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Abstract

Object goal navigation requires an agent to navigate to a specified object in an
unseen environment based on visual observations and user-specified goals. Human
decision-making in navigation is sequential, planning a most likely sequence of
actions toward the goal. However, existing ObjectNav methods, both end-to-end
learning methods and modular methods, rely on single-step planning. They output
the next action based on the current model input, which easily overlooks temporal
consistency and leads to myopic planning. To this end, we aim to learn sequence
planning for ObjectNav. Specifically, we propose trajectory diffusion to learn
the distribution of trajectory sequences conditioned on the current observation
and the goal. We utilize DDPM and automatically collected optimal trajectory
segments to train the trajectory diffusion. Once the trajectory diffusion model is
trained, it can generate a temporally coherent sequence of future trajectory for
agent based on its current observations. Experimental results on the Gibson and
MP3D datasets demonstrate that the generated trajectories effectively guide the
agent, resulting in more accurate and efficient navigation. The code is available at
https://github.com/sx-zhang/T-diff.git.

1 Introduction

Embodied AI aims to develop agents with a comprehensive understanding of their environment,
capable of interacting with humans, other agents and entities in real physical environments. As a
fundamental task of embodied AI, visual object goal navigation (ObjectNav) task involves placing
an agent in an unseen environment and tasking it to navigate to a user-specified object (e.g., ‘find a
toilet’) based on visual sensory input. To efficiently complete the ObjectNav task, the agent needs to
construct an information-rich memory to store past experiences (i.e., what it has previously seen) to
avoid redundant searching. Additionally, it needs to learn a planner to plan the future (i.e., determine
the most efficient sequence of actions to navigate to the target) to avoid unnecessary exploration.

Humans are innately smart navigators, as they encode both short-term memories from current
navigation and long-term memories from daily life into a cognitive map. This map records detailed
information about the semantics, positions, and relationships within spatial environments [40]. In
practice, the human decision-making process is understood as finding the most possible sequence of
releases based on cognitive information [41]. Human planning is a sequential process that ensures
temporal consistency and global optimality. However, prior methods of ObjectNav employ single-step
planning rather than sequential planning for navigation. As illustrated in Fig. 1, prior end-to-end
learning methods [66, 45, 62, 28, 18, 33, 34] formulate their planners as end-to-end networks
and train them using reinforcement learning (RL) [66, 45, 62, 28, 18] or imitation learning (IL)
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Figure 1: Different planners (denoted as green modules) in existing methods of ObjectNav. (a)
represents end-to-end learning methods, and (b) refers to modular methods. (c) denotes the proposed
trajectory diffusion, which plans future sequence trajectory based on geometric semantic map.

[33, 34]. These planners perform single-step planning at each moment, outputting an action based
on the current egocentric view, which leads to a lack of temporal consistency and interpretability.
Furthermore, these methods implicitly encode all past observations, leading to a loss of geometric
spatial information, thus limiting their generalization in complex environments [28, 63]. Modular
methods [4, 31, 65, 59, 64] attempt to address this by constructing a semantic map during navigation
to geometrically store historical observations, helping the agent avoid redundant searching. However,
their decision-making process is still single-step. They train a waypoint predictor via supervised
learning to plan the next subgoal based on the current semantic map and target. Motivated by learning
sequential planning, we propose to model the conditional distribution of the trajectory sequence, i.e.,
learning to plan a sequence of future trajectory conditioned on the current semantic map and target.

Since both the semantic map and trajectory sequence are high-dimensional, the feature space and
computational complexity are significantly high. Thus, directly learning this conditional distribution
is challenging [1]. Recently, diffusion models have achieved great success in expressing complex
distributions [16, 54] and generating high-quality images [37, 35, 32]. Diffusion models gradually
add noise to the data during the diffusion process, transforming the data distribution into a simple
distribution (e.g., Gaussian distribution). In the reserve process (i.e., denoising process), noise is
iteratively predicted and removed, generating complex data distributions from the simple random
distribution. This iterative refinement learning manner enhances the stability and controllability of
learning high-dimensional data distributions. Therefore, we utilize diffusion models to learn this
conditional distribution and propose the trajectory diffusion (T-diff) model as a navigation planner,
which performs sequence planning and generates the future trajectory sequence for the agent.

In this paper, we propose the trajectory diffusion for the ObjectNav task. The trajectory diffusion is a
sequence planner designed to generate optimal trajectory sequence for an agent based on its historical
observations (i.e., semantic maps) and target object. Specifically, we collect optimal trajectories by
using precise maps in training rooms. Then, an agent equipped with a semantic map module is driven
to follow these trajectories, gathering semantic maps and poses at each timestep along the way. The
collected data are further divided into data pairs consisting of a semantic map at a given moment
and the corresponding future trajectory segments. Based on the collected data pairs, we employ
DDPM [16] to train our trajectory diffusion. Our trajectory diffusion is implemented by modifying
Transformer-based diffusion, which takes noised latent as the starting input and iteratively refines
them to produce trajectory sequence. Once the trajectory is generated, we drive the agent to move
along the predicted trajectory sequence until the target is found. Evaluations on the Gibson [47]
and MP3D [3] simulators show our trajectory diffusion model significantly outperforms baselines.
Visualization results confirm effective guidance from generated trajectories. Additionally, we further
showcase the scalability of our trajectory diffusion model across different simulators.

