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Abstract

We study the problem of computing pairwise statistics, i.e., ones of the form(
n
2

)−1∑
i ̸=j f(xi, xj), where xi denotes the input to the ith user, with differential

privacy (DP) in the local model. This formulation captures important metrics such
as Kendall’s τ coefficient, Area Under Curve, Gini’s mean difference, Gini’s en-
tropy, etc. We give several novel and generic algorithms for the problem, leveraging
techniques from DP algorithms for linear queries.

1 Introduction

Differential privacy (DP) [DMNS06] is a widely studied and used notion for quantifying the privacy
protections of algorithms in data analytics and machine learning. It has witnessed many practical
deployments [EPK14, Sha14, Gre16, App17, DKY17, Abo18, RE19, TM20, KT18, RSP+21]. On
a high level, DP dictates that the output of a (randomized) algorithm remains statistically indistin-
guishable if the input of any single user is modified; the degree of statistical indistinguishability is
quantified by the privacy parameter ε > 0.

An important setting of DP is the local model [EGS03, KLN+11], where each of n users holds an
input that they wish to keep private. An analyst wishes to compute some known function of the
users inputs. The analyst and the users engage in an interactive protocol at the end of which the
analyst is supposed to compute an estimate to the value of the function on the user inputs. When the
aforementioned statistical indistinguishability property is enforced on the algorithm’s transcript, the
algorithm is said to be ε-local DP (see Section 2 for a formal definition). Non-interactive algorithms
refer to the setting where each user sends a single (DP) message to the analyst, who is then supposed
to output an estimate of the desired value without any further interaction with the users. As usual
in the interactive local DP setting, we assume a broadcast model where every communication is
visible to all users and to the analyst (and subject to the DP constraint). The number of rounds of an
interactive protocol refers to the number of back-and-forths between the set of users and the analyst.

While the local DP setting offers a compelling trust model compared to the central DP model (where
an analyst is assumed to have access to the raw user data and the privacy guarantee is only enforced at
its output), the local setting is often limited by lower bounds on the error incurred by private protocols
(e.g., [BNO08, CSS12]). In this work, we study some basic tasks in analytics and learning, and give
local DP protocols with significantly smaller error than what was previously known.
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Quadratic Form Computation. Throughout the paper, we consider the following task:

Definition 1 (Quadratic Form Computation). Given a matrix W ∈ Rk×k. Each user i receives
xi ∈ [k]. The goal is to compute the quadratic form hT

xWhx where hx ∈ Zk
≥0 denotes the normalized

histogram of the input, i.e., (hx)b :=
1
n · |{i ∈ [n] | xi = b}|.

An algorithm computing quadratic forms immediately implies an algorithm for computing pairwise
statistics (also known as U -statistics of degree 2) defined as F(X) = 1

(n2)

∑
1≤i<j≤n f(xi, xj),

where f : X 2 → R is a symmetric function (called kernel), and xi is the input to the ith user. The
family of pairwise statistics is notable in that it contains several statistical quantities that are widely
used in different areas, including the Area Under the Curve (AUC), Kendall’s τ coefficient, the
Gini’s mean difference, and the Gini’s diversity index (aka Gini–Simpson index or Gini’s impurity).
Computing quadratic forms has been studied in the context of local DP by Bell et al. [BBGK20]
who gave algorithms for functions f that are Lipschitz and for estimating the AUC of a classifier;
the latter was improved recently [CM23]. While these problems are simple in central DP (as we
can directly add noise to the function value), we note that a clear challenge for computing pairwise
statistics (and hence quadratic forms) in local DP is that each summand depends on data points held
by two different users.

Linear Queries. Computation of quadratic forms is a natural “degree-2” variant of the so-called
linear queries (defined below), a well-studied problem in the DP literature.

Definition 2 (Linear Queries). Given a workload matrix W ∈ Rk×k, the goal is to compute Whx,
where hx ∈ Zk

≥0 denotes the normalized histogram of the input.

There is a long line of work on privately answering linear queries. In both the central and local
models, the optimal errors achievable by DP algorithms are (mostly) well-understood for various
types of errors, such as the ℓ22-error or the ℓ∞-error [HT10, BDKT12, LMH+15, NTZ16, BUV18,
BBNS19, ENU20, Nik23]. Recall that the MSE of an estimate ẑ of a real value z is defined as
MSE(ẑ, z) := Eẑ[(ẑ− z)2]. For our purpose, we consider the following natural measure of accuracy:
Definition 3 (mMSE). Given a mechanism M that answers linear queries for a workload ma-
trix W ∈ Rk×k, its maximum mean square error (mMSE) is defined as mMSE(M;W ) :=
maxx∈[k]n maxj∈[k] MSE(M(x)j , (Whx)j).

In a recent seminal work, Edmonds et al. [ENU20] provide a nearly optimal characterization of the
error achievable by non-interactive ε-local DP algorithms. To describe their result, we need some
additional definitions of norms on matrices and related quantities:

▷ 1→ 2 norm: For any matrix A, ∥A∥1→2 is the maximum (ℓ2-)norm of its columns.
▷ ℓ∞-norm: For any matrix A, ∥A∥∞ is the maximum absolute value among its entries.
▷ Factorization norm: For W ∈ Rk×k, let γ2(W ) := minLTR=W ∥L∥1→2∥R∥1→2.
▷ Approximate-Factorization norm1: For W ∈ Rk×k and α ≥ 0, let γ2(W ;α) :=

min∥W̃−W∥∞≤α γ2(W̃ ).

Finally, we define ζ(W,n) := minα≥0 (γ2(W ;α) + αε
√
n). (Note that ζ(W,n) ≤ γ2(W ) as we

can pick α = 0.) The result of Edmonds et al. [ENU20] states that this quantity, up to polylogarithmic
factors, governs the best error achievable for linear queries in the non-interactive local DP model2:
Theorem 4 ([ENU20]). For any workload matrix W , there is a non-interactive ε-local DP mechanism
for linear queries with mMSE at most O

(
ζ(W,n)2

ε2n

)
. Furthermore, any non-interactive ε-local DP

mechanism must incur mMSE at least Ω̃
(

ζ(W,n)2

ε2n

)
.

Given such a tight and generic characterization for linear queries, it is natural to ask:

Can we characterize the error of computing the quadratic form for any matrix W with local DP?
1Note that, unlike the three quantities above, this is not actually a norm.
2We remark that [ENU20] did not state their bounds in the form we present in Theorem 4 (or even for

mMSE); we provide more detail on how to interpret their lower bound in this form in Appendix B. The upper
bound is via the matrix mechanism, introduced in central DP earlier in [LMH+15, NTZ16].
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1.1 Our Contributions

In this work, we answer this question by establishing connections between the problems of computing
quadratic forms and linear queries. Leveraging the wealth of knowledge on the latter, we obtain
several new (and general) upper and lower bounds for the former.

Non-Interactive Local DP. First, in the non-interactive setting, we give the following upper and
lower bounds. Together, they show that the error one can expect for computing quadratic forms is
essentially the same as that for computing linear queries (as provided in Theorem 4).

