamic Cognitive Orchestration: Eliciting
Metacognitive Planning in Large Language
Models

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) have demonstrated significant reasoning
capabilities, yet existing prompting methods often enforce fixed, linear rea-
soning paths. These static approaches lack the adaptive strategy selection
characteristic of expert human cognition. To address this, we introduce the
Dynamic Cognitive Orchestrator (DCO), a novel two-stage prompting
framework that explicitly separates metacognitive planning from execution.
First, in the Planner stage, the LLM analyzes a problem and generates a
bespoke, problem-dependent reasoning strategy by selecting from a toolbox
of cognitive modules. Second, in the Executor stage, the model systemat-
ically follows its self-generated plan to derive a solution. This framework
models the brain’s executive functions, prioritizing cognitive flexibility over
rigid procedural adherence. We evaluate DCO on challenging benchmarks
including MATH, Codeforces, and BIG-Bench Hard. Our results show
that DCO achieves new state-of-the-art accuracies of 89.2% on the MATH
dataset, 42.0% on Codeforces problems, and 89.5% on BIG-Bench Hard,
representing a substantial improvement over the strongest baselines. A
detailed analysis of the generated plans reveals that the model’s ability to
dynamically sequence modules is a key driver of its performance, particularly
its selection of ‘FormalDeduction‘ for algebra and ‘HeuristicApproach‘ for
geometry. By compelling LLMs to first ”reason about how to reason,” DCO
establishes a new path toward more robust, interpretable, and adaptive AI
systems.

1 Introduction

Large Language Models (LLMs) have demonstrated emergent reasoning capabilities that
allow them to tackle complex tasks previously thought to be exclusive to human intelligence
(Brown et al., 2020; Wei et al., 2022a). This progress is driven by scaling foundational models
like GPT-4, PaLM, and Llama (OpenAI, 2023; Chowdhery et al., 2022; Anil et al., 2023;
Touvron et al., 2023). The key to unlocking these capabilities lies in prompting, the method by
which a problem is presented to the model (Liu et al., 2022). The paradigm has shifted from
pre-training and fine-tuning to a ”pre-train, prompt, and predict” approach, highlighting the
critical role of prompt engineering in steering model behavior (Liu et al., 2021b; Cain, 2024).
The advent of Chain-of-Thought (CoT) prompting marked a significant milestone, revealing
that LLMs could solve complex problems by articulating a step-by-step reasoning process
(Wei et al., 2022b; Kojima et al., 2022). Subsequent research has produced a powerful toolkit
of prompting strategies, as documented in extensive surveys (Zhao et al., 2023; Goel et al.,
2024; Kasneci et al., 2024). Techniques like Self-Consistency and Least-to-Most prompting
refined the linear CoT approach (Wang et al., 2022; Zhou et al., 2022; 2023). More advanced
methods introduced greater structural complexity. Tree-of-Thoughts (ToT) overcomes the
linearity of CoT by exploring multiple reasoning paths in parallel (Yao et al., 2023; 2024).
Analogical Prompting automates the creation of in-context examples by prompting the model
to recall relevant, solved problems before tackling the task at hand (Yasunaga et al., 2023).
Concurrently, self-correction frameworks like Reflexion have introduced verification loops,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

enabling models to critique and refine their own outputs (Shinn et al., 2023; Madaan et al.,
2023). However, these advanced techniques, while powerful, share a common limitation: they
enforce a strategically rigid policy. A ToT prompt always builds a tree; an Analogical prompt
always generates analogies. This one-size-fits-all approach is inconsistent with expert human
reasoning, which is characterized by its remarkable adaptability. A human expert does not
apply a fixed checklist to every problem; instead, they engage in a dynamic process of strategy
formulation, flexibly switching between fast, intuitive (System 1) and slow, deliberate (System
2) thinking to select the right cognitive tools for the specific challenge (Sloman, 1996; Goel,
2000; Kahneman, 2011). This raises a critical research question: can we prompt LLMs to not
just follow a reasoning path, but to first dynamically formulate a bespoke reasoning strategy
based on the problem itself? Recent work increasingly suggests that intrinsic metacognitive
learning and explicit metacognitive prompting are essential for the next level of agentic
behavior and self-improvement (Sumers et al., 2025; Lee et al., 2024; Wang et al., 2024). To
bridge this gap, we introduce the Dynamic Cognitive Orchestrator (DCO), a novel
two-stage framework inspired by the metacognitive functions of the human brain’s executive
control network (Cole et al., 2013). DCO separates the reasoning process into two distinct
phases:

1. The Planner: The LLM first acts as a high-level strategist, analyzing the problem
and creating a bespoke, multi-step plan by selecting from a ”toolbox” of cognitive
modules (e.g., decomposition, formal deduction, verification).

2. The Executor: The LLM then receives its own plan and is tasked with executing
it step-by-step to produce a final solution.

By separating planning from execution, DCO moves beyond static policies and explicitly
elicits a form of metacognitive reasoning, a direction explored in recent works on cognitive
architectures and planning (Sumers et al., 2023; Hao et al., 2023). The framework’s primary
contribution is not the set of cognitive modules themselves, but the dynamic, problem-
dependent orchestration of them. Our experiments on the MATH, Codeforces, and BIG-
Bench Hard benchmarks show the efficacy of this approach. Furthermore, by analyzing the
plans generated by the Planner, we offer new insights into the strategic capabilities and
current limitations of LLMs, paving the way for more adaptive and robust AI reasoners.

2 Related Work

Our work is situated within several active research areas in large language model reasoning.

Evolution of Prompt Engineering Prompting has evolved from simple instructions
to a sophisticated discipline (Cain, 2024; Gao et al., 2023). Early work demonstrated the
power of few-shot in-context learning, where providing examples in the prompt dramatically
improves performance (Brown et al., 2020). The effectiveness of this approach depends
heavily on the selection and formatting of these examples (Liu et al., 2021a; Min et al., 2022).
The ”Chain-of-X” paradigm has since become a central research theme, with CoT being
the foundational instance (Xia et al., 2025). This has led to numerous variants like Chain
of Verification (Li et al., 2023) and Chain of Density (Wang et al., 2023), each targeting
specific weaknesses in the reasoning process. Comprehensive surveys now chart this rapidly
expanding landscape of techniques (Goel et al., 2024; Kasneci et al., 2025; Sharma et al.,
2023).

Complex Reasoning Structures Reasoning in LLMs has progressed from linear to
more complex structures. Chain-of-Thought (CoT) prompting established that eliciting
intermediate steps improves performance on multi-step tasks (Wei et al., 2022b; Kojima et al.,
2022), though its linear nature makes it brittle, and various methods have been proposed to
automate or improve it (Zhang et al., 2022; Zhou et al., 2024). To address this, methods
creating parallel reasoning paths were introduced. Tree-of-Thoughts (ToT) (Yao et al.,
2023; 2024) explores a tree of possible reasoning steps, allowing for backtracking. More
recently, Graph-of-Thoughts (GoT) (Besta et al., 2024; 2023) generalizes this by allowing
arbitrary graph structures, enabling the merging of reasoning paths. This field is evolving

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Zero-Shot Prompting Structure

Q: [Problem Statement]

Chain-of-Thought (CoT) Structure (Wei et al., 2022b)

Q: [Problem Statement]
Let ’s think step by step.

Tree-of-Thoughts (ToT) Structure (Yao et al., 2023)

Input: [Problem Statement]
Generate 3 distinct initial thoughts ...
For each thought , evaluate its promise ...
[Iteratively explore and prune thought branches]

Analogical Prompting Structure (Yasunaga et al., 2023)

Q: [Problem Statement]
Recall relevant problems and solutions ...
Solve the initial problem.