2 Related Work

ObjectGoal Navigation. Goal-driven navigation [22, 42, 43, 44, 63] is a fundamental task in
embodied AI, and this paper focuses on a specific variant of this task, namely the ObjectNav task,
where the goal is defined by object semantics. Current works for ObjectNav task can be categorized
into two types: end-to-end learning methods and modular methods. End-to-end learning methods
develop a navigation policy by interacting with the environment trained by reinforcement learning
(RL) [45, 66, 61] or imitation learning (IL) [34, 33]. These approaches typically take inputs such as
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target object categories and extra information, including visual representations[20, 29, 18] and object
relationship graphs[51, 62, 11, 55]. Then they predict single-step planning in each timestep. The end-
to-end method implicitly encodes all past observations, which results in the loss of geographic spatial
information. Consequently, its generalization ability in environments with complex layouts is limited.
Modular methods [4, 5, 6] typically preserve a top-down geometric map enriched with semantic
details. They are also single-step planners that predict waypoints as sub-goals at each time step based
on the constructed semantic map. Through supervised learning, PONI[31] learns to predict the nearest
frontier with the current semantic map to infer where to explore, while PEANUT[59] directly predicts
the target location in the form of a probabilistic goal map. Current end-to-end learning methods
are single-step planners with implicit memory, while modular methods are single-step planners
with geometric memory. Alternatively, our trajectory diffusion approach is a sequence planner with
geometric memory, predicting future sequential trajectories based on the current semantic map.
Sequence planning ensures temporal consistency and interpretability of decisions. The geometric
memory prevents the agent from redundant exploration.

Diffusion Model. Diffusion models (DDPMs [16]) are generative models that learn complex
data distributions by iteratively predicting and removing randomly sampled noise to obtain target
samples. Diffusion models have been successfully applied in image-related fields, including image
generation[32, 37, 30], super-resolution[36, 46], image inpainting[26, 48], and image editing[2,
39]. Diffusion models predominantly use UNet-based [36, 37] and Transformer-based [30, 32, 46]
architectures. UNet excels in preserving spatial details for high-resolution images, while Transformers
capture global context, suited for sequential data. Therefore, we adopt a Transformer-based diffusion
model to implement our trajectory diffusion. Recently, diffusion models are gradually employed
in the field of robotics. several works [8, 58, 25, 13] leverage Data collection from real-world
often suffers from scarcity or lacks diversity. As natural data synthesizers, diffusion models are
leveraged by several works [8, 58, 25, 13] for data augmentation purposes. Furthermore, methods
like Diffuser[17], Crossway Diffusion[21] and Diffusion policy [9] utilize diffusion models to fit
multi-modal behavioral data of agents. In line with our work, the proposed Diffusion Trajectory aims
to learn the distribution of trajectory sequence conditioned on semantic maps and the goal, primarily
to address the ObjectNav task.

3 Preliminaries of ObjectNav

The task of ObjectNav involves navigating an agent to a specific type of object (e.g., ‘chair’) in
unseen environments. At the beginning of each episode, the agent is initialized at a random position.
During navigation, at every timestep t, the agent receives egocentric RGB-D images It, the target
object o, and the senor pose pt, which includes the spatial coordinates and the direction the agent is
facing. The agent performs one of several discrete actions, includeing move_forward, turn_left,
turn_right, and stop. The action stop is autonomously initiated by the agent once it determines
to complete the task. An episode is considered successful if the agent stops within a preset number of
steps at a spot where the target object is within a specified distance (e.g., less than 1m) and is visible
in the agent’s field of view.

Existing works for the ObjectNav task can be categorized into end-to-end learning methods and
modular methods, as shown in Fig. 1. The end-to-end learning methods [66, 18, 33, 34] generate
single-step plans at each time step, formulated as a policy π(at|It, o), where at denotes the action
at timestep t. They typically utilize RL or IL to train policy functions π(at|It, o). The training
objective of RL is to maximize the expected sum of discounted rewards. Let χ denote a sequence
of object, action, reward tuples sampled based on π within an episode. The training objective is
argmax

π
Eχ∼π [Rχ] , Rχ =

∑
t=1γ

t−1rt, where γ is a discount factor, and rt denotes the reward

function, typically implemented as a sparse success reward. This is because dense rewards can
inhibit agent’s exploration [28], thus impairing its generalization in unseen environments [33].
Sparse rewards are desirable, but they result in most sample trajectories having difficulty obtaining
positive rewards, making the learning process challenging. Moreover, as the policy parameters
are updated, previously sampled trajectories become obsolete, necessitating the collection of new
data. Consequently, the low sample efficiency of end-to-end learning methods results in high
computational costs for training. As for IL-based methods [33, 34], the training objective is to
minimize the difference between the policy’s output and human demonstrations (i.e., behavior
cloning), summarized as argmin

π
E(Id

t ,a
d
t )∼D[− log(π(adt |Idt , o))], where D is a dataset of human
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Figure 2: Frameworks of the trajectory diffusion (T-Diff). (a) refers to the process of dividing the
collected data into data pairs. (b) shows the implementation structure of T-Diff. (c) illustrates the
navigation process guided by trajectories generated by T-Diff.

demonstrations. However, collecting human demonstrations is highly expensive, making IL training
costly. Additionally, end-to-end learning methods implicitly encode historical observations, which
results in a lack of geometric memory. This also limits the generalization capability of these methods.