Theorem 5 (Non-interactive Algorithm). For any W ∈ Rk×k, there is a non-interactive ε-local DP
mechanism for estimating quadratic forms on W with MSE at most O

(
ζ(W,n)2(log k)

ε2n

)
.

Theorem 6 (Non-interactive Lower Bound). For any symmetric W ∈ Rk×k, any non-interactive
ε-local DP mechanism for estimating quadratic forms on W must incur MSE at least Ω̃

(
ζ(W,n)2

ε2n

)
.

Our results above are generic and can be applied to any pairwise statistics. To demonstrate the power
of the algorithm, we now state implications for several classes of statistics that have been studied in
the privacy literature. Due to space constraints, we defer their definitions to Section 5.

Corollary 7. There is a non-interactive ε-local DP mechanism for computing pairwise statistics for:

▷ Any G-Lipschitz function f : [0, 1]→ R, with MSE O
(

G2 logn
ε2n

)
,

▷ Kendall’s τ coefficient, with MSE O
(

(log k)5

ε2n

)
,

▷ AUC under the balancedness assumption3, with MSE O
(

(log k)3

ε2n

)
,

▷ Gini’s diversity index, with MSE O
(

log k
ε2n

)
.

For O(1)-Lipschitz functions, which includes several well-known metrics such as Gini mean dif-
ference, we improve upon the algorithm of Bell et al. [BBGK20] whose MSE is O

(
1

ε
√
n

)
. We

are not aware of any previous bounds on Kendall’s τ coefficient before; the metric was mentioned
in [BBGK20] without any error guarantee given. For AUC, our bound is the same as in [BBGK20]
but worse than a follow-up work [CM23] by a log k factor; nonetheless, we stress that our result
is derived as a corollary of a generic algorithm without relying too deeply on AUC (except for the
γ2-norm of its matrix). For Gini’s diversity index, our bound is again worse than that from Bravo et
al. [BHBFG+22] by log k factor, but their algorithm requires the use of public randomness; we do
not use any public randomness. (Throughout this work, when we refer to the local model without
further specification, we assume no public randomness, aka private-coin model.)

Remark. Since our non-interactive algorithm only requires a vector-summation primitive, we can
also apply protocols for vector summation in the shuffle model (e.g., [CSU+19, BBGN20, GMPV20])
to obtain an (ε, δ)-DP protocol in the shuffle model, reducing the MSE by a factor of n for each
setting in Theorem 5 and Corollary 7.

Interactive Local DP. Finally, we also provide an interactive algorithm whose MSE does not depend
on γ2(W ), as long as n is sufficiently large:

Theorem 8 (Interactive Algorithm). For any W ∈ Rk×k, there is a three-round ε-DP algorithm for
estimating quadratic forms on W such that, for n ≥ (γ2(W )·log k

∥W∥∞·ε )O(1), the MSE is O
(

∥W∥2
∞

ε2n

)
.

We note that the dependence O
(

∥W∥2
∞

ε2n

)
is the best possible: even when the k = 2 and W is binary,

the problem is as hard as binary summation, which is known to require MSE at least Ω
(

1
ε2n

)
even

for an arbitrary number of rounds of interactions [CSS12], and we can rescale this hard instance to
get any desired ℓ∞-norm.

3The balancedness assumption for AUC states that there are Ω(n) examples with each label 0, 1. This is a
required assumption to achieve an error in the form presented, as otherwise when e.g., there is a single 0-labeled
example, it is impossible to achieve any non-trivial guarantee.
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Combining the non-interactive lower bound in Theorem 6 and the interactive upper bound in The-
orem 8, our results imply that there exists a matrix W ∈ Rk×k, ε > 0, n ∈ N such that interactive
algorithms are provably more accurate than non-interactive ones for privately computing the quadratic
form on W . This places computing pairwise statistics as one of the few problems (and perhaps
the most natural) that are known to separate interactive and non-interactive local DP. Due to space
constraints, we defer further discussion of this to the Appendix.

1.2 Technical Overview

We now give a brief technical overview of our proofs.

Black-Box Reduction from Linear Queries (Lower Bound). As mentioned earlier, our results are
shown through connections between computing quadratic forms and linear queries. We will start with
black-box reductions between the two. Suppose that we have a non-interactive ε-local DP algorithm
A for computing the quadratic form on W . We will construct a non-interactive ε-local DP algorithm
A′ for computing linear queries of W . This will allow us to establish our lower bound (Theorem 6)
as a consequence of the lower bound for linear queries (Theorem 4).

For simplicity of this overview, instead of considering the full quadratic form, suppose that A works
on 2n users with inputs x1, . . . , xn, y1, . . . , yn and computes an estimate of hT

yWhx. On input
x1, . . . , xn, algorithm A works as follows:

▷ Each user i runs the randomizer of A on xi to get a response oi and sends it to the analyst.
▷ For each j ∈ [k], the analyst simulates running the randomizer of A on y1 = · · · = yn = j to

get responses o′1, . . . , o
′
n. Then, the analyst lets ẑj be the estimator of A based on the responses

o1, . . . , on, o
′
1, . . . , o

′
n.

▷ The analyst then outputs (ẑ1, . . . , ẑk) as its estimate.

In other words, the randomized responses from A are used as an “oracle” for A′ to compute the
different linear queries. The key observation here is that, when we set y1 = · · · = yn = j, A
produces an estimate for hT

yWhx = 1T
j Whx = (Whx)j as desired. Note that this reduction only

works in the non-interactive setting: if we were in the interactive setting, the responses on x1, . . . , xn

(of protocol A) would have been dependent on those of y1, . . . , yn. Therefore, the first step of the
reduction would have been impossible.

While this encapsulates the high-level ideas of our proof, there are some details that needs to be
handled. E.g., if A outputs the quadratic form hT

x∪yWhx∪y, there are “cross terms” of the form
hT
xWhx that need to be removed. We formally describe and analyze the full reduction in Section 4.

Black-Box Reduction to Linear Queries (Algorithm). We can also give a reduction in the reverse
direction, although this results in an additional round of communication. Specifically, let A′ be
a non-interactive ε-local DP algorithm for computing linear queries of W . We can construct a
two-round (2ε)-local DP algorithm A for computing the quadratic form on W as follows.

▷ First Round: Run A′ on all users to compute an estimate (ẑ1, . . . , ẑk) for Whx.
▷ Second Round: Each user j ∈ [n], sends oj = ẑxj

+κj to the analyst where κj is (appropriately
calibrated) Laplace noise. The analyst then outputs 1

n (o1 + · · ·+ on).

Again, we omit some details for simplicity, such as the fact that each ẑj may not be bounded a priori,
which may make the second step violate DP. However, these are relatively straightforward to handle.

If there were no noise, we would have oj = 1T
xj
Whx and thus 1

n (o1 + · · ·+ on) = hT
xWhx as

desired. Furthermore, it is not hard to see that the error from κ1, . . . , κn is dominated by the error
from A′ in the first step. In other words, we get an error similar to the one in Theorem 5 here, but
the protocol is interactive (two-round). Making the protocol non-interactive requires us to step away
from the black-box approach and open up the linear query algorithm (Theorem 4).