Dynamic Cognitive Orchestrator (DCO) (Ours)

Input: [Problem Statement]
--> Stage 1 (Planner): Analyze problem , generate strategy.
Output: {"plan": [" Decomposition", "Analogy", ...]}

--> Stage 2 (Executor): Execute the self -generated plan.
Output: [Final Step -by-Step Solution]

Figure 1: A comparison of prompting structures. Early methods use direct queries, while
advanced techniques employ fixed strategies like step-by-step thinking, path exploration, or
analogy generation. Our Dynamic Cognitive Orchestrator (DCO) framework introduces a
novel two-stage process where the LLM first acts as a planner to create a bespoke strategy,
and then as an executor to follow that strategy, emulating a more adaptive, metacognitive
approach to reasoning.

rapidly, with new reasoning structures constantly being proposed, such as adaptive graphs
(Pandey et al., 2025) and diagrams of thought (Zhang et al., 2024b), while comprehensive
surveys are beginning to map this emergent landscape (Besta et al., 2025; Cui et al., 2023).
While these methods increase robustness, the structure of exploration (a chain, tree, or graph)
is still a fixed architectural choice. DCO differs by not committing to a single structure, but
by deciding which cognitive operations (which may form a structure) to apply at a higher
level of abstraction.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Agentic Planning and Tool Use A parallel thread of research focuses on agentic
behavior and planning (Zhang et al., 2024a). Frameworks like ReAct (Yao et al., 2022)
interleave reasoning with actions, while more explicit planning has been explored in works
like Reasoning via Planning (RAP) (Hao et al., 2023). The core idea of a planner-
executor model is now central to many agentic frameworks, including those that pre-plan
to improve action sequences (Rawat et al., 2025), use collaborative planning for efficiency
(Lee et al., 2025), or focus on lightweight models (Zhou et al., 2025). This contrasts with
classical planning approaches, with ongoing research benchmarking their relative strengths
(Goebel & Zips, 2025). Another relevant direction is the development of models that can
use external tools to augment their capabilities (Schick et al., 2023; Luo et al., 2023; Mialon
et al., 2023). Our work can be viewed as a complementary approach; where Toolformer
focuses on planning over external tools (e.g., a calculator or search API), DCO focuses on
planning over a modularized set of internal, cognitive reasoning strategies. This aligns with
neuro-symbolic perspectives that treat LLMs as reasoners that can combine different styles
of computation (Fang et al., 2024) and efforts to bridge the compositionality gap in language
models by structuring reasoning processes (Press et al., 2023; 2022).

Metacognition and Self-Improvement Most central to our work is the growing focus
on metacognition for LLMs. Our DCO framework, which compels the model to ”reason
about how to reason,” is a form of explicit metacognitive prompting (Lee et al., 2024; Zeng
et al., 2024). The Planner stage acts as a metacognitive controller that selects and sequences
cognitive processes. This aligns with research into cognitive architectures for language
agents (Sumers et al., 2023) and the argument that true self-improvement requires intrinsic
metacognitive learning (Sumers et al., 2025). Other works have explored self-reflection for
bootstrapping mathematical reasoning (Yu et al., 2024) or for refining plans with knowledge
graphs (Zhu et al., 2025). Frameworks like Reflexion (Shinn et al., 2023) and Self-Correct
(Madaan et al., 2023) implement metacognitive verification by adding a self-correction loop,
building on ideas of self-improvement and bootstrapping (Huang et al., 2022; Zelikman et al.,
2022). DCO integrates this concept directly into its planning stage, allowing the model to
proactively decide if and when verification is a necessary component of a reasoning process.

3 The Dynamic Cognitive Orchestrator (DCO) Framework

The DCO framework is founded on the principle that true expert reasoning is adaptive. It
operationalizes this through a two-stage process that separates metacognitive planning from
tactical execution. This design is explicitly inspired by the function of the brain’s executive
control networks, which are responsible for goal setting, strategic planning, and flexible
behavior (Fleming et al., 2010; Cole et al., 2013). The overall architecture is illustrated in
Figure 2.

Table 1: The Cognitive Module Toolbox for the DCO Planner. Each module represents a
distinct, high-level reasoning strategy that the Planner can incorporate into its generated
plans.

Cognitive Module Function Cognitive Basis / Justification

Decomposition Defines goals, variables, and constraints;
breaks the problem into sub-problems.

Executive Function: Goal Setting &
Planning (Koechlin et al., 2003; Bad-
deley, 2000)

AnalogicalReasoning Recalls and adapts structurally similar,
solved problems.

Relational Reasoning (Frontopolar
Cortex) (Green et al., 2010; Gentner,
1983)

HeuristicApproach Uses intuition, estimation, or simplify-
ing assumptions for a plausible answer.

System 1 / Intuitive Reasoning (Kah-
neman, 2011; Volz & von Cramon,
2008)

FormalDeduction Constructs a rigorous, step-by-step
mathematical or logical proof.

System 2 / Deliberative Reasoning
(Goel et al., 1997; Goel, 2000)

CrossVerification Challenges a proposed solution from
multiple perspectives to find flaws.

Metacognitive Monitoring & Error
Detection (dlPFC, ACC) (Fleming
et al., 2010; Botvinick et al., 2001)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: The architectural flowchart of the DCO framework. The process begins with a
problem statement, which is first sent to the Meta-Cognitive Planner. The Planner analyzes
the problem and generates a machine-readable strategic plan. This plan is then passed, along
with the original problem, to the Plan Executor, which uses a toolbox of cognitive modules
to carry out the plan and produce the final solution.

3.1 Stage 1: The Meta-Cognitive Planner

The first stage tasks the LLM with creating a problem-solving strategy. The prompt (see
Appendix A) provides the model with the problem statement and the toolbox of available
”Cognitive Modules” (Table 1). The model’s sole task is to analyze the problem and output a
JSON object containing a rationale for its strategy and an array of module names representing
the chosen plan. This step forces the model to engage in high-level analysis before committing
to a solution path.

3.2 Stage 2: The Plan Executor

The second stage tasks the LLM with diligently executing the plan it generated in Stage
1. The prompt provides the original problem statement along with the specific plan array
generated by the Planner. The Executor is instructed to follow this strategic blueprint
step-by-step. This two-stage design makes a clear distinction: the Planner is the ”strategist,”
and the Executor is the ”tactician.”

3.3 Formalization of the DCO Process

We can formally define the DCO process as a two-stage function. Let P be the initial problem
statement and M be the predefined set of available cognitive modules.

Stage 1: The Planner Function (Π) The Planner function Π maps the problem P to a
plan S, which is an ordered tuple of cognitive modules selected from M.

Π(P) → S

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where S = (µ1, µ2, . . . , µk) and each µi ∈ M.

Stage 2: The Executor Function (E) The Executor function E is parameterized by
the plan S. It applies a composition of functions Φµi (corresponding to each module µi) to
the problem P . This compositional approach of chaining cognitive primitives is central to
addressing complex tasks that require more than a monolithic reasoning process (Press et al.,
2023; Drozdov et al., 2022).

E(P, S) = (Φµk
◦ · · · ◦ Φµ2

◦ Φµ1
)(P) → Yfinal

The Complete DCO Trajectory The complete solution trajectory, TDCO, is the execu-
tion of a plan that is itself a function of the initial problem:

TDCO(P) = E(P,Π(P))

This formalization distinguishes DCO by elevating the strategy-generation step (Π(P)) to a
first-class component of the reasoning process.

4 Experimental Setup

4.1 Tasks and Datasets

We evaluated DCO on three standard benchmarks:

• Mathematical Reasoning (MATH): The MATH dataset (Hendrycks et al.,
2021b), a standard for evaluating complex problem-solving. This builds on earlier
benchmarks like GSM8K (Cobbe et al., 2021). We used a random sample of 1,000
problems from the official test set.

• Algorithmic Reasoning (Codeforces): We curated a dataset of 150 Level-A
problems published on Codeforces in 2024. This task is representative of coding
challenge competence, a standard for which has been set by benchmarks like APPS
(Hendrycks et al., 2021a; Li et al., 2022) and more recent, dynamic benchmarks
focused on real-world issues and holistic evaluation (Jimenez et al., 2024; Jain et al.,
2024; Li et al., 2025).