Modular methods [4, 31, 65, 59] typically construct a local semantic map (the map module will be
detailed in Sec. 4.2) during navigation. The semantic map geometrically stores historical observations,
helping the agent avoid redundant exploration. For the navigation planner, they formulate it as
f(Ω|mt, o), where Ω is a set of points in mt, e.g., Ω can be defined as frontiers of mt [31] or
unknown regions outside mt [59]. The module f(Ω|mt, o) is trained as a supervised regression task
with the training loss

∑
ΩL (V (Ω) , f (Ω|mt, o)), where V (Ω) represents the ground truth, and its

values are calculated based on the actual location of the target (i.e. the closer Ω is to the target, the
higher value of V (Ω)). Based on the predictions of f , the agent selects the point with the optimal
value as a sub-goal to guide the agent. The planner f re-predicts at each timestep, which is also a
form of single-step planning. Supervised learning is efficient for training, however, due to the limited
room diversity (i.e., current simulators [47, 3, 49] mostly contain fewer than 1000 unique rooms),
these location-related supervision constraints lead the learned planner f to overfit to the layouts of
the training rooms [63].

In summary, end-to-end learning methods learn a single-step planner with implicit memory, and
their learning process suffers from sample inefficiency and high training costs. On the other hand,
modular methods learn a single-step planner with geometric memory, but the generalization of their
planner is constrained by location-related supervision. In our work, our trajectory diffusion model
is a sequence planner with geometric memory, which aims to learn the conditional distribution
p(τt|mt, o), where τt represents the planned future sequential trajectory. The sequential plan ensures
temporal consistency and interpretability of decisions, while the geometric memory ensures efficient
exploration. Furthermore, in terms of model training, we leverage DDPM with automatically collected
trajectories to learn this conditional distribution, effectively avoiding sample inefficiency, the necessity
for expensive human demonstration collection, and the risk of overfitting location-related information.

4 Trajectory Diffusion

4.1 Diffusion Model

Diffusion models are probabilistic generative models trained to learn data distributions by iteratively
denoising variables sampled from Gaussian distributions. The forward process of diffusion models
(DDPMs [16]) is defined as the diffusion process, which is implemented via a Markov chain that
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gradually applies Gaussian noise to the real data which can be formulated as follows:

q (x1:T |x0) =

T∏
τ=1

q (xτ |xτ−1) , q (xτ |xτ−1) = N
(
xτ ;

√
ᾱτ , (1− ᾱτ ) I

)
(1)

where constants ᾱτ are hyper-parameters. x0 is the real data, while x1, . . . , xT are noised latent
data. The dimension of both latent and real data are the same, i.e., x0:T ∈ Rd. By applying the
reparameterization trick, the noised data can be sampled by xτ =

√
ᾱτx0 +

√
1− ᾱτ ϵτ , where

ϵτ ∼ N (0, I). Diffusion models learn the real data distribution by reversing the diffusion Markov
chain, denoted as p(xτ−1|xτ ), which is referred to as denoising process. Theoretically, this process
reduces to predict the noise added to xτ . The noise prediction network ϵθ is trained using the
mean-squared error between the predicted noise and the ground truth sampled Gaussian noise ϵτ .
Additionally, diffusion models can be conditioned on other inputs (e.g., text [2, 30] or image [9, 52]),
then the training objective is formulated by

Lθ = Ex,c,ϵ,τ [∥ϵτ − ϵθ (xτ , c, τ) ∥22] (2)

where c is the embeddings of input condition. Once the model ϵθ is trained, real data are iteratively
generated starting from random noise.

4.2 Navigating with Trajectory Diffusion

Our trajectory diffusion aims to generate the optimal future trajectory for the ObjectNav agent based
on its current state, thereby assisting the agent in efficiently navigating to the target object.

Trajectory collection. To train the trajectory diffusion, we collect a set of data pairs ((mt, o), ξt),
where mt is the semantic map at time t, o denotes target object, and ξt ∈ R2×k = [pt+1, . . . , pt+k]
represents the trajectory segment, defined as the concatenation of the senor poses from time t+ 1 to
t+ k. Each sensor pose pt is recorded in 2 dimensions representing the 2D coordinates. To obtain
efficient trajectories and corresponding semantic maps, we first randomly initialize a start position in
the training room. Then, the Fast Marching Method (FMM) [38] is utilized to compute an optimal
path from the start position to a specific target o based on the precise collision maps of the current
training room. Note that such precise maps are unavailable during testing since the test rooms are
unseen. Subsequently, we drive an agent equipped with semantic mapping module along this optimal
path, recording the semantic map mt at each timestep. Based on the collected data, we sample
a series of data pairs for training our trajectory diffusion. Furthermore, the collected trajectories
are segmented into sub-trajectories ξt of length k. Together with the corresponding semantic maps
mt and target object o, these data pairs ((mt, o), ξt) ultimately constitute the training data for our
trajectory diffusion, as illustrated in Fig. 2 (a).