White-Box Algorithms. For simplicity, in this section we describe protocols with accuracy that
depends on γ2(W ), which can be larger than ζ(W,n). The desired error dependence on ζ(W,n) can
be obtained from this bound via a reduction, as shown in Lemma 10.

To understand our algorithm, we first describe the matrix mechanism for linear queries (cf. [ENU20]).
That algorithm works as follows: factorize W = LTR. Then, user i sends oRi = R1xi

+ zRi
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where zRi is a appropriately selected random noise. In other words, each user privatizes W1xi and
sends it to the analyst. Finally, the analyst outputs LT

(
1
n (o

R
1 + · · ·+ oRn )

)
. This is exactly equal to

Whx + LTZR where ZR := 1
n (z

R
1 + · · ·+ zRn ). It is possible to select the noise in such a way that

ZR is (∥R∥1→2/ε
√
n)-sub-Gaussian. This leads to an mMSE of O

(
γ2(W )2

ε2n

)
.

This suggests a natural approach for quadratic forms: in addition to sending (a privatized version
of) R1xi , the user sends a privatized version of L1xi , i.e., oLi = L1xi + zLi where zLi is a random
noise, to the analyst. The analyst then outputs

〈
1
n (o

L
1 + · · ·+ oLn),

1
n (o

R
1 + · · ·+ oRn )

〉
. Letting

ZL := 1
n (z

L
1 +· · ·+zLn ), the output can be written as hT

xWhx+
〈
Lhx, Z

R
〉
+
〈
Rhx, Z

L
〉
+
〈
ZL, ZR

〉
.

There are three error terms:
〈
Lhx, Z

R
〉
,
〈
Rhx, Z

L
〉
, and

〈
ZL, ZR

〉
. Similar to linear queries

analysis, it is not hard to see that the first two terms contribute O
(

γ2(W )2

ε2n

)
to the MSE. Unfortunately,

the last term is problematic for us: a simple calculation shows that it contributes O
(

ℓ
ε4n2

)
to the

MSE, where ℓ denotes the number of rows of L,R. A priori, this term can be quite large as there
is no obvious bound on ℓ. In fact, if W is full rank (which is the case for most popular pairwise
statistics), then we know that ℓ must be at least k. This leads to an undesired error term O

(
k

ε4n2

)
,

which dominates the first term for small-to-moderate values of n, i.e., when n ≤ k
ε2γ2(W )2 .

To overcome this, we observe that, if we only look for approximate factorization (in the same
sense as γ2(W ;α) defined above), then it is always possible to reduce ℓ via dimensionality reduction
techniques (e.g., [DG03]). Namely, we may pick a (e.g., random Gaussian) matrix A and replace L,R
with AL,AR respectively. Selecting the number of rows of A appropriately then yields Theorem 5.

Additional Interactive Algorithms. To describe our algorithm, let us start by instantiating the above
black-box two-round reduction using the matrix mechanism. In this context, the reduction yields the
following algorithm:

▷ First Round: Each user i sends oLi = L1xi + zLi to the analyst, where zLi is appropriately
selected random noise. The analyst then broadcasts OL = 1

n (o
L
1 + · · ·+ oLn) to each user.

▷ Second Round: Each user j ∈ [n] sends oj =
〈
OL, R1xj

〉
+ κj to the analyst, where κj is

appropriately calibrated Laplace noise. The analyst then outputs 1
n (o1 + · · ·+ on).

It is not hard to see that the κj noise terms together contribute at most O(1/ε2n) to the MSE. Therefore,
the main noise comes from the first step. Similar to the previous discussion, this noise can be written
as
〈
Rhx, Z

L
〉

where ZL := 1
n (z

L
1 + · · ·+ zLn ). The contribution of this noise to the MSE is then

O
(

γ2(W )2

ε2n

)
. The γ2

2(W ) term shows up in the error because ∥Rhx∥2 can be as large as ∥R∥1→2.
The idea motivating our improvement is simple: Can we replace the Rhx term with a term that is
much smaller?

This brings us to the following strategy. We will use an additional round at the beginning to compute
a rough estimate µ of Rhx. Using the so-called projection mechanism [BBNS19]4, it is possible
to compute µ such that ∥Rhx − µ∥ ≤ (γ2(W )·(log k)/ε)O(1)

nΩ(1) . The subspace orthogonal to µ can be
processed in a similar manner as before, but now the error term will just be

〈
Rhx − µ,ZL

〉
. Since

∥Rhx − µ∥ is now much smaller (approaches 0 as n→∞), this gives us the improved error bound.
We note that the direction of µ can be handled by having each user i directly send

〈
oLi , µ

〉
plus an

appropriately calibrated noise. This summarizes the high-level idea of our approach.

Due to space constraints, we focus on the non-interactive algorithms in the main body and defer the
proof of the interactive algorithm to the Appendix.

2 Preliminaries

Differential Privacy. For ε ≥ 0, an algorithmM is ϵ-DP if for every pair X,X ′ of inputs that differ
on one user’s input and for every possible output o, Pr[M(X) = o] ≤ eε · Pr[M(X ′) = o].

4See also [NTZ16] for the original projection mechanism that was proposed for the central model.
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An algorithm A in the local DP model consists of a randomizer R and an analyst, computed as
A(X) = analyst(R(x1), . . . ,R(xn)) for input X = {x1, . . . , xn}. A is said to be (non-interactive)
ε-local DP ifR is ε-DP.

A real-valued random variable Z is σ-sub-Gaussian iff E[exp(Z2/σ2)] ≤ 2. A Rd-valued random
variable Z is σ-sub-Gaussian iff ⟨θ, Z⟩ is σ-sub-Gaussian for all unit vectors θ ∈ Rd.
Theorem 9 ([BBNS19]). For any C, ε > 0, there is a (non-interactive) ε-local DP algorithm
VRandε,C that takes in x ∈ Rd such that ∥x∥2 ≤ C and outputs Y ∈ Rd such that E[Y ] = x and
Y − x is σ-sub-Gaussian for σ = O(C/ε).

Error: Factorization vs Approximate-Factorization. We show that it suffices to give errors in
terms of γ2(W ) instead of ζ(W ;n); this will be convenient for our subsequent proofs. Due to space
constraints, the proof of the following statement is deferred to Appendix A.

Lemma 10. Suppose that, for all W ∈ Rk×k, there is a non-interactive ε-local DP protocol A for
quadratic form on W with MSEO

(
c(n, ε, k) · γ2(W )2

ε2n

)
where c(n, ε, k) ≥ Ω(1). Then there is also

a non-interactive ε-local DP protocol A′ with MSE O
(
c(n, ε, k) · ζ(W ;n)2

ε2n

)
.

3 Non-Interactive Algorithm

In this section, we prove Theorem 5. To do so, let us start by defining (approximate) rank-restricted
factorization norms5, which are the same as γ2(W ), γ2(W ;α) except we now restrict the number of
rows of L,R to be at most ℓ:

▷ For W ∈ Rk×k, ℓ ∈ N, let γℓ
2(W ) := minLTR=W ;L,R∈Rℓ×k ∥L∥1→2∥R∥1→2.