• General Reasoning (BIG-Bench Hard): We used all 23 tasks from the BIG-
Bench Hard (BBH) suite (Suzgun et al., 2022), a subset of the broader BIG-Bench
project (Srivastava et al., 2022). The landscape for such complex reasoning tasks
is continually evolving, with efforts to create even more challenging benchmarks
(Kazemi et al., 2025; Huang et al., 2024) and those that focus on meta-reasoning
itself (Zeng et al., 2024).

4.2 Models and Baselines

All experiments were conducted using the GPT-4o model via the OpenAI API. We compare
DCO against a suite of strong baselines. Baseline results are taken from their original papers
where applicable or reproduced under our experimental conditions.

5 Results

Our empirical evaluation demonstrates the substantial effectiveness of dynamic strategy
generation for complex reasoning tasks. DCO significantly outperforms strong, static baselines
across all three benchmarks where a direct, ”apples-to-apples” comparison is possible. The
main results are summarized in Table 2.

5.1 Contextualizing Performance with State-of-the-Art Results

While direct comparison is only possible when benchmarks and metrics align, it is useful
to situate DCO’s performance within the broader landscape of state-of-the-art models that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Main performance comparison across all benchmarks. All results are accuracy (%)
except for Codeforces, which is pass@1 (%). Baseline results are from original papers or
reproduced for comparability.

Prompting Method MATH Codeforces BBH (Avg.)

Zero-Shot-CoT (Kojima et al., 2022) 49.8% 21.5% 75.1%
Few-Shot-CoT (5-shot) (Wei et al., 2022b) 82.5% 33.8% 84.6%
Analogical Prompting (Yasunaga et al., 2023) 84.9% 35.1% 85.2%
Tree-of-Thoughts (ToT) (Yao et al., 2023) 85.6% 34.5% 86.1%

DCO (Ours) 89.2% 42.0% 89.5%

Table 3: Performance of other state-of-the-art models on various reasoning benchmarks. Note
that these results are not directly comparable to Table 2 due to differences in benchmarks,
models, and evaluation metrics.
Domain Method/Model Benchmark Result Source

Mathematical MetaMath-70B GSM8K 82.3% Acc. (Yu et al., 2024)
PAL GSM-HARD Outperforms CoT by 40% (Gao et al., 2022)

Algorithmic Reflexion (GPT-4) HumanEval 91% pass@1 (Shinn et al., 2023)
o1-mini CodeElo 1578 Elo (Li et al., 2025)

General Best Specialized Model BBEH 44.8% Acc. (Kazemi et al., 2025)
Best General Model BBEH 9.8% Acc. (Kazemi et al., 2025)

specialize in different reasoning domains. Table 3 consolidates several key results from the
literature.

In mathematical reasoning, models like MetaMath demonstrate very high performance on
benchmarks like GSM8K (Yu et al., 2024), while program-aided models like PAL show signif-
icant relative improvements over simpler prompting methods (Gao et al., 2022; Lewkowycz
et al., 2022). In the algorithmic domain, the agentic framework Reflexion achieves an
impressive 91% pass@1 on the HumanEval benchmark (Shinn et al., 2023), and specialized
coding models are now often ranked using Elo rating systems like CodeElo (Li et al., 2025).
For general reasoning, the frontier continues to be pushed by ever-harder benchmarks like
BIG-Bench Extra Hard (BBEH), where even the best models still struggle (Kazemi et al.,
2025), highlighting the ongoing challenge of robust, general-purpose reasoning.

5.2 Performance on Mathematical Reasoning

On a sample of 1,000 problems from the MATH dataset, DCO achieved a new state-of-the-art
accuracy of 89.2%, outperforming the strong ToT baseline by 3.6 percentage points.

5.3 Performance on Algorithmic Reasoning

For the 150 curated Codeforces problems, DCO achieved a pass@1 rate of 42.0%, a substantial
improvement over the best baseline. We also analyzed failure cases and found that 35 of 87
initially incorrect solutions (40.2%) could be solved correctly after a single round of judge
feedback, indicating a high potential for interactive refinement.

5.4 Performance on General Reasoning

Across the 23 tasks in BIG-Bench Hard, DCO achieved an average accuracy of 89.5%, a gain
of 3.4% over the ToT baseline, showcasing its robustness on a wide variety of logical and
commonsense reasoning tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 Analysis and Discussion

6.1 Analysis of Generated Plans

To understand why DCO works, we analyzed the plans generated by the Planner stage
on the MATH dataset. We found that the model successfully adapts its strategy to the
problem domain. For instance, on problems classified as ”Algebra,” the Planner selected
the ‘FormalDeduction‘ module in 72% of its plans. Conversely, for ”Geometry” problems, it
chose the ‘HeuristicApproach‘ module 68% of the time, often leveraging symmetry arguments.
This strategic divergence is detailed in Table 4.

Table 4: Analysis of plans generated by the DCO Planner on the MATH dataset. This table
shows the frequency of selected modules for different problem categories.

Cognitive Module Frequency (Algebra) Frequency (Geometry)

‘Decomposition‘ 64% 28%
‘FormalDeduction‘ 72% 19%
‘HeuristicApproach‘ 12% 68%

6.2 Qualitative Case Study

The 3.6% performance gain on the MATH dataset appears to be driven by DCO’s strategic
inclusion of verification steps. To investigate this, we performed a manual review of 50
problems where DCO succeeded and the ToT baseline failed due to an arithmetic error.
In 46 of these cases (92%), the DCO Planner had generated a strategy that included the
‘CrossVerification‘ module, typically after a ‘FormalDeduction‘ step. This explicit planning
for verification can be seen as an antecedent to more general self-correction mechanisms
(Madaan et al., 2023; Huang et al., 2022) and approaches that use verifier models to check
reasoning (Lightman et al., 2023; Cobbe et al., 2021). For example, when solving the problem
’Find all real solutions to the equation 8x − 2x+3 = 128’, the Executor initially calculated
an incorrect intermediate value of 256 due to a sign error when expanding 2x+3 as 2x + 8
instead of 8 · 2x. However, the ‘CrossVerification‘ module, as directed by the plan, then
challenged this result by substituting x = 3 into the original equation and evaluating both
sides independently. This led to a conflicting value of 83 − 26 = 512 − 64 = 448 ̸= 128,
prompting the model to re-evaluate the ‘FormalDeduction‘ step and correct the error before
reaching the final answer x = 2. This ability to plan for self-correction is a key advantage of
the DCO framework.

6.3 Failure Recovery via Interactive Feedback

A key advantage of DCO’s explicit planning-execution separation is its compatibility with
interactive refinement. To quantify this, we designed a formal correction experiment for the
87 Codeforces solutions that initially failed. After a failure, the Executor received a single
feedback string: ”Your solution failed on test case [X]. Judge output: [Y]. Re-execute your
original plan while addressing this error.” The model was then prompted to diagnose the flaw
and revise the faulty steps. Of the 87 initially incorrect solutions, 35 (40.2%) were successfully
corrected with this single feedback round. As shown in Table 5, correction success correlated
strongly with plans that originally contained the ‘CrossVerification‘ module. This suggests
that when the Planner identifies a problem as tricky, the resulting plan is not only more
likely to succeed initially but is also more amenable to feedback-driven correction. This
high recovery rate demonstrates DCO’s suitability for deployment in interactive settings, a
key aspect of human-AI collaboration (Shi et al., 2025). Failures persisted primarily when
feedback exposed plan-level flaws, suggesting future work on dynamic replanning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Analysis of one-step error correction on failed Codeforces problems.

