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ABSTRACT

Large language models (LLMs) have recently been employed as agents to solve