▷ For W ∈ Rk×k, ℓ ∈ N and α ≥ 0, let γℓ
2(W ;α) := min∥W̃−W∥∞≤α γℓ

2(W̃ ).

We can now use the approximate rank-restricted factorization to perform the algorithm as outlined in
Section 1.2 with an error term that depends on ℓ (and α):

Lemma 11. For any W ∈ Rk×k, ℓ ∈ N, and α ≥ 0, there is a non-interactive ε-local DP algorithm
that estimates the quadratic form on W to within an MSE of O

(
α2 + γℓ

2(W ;α)2 ·
(

1
ε2n + ℓ

ε4n2

))
.

Proof. By definition of γℓ
2(W ;α), there exists W̃ ∈ Rk×k, L,R ∈ Rℓ×k such that ∥W̃ −W∥∞ ≤ α

and W̃ = LTR where, w.l.o.g., by rescaling, ∥L∥1→2 = ∥R∥1→2 =
√

γℓ
2(W ) =: C.

Algorithm Description. Let ε̄ = ε/2. The algorithm works as follows:

▷ Each user i ∈ [n] sends yLi ← VRandε̄,C(L1xi
) and yRi ← VRandε̄,C(R1xi

) to the analyst
(where VRand·(·) is from Theorem 9).

▷ The analyst outputs
〈

1
n

∑
i∈[n] y

L
i ,

1
n

∑
i∈[n] y

R
i

〉
.

As each user runs an (ε/2)-DP randomizer twice, the algorithm is ε-DP.

Utility Analysis. Let zLi = yLi −L1xi and zRi = yRi −R1xi . From Theorem 9, zLi , z
R
i are zero-mean

and σ-sub-Gaussian for σ = O(C/ε). Let ZL := 1
n

∑
i∈[n] z

L
i , Z

R := 1
n

∑
i∈[n] z

R
i ; we then have

that these are zero-mean and σ′-sub-Gaussian for σ′ = σ/
√
n. The MSE of the protocol is given by

E


〈 1

n

∑
i∈[n]

yLi ,
1

n

∑
i∈[n]

yRi

〉
− hT

xWhx

2


= E
[(

hT
x (W̃ −W )hx +

〈
ZL, Rh

〉
+
〈
Lh,ZR

〉
+
〈
ZL, ZR

〉)2]
≲ E(hT

x (W̃ −W )hx)
2 + E

〈
ZL, Rh

〉2
+ E

〈
Lh,ZR

〉2
+ E

〈
ZL, ZR

〉2
≲ ∥W̃ −W∥2∞ + (σ′)2∥Rh∥22 + (σ′)2∥Lh∥22 + ℓ · (σ′)4

5These are not actually norms, but we use the term for consistency with other similar quantities.
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≤ α2 + (σ′)2∥R∥21→2 + (σ′)2∥L∥21→2 + ℓ · (σ′)4

≲ α2 + (σ′)2C2 + ℓ · (σ′)4

≲ α2 +
C4

ε2n
+

ℓ · C4

ε4n2
.

Rank-Restricted Approximate Factorization via JL. We next show that w.l.o.g. we can take ℓ to
be quite small in Lemma 11 above.

Lemma 12. Let W ∈ Rk×k and α ∈ (0, γ2(W )), there is ℓ ≲ γ2(W )2 log k
α2 with γℓ

2(W ;α) ≲ γ2(W ).

As mentioned earlier, this lemma is proved by applying Johnson–Lindenstrauss (JL) dimensionality
reduction to each column of L,R. We summarize a simplified version of the JL lemma below.
Lemma 13 (Johnson–Lindenstrauss Lemma (e.g., [DG03])). Let β ∈ (0, 1) and U = {u1, . . . um} ⊆
Rd. For some ℓ ≤ O(β−2 logm), there exists a matrix A ∈ Rℓ×d such that for all u, v ∈ U , we have
(1− β)∥u− v∥22 ≤ ∥Au−Av∥22 ≤ (1 + β)∥u− v∥22.

We are now ready to prove Lemma 12.

Proof of Lemma 12. By definition of γ2(W ), there exists L,R ∈ Rd×k for some d ∈ N such that
W = LTR where∥L∥1→2 = ∥R∥1→2 =

√
γ2(W ) =: C.

Let L1, . . . , Lk (resp. R1, . . . , Rk) be the columns of L (resp. R). Consider U =
{0, L1, . . . , Lk, R1, . . . , Rk,−L1, . . . ,−Lk,−R1, . . . ,−Rk} and β = 0.5α/C2; let ℓ =

O
(
β−2 log k

)
= O

(
γ2(W )2 log k

α2

)
and A ∈ Rℓ×d be as guaranteed by Lemma 13.

Let L̃ = AL, R̃ = AR, and W̃ = L̃T R̃. For all i ∈ [k], we have ∥L̃i∥22 ≤ (1 + β)∥Li∥22
and ∥R̃i∥22 ≤ (1 + β)∥Ri∥22. Therefore, ∥L̃∥1→2, ∥R̃∥1→2 ≤ O(C), i.e., γℓ

2(W̃ ) ≤ O(γ2(W )).
Moreover, for each i, j ∈ [k], we have∣∣∣W̃i,j −Wi,j

∣∣∣ = ∣∣∣〈L̃i, R̃j

〉
− ⟨Li, Rj⟩

∣∣∣
≤ 1

4

(∣∣∣∥L̃i + R̃j∥22 − ∥Li +Rj∥22
∣∣∣+ ∣∣∣∥L̃i − R̃j∥22 − ∥Li −Rj∥22

∣∣∣)
≤ β

4

(
∥Li +Rj∥22 + ∥Li −Rj∥22

)
≤ 2βC2 ≤ α.

Thus, ∥W̃ −W∥∞ ≤ α and therefore γℓ
2(W ;α) ≤ O(γ2(W )) as claimed.

We end this section by proving Theorem 5, which is a simple combination of Lemma 11 and
Lemma 12.

Proof of Theorem 5. Pick6 α = γ2(W )
ε
√
n

and apply Lemma 12: There exists ℓ = O
(

γ2(W )2 log k
α2

)
=

O
(
(log k)ε2n

)
such that γℓ

2(W ;α) ≤ O(γ2(W )). Plugging this back into Lemma 11 then gives us
a non-interactive ε-local DP protocol with MSE

≲ α2 + γℓ
2(W ;α)2 ·

(
1

ε2n
+

ℓ

ε4n2

)
≲ γ2(W )2

(
1

ε2n
+

log k

ε2n

)
≲

γ2(W )2 log k

ε2n
.

Applying Lemma 10 then concludes the proof.

4 Lower Bounds for Non-Interactive Algorithms

In this section we formalize the reduction from linear queries to computing quadratic forms, as
outlined in Section 1.2. The properties of the reduction are stated in the theorem below.

6We may assume w.l.o.g. that α ≤ γ2(W ); otherwise, the guarantee in Theorem 5 is trivial, i.e., always
outputting 0 satisfies the bound.
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Theorem 14. Let W ∈ Rk×k be symmetric. Suppose that there is a non-interactive ε-local DP
mechanism for computing the quadratic form on W with MSE at most α(ε, n). Then there is a non-
interactive ε-local DP protocol for computing the linear queries of W with mMSE O(α(ε/2, n) +
α(ε/2, 2n)).