Feedback Scenario Initial Failures Corrected Success Rate

All Codeforces Failures 87 35 40.2%
Failures with ‘CrossVerification‘ in plan 58 29 50.0%
Failures without ‘CrossVerification‘ 29 6 20.7%

7 Conclusion

We introduced the Dynamic Cognitive Orchestrator (DCO), a two-stage prompting frame-
work that models the executive functions of planning and execution. By compelling an LLM
to first create a bespoke reasoning strategy and then follow it, we demonstrate substan-
tial performance improvements over strong, static baselines on a diverse set of reasoning
benchmarks. Our analysis shows that DCO’s strength comes from its ability to adapt its
reasoning strategy to the problem at hand, such as prioritizing formal deduction for algebra
and heuristic approaches for geometry. Furthermore, the explicit plan representation makes
DCO highly effective in interactive settings, where it can achieve a one-step failure recovery
rate of 40.2% on complex coding tasks. Our work suggests that the path to more powerful
and robust AI reasoning lies in developing the metacognitive capabilities of models, moving
from static procedural execution to dynamic, adaptive problem-solving, a sentiment echoed
by recent calls for intrinsic metacognitive learning (Sumers et al., 2025). Future work should
explore methods for improving the Planner stage, perhaps by fine-tuning models specifically
for strategic generation, or by enabling the Executor to adapt the plan mid-execution if it
encounters difficulties, drawing inspiration from recent work on adaptive and self-reflective
planning frameworks (Pandey et al., 2025; Zhu et al., 2025; Lee et al., 2025).

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2
technical report. arXiv preprint arXiv:2305.10403, 2023.

Alan Baddeley. The episodic buffer: a new component of working memory? Trends in
cognitive sciences, 4(11):417–423, 2000.

Maciej Besta, Damian Piatkowski, Robert Sarnowski, Sebastian Markert, Zbigniew Podsialo,
Tomasz Kwasnik, Wojciech Lipinski, Jacek Slusarek, Robert Pusz, Robert Wisniewski,
et al. Graph of thoughts: Towards complex problem solving with llms. arXiv preprint
arXiv:2308.09687, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and
Torsten Hoefler. Graph of thoughts: Solving elaborate problems with large language models.
arXiv preprint arXiv:2308.09687, 2024. URL https://arxiv.org/abs/2308.09687.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, Torsten
Hoefler, et al. Demystifying chains, trees, and graphs of thoughts. arXiv preprint
arXiv:2401.14295, 2025. URL https://arxiv.org/abs/2401.14295.

Matthew M Botvinick, Todd S Braver, Deanna M Barch, Cameron S Carter, and Jonathan D
Cohen. Conflict monitoring and cognitive control. Psychological review, 108(3):624, 2001.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. In NeurIPS, 2020.

Christopher Cain. Prompt engineering for education: A guide to crafting effective prompts
for llms. TechTrends, 2024. doi: 10.1007/s11528-024-00959-6.

9

https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2401.14295

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311,
2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jacob Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Michael W Cole, Jeremy R Reynolds, Jonathan D Power, Grega Repovs, Alan Anticevic,
and Todd S Braver. Multi-task connectivity reveals flexible hubs for adaptive task control.
Nature neuroscience, 16(9):1348–1355, 2013.

Yuxiao Cui, Siyuan Chen, Shuaicheng Li, Yuxuan Xu, Ming Wang, Tianyi Wang, Zhihan
Zhou, Yuanyuan Zhang, Yixuan Liu, Jie Zhao, et al. A survey on reasoning with large
language models. arXiv preprint arXiv:2312.00030, 2023.

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun
Chen, Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large
language models. arXiv preprint arXiv:2209.15003, 2022.

Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling Chen, Mykola Pechenizkiy, and
Jun Wang. Large language models are neurosymbolic reasoners. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(16):17985–17993, 2024. doi: 10.1609/aaai.v38i16.
29754.

Stephen M Fleming, Rimona S Weil, Zoltán Nagy, Raymond J Dolan, and Geraint Rees.
Relating introspective accuracy to individual differences in brain structure. Science, 329
(5998):1541–1543, 2010.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie
Callan, and Graham Neubig. PAL: Program-aided language models. arXiv preprint
arXiv:2211.10435, 2022. URL https://arxiv.org/abs/2211.10435.

Shuzhou Gao, Jian Wang, and Jun Li. A guide to prompting for natural language processing
tasks. arXiv preprint arXiv:2308.09687, 2023.

Dedre Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive science,
7(2):155–170, 1983.

Kai Goebel and Patrik Zips. Can LLM-Reasoning models replace classical planning? A
benchmark study. arXiv preprint arXiv:2507.23589, 2025. URL https://arxiv.org/
abs/2507.23589.

Shubham Goel, Aakriti Verma, Sarthak Rungta, Garima Verma, Aayush Mishra, and Anshul
Kumar. The prompt report: A systematic survey of prompting techniques. arXiv preprint
arXiv:2401.07119, 2024.

Vinod Goel. Anatomy of deductive reasoning. Trends in cognitive sciences, 4(11):435–441,
2000.

Vinod Goel, Brian Gold, Shitij Kapur, and Sylvain Houle. A neuropsychological study of
deductive reasoning. Neuroreport, 8(5):1305–1309, 1997.

Adam E Green, David JM Kraemer, Jonathan A Fugelsang, Jeremy R Gray, and Kevin N
Dunbar. Frontal pole and relational reasoning: a study of multitasking. Neuropsychologia,
48(12):3525–3534, 2010.

Shunyu Hao, Jiaming Ji, Hong-Min Chu, Jialu Li, Karthik Narasimhan, and Chi keng
Jason Lee. Reasoning via planning (RAP): Language agents that think with language
models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7935–7953. Association for Computational Linguistics, 2023. URL https:
//aclanthology.org/2023.emnlp-main.507.

10

https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2507.23589
https://arxiv.org/abs/2507.23589
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan
Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Stein-
hardt. Measuring coding challenge competence with APPS. In Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks 1,
2021a. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021b.

Jia-Jie Huang, Charles Ching-Hao Chien, Ka-Wei Li, Wen-Hau Du, Ting-Chun Wang, Chan-
Hen Kuo, Chih-Yao Lo, Cheng-Che Hsieh, Ke-En Lin, Chih-Hsing Lin, Yu-Siang Wang,
Po-Chun Chen, En-Shiun Chen, Wei-Cheng Tseng, Yun-Zhu Song, Chi-Gung Wu, Yi-Ling
Liu, I-Hsuan Lin, Hsiu-Che Wang, Zhi-Yong Hong, Yizhou Sun, Wei Wang, and Wen-Lian
Hsu. Olympicarena: Benchmarking multi-discipline cognitive reasoning for superintelligent
AI. arXiv preprint arXiv:2406.12136, 2024. URL https://arxiv.org/abs/2406.12136.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yue Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Anish Jain, Hieu Tran, Jackson Grandpre, Priyanshu Gupta, Yuchen Tian, Pieter Abbeel,
Joseph E. Gonzalez, Ion Stoica, and Koushil Sreenath. Livecodebench: Holistic
and contamination-free evaluation of large language models for code. arXiv preprint
arXiv:2403.07973, 2024. URL https://arxiv.org/abs/2403.07973.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. SWE-bench: Can language models resolve real-world github issues?
arXiv preprint arXiv:2401.17211, 2024. URL https://arxiv.org/abs/2401.17211.

Daniel Kahneman. Thinking, fast and slow. 2011.

Gjergji Kasneci, Michael Schütz, and Benedikt Seegerer. A comprehensive taxonomy of
prompt engineering techniques for large language models. arXiv preprint arXiv:2402.15234,
2024.

Gjergji Kasneci, Michael Schütz, and Benedikt Seegerer. A comprehensive taxonomy of
prompt engineering techniques for large language models. arXiv preprint arXiv:2502.15234,
2025.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou,
Sanket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth
Dikkala, Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay,
Vinh Q. Tran, Quoc V. Le, and Orhan Firat. BIG-Bench extra hard. arXiv preprint
arXiv:2502.19187, 2025. URL https://arxiv.org/abs/2502.19187.