Trajectory diffusion model. We utilize DDPM to train our trajectory diffusion to estimate the
conditional distribution p(ξt|mt, o). In the diffusion process, we sample noised data by ξτt =√
ᾱτξ

0
t +

√
1− ᾱτ ϵτ , where ϵτ ∼ N (0, I) represents Gaussian noise and ξ0t is the real data ξt, i.e.,

the trajectory segments in the collected data pairs ((mt, o), ξt). ᾱτ and τ are hyper-parameters that
control the variance schedule. Note that two timesteps (t and τ ) are involved here, where t represents
a specific moment in navigation, and τ denotes the noise schedule in diffusion or denoising processes.
We train the model to predict the added noise, and the training objective is modified from Eq. 2

Lθ = Eξ,s,ϵ,τ,t[∥ϵτ − ϵθ (ξ
τ
t , st, τ) ∥22] (3)

where θ represents the parameter for trajectory diffusion. The navigation state st of the current agent
acts as the condition for trajectory diffusion. The state st is the concatenation of the embedding of the
semantic map mt and the target object o. The semantic map mt is encoded by a ResNet18 (without
pretrained), while the target object o is encoded using linear projection.

Regarding the implementation of trajectory diffusion, since the navigation trajectory ξt is a sequence
of k tokens, each with a dimension of m, our trajectory diffusion follows DiT [30], which is a
diffusion model based on the Transformer architecture. As illustrated in Fig. 2 (b), the noised
latent ξτt is encoded via a linear projection with added positional embeddings, and then processed
through a series of transformer blocks. In addition to the noised latent input, trajectory diffusion also
conditions on the diffusion timestep τ and the navigation state st. The condition information interacts
with the encoded noised latent through a multi-head cross-attention layer. After passing through N
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Figure 3: The impact of three hyper-parameters. (a) represents the impact of the length of generated
trajectories k during training. (b) reflects the impact of maximum noise schedule τmax in diffusion
and denoising process of T-diff. (c) shows the impact of selected proportion of generated trajectory
length for navigation performance.

Transformer blocks, we utilize a standard linear decoder to output the noise prediction. Note that the
output has a shape equal to the original noised latent.

Navigating with generated trajectory. During navigation, at each timestep t, the agent receives the
current egocentric RGB-D view It, the current sensor pose pt, and the target object o as shown in
Fig. 2 (c). The semantic mapping module aids the agent in constructing an incrementally growing
semantic map mt. At each timestep during navigation, the received RGB-D image is segmented into
semantic categories using a pre-trained segmentation model [14]. Subsequently, the depth image
is employed to project each pixel, along with its semantic label, into 3D space. Points within a
specific height range (relative to the agent’s height) are designated as obstacles. Then, This point
cloud is transformed into a voxel occupancy grid, which is integrated across the height dimension
to create an egocentric map. The egocentric map is then transformed into an allocentric coordinate
system based on the agent’s pose and is aggregated with the pre-existing global map. Consequently,
the semantic map mt ∈ R(4+n)×h×w comprises (n+ 4)× h× w elements, where n denotes the
number of semantic categories, and h, w are the map size. Channels 1 and 2 depict the obstacle map
and the explored regions, respectively. Channels 3 and 4 represent the agent’s current position and all
previous positions.

The embeddings of the semantic map mt and target object o are concatenated to form the navigation
state st, serving as generation condition. The trained trajectory diffusion model ϵθ begins with an
initialized Gaussian noise ξτmax

t as the initial input, and predicts the noise ϵθ (ξ
τ
t , st, τ) contained

within the noised latent ξτt . Then, the noised latent trajectory is denoised by ξτ−1
t = ξτt −ϵθ (ξ

τ
t , st, τ).

This denoising process is repeated for τmax steps, iteratively generated the final trajectory ξ0t .

Once the generated trajectory ξ0t (i.e., ξt) is obtained, a local policy [4, 6] is employed to drive the
agent along this trajectory. To prevent the agent from encountering unreachable points (i.e., obstacles)
in the generated trajectory, we select the kg-th waypoint of ξt as the navigation goal, where kg is a
hyper-parameter discussed in Sec. 5.2. The local policy converts the navigation goal into low-level
actions by computing a collision-free path using the FFM method based on the obstacle channel from
the semantic map mt. It then determines deterministic actions according to the agent’s step distance
to navigate agent towards the navigation goal (i.e., kg-th waypoint of ξt). The trajectory diffusion
generates a new trajectory every tT−diff step, while the local policy replans deterministic action at
each step of navigation.

5 Experiments

5.1 Experimental Setup

Dataset. We evaluate the performance of our model on standard ObjectNav datasets, including
Gibson [47] and Matterport3D (MP3D) [3] , in the Habitat simulator. For Gibson, we use 25 train / 5
val scenes from the tiny-split, following the settings of [31], with 1000 validation episodes containing
6 target object categories. For MP3D, we utilize 56 train / 11 val scenes, with 2195 validation episodes
containing 21 target object categories. The detailed goal categories are mentioned in Appendix.