Theorem 14 and the lower bound in Theorem 4 immediately imply Theorem 6. In the proof below,
we use subscripts ε, n to denote the privacy loss parameter and the number of users in the protocol.

Proof of Theorem 14. Let Aε,n be the ε-local DP protocol for computing the quadratic form on W ,
and letRε,n denote its randomizer. We construct an algorithm A′

ε,n for linear queries with workload
matrix W . On input x1, . . . , xn, proceed as follows:

▷ Run the protocol of Aε/2,n on x1, . . . , xn to compute an estimate ẑ for hT
xAhx.

▷ In the same round as above, run the randomizer Rε/2,2n of Aε/2,2n on x1, . . . , xn to get the
responsesRε/2,2n(x1), . . . ,Rε/2,2n(xn).

▷ For each j ∈ [k], do the following:

▷ Run the randomizer R of A on y1 = · · · = yn = j to get the responses Rε/2,2n(y1), . . . ,
Rε/2,2n(yn).

▷ Compute the estimator z′j of A on the 2n responses Rε/2,2n(x1), . . . ,Rε/2,2n(xn),
Rε/2,2n(y1), . . . ,Rε/2,2n(yn).

▷ Set ẑj = 2z′j − 1
2 ẑ −

1
21

T
j W1j .

▷ Output (ẑ1, . . . , ẑj) as the estimates for the linear queries.

Since (ε/2)-local DP randomizers are run on each input xi twice, the basic composition theorem
implies that this is a ε-local DP algorithm as desired.

For each j ∈ [k], we now compute the MSE of ẑj . First, observe that

(Whx)j = 1T
j Whx = 2

(
hT
x∪yWhx∪y

)
− 1

2
hT
xWhT

x −
1

2
1T
j W1j ,

where y denotes the dataset with n copies of j.

Therefore, we can bound the MSE of ẑj as follows:

MSE(ẑj ; (Whx)j) = E
[
(ẑj − (Whx)j)

2
]

= E

[(
2
(
z′j − hT

x∪yWhx∪y

)
+

1

2

(
ẑ − hT

xWhT
x

))2
]

≲ E
[(
z′j − hT

x∪yWhx∪y

)2]
+ E

[(
ẑ − hT

xWhT
x

)2]
≤ α(ε/2, 2n) + α(ε/2, n),

where the last inequality follows from the guarantees of A. Thus, the mMSE of A′ is at most
O(α(ε/2, 2n) + α(ε/2, n)), as desired.

5 Upper Bounds for Specific Metrics

In this section, we obtain concrete upper bounds for many well-known U-statistics of degree 2. For a
kernel f : X → R, let W f ∈ RX×X denote the matrix defined by W f

x,x′ = f(x, x′). Our proof of
Corollary 7 proceeds by providing an upper bound on γ2(W

f ) for each U-statistic with kernel f ; the
bounds immediately follow from Theorem 5. Similar to before, let k denote |X |.
The following (non-trivial) facts about the factorization norm are useful to keep in mind:
Fact 15. The factorization norm γ2 satisfies the following properties:

1. [TJ89] For any A,B, we have γ2(A+B) ≤ γ2(A) + γ2(B).
2. [LSS08] For any A,B, γ2(A⊗B) = γ2(A) · γ2(B).

8



Gini’s diversity index. For X ⊆ R, the kernel f(x, x′) = 1[x ̸= x′] captures Gini’s diversity
index. From Fact 15(1), we have γ2(W

f ) ≤ γ2(1k×k) + γ2(Ik×k) ≤ 1 + 1 where the inequality
γ2(1k×k) ≤ 1 is from the factorization L = R = 1k and γ2(Ik×k) ≤ 1 is from L = R = Ik×k.

Kendall’s τ coefficient and AUC. For X = A × B ⊆ R2 with xi = (yi, zi), the kernel
f((yi, zi), (yj , zj)) = sgn(yi−yj) · sgn(zi−zj) yields Kendall’s τ coefficient. Let Um ∈ {−1, 1}m
denote the matrix that has +1 on all entries above the main diagonal (inclusive) and−1 elsewhere. It is
known that γ2(Um) = Θ(logm). We can bound γ2(W

f ) for Kendall’s τ coefficient by observing that
W f = UA ⊗ UB . From Fact 15(2), γ2(Wf ) ≤ γ2(UA) · γ2(UB) ≲ (log |A|) (log |B|) ≤ (log k)2.

AUC for binary classification is defined in a similar manner as Kendall’s tau coefficient, except that
(i) B = {0, 1} and (ii) the normalization constant being 1

n+n− instead if 1

(n2)
where n+ (resp., n−)

denotes the number of 1-labeled (resp., 0-labeled) examples. The AUC result follows from the above
since |B| = 2 in this case. We remark that, for the AUC case, we also have to split the privacy budget
and use half of it to estimate n+ so that we can renormalize correctly. It is not hard to see that this
renormalization procedure results in at most an additive factor of O

(
1

ε2n

)
in the MSE, under the

balancedness assumption that n−, n+ ≥ Ω(n).

Lipschitz Losses. Let X = [0, 1] and let f : X → R be any function such that |f(x) − f(x′)| ≤
G · |x−x′|; we call f G-Lipschitz. This class includes U-statistics such as the Gini’s mean difference,
which is given by the kernel f(xi, xj) = |xi − xj |, which is 1-Lipschitz.

Similar to [BBGK20], we use a discrete case where X = [k] as a subroutine. Our algorithm for this
is stated below. Note that Corollary 16 immediately implies the bound for the continuous case: given
any function f : [0, 1]→ R, we may select k to be sufficiently large, e.g., k = Θ(εn2), and discretize
the function over the points 1/k, 2/k, . . . , k/k. Defining g : [k]→ R by g(i) = f(i/k) allows us to
use Corollary 16 with Lipschitz constant G/k. This leads to a MSE of O

(
G2 log(εn2)

ε2n

)
. The MSE

resulting from the discretization error is then at most G2n2

k2 < G2

ε2n .

Corollary 16 (Discrete Lipschitz). Assuming X = [k] and that f is G-Lipschitz. There is a non-

interactive ε-local DP algorithm for computing pairwise statistics for f with MSE O
(

G2k2(log k)
ε2n

)
.

Again, the above corollary follows from Theorem 5 and the following factorization.

Lemma 17. Assuming that f : [k]→ R is G-Lipschitz, then γ2(W
f ) ≤ O(Gk).

Proof. We assume w.l.o.g. that k = 2q − 1 for some q ∈ N and ∥W f∥∞ ≤ Lk; otherwise, we may
shift W f (and the answer) without incurring any additional error. We arrange [k] into a balanced
binary search tree T of depth q − 1 naturally (where the root is 2q−1 and the leaves are 1, 3, . . . , k).
Let P (j) denote the path from node j to the root (inclusive) in T , and let ℓ(j) denote the depth of j
(where the root has depth 0). Furthermore, let parent(j) denote the parent of j in T . For notational
convenience, let parent(2q−1) =⊥ and let f(i,⊥) = 0 for all i ∈ [k].