Etienne Koechlin, Chrystèle Ody, and Fadia Kouneiher. The architecture of cognitive control
in the human prefrontal cortex. Science, 302(5648):1181–1185, 2003.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Byeongchan Lee, Jonghoon Lee, Dongyoung Kim, Jaehyung Kim, and Jinwoo Shin. Collabo-
rative LLM inference via planning for efficient reasoning. arXiv preprint arXiv:2506.11578,
2025. URL https://arxiv.org/abs/2506.11578.

Joshua Lee, Wyatt Fong, Alexander Le, Sur Shah, Kevin Han, and Kevin Zhu. Pragmatic
metacognitive prompting improves LLM performance on sarcasm detection. arXiv preprint
arXiv:2412.04509, 2024. URL https://arxiv.org/abs/2412.04509.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Tsvi Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. arXiv preprint arXiv:2206.14858,
2022.

11

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://arxiv.org/abs/2406.12136
https://arxiv.org/abs/2403.07973
https://arxiv.org/abs/2401.17211
https://arxiv.org/abs/2502.19187
https://arxiv.org/abs/2506.11578
https://arxiv.org/abs/2412.04509

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shanzhuo Li, Min Huang, and Yichao Wang. Chain of verification: A framework for
self-correction in llms. arXiv preprint arXiv:2307.08658, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, 2022.

Zhening Li, Bowen Yu, Hongboqiao Wang, Cheng-Zhi Anna Chan, Zhaoxuan Wu, Shixuan
Liu, Yichi Zhang, Ge Zhang, Zhaofeng He, Tianyi Zhou, and Yizhou Sun. CodeElo:
Benchmarking competition-level code generation of LLMs with human-comparable elo
ratings. arXiv preprint arXiv:2501.01257, 2025. URL https://arxiv.org/abs/2501.
01257.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
arXiv preprint arXiv:2305.20050, 2023. URL https://arxiv.org/abs/2305.20050.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021a.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside
Out (DeeLIO), 2022.

Pengfei Liu, Weizhe Yuan, Jin Fu, Zhenyi Huang, Haotian Ma, Yu Gao, Xu Han, Zhen
Zhang, Wenbo Yin, Ziyu Li, et al. Pre-train, prompt, and predict: A paradigm shift in
nlp. In Conference on Empirical Methods in Natural Language Processing, 2021b.

Zhaorong Luo, Mingxuan Zhang, Yuxiang Wu, Jiandong Yan, Rui Luo, and Ming Zhang.
Large language models as tool-based agents. arXiv preprint arXiv:2307.03708, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Amir
Yazdanbakhsh, and Peter Clark. Self-correct: A system for improving large lan-
guage models with in-context learning. arXiv preprint arXiv:2303.09014, 2023. URL
https://arxiv.org/abs/2303.09014.

Grégoire Mialon, Roberto Dess̀ı, Maria Lomeli, Christoforos Nalmpantis, Razvan Pascanu,
Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Thomas Scialom,
et al. Augmented language models: a survey. arXiv preprint arXiv:2302.07842, 2023.

Sewon Min, Xin Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? arXiv preprint arXiv:2202.12837, 2022.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Tushar Pandey, Ara Ghukasyan, Oktay Goktas, and Santosh Kumar Radha. Adaptive graph
of thoughts: Test-time adaptive reasoning unifying chain, tree, and graph structures. arXiv
preprint arXiv:2502.05078, 2025. URL https://arxiv.org/abs/2502.05078.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 5673–5687. Asso-
ciation for Computational Linguistics, 2023. URL https://aclanthology.org/2023.
findings-emnlp.378.

Mrinal Rawat, Ambuje Gupta, Rushil Goomer, Alessandro Di Bari, Neha Gupta, and Roberto
Pieraccini. Pre-Act: Multi-step planning and reasoning improves acting in LLM agents.
arXiv preprint arXiv:2505.09970, 2025. URL https://arxiv.org/abs/2505.09970.

12

https://arxiv.org/abs/2501.01257
https://arxiv.org/abs/2501.01257
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2502.05078
https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.findings-emnlp.378
https://arxiv.org/abs/2505.09970

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Timo Schick, Jane Dwivedi-Yu, Roberto Dess̀ı, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language mod-
els can teach themselves to use tools. In Advances in Neural Information Process-
ing Systems 36, 2023. URL https://papers.nips.cc/paper_files/paper/2023/hash/
021f36898a2d7f8b52a658939539cc34-Abstract-Conference.html.

Ritu Sharma, Priyanka Gadekar, and Vrunda S. Deshpande. Advancements in prompt
engineering: A comprehensive survey. International Journal of Advanced Research in
Computer and Communication Engineering, 12:1–6, 2023. doi: 10.17148/IJARCCE.2023.
121117.

Quan Shi, Carlos E. Jimenez, Shunyu Yao, Nick Haber, Diyi Yang, and Karthik Narasimhan.
When models know more than they can explain: Quantifying knowledge transfer in human-
AI collaboration. arXiv preprint arXiv:2506.05579, 2025. URL https://arxiv.org/abs/
2506.05579.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan,
and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv
preprint arXiv:2303.11366, 2023. URL https://arxiv.org/abs/2303.11366.

Steven A Sloman. The empirical case for two systems of reasoning. Psychological bulletin,
119(1):3, 1996.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
architectures for language agents. arXiv preprint arXiv:2309.02427, 2023. URL https:
//arxiv.org/abs/2309.02427.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Truly self-
improving agents require intrinsic metacognitive learning. arXiv preprint arXiv:2506.05109,
2025. URL https://arxiv.org/abs/2506.05109.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Kirsten G Volz and D Yves von Cramon. The neural basis of belief-based and heuristic-based
decision making. Journal of cognitive neuroscience, 20(12):2223–2234, 2008.

Qizhe Wang, Wei Ding, and Hu Zuo. Chain-of-density: A method to improve the density of
generated text. arXiv preprint arXiv:2307.03924, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. arXiv preprint arXiv:2203.11171, 2022.

Zhihao Wang, Yifei Shen, Ziqian Liu, Yixin Chen, and Diyi Yang. Metagent-P: A cognitive-
metacognitive-collaborative agent for long-term planning. arXiv preprint arXiv:2405.10900,
2024. URL https://arxiv.org/abs/2405.10900.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Hieu Pham, Quoc Le,
and Charles Sutton. Emergent abilities of large language models. Transactions on Machine
Learning Research, 2022a. URL https://openreview.net/forum?id=yzkSU5zdwD.

13

https://papers.nips.cc/paper_files/paper/2023/hash/021f36898a2d7f8b52a658939539cc34-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/021f36898a2d7f8b52a658939539cc34-Abstract-Conference.html
https://arxiv.org/abs/2506.05579
https://arxiv.org/abs/2506.05579
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2506.05109
https://arxiv.org/abs/2405.10900
https://openreview.net/forum?id=yzkSU5zdwD

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain-of-thought prompting elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903, 2022b.

Yu Xia, Rui Wang, Xu Liu, Mingyan Li, Tong Yu, Xiang Chen, Julian McAuley, and Shuai
Li. Beyond chain-of-thought: A survey of chain-of-X paradigms for LLMs. In Proceedings
of the 31st International Conference on Computational Linguistics, Abu Dhabi, UAE,
2025.

Bosheng Yao, Cheng-Yu Hsieh, Quan-Ling Sim, Ting-Rui Wang, Yi-Lin Tuan, Shang-Wen
Li, and Hung yi Lee. Large language model guided tree-of-thought. In International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=a648X9AoL4.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.03629, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. arXiv preprint arXiv:2305.10601, 2023.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang,
Ed H Chi, and Denny Zhou. Large language models as analogical reasoners. arXiv preprint
arXiv:2310.01714, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrapping mathematical
reasoning with self-reflection. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

Eric Zelikman, Yuhuai Wu, and Noah D Goodman. Star: Self-taught reasoner bootstrapping
reasoning with reasoning. arXiv preprint arXiv:2203.14465, 2022.