Implementation Details. For the training of trajectory diffusion model, we sample 84k and 465k
data pairs from the training scenes in Gibson and MP3D (85% train / 15% val), respectively. The
semantic maps are resized to 224 × 224. We implement the trajectory diffusion model based on
the DiT [30] structure. Additionally, the semantic map in condition information is encoded by
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Figure 4: Visualization of trajectory generation. Each row in the figure overlays the results of five
repeated experiments, where the same semantic map and target are used as conditions but different
random initialization noises are used as inputs. The color intensity of trajectory points represents
temporal order, with lighter colors indicating points closer in time to the current navigation timestep.

a ResNet-18 [15] with the first convolutional layer’s input channel adjusted to accommodate the
dimension of the semantic map. The diffusion process contains N = 8 Transformer blocks. Training
is performed using AdamW optimizer[19, 24] with a base learning rate of 1e-4, warmed up for 1000
steps using linear warmup and cosine schedule. After the warmup steps, the learning rate for the
diffusion model is decayed by a factor of 1e-3, and the learning rate of the semantic map encoder
is decayed by a factor of 1e-6. Each model is trained for 200 epochs. Following some common
generative methods, exponential moving average(EMA) is used with a maximum decay of 0.9999
during training. All reported results are obtained using EMA model. The maximum noise schedule
τmax is set to 100. The length of the predicted trajectory k = 32 and the selected kg-th point is set
to 28. The experiments on these three hyper-parameters are detailed in Sec. 5.2. The agent’s turn
angle is fixed at 30 degrees and each Forward step distance is 25 cm. The maximum timestep limit
is set to 500 during navigation and tT−diff is set to 5. Note that, since the navigation performance of
multiple repeated experiments does not show significant differences, error bars are not reported.

Evaluation metrics. Three standard metrics are utilized to quantify the performance of the model in
ObjectNav task, following [31, 59, 4]. SR (Success Rate) indicates the proportion of success episodes.
SPL (Success weighted by Path Length) represents the success rate of episodes weighted by path
length, thereby reflecting the efficiency of the agent’s path relative to the shortest path. DTS (Distane
To Goal) denotes the distance of the agent from the goal when the episode ends. In addition, we use
MSE (Mean Squared Error), which reflects the distance between the denoised generated trajectory
and the real trajectory, to assess generation accuracy of our T-Diff.

5.2 Evaluation Results

Hyper-parameter tuning of T-Diff. Hyper-parameter k determines the length of generated trajectory.
We evaluate the impact of parameter k on the generated trajectory (on MSE metric) and navigation
performance (on SR and SPL metrics), as shown in Fig. 3 (a). The results indicate that both overly
short and overly long generated trajectories are suboptimal. We infer that when the trajectory length
is too short, original sequence-planning gradually turns into step-planning, which undermines the
temporal consistency of the planning. Conversely, if the trajectory is too long (i.e., greater than
32), the distribution p(ξt|mt, o) becomes more complex, making the learning process more difficult.
Based on experimental results, we determine that k = 32 is the optimal value.

The hyper-parameter τmax represents the maximum noise schedule, determining the upper limit of
iterations in both the diffusion and denoising processes. As evaluation results shown in Fig. 3 (b), the
noise schedule τmax is empirically set to 100.

Visualization of trajectory generation. We visualize the iterative trajectory generation process, as
shown in Fig. 4. Initially, the trajectories are initialized as random coordinate points. As the denoising
process progresses, these points gradually converge, forming the final trajectory at τ = 0. Note that
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Table 1: Ablation study on minimal trajectory length for T-Diff training in Gibson (val). When the
trajectory length is 1 (rows 2-6), T-Diff is trained to directly predict a waypoint. i-th denotes that the
training ground truth is the point at the i-th step from the current position on the optimal trajectory.

ID Method Trajectory Navigation (Gibson)
Length i-th MSE ↓ SR(%) ↑ SPL(%) ↑ DTS(m) ↓

1 Single-step (PONI) - - - 73.6 41 1.25
2 T-Diff 1 1 0.2247 71.0 37.6 1.49
3 T-Diff 1 8 0.2253 72.8 40.4 1.44
4 T-Diff 1 16 0.2308 72.6 40.8 1.45
5 T-Diff 1 24 0.2291 74.2 42.1 1.39
6 T-Diff 1 32 0.2456 73.8 41.3 1.40
7 T-Diff 4 1 0.1042 75.9 43.1 1.32
8 T-Diff 32 1 0.0357 79.6 44.9 1.00

the visualization is conducted on the validation set of Gibson, where scene layout is unknown to our
trajectory diffusion method. Despite this, the trajectory diffusion is still capable of generating the
most efficient path to the target, as indicated by the goal position marked on the ground-truth map.

Ablation study on minimal trajectory length for T-Diff training. We conduct an ablation study
using minimal trajectory lengths (e.g., 1 and 4) for training T-Diff, as shown in Tab. 1. Note that
when the length is set to 1, the prediction of T-Diff is a single waypoint. The results indicate that
when the length is set to 1, T-Diff’s performance is influenced by the choice of ground truth point
(i.e., the i-th point from current position on the optimal trajectory). The performance with shorter
lengths (1 or 4) is lower compared to longer lengths (32).

We hypothesize that predicting a sequence of trajectories, as opposed to a single point, allows each
predicted point to receive contextual information from neighboring points. This helps correct and
smooth out prediction errors of individual points, reducing the sensitivity of the results to single-point
errors. Consequently, this ensures more stable predictions and enhances overall accuracy of trajectory
prediction. This finding further supports our motivation for using sequence planning.

Table 2: Comparison with different variants of T-Diff on Gibson
(val). It means using RGB information as condition while mt refers to
employing semantic map as condition. Here, LP denotes local policy,
and FBE corresponds to the area potential function proposed by [31].