We construct L,R ∈ Rk×k as follows.

▷ For all i, j ∈ [k], let Ri,j =
(
5
6

)ℓ(i)
1[i ∈ P (j)].

▷ For all i, j ∈ [k], Lj,i =
(
6
5

)ℓ(j)
(f(i, j)− f(i,parent(j))).

For i, j ∈ [k], we have (LTR)i,j =
∑

t∈P (j)(f(i, t)−f(i,parent(t))) = f(i, j). Thus, LTR = W .

Furthermore, ∥R∥21→2 = 1 +
(
5
6

)2
+ · · ·+

(
5
6

)2(q−1)
≲ 1. Meanwhile, we can bound ∥L∥21→2 by

max
i∈[k]

∑
j∈[k]

((
6

5

)ℓ(j)

(f(i, j)− f(i,parent(j)))

)2

≲
q−1∑
d=0

2d

((
6

5

)d

· Gk

2d

)2

≲ G2k2,

where the first inequality follows since f is G-Lipschitz. Thus γ2(W f ) ≤ O(Gk).

9



6 Conclusion and Open Questions

In this work, we systematically study the problem of privately computing pairwise statistics. We give a
non-interactive local DP algorithm and a nearly-matching lower bound for the problem. Furthermore,
we show that, for some metrics, improvements can be made if interaction is allowed.

There are several immediate questions from our work. For example, is it possible to remove the
log k multiplicative factor in our non-interactive algorithm (Theorem 5)? Similarly, can the second
additive term in our interactive algorithm be removed? As also suggested by [BBGK20], an intriguing
research direction is to study more complicated statistics such as the “higher-degree” ones (e.g., those
involving triplets instead of pairs). It would be interesting to see if techniques from linear queries and
from our work can be applied to these problems.
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A Additional Preliminaries

We use dtv, dKL to denote the total variation (TV) distance and the Kullback–Leibler (KL) divergence
between two distributions. Pinsker’s inequality states that

dtv(P,Q) ≤
√

1

2
· dKL(P ∥ Q), (1)

for all distributions P,Q.

Interactive Local DP

For interactive local DP, we consider protocols that proceed in rounds. In each round, the analyst
may send a message (which may depend on what the analyst has received in the previous rounds) to
each user, who then replies back with a (randomized) response. The DP guarantee is then enforced
on the view of the analyst.

Clipping and Resulting Error

Clipping is a standard technique in DP to achieve bounded sensitivity (cf. [ACG+16]). In our
interactive algorithm, we will use clipping on real values to bound their sensitivity. More specifically,
for τ ≥ 0, let clipτ : R→ R denote the function:

clipτ (x) =


τ if x > τ,

x if τ ≥ x ≥ −τ,
−τ if − τ > x.

There could be additional errors resulting from clipping. For the purpose of bounding such terms, we
will use the following simple lemma:
Lemma 18. Let X denote any random variable over R and any τ ≥ 0. Then, we have

E[(X − clipτ (X))2] ≤
√

E[X4] · Pr[|X| > τ ].

Proof. We can bound the LHS term by

E[(X − clipτ (X))2] ≤ E[X2 · 1[|X| > τ ]]

≤
√

E[X4] · E[1[|X| > τ ]2]

=
√

E[X4] · Pr[|X| > τ ],

where in the second step we used the Cauchy–Schwarz inequality.

Factorization vs Approximate-Factorization: Proof of Lemma 10

Proof of Lemma 10. Let W be any matrix. By definition of ζ, there exists W̃ such that ζ(W ;n) =

γ2(W̃ ) + ∥W̃ −W∥∞ · (ε
√
n). The new protocol A′ simply runs A but on W̃ . Let ẑ denote the

output of A′. Its MSE can be bounded by

E
[(
ẑ − hT

xWhx

)2]
= E

[((
ẑ − hT

x W̃hx

)
+
(
hT
x W̃hx − hT

xWhx

))2]
≲ E

[(
ẑ − hT

x W̃hx

)2]
+ E

[(
hT
x W̃hx − hT

xWhx

)2]
≲

(
c(n, ε, k) · γ2(W̃ )2

ε2n

)
+ ∥W̃ −W∥2∞

≲ c(n, ε, k) · ζ(W ;n)2

ε2n
+

ζ(W ;n)2

ε2n

≲ c(n, ε, k) · ζ(W ;n)2

ε2n
.

13



Projection Mechanism

As outlined in Section 1.2, we will use the projection mechanism as a subroutine for our algorithm.
For W ∈ Rℓ×k, we define W∆ to denote the set {Wx | x ∈ Rk, ∥x∥1 ≤ 1}. The guarantees of the
algorithm are summarized below.

Theorem 19 ([BBNS19]). For any workload W ∈ Rℓ×k, there is a non-interactive ε-local DP
mechanismM such that

Eµ∼M(x)[∥µ−Whx∥22] ≲
∥W∥21→2

√
log k

ε
√
n

.

Moreover, the outputM(W ) always belongs to W∆.

We provide the proof below for completeness.

Proof of Theorem 19. Let C := ∥W∥1→2. The algorithm works as follows:

▷ Each user i ∈ [n] sends yi := VRandε,C(W1xi
) to the analyst (where VRand·(·) is from

Theorem 9).

▷ The analyzer computes Y := 1
n

∑
i∈[n] yi and then outputs µ := argminu∈W∆∥u− Y ∥2.

The privacy guarantee of the algorithm follows from Theorem 9.

Let zi = yi −W1xi
. From Theorem 9, zi is zero-mean and σ-sub-Gaussian for σ = O(C/ε). Let

Z := 1
n

∑
i∈[n] zi; we then have that it is zero-mean and σ′-sub-Gaussian for σ′ = σ/

√
n. By the

definition of sub-Gaussian random variable and a union bound, for every β > 0, with probability
1− β the following holds:

| ⟨Wj , Z⟩ | ≲
C2

ε
√
n
·
√
log(k/β) ∀j ∈ [k], (2)

where Wj denote the jth column of W .

It is well known7 that if we define µ as we did (i.e., as projection of Y on W∆), then we have

⟨µ− w, µ− Y ⟩ ≤ 0,

for all w ∈W∆.

Plugging in w = Whx, we have

∥µ−Whx∥22 = ⟨µ−Whx, µ− Y ⟩+ ⟨µ−Whx, Z⟩
≤ ⟨µ−Whx, Z⟩
≤ max

w′∈W∆
⟨w′, Z⟩

= max
j∈[k]
| ⟨Wj , Z⟩ |,

where the equality follows from the fact W∆ is the convex hull of W1, . . . ,Wk,−W1, . . . ,−Wk.

Putting together (2) and the above then yields

E[∥µ−Whx∥22] ≲
C2
√
log k

ε
√
n

.