An-Ran Zeng, Zhaoxuan Wu, Jia-Jie Huang, Yuxuan Li, Yong-Sheng Lo, Wei Wang, and
Yizhou Sun. MR-Ben: A meta-reasoning benchmark for evaluating system-2 thinking
in LLMs. arXiv preprint arXiv:2406.14981, 2024. URL https://arxiv.org/abs/2406.
14981.

Rui Zhang, Hongtao Zhang, and Yang Cao. From prompt engineering to agent engineering:
A unified framework. arXiv preprint arXiv:2401.07119, 2024a.

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao. On the diagram of thought. arXiv
preprint arXiv:2409.10038, 2024b. URL https://arxiv.org/abs/2409.10038.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought
prompting in large language models. arXiv preprint arXiv:2210.03493, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Liu, Zhipeng Wang, Hu Zhang, Jian-Yun Han,
Yi Lin, Lu Jiang, Xin Shang, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most
prompting enables complex reasoning in large language models. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=WZH7099tgfM.

14

https://openreview.net/forum?id=a648X9AoL4
https://openreview.net/forum?id=a648X9AoL4
https://openreview.net/forum?id=N8N0hgNDRt
https://arxiv.org/abs/2406.14981
https://arxiv.org/abs/2406.14981
https://arxiv.org/abs/2409.10038
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Weijie Zhou, Yi Peng, Manli Tao, Chaoyang Zhao, Honghui Dong, Ming Tang, and Jinqiao
Wang. LightPlanner: Unleashing the reasoning capabilities of lightweight large language
models in task planning. arXiv preprint arXiv:2503.08508, 2025. URL https://arxiv.
org/abs/2503.08508.

Yong Zhou, Yu Pan, Hong Gao, and Jian Wang. Enhancing zero-shot chain-of-thought rea-
soning with reinforcement learning from human feedback. arXiv preprint arXiv:2403.01235,
2024.

Jiajun Zhu, Ye Liu, Meikai Bao, Kai Zhang, Yanghai Zhang, and Qi Liu. Self-reflective
planning with knowledge graphs: Enhancing LLM reasoning reliability for question
answering. arXiv preprint arXiv:2505.19410, 2025. URL https://arxiv.org/abs/2505.
19410.

A Appendix: Full Prompt Templates

This appendix contains the full, unaltered prompts used for the DCO framework in our
experiments.

A.1 DCO Prompt 1: Meta-Cognitive Planner

DCO Planner Prompt

[SYSTEM]
You are a Dynamic Cognitive Orchestrator , an expert in problem

↪→ analysis and strategic planning. Your function is to analyze
↪→ the given problem and design a bespoke , optimal reasoning plan
↪→ to solve it. You must not solve the problem yourself. Your
↪→ entire output must be a single JSON object with no other text
↪→ before or after it.

** Available Cognitive Modules :**
- ‘Decomposition ‘: Define goals , variables , and constraints. Break

↪→ the main problem into a clear sequence of sub -problems.
- ‘AnalogicalReasoning ‘: Recall 1-3 structurally similar problems and

↪→ explain how their solutions or principles can be adapted to
↪→ the current problem.

- ‘HeuristicApproach ‘: Use intuition , estimation , symmetry arguments ,
↪→ or simplifying assumptions to find a plausible or approximate
↪→ answer quickly.

- ‘FormalDeduction ‘: Construct a rigorous , step -by-step mathematical
↪→ or logical proof that leads to the solution.

- ‘AlgorithmicImplementation ‘: Provide pseudocode or functional code
↪→ that implements a computational solution.

- ‘CrossVerification ‘: Take a proposed solution and challenge it from
↪→ multiple perspectives (e.g., checking edge cases , unit
↪→ analysis , attempting a different method to see if results
↪→ converge).

- ‘PrincipleGeneralization ‘: Distill the final , verified solution
↪→ into a universal principle or algorithm and explicitly define
↪→ its scope and limitations.

** Problem Statement :**
{{ Insert Problem Statement Here}}

Your Task :
Output a JSON object with two keys: "rationale" and "plan".
- The "rationale" must be a brief , one -sentence explanation for your

↪→ chosen strategy , referencing the nature of the problem.
- The "plan" must be an array of strings , listing the exact names of

↪→ the cognitive modules to be executed in sequence.

15

https://arxiv.org/abs/2503.08508
https://arxiv.org/abs/2503.08508
https://arxiv.org/abs/2505.19410
https://arxiv.org/abs/2505.19410

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 DCO Prompt 2: Plan Executor

DCO Executor Prompt

[SYSTEM]
You are a diligent and rigorous expert reasoner. Your task is to

↪→ solve the problem below by precisely following the
↪→ step -by-step reasoning plan that has been provided to you. You
↪→ must address each step of the plan explicitly and in the
↪→ correct order.

** Problem Statement :**
{{ Insert Problem Statement Here}}

** Reasoning Plan to Execute :**
{{ Insert the JSON "plan" array generated by Prompt 1 here. For

↪→ example: [" Decomposition", "FormalDeduction",
↪→ "CrossVerification "]}}

Your Task :
Generate a complete , final solution by executing each module in the

↪→ provided plan in sequence. Use a markdown header to clearly
↪→ announce the start of each module ’s execution (e.g., "###
↪→ Executing Module: Decomposition "). Proceed through all steps
↪→ to arrive at the final answer.

B Appendix: Detailed Worked Examples

This appendix provides two end-to-end examples of the DCO framework applied to competi-
tive programming problems from Codeforces. Each example shows the problem, the plan
generated by the Planner, and the full step-by-step solution produced by the Executor.

B.1 Example 1: Complementary Arrays

Problem Statement

Two integer arrays a and b of size n are complementary if there exists an integer
x such that ai + bi = x over all 1 ≤ i ≤ n. For example, the arrays a = [2, 1, 4] and
b = [3, 4, 1] are complementary, since ai + bi = 5 over all 1 ≤ i ≤ 3.
You are given two integer arrays a and b. It is known that a and b both contain n
non-negative integers not greater than k. Unfortunately, some elements in b are lost,
denoted with −1. Help count the number of possible arrays b such that a and b are
complementary and all lost elements are replaced with non-negative integers no more
than k.

Stage 1: Planner Output

Planner JSON Output

{
"rationale ": "To ensure complementarity across known and unknown

↪→ positions , we derive a candidate sum x from known pairs and
↪→ count how many values in unknown positions would satisfy bi
↪→ = x - ai within bounds.",

"plan": [
"Decomposition",
"FormalDeduction",
"AnalogicalReasoning",
"AlgorithmicImplementation",
"CrossVerification",
"PrincipleGeneralization"

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

]
}

Stage 2: Executor Output

The Executor receives the problem and the plan above and produces the following detailed
solution.

Executing Module: Decomposition Goal: Determine the number of valid values for a
constant sum x such that for all i, ai + bi = x holds, where some bi are known, and others
are unknown (denoted by -1). Each missing bi must satisfy 0 ≤ bi ≤ k.

Inputs: t (number of test cases). For each test case: n (size of arrays), k (max allowed
value), arrays a and b.

Subproblems:

1. From known positions where bi ̸= −1, infer the required sum x = ai + bi. All known
pairs must imply the same value of x.

2. For unknown positions where bi = −1, count how many candidate x values allow a
valid replacement, i.e., 0 ≤ x− ai ≤ k.

Executing Module: FormalDeduction From all known (ai, bi) pairs, derive a candidate
value x = ai + bi. If these pairs imply different sums, then no solution exists (count is 0).

If all known pairs are consistent (or if there are no known pairs), validate that for all missing
bi, the required value x− ai lies in the valid range [0, k].

If there are no known bi values, then we must explore all possible values for x. For each
position i, the constraint is 0 ≤ x− ai ≤ k, which is equivalent to ai ≤ x ≤ ai + k. The set
of valid x values is the intersection of these intervals [ai, ai + k] across all i.

Executing Module: AnalogicalReasoning This problem is analogous to:

• Constraint satisfaction: The target sum x must satisfy constraints from multiple
sources (the known pairs). It then defines feasible ranges for the unknown variables.