ID Method T-Diff variants
Trajectory Navigation (Gibson)

MSE ↓ SR(%) ↑ SPL(%) ↑ DTS(m) ↓
0 Random policy ✗ - 0.4 0.4 3.89
1 FBE+LP ✗ - 72.3 38.5 1.32
2 T-Diff+LP Visual(It) 0.2058 73.5 41.6 1.23
3 T-Diff+LP Visual (mt) 0.0546 76.9 44.1 1.08
4 T-Diff+LP Visual (mt)+Goal 0.0357 79.6 44.9 1.00

Evaluations of T-Diff vari-
ants. We compare differ-
ent variants of T-Diff as
shown in Tab. 2, where
rows 2-4 represent differ-
ent variants of T-Diff (i.e.,
sequence planner with ge-
ometric memory). The
comparison in row 1 uses
an enhanced FBE method
(proposed by PONI [31])
combined with a local pol-
icy (i.e., single-step planner
with geometric memory). The ’X’ marks in row 1 indicate that T-Diff is not used, but this alternative
still employs semantic map and goal for navigation. Row 0 refers to the case where navigation
process does not use any map or goal. The comparison between row 1 and T-Diff variants (rows
2-4) demonstrates that sequence planning achieves superior navigation performance. Moreover,
compared to different T-Diff variants, row 2 represents the variant that utilizes only a single timestep
observation It for trajectory generation. Rows 3 and 4 represent variants that use a semantic map mt

encompassing all historical observations as conditions for trajectory generation. Comparing rows 2
and 3, the results indicate that using mt not only improves trajectory generation but also enhances
navigation performance. We hypothesize that navigation is a sequential decision-making task, and
relying solely on current single-step observations can lead to suboptimal decisions due to a lack of
temporal consistency, thereby reducing overall navigation efficiency.

Furthermore, comparing rows 3 and 4, the inclusion of target object improves navigation accuracy,
demonstrating that the agent’s trajectory is goal-driven rather than aimless. Finally, compared to the
baseline (comparing rows 1 and 4), integrating our trajectory diffusion method improves navigation
performance by 7.3% in SR, 6.4% in SPL, and reduces DTS by 0.32m. These results validate the
effectiveness of the proposed trajectory diffusion.
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Figure 5: Visualization of navigating with generated trajectory on Gibson (val). The top row shows
the agent’s first-person RGB observation and the bottom row displays the local semantic map along
with generated trajectory by T-Diff. The right figure shows the ground truth map with the actual
trajectory of the agent and the target location marked. The generated trajectory effectively guides the
agent towards the target, even when the target remains unseen.

Table 3: Comparisons with simpler model for trajectory gen-
eration. MSE measures the quality of generated trajectories,
while SR, SPL, and DTS indicate navigation performance.

MSE ↓ SR(%) ↑ SPL(%) ↑ DTS(m) ↓
Simple decoder 0.6541 59.2 33.5 2.05

T-diff (Ours) 0.0357 79.6 44.9 1.00

Comparisons with simpler model
for trajectory generation. We con-
sider the following simple decoder
to learn the trajectory generation
P (τt|mt, o) as a comparison. It
adopts a similar Transformer-based ar-
chitecture to T-Diff, with comparable
parameters and the same conditional
inputs. However, unlike T-Diff, which is trained using DDPM, this competitor is trained with MSE
loss. The results are shown in the Tab. 3. The results indicate that directly learning P (τt|mt, o)
through supervised training yields poor performance. Our analysis suggests that since both mt and
τt are high-dimensional, the target distribution P (τt|mt, o) is also high-dimensional. Given the
limited number of training rooms (less than 100), P (τt|mt, o) is sparse and difficult to learn directly.
In contrast, the diffusion model (DDPM), through its diffusion and denoising process, gradually
simplifies complex distribution into multiple simpler distributions. This allows for better learning
of P (τt|mt, o) distribution. Therefore, our experiments and analysis confirm the necessity of using
diffusion models for learning trajectory generation.

Table 4: Comparisons of navigation performance across
different training and testing simulators.

ID Method Train Test SR(%) ↑ SPL(%) ↑ DTS(m) ↓
1 PONI [31] Gibson Gibson 73.6 41.0 1.25
2 PONI [31] MP3D Gibson 43.9 26.3 2.56
3 T-Diff (Ours) Gibson Gibson 79.6 44.9 1.00
4 T-Diff (Ours) MP3D Gibson 78.2 45.2 1.07

Scalability. We compare the per-
formance of our trajectory diffusion
method with the modular method (i.e.,
PONI [31]) across different simula-
tors, as shown in Tab. 4. When train-
ing and testing are performed on the
same simulator, despite the testing
rooms being unseen, the layouts of
the training and testing rooms are still
similar. In this scenario, the modular method, which uses location-related information for supervision,
achieves relatively good performance, as shown in line 1 of Tab. 4. However, when the training and
testing rooms come from different simulators, the performance of the modular method significantly
deteriorates (line 2). In contrast, our trajectory diffusion method demonstrates better scalability. Even
when the training and testing rooms come from different simulators, it maintains good navigation
performance (compare lines 3 and 4).