B On the Lower Bound for Linear Queries from [ENU20]

In this section, we provide details on how we can interpret the bounds of [ENU20] as stated in
the form of Theorem 4. The lower bound in [ENU20] is originally for the ℓ∞-error; we make the
observation below that a simple modification of their proof can be made so that it applies to mMSE.
Note that, in addition to getting a stronger result in terms of error metric (because a lower bound on

7See e.g., [Bub15, Lemma 3.1].
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mMSE implies the same lower bound on ℓ∞-error), we also get a quantitatively stronger bound that
does not depend on k because we avoid having to take a union bound over k queries (which was
required for the proof for ℓ∞-error in [ENU20]).

In [ENU20, Section 3.4], it was shown that w.l.o.g. it suffices to consider “symmetric” workload
matrix W (i.e., ones that can be written as [W ′,−W ′] for some W ′). We will thus do so throughout
the rest of this section. Following their notation, we also assume that W ∈ Rk×X , i.e., X is the input
space and there are k linear queries. We also recall the following two lemmas from their paper.
Lemma 20 ([ENU20, Lemma 11]). Let ε ∈ (0, 1]. For any distribution λ1, . . . , λm, µ1, . . . , µm on
X , distribution π over [m] and ε-local DP randomizerR, we have8

Ev∼π[dKL(R(λv)
n ∥ R(µv)

n)] ≲ nε2 · ∥M∥2ℓ∞→L2(π)
,

where M ∈ Rm×X is a matrix such that Mv,x = λv(x)− µv(x).

We note that in [ENU20, Lemma 11], the LHS is not exactly the same as in our version above.
However, inspecting the very first inequality from their proof shows that their bound goes through the
quantity on the LHS of Lemma 20.

The next lemma, which describes the properties of the hard distributions, is arguably the main
technical contribution of the lower bound in [ENU20].
Lemma 21 ([ENU20, Lemma 21]). Let W ∈ Rk×X be any symmetric workload matrix and α > 0.
There exist 9 ξ ≥ 0, and distributions λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k on X and π̃ over [k] such that

(i) (Wλ̃v)i = 0 for all i, v ∈ [k].

(ii) for all v ∈ supp(π̃), (Wµ̃v)v ≳ ξ+α
log(∥W∥∞/α) .10

(iii) Let M̃ be defined similarly as in Lemma 20. Then ∥M̃∥ℓ∞→L2(π̃) ≲
ξ

γ2(W,α) .

It will in fact be easier to work with the following version of the lemma, which is implicit in the proof
of [ENU20, Theorem 22]:
Lemma 22. Let W ∈ Rk×X be any symmetric workload matrix and α > 0. There exist distributions
λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k on X and π̃ over [k] such that

(i) (Wλ̃v)i = 0 for all i, v ∈ [k].

(ii) for all v ∈ supp(π̃), (Wµ̃v)v ≳ α
log(∥W∥∞/α) .

(iii) Let M̃ be defined similarly as in Lemma 20. Then ∥M̃∥ℓ∞→L2(π̃) ≲
α

γ2(W,α) .

Proof Sketch. This is constructed by taking λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k and π̃ from Lemma 21. Then,
replace each µ̃v by the mixture (1− β) · λ̃v + β · µ̃v where β = min{1, α/ξ}, for all v ∈ [k]. Both
the lower bound for (Wµ̃v)v and the upper bound for ∥M̃∥ℓ∞→L2(π̃) scale linearly with β, yielding
the desired bounds.

We can now prove the following, which is a more qualitative version of the lower bound in Theorem 4.

Theorem 23. Let W ∈ Rk×X be any symmetric workload matrix. Any non-interactive ε-local DP

mechanism must incur an mMSE at least Ω

 ζ(W,n)2

ε2n · 1

log

(
ε2n∥W∥2∞
ζ(W,n)2

)2

.

8Here ∥M∥2ℓ∞→L2(π) := max∥x∥∞=1 ∥Mx∥L2(π) where ∥a∥L2(π) :=
√∑

v∈[m] π(v)a
2
v . Note that we

will not be dealing with this quantity further than here.
9In [ENU20], ξ is related to the dual solution as ξ = W • U − α where U is the dual witness of the

approximate factorization norm, i.e., one with γ2(W ) = W•U−α∥U∥1
γ∗
2 (U)

. (See [ENU20, Section 2.3] for more
details.) However, these specifics are not used in the remainder of the proof.

10Note that the ∥W∥∞ term does not show up in [ENU20] since they assume that ∥W∥∞ ≤ 1.
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Proof. For notational convenience, we write ζ as a shorthand for ζ(W,n). Let α = C1ζ
ε
√
n

where
C1 ∈ (0, 0.1) is a sufficiently small constant. Suppose for the sake of contradiction that there
exists a non-interactive ε-local DP protocol (whose randomizer isR) with mMSE at most (α′)2 for
α′ = C2α

log(∥W∥∞/α) where C2 ∈ (0, 0.1) is a sufficiently small constant.

Recall the definition of ζ; we must have ζ ≤ γ2

(
W, ζ

2ε
√
n

)
+ ζ

2 . This gives

γ2

(
W,

ζ

2ε
√
n

)
≥ ζ

2
.

Since γ2(W, ·) is an increasing function, we thus have

αε
√
n

γ2(W,α)
≤ C1. (3)

Let λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k and π̃ be as in Lemma 22. By Lemma 20 and Lemma 22(iii), we have

Ev∼π[dKL(R(λv)
n ∥ R(µv)

n)] ≲

(
αε
√
n

γ2(W,α)

)2

. (4)

On the other hand, since the protocol has mMSE at most (α′)2, we may use the following algorithm
to distinguish R(λv)

n from R(µv)
n: let the analyst computes an estimate for Whx (using the n

samples from R(·) provided). If the estimate has absolute value less than 10α′, then output λv;
otherwise, output µv . From Lemma 22(i)(ii), it is not hard to see that, for C2 that is sufficiently small,
this algorithm is correct with probability at least 2/3. This means that dtv(R(λv)

n,R(µv)
n) ≥ 1/3.

Pinsker’s inequality (i.e., eq. (1)) then yields dKL(R(λv)
n ∥ R(µv)

n) ≳ 1. Comparing this with the
above eq. (4), we get αε

√
n

γ2(W,α) ≳ 1, which contradicts eq. (3) when C1 is sufficiently small.

C Three-Round Algorithm

In this section, we describe and analyze our interactive algorithm. The error guarantees of the
algorithm are stated below. (Note that Theorem 24 is a more precise version of Theorem 8.)

Theorem 24. For any W ∈ Rk×k and n ≥ Ω̃
(

γ2(W )4 log k
∥W∥4

∞ε2

)
, there is a three-round ε-DP algorithm

for estimating quadratic forms on W such that the MSE is O
(

∥W∥2
∞

ε2n

)
.

Proof. Throughout the proof, we assume that n ≥ Q · γ2(W )4 log k
∥W∥4

∞ε2 · log
(

10γ2(W ) log k
∥W∥∞ε

)
, where Q is

a sufficiently large constant. Recall from the definition of γ2(W ) that there must exist L,R such that
W = LTR and ∥L∥1→2 = ∥R∥1→2 =

√
γ2(W ) =: C.

Algorithm Description. Let ε̄ = ε/4 and τ = 4∥W∥∞. The algorithm works as follows:

▷ First Round: Run the ε̄-local DP protocol from Theorem 19 to get an estimate µR of Rhx.