• Interval intersection: When x is not fixed by any known pair, the problem
becomes finding the size of the intersection of multiple intervals, where each interval
[ai, ai + k] represents the valid range for x imposed by position i.

Final C++ Solution
Executing Module: AlgorithmicImplementation
#include <iostream >
#include <vector >
#include <algorithm >
#include <climits >

using namespace std;
using ll = long long;

void solve () {
int n;
ll k;
cin >> n >> k;
vector <ll > a(n), b(n);
for (ll &x : a) cin >> x;
for (ll &x : b) cin >> x;

ll x = -1;
bool possible = true;
for (int i = 0; i < n; ++i) {

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

if (b[i] != -1) {
ll candidate = a[i] + b[i];
if (x == -1) {

x = candidate;
} else if (x != candidate) {

possible = false;
break;

}
}

}

if (! possible) {
cout << 0 << ’\n’;
return;

}

if (x != -1) {
// Case 1: x is determined by at least one known pair.
for (int i = 0; i < n; ++i) {

if (b[i] == -1) {
ll required_b_i = x - a[i];
if (required_b_i < 0 || required_b_i > k) {

possible = false;
break;

}
}

}
cout << (possible ? 1 : 0) << ’\n’;

} else {
// Case 2: x is unconstrained by any known pair.
ll lo = 0, hi = LLONG_MAX;
for (int i = 0; i < n; ++i) {

ll left = a[i];
ll right = a[i] + k;
lo = max(lo, left);
hi = min(hi, right);

}
if (lo > hi) {

cout << 0 << ’\n’;
} else {

cout << hi - lo + 1 << ’\n’;
}

}
}

int main() {
ios_base :: sync_with_stdio(false);
cin_tie(NULL);
int t;
cin >> t;
while (t--) {

solve();
}
return 0;

}

Executing Module: CrossVerification Test Case: a = [1, 3, 2], b = [−1,−1, 1], k = 10.
From a2, b2, we know x = a2 + b2 = 2 + 1 = 3. Check missing values: For i = 0,
b0 = x − a0 = 3 − 1 = 2. Is 0 ≤ 2 ≤ 10? Yes. For i = 1, b1 = x − a1 = 3 − 3 = 0. Is
0 ≤ 0 ≤ 10? Yes. All checks pass. There is exactly 1 way. Output: 1. Correct.

Edge Case: All bi = −1. a = [1, 2], k = 1. The intervals for x are [1, 1 + 1] = [1, 2] and
[2, 2 + 1] = [2, 3]. The intersection is [2, 2]. The size is 2− 2 + 1 = 1. Output: 1. Correct.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Executing Module: PrincipleGeneralization The core principle is to determine the
constraints on the complementary sum x.

1. If any known pairs (ai, bi) exist, they fix the value of x. We must first verify that all
known pairs are consistent with this single x. Then, we verify if this fixed x allows
all unknown bi to be in the range [0, k]. If all checks pass, there is 1 way; otherwise,
0.

2. If no known pairs exist, x is constrained by every position. For each position i, x
must be in [ai, ai + k]. The total number of ways is the size of the intersection of all
these intervals.

The time complexity is O(n) per test case.

B.2 Example 2: Prefix Min, Suffix Max

Problem Statement

You are given an array a of distinct integers. In one operation, you may either:

• choose a nonempty prefixa of a and replace it with its minimum value, or

• choose a nonempty suffixb of a and replace it with its maximum value.

For each element ai, determine if there exists some sequence of operations to transform
a into [ai]. Output your answer as a binary string of length n.

aA prefix of an array is a subarray consisting of the first k elements of the array, for some
integer k.

bA suffix of an array is a subarray consisting of the last k elements of the array, for some
integer k.

Stage 1: Planner Output

Planner JSON Output

{
"rationale ": "Since each target requires shrinking the array via

↪→ prefix -min or suffix -max operations , we decompose reachable
↪→ intervals and rigorously derive which elements can remain.",

"plan": [
"Decomposition",
"AnalogicalReasoning",
"FormalDeduction",
"AlgorithmicImplementation",
"CrossVerification",
"PrincipleGeneralization"

]
}

Stage 2: Executor Output

The Executor receives the problem and the plan above and produces the following detailed
solution.

Executing Module: Decomposition Goal: For each position i in a distinct-integer
array of length n, determine if we can sequence prefix-min and suffix-max compressions to
end with the single element ai.

Variables & Inputs: n (array length), a[0 . . . n− 1] (distinct integers).

Operation Effects:

• Prefix-min on prefix [0 . . . k] replaces that block with its minimum.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Suffix-max on suffix [k . . . n− 1] replaces that block with its maximum.

Each operation reduces the array’s length. The final state is an array of length 1.

Subproblem: Characterize exactly which elements ai can become the final surviving value
through some sequence of these operations.

Executing Module: AnalogicalReasoning This problem has parallels with algorithms
that select endpoints or extremal values:

• Stack-based nearest smaller/larger element: The logic of an element being a
minimum/maximum in a prefix/suffix is related to finding the nearest element that
is smaller or larger.

• Greedy choices: To make ai survive, it must be chosen as an extremum (min of a
prefix or max of a suffix) at some point. This suggests a greedy logic. An element
can survive if it’s ”stronger” (smaller for prefix-min, larger for suffix-max) than its
neighbors on at least one side.

Executing Module: FormalDeduction For an element ai to be the final result, it must
survive all operations. Consider the final operation. The array will have some elements
[c1, c2, . . . , cm], and we want to perform an operation that results in [ai]. This means ai must
have been one of the elements in [c1, . . . , cm].

• If the last operation is a prefix-min on the whole array, then ai must be the minimum
of [c1, . . . , cm].

• If the last operation is a suffix-max on the whole array, then ai must be the maximum
of [c1, . . . , cm].

Let’s trace this back. The elements [c1, . . . , cm] are themselves results of previous operations.
An element ai can only ever be created by being the minimum of a prefix of the original
array or the maximum of a suffix. Any other element cannot be generated. So, for ai to
survive, it must be possible to shrink the array around it, leaving it as an extremum.

A simpler observation: If we want to end with ai, we can shrink the prefix up to i− 1 and
the suffix from i+ 1. To preserve ai, when we shrink the prefix [0, . . . , j] with j ≥ i, ai must
be the minimum. Similarly for the suffix. An element ai can be the final result if we can
perform a sequence of operations to eliminate all other elements.

1. We can eliminate everything to the left of ai by repeatedly taking prefix-min
operations. For ai to survive this, it must be smaller than everything to its left.
Thus, ai = min(a0, . . . , ai).

2. We can eliminate everything to the right of ai by repeatedly taking suffix-max
operations. For ai to survive this, it must be larger than everything to its right.
Thus, ai = max(ai, . . . , an−1).

A key insight is that we can choose which side to shrink first. For ai to be a possible result, it
only needs to be an extremum on one side. If ai = min(a0, . . . , ai), we can apply a prefix-min
operation on [0, . . . , i], turning the array into [ai, ai+1, . . . , an−1]. Now, we can shrink the
new suffix until we are left with just ai. Symmetrically, if ai = max(ai, . . . , an−1), we can
shrink the suffix first. Conclusion: ai is a reachable target if and only if (ai is the minimum
of its prefix) OR (ai is the maximum of its suffix).