Navigation with trajectory diffusion. The generated trajectory ξt represents the future location
points of the agent from time t+ 1 to t+ k. As mentioned in Sec.4.2, instead of directly using the
first points on the generated trajectory as the waypoint to guide the agent, we select the kg-th point
as the guidance.The impact of the hyper-parameter kg is evaluated as shown in Fig. 3 (c), where
the horizontal axis represents kg/k. The results indicate that the optimal value is achieved when
kg/k = 0.875, i.e., when k = 32, kg = 28. We attribute this to the fact that, while the generated
trajectory follows the correct overall trend, it still fluctuates within a certain range, as shown in Fig.
4. Therefore, if the selected point is too close to the current coordinate, the planning of near-term
actions is more frequently affected by these fluctuations, leading to a performance decline.
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Table 5: Comparing ObjectNav performance on Gibson and MP3D of related studies. Note that Red-
Rabbit [53] utilizes auxiliary tasks for training, while THDA [28] and Habitat-Web [34] incorporate
additional training data. Results of SemExp [4], L2M [12] and Stubborn [27] are reported from [60].
Results marked with * indicate our implementation.

ID Method
Gibson MP3D

SR(%) ↑ SPL(%) ↑ DTS(m) ↓ SR(%) ↑ SPL(%) ↑ DTS(m) ↓

1 Random 0.4 0.4 3.89 0.5 0.5 8.05

I

2 DD-PPO [44] 15.0 10.7 3.24 8.0 1.8 6.94
3 Red-Rabbit [53] - - - 34.6 7.9 -
4 THDA [28] - - - 28.4 11.0 5.62
5 SSCNav* [23] - - - 27.1 11.2 5.71
6 EmbCLIP* [18] 68.1 39.5 1.15 29.2 10.1 5.40
7 Habitat-Web [34] - - - 35.4 10.2 -
8 ENTL [20] - - - 17.0 5.0 -
9 OVG-Nav [56] - - - 35.8 12.3 5.69

II

10 FBE [50] 64.3 28.3 1.78 22.7 7.2 6.70
11 ANS [6] 67.1 34.9 1.66 27.3 9.2 5.80
12 SemExp [4] 71.1 39.6 1.39 28.3 10.9 6.06
13 PONI [31] 73.6 41.0 1.25 31.8 12.1 5.10
14 L2M [12] - - - 32.1 11.0 5.12
15 Stubborn [27] - - - 31.2 13.5 5.01
16 3D-aware [60] 74.5 42.1 1.16 34.0 14.6 4.78
17 L3MVN [57] 76.9 38.8 1.01 - - -
18 SGM [64] 78.0 44.0 1.11 37.7 14.7 4.93
19 T-Diff (Ours) 79.6 44.9 1.00 39.6 15.2 5.16

Additionally, we visualize the navigation process of the agent, as shown in Fig. 5. According to
the ground truth map and target location on the right side, it is evident that during navigation, the
trajectories generated by our trajectory diffusion are consistently correct and efficient, even when
the target object is not visible in the early stages (t<76). Consequently, the agent efficiently finds the
target guided by the generated trajectories. More visualizations can be found in the Appendix.

Comparisons with the related works. We evaluate the performance of our T-Diff on ObjectNav task
by comparing it with related baselines, categorizing into end-to-end [44, 53, 28, 23, 18, 34, 20, 56]
and modular [50, 5, 4, 31, 12, 27, 60, 57] methods. It is worth noting that some methods incorporate
additional information [28, 10, 34] or auxiliary tasks [53, 7], making it challenging to achieve a fair
comparison. Therefore, we primarily focus on the following baselines: SemExp [4], PONI [31],
OVG-Nav [56], L3MVN [57], L2M [12], and SSCNav [23]. PONI enhances SemExp by introducing
supervised learning to predict goal-related information. OVG-Nav uses semantic topological maps to
plan sub-goal nodes at a high level for the agent. L3MVN leverages LLM to infer unknown regions
based on semantic information of the current boundary. L2M and SSCNav improve navigation by
learning to build a top-down map that is egocentric in a single timestep. Since L2M and SSCNav
only report results on their custom datasets, we use either re-implementation results from other work
[60] with similar experimental settings or our own implementation results for comparison.

We compare our T-Diff with these methods on the validation sets of Gibson and MP3D, as shown
in Tab. 5. On the Gibson, our T-Diff outperforms the current state-of-the-art method [57] by 2.7%,
6.1%, and -0.01m in SR, SPL, and DTS metrics, respectively. On the MP3D, T-Diff improves by
3.8%, 2.9%, and -0.53m in the same metrics compared to the current state-of-the-art method [56].

6 Conclusion

We propose a trajectory diffusion model (T-Diff) as a sequence planner for ObjectNav task. Our
method leverages agent’s historical observations and target object as conditions to iteratively generate
the future sequential trajectory. Experimental results on standard datasets, including Gibson and
MP3D, demonstrate that our T-Diff effectively improves navigation performance compared to the
baselines. Furthermore, additional visualizations and experiments, detailed in the Appendix and
supplementary materials, show that the future trajectory generated by T-Diff provides effective
guidance for the agent and exhibits scalability and generalizability across different simulators.
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Table 6: Chosen object categories in Gibson [47] and MP3D [3].

Dataset Training Evaluating

Gibson
chair, couch, potted plant, bed, toilet, dining-table, tv,

chair, couch, tv, bed, toilet, potted plant
oven, sink, refrigerator, book, clock, vase, cup, bottle

MP3D
char, table, picture, cabinet, cushion, sofa, bed, chest of drawers, plant, sink, toilet, stool,
towel, tv monitor, shower, bathtub, counter, fireplace, gym equipment, seating, clothes

Table 7: FLOPs(Floating Point Operations) of SemExp [4], PONI [31], 3D-aware [60] and our
T-Diff.