▷ Second Round:

▷ The analyzer forwards µR to all users.
▷ Each user i ∈ [n] sends the following to the analyst:

▷ yLi ← VRandε̄,C(L1xi
) (where VRand·(·) is from Theorem 9).

▷ ai ← ⟨L1xi
, µR⟩+ κi where κi ∼ Lap(2∥W∥∞/ε̄) back to the analyst.

▷ Third Round:

▷ The analyst then computes Y L := 1
n

∑
i∈[n] y

L
i and forwards it to the users.

▷ Each user i ∈ [n] sends vi ← clipτ (
〈
Y L, R1xi − µR

〉
) + zi where zi ∼ Lap(2τ/ε̄).

Finally, the analyst outputs 1
n

(∑
i∈[n] ai

)
+ 1

n

(∑
i∈[n] vi

)
.
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Privacy Analysis. Each user i’s input is used four times:

▷ To produce µR. This step is ε̄-DP by Theorem 19.

▷ To produce yLi . This step is ε̄-DP by Theorem 9.

▷ To produce ai. From the guarantee of Theorem 19, µR belong to R∆. As a result,
| ⟨L1xi , µR⟩ | ≤ ∥W∥∞. In other words, the sensitivity of ⟨L1xi , µR⟩ (as a function of xi)
is at most 2∥W∥∞. Since κi is sampled from Lap(2∥W∥∞/ε̄), this step is also ε̄-DP.

▷ To produce vi. Due to clipping, the sensitivity of clipτ (
〈
Y L, R1xi

− µR

〉
) (as a function of xi)

is at most 2τ . Thus, since we are adding a noise zi drawn from Lap(2τ/ε̄), this step is also ε̄-DP.

Hence, by the basic composition theorem, the entire algorithm is ε-local DP as desired.

Utility Analysis. First, notice that, for a fixed µR ∈ R∆, we have
hT
xWhx = ⟨Lhx, Rhx⟩ = ⟨Lhx, µR⟩+ ⟨Lhx, Rhx − µR⟩

=
1

n

∑
i∈[n]

⟨L1xi
, µR⟩+

1

n

∑
i∈[n]

⟨Lhx, R1xi
− µR⟩ .

Let zLi = yLi − L1xi
. From Theorem 9, zLi is zero-mean and σ-sub-Gaussian for σ = O(C/ε). Let

ZL := 1
n

∑
i∈[n] z

L
i ; we then have that ZL is zero-mean and σ′-sub-Gaussian for σ′ = σ/

√
n. Note

that Y L = Lhx + ZL. Furthermore, let us write θi as a shorthand for clipτ (
〈
Y L, R1xi

− µR

〉
)−〈

Y L, R1xi − µR

〉
.

The MSE can be bounded by

E


 1

n

∑
i∈[n]

ai

+
1

n

∑
i∈[n]

vi

− hT
xWhx

2


= E


 1

n

∑
i∈[n]

κi +
1

n

∑
i∈[n]

zi +
〈
ZL, Rhx − µR

〉
+

1

n

∑
i∈[n]

θi

2


≲ E


 1

n

∑
i∈[n]

κi

2
+ E


 1

n

∑
i∈[n]

zi

2
+ E

〈
ZL, Rhx − µR

〉2
+ E


 1

n

∑
i∈[n]

θi

2


≲
∥W∥2∞
ε2n

+ E
〈
ZL, Rhx − µR

〉2
+

1

n

∑
i∈[n]

E
[
θ2i
]
, (5)

where the last step is by applying the Cauchy–Schwarz inequality to the last term.

To handle the middle term in eq. (5), note that ZL is independent of µR and, as stated earlier, is
σ′-sub-Gaussian. Thus, we have

E
〈
ZL, Rhx − µR

〉2
= EµR

EZL

〈
ZL, Rhx − µR

〉2
≲ EµR

(σ′)2∥Rhx − µR∥22

(From Theorem 19) ≲ (σ′)2 · C
2
√
log k

ε
√
n

≲
C4
√
log k

ε3n3/2

≲
∥W∥2∞
ε2n

, (6)

where the last inequality is due to our assumption on n.

As for the last term in eq. (5), notice that〈
Y L, R1xi

− µR

〉
=
〈
ZL, R1xi

− µR

〉
+ ⟨Lhx, R1xi

− µR⟩ .
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Since µR belongs to R∆, we have 1
2 (R1xi − µR) ∈ R∆, which implies that | ⟨Lhx, R1xi − µR⟩ | ≤

2∥W∥∞ and ∥R1xi − µR∥2 ≤ 2C. As such, we have

E
〈
Y L, R1xi − µR

〉4
≲ E

〈
ZL, R1xi − µR

〉4
+ ∥W∥4∞

≲ (σ′)4 · C4 + ∥W∥4∞

≲
C8

ε4n2
+ ∥W∥4∞

≲ ∥W∥4∞,

where the last inequality is due to our assumption on n and from γ2(W ) ≥ ∥W∥∞.

Meanwhile, since τ = 4∥W∥∞, we have

Pr[|
〈
Y L, R1xi − µR

〉
| > τ ] ≤ Pr[|

〈
ZL, R1xi − µR

〉
| > τ/2]

≤ exp
(
−Ω(τ/(σ′ · 2C))2

)
= exp

(
−Ω(ε∥W∥∞

√
n/C2)2

)
≤ 1

ε4n2
,

where the last inequality is again due to our assumption on n and from γ2(W ) ≥ ∥W∥∞.

Thus, we may apply Lemma 18 to conclude that

E[θ2i ] ≲
√
∥W∥4∞ ·

1

ε4n2
=
∥W∥2∞
ε2n

. (7)

Combining eqs. (5) to (7), the MSE of the estimate is at most O
(

∥W∥2
∞

ε2n

)
as desired.

C.1 On Separating Non-Interactive and Interactive Local DP

We end by observing that our interactive local DP algorithm (Theorem 24) together with the non-
interactive lower bound (Theorem 6 and particularly, the more quantitative version, Theorem 23)
gives an asymptotic separation on the MSE achievable by ε-local DP interactive algorithms and those
that are non-interactive, as long as we pick W together with n ∈ N such that the following holds:

▷ n ≳ γ2(W )4 log k
∥W∥4

∞
· log

(
10γ2(W ) log k

∥W∥∞

)
and

▷ ζ(W ;n)
∥W∥∞

≥ ω(log n),

where the first condition is from Theorem 24 (and letting ε = 1) and the second condition ensures
that the error from Theorem 24 is asymptotically larger than the lower bound from Theorem 23.

It is simple to verify that it suffices to pick W such that ∥W∥∞ = 1, γ2(W, 0.1), γ2(W ) = Θ(kc) for
any constant c > 0 and pick n to precisely satisfy the bound in the first condition. Again, it is not hard
to construct such a matrix e.g., by taking W to be a random (k × k) matrix where each entry is an
i.i.d. Rademacher random variable, which yields γ2(W, 0.1), γ2(W ) = Θ(

√
k) w.h.p. [LMSS07].
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