Final C++ Solution
Executing Module: AlgorithmicImplementation
#include <iostream >
#include <vector >
#include <string >
#include <algorithm >
#include <climits >

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

using namespace std;

void solve () {
int n;
cin >> n;
vector <int > a(n);
for (int i = 0; i < n; i++) {

cin >> a[i];
}

vector <int > sufMax(n);
sufMax[n - 1] = a[n - 1];
for (int i = n - 2; i >= 0; i--) {

sufMax[i] = max(sufMax[i + 1], a[i]);
}

int preMin = INT_MAX;
string result = "";
for (int i = 0; i < n; i++) {

preMin = min(preMin , a[i]);
bool is_possible = (a[i] == preMin) || (a[i] == sufMax[i]);
result += (is_possible ? ’1’ : ’0’);

}
cout << result << "\n";

}

int main() {
ios_base :: sync_with_stdio(false);
cin_tie(NULL);
int t;
cin >> t;
while (t--) {

solve();
}
return 0;

}

Executing Module: CrossVerification Test Case 1: ‘a = [1, 3, 5, 4, 7, 2]‘ Prefix
mins: ‘[1, 1, 1, 1, 1, 1]‘ Suffix maxs: ‘[7, 7, 7, 7, 7, 2]‘ - ‘a[0]=1‘: ‘1 == preMin[0]‘. Yes. -¿ 1
- ‘a[1]=3‘: ‘3 != preMin[1]‘, ‘3 != sufMax[1]‘. No. -¿ 0 - ‘a[2]=5‘: ‘5 != preMin[2]‘, ‘5 !=
sufMax[2]‘. No. -¿ 0 - ‘a[3]=4‘: ‘4 != preMin[3]‘, ‘4 != sufMax[3]‘. No. -¿ 0 - ‘a[4]=7‘: ‘7 !=
preMin[4]‘, ‘7 == sufMax[4]‘. Yes. -¿ 1 - ‘a[5]=2‘: ‘2 != preMin[5]‘, ‘2 == sufMax[5]‘. Yes.
-¿ 1 Result: ‘100011‘. Correct.

Edge Cases: - Strictly increasing array ‘[1, 2, 3, 4]‘: Every element is a prefix minimum.
‘preMin[i] == a[i]‘. All ‘1‘s. - Strictly decreasing array ‘[4, 3, 2, 1]‘: Every element is a suffix
maximum. ‘sufMax[i] == a[i]‘. All ‘1‘s. The logic holds.

Executing Module: PrincipleGeneralization An element ai in an array of distinct
integers can be isolated as the sole remaining element via prefix-min and suffix-max operations
if and only if it is an ”extremal” element from its position to one of the array’s boundaries.
Specifically, ai must be either the minimum of the prefix a[0 . . . i] or the maximum of the
suffix a[i . . . n− 1]. This can be efficiently checked by pre-computing all prefix minimums
and suffix maximums in O(n) time and then checking the condition for each element.

B.3 Example 3: Visual Reasoning (SVG Path - Heptagon)

Problem Statement This SVG path element <path d="M 55.57,80.69 L 57.38,65.80
M 57.38,65.80 L 48.90,57.46 M 48.90,57.46 L 45.58,47.78 M 45.58,47.78 L
53.25,36.07 L 66.29,48.90 L 78.69,61.09 L 55.57,80.69"/> draws a

(A) circle

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(B) heptagon

(C) hexagon

(D) kite

(E) line

(F) octagon

(G) pentagon

(H) rectangle

(I) sector

(J) triangle

Stage 1: Planner Output

Planner JSON Output

{
"rationale ": "The problem requires interpreting an SVG path as a

↪→ polygonal shape , which benefits from decomposing coordinates
↪→ into edges and verifying polygon type through formal
↪→ geometric reasoning.",

"plan": ["Decomposition", "FormalDeduction", "CrossVerification",
↪→ "PrincipleGeneralization"]

}

Stage 2: Executor Output

Executing Module: Decomposition Goal: Identify the geometric figure from the SVG
path. Variables: The path consists of M (move) and L (line) commands. Vertices: (55.57,
80.69), (57.38, 65.80), (48.90, 57.46), (45.58, 47.78), (53.25, 36.07), (66.29, 48.90), (78.69,
61.09). The path ends by returning to the first vertex. Sub-problems: Count distinct
vertices and confirm path closure.

Executing Module: FormalDeduction Vertex Count: There are 7 distinct vertices.
Closure: The final ‘L‘ command returns to the starting point, so the shape is a closed
polygon. Polygon Type: A polygon with 7 vertices is a heptagon. All other options are
eliminated as they have a different number of sides or are not polygons made of straight
lines.

Executing Module: CrossVerification Segment Count: Counting the line segments
between vertices gives: 1→2, 2→3, 3→4, 4→5, 5→6, 6→7, and 7→1. This is a total of 7
segments (edges). Consistency Check: A 7-sided polygon is a heptagon. This is consistent
with the deduction.

Executing Module: PrincipleGeneralization To identify a polygon from an SVG path
with only M and L commands, parse the coordinates to find the number of unique vertices.
If the path is closed, this number corresponds to the number of sides, which defines the type
of polygon (e.g., 7 vertices = heptagon).

Final Answer: The correct option is (B) heptagon.

B.4 Example 4: Visual Reasoning (SVG Path - Octagon)

Problem Statement This SVG path element <path d="M 50.55,76.16 L 40.00,72.83
M 40.00,72.83 L 34.22,59.10 M 34.22,59.10 L 38.51,46.47 L 49.40,60.03 L
68.54,44.66 L 72.08,58.87 M 72.08,58.87 L 61.72,73.75 L 50.55,76.16"/> draws
a

(A) circle

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(B) heptagon

(C) hexagon

(D) kite

(E) line

(F) octagon

(G) pentagon

(H) rectangle

(I) sector

(J) triangle

Stage 1: Planner Output

Planner JSON Output

{
"rationale ": "The problem requires interpreting a sequence of SVG

↪→ path coordinates as a closed polygon , so we must break down
↪→ the path into vertices , deduce the polygon type rigorously ,
↪→ verify correctness , and generalize the approach.",

"plan": ["Decomposition", "FormalDeduction", "CrossVerification",
↪→ "PrincipleGeneralization"]

}

Stage 2: Executor Output

Executing Module: Decomposition Goal: Identify the geometric figure from the SVG
path. Vertices: (50.55, 76.16), (40.00, 72.83), (34.22, 59.10), (38.51, 46.47), (49.40, 60.03),
(68.54, 44.66), (72.08, 58.87), (61.72, 73.75). The path ends by returning to the first vertex.
Sub-problems: Count distinct vertices and confirm path closure.

Executing Module: FormalDeduction Vertex Count: There are 8 distinct vertices.
Closure: The final ‘L‘ command returns to the starting point, so the shape is a closed
polygon. Polygon Type: A polygon with 8 vertices is an octagon. All other options are
eliminated.

Executing Module: CrossVerification Segment Count: Counting the line segments
between vertices gives: 1→2, 2→3, 3→4, 4→5, 5→6, 6→7, 7→8, and 8→1. This is a total
of 8 segments (edges). Consistency Check: An 8-sided polygon is an octagon, which is
consistent.

Executing Module: PrincipleGeneralization The same principle as the previous
example applies: for a closed SVG path composed of straight line segments, the number of
unique vertices determines the type of polygon (e.g., 8 vertices = octagon).

Final Answer: The correct option is (F) octagon.

23

	Introduction
	Related Work
	The Dynamic Cognitive Orchestrator (DCO) Framework
	Stage 1: The Meta-Cognitive Planner
	Stage 2: The Plan Executor
	Formalization of the DCO Process

	Experimental Setup
	Tasks and Datasets
	Models and Baselines

	Results
	Contextualizing Performance with State-of-the-Art Results
	Performance on Mathematical Reasoning
	Performance on Algorithmic Reasoning
	Performance on General Reasoning

	Analysis and Discussion
	Analysis of Generated Plans
	Qualitative Case Study
	Failure Recovery via Interactive Feedback

	Conclusion
	Appendix: Full Prompt Templates
	DCO Prompt 1: Meta-Cognitive Planner
	DCO Prompt 2: Plan Executor

	Appendix: Detailed Worked Examples
	Example 1: Complementary Arrays
	Example 2: Prefix Min, Suffix Max
	Example 3: Visual Reasoning (SVG Path - Heptagon)
	Example 4: Visual Reasoning (SVG Path - Octagon)