Method SemExp PONI 3D-Aware T-Diff (Ours)

FLOPs (M) 3080.41 46621.90 11617.01 16078.40

A Appendix / supplemental material

A.1 Experiments Setup

Evaluation metrics. We employ SR, SPL and DTS metrics to evaluate the ObjectNav performance
and assess the trajectory generation accuracy by MSE metric.

SR (Success Rate). SR measures the success rate of the agent in successfully finding the target object.
It is defined as SR = 1

N

∑N
i=1 Si, where N is the total number of validation episodes and Si is an

indicator that representing whether the i-th episode is successful or not.

SPL (Success weighted by Path Length). SPL considers whether the path length of navigation is
efficient based on success rate which is formulated as SPL = 1

N

∑N
i=1 Si

l∗i
max(li,l∗i )

, where l∗i means
the shortest path length calculated by the simulator and li refers the actual path length of i-th episode.

DTS (Distance to Goal). DTS evaluates the distance Li,g of the agent towards the target object
when the episode ends. It can be calculated as DTS = 1

N

∑N
i=1 max(Li,g − ξ, 0), where success

threshold ξ = 1m. DTS is 0 when an episode is successful.

MSE (Mean Squared Error). MSE assesses the accuracy of the generated trajectory which is
defined as MSE = 1

n

∑n
i=1(xi − x̂i)

2, where n is the number of validation set of our collected
trajectory data pairs. xi refers the ground truth trajectory and x̂i is the generated trajectory.

Object Categories. Our experimental setup follows previous settings [31, 60, 4], and the adopted
object categories are detailed in Tab. 6. For Gibson, we choose 15 categories for training and 6 for
evaluating. For MP3D, there are 21 categories for both training and evaluating.

More Visualizations. Fig. 6 illustrates more visualizations of the generated trajectory by our T-Diff
during navigation process. As shown in Fig. 6, T-Diff precisely generates the agent’s future trajectory
conditioned on the current state, thus effectively steering the agent towards the target object. The
accuracy of the generated future trajectory reduces unnecessary exploration and guides the agent
along an almost optimal path, ulimately navigating it to stop directly in front of the target object,
demostrating that our T-Diff significantly improves the efficiency of navigation.

Furthermore, we provide a video demo that presents a more intuitive view of the process of trajectory
denoising and navigation. Please refer to the MP4 file in the supplements zip archive.

A.2 Computation Complexity

To compare the computational complexity of our T-Diff with the modular baselines(SemExp [4],
PONI [31] and 3D-aware [60]), we utilize FLOPs(Floating Point Operations) metric to assess the
computational complexity, as shown in Tab. 7, where a higher value of FLOPs refers greater
computational complexity. Note that, T-Diff iterates τmax = 100 steps for each time step to generate
the denoised future trajectory, and this trajectory is generated every tT−diff = 5 steps during
navigation. Thus, we compute the computation complexity of 100 iterations and average it over every
5 steps. The results in Tab. 7 indicate that the computation complexity of our T-Diff is higher than
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Figure 6: More visualizations. At each timestep, we visualize RGB observation, local semantic map
along with the previous path and the generated future trajectory. Note that the target object location
is marked with a circle.

that of SemExp, comparable to that of 3D-aware, but significantly lower than that of PONI. Although
T-Diff requires multiple iteration, its operating latents is relatively small (when k = 32, the input
dimension is B×2×32) compared to PONI’s input (the input dimension is B× (4+n)×480×480,
where n refers to the number of semantic categories). Therefore, the compuation complexity of
T-Diff is considered acceptable.

A.3 Limitations

(1) The method of generating future trajectories based on diffusion has prediction biases. The
proposed trajectory diffusion model primarily considers the current semantic map, historical trajectory
information, and target category. However, other information such as the egocentric view and the
relationships between object semantics, may help generate better trajectories for the ObjectNav task.
Therefore, in future work, we plan to apply more conditions into the trajectory diffusion model.

(2) The training data for the trajectory diffusion model mainly comes from the collection of optimal
paths, which are relatively straight and short. The types of training data pairs are not yet diverse
enough, and the collection of complex trajectories requiring multiple turns and detours is still
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insufficient. In future work, we plan to introduce data pairs of complex paths to enhance the model’s
applicability to more complex scenarios.

A.4 Broader Impacts

Our trajectory diffusion model is a general method applied to the ObjectNav task. Although our
training and testing are currently limited to the simulator stage, the trajectory diffusion model can
be deployed on real robots. However, prediction errors in the model may lead to incorrect actions
by the robot, potentially causing damage to personal or social property. Therefore, it must be used
cautiously to ensure safety in real-world applications.

A.5 Data License

We use two datasets (Gibson [47] and MP3D [3]), and employ Habitat simulator. All of them are
published on the official papers with no licenses stated on their papers and websites. Thus, we just
cite all corresponding papers without licenses.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly delineated the main claims of our proposed method in both
the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the proposed method in Sec. A.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the essential details for replicating the main experimental
results, with thorough descriptions of the experimental procedures in Sec. 5.1. In addition,
an anonymous code repository is provided in Sec. ??.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide an anonymous code repository in Sec. ??, containing comprehen-
sive data, code, and relication instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Sec. 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We mention error bars in Sec. 5.1 and explain that due to the relatively small
variance in the experiments conducted in our paper, error bars are not reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the related information in Sec. A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative impacts in
Sec. A.4.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See in Sec. A.5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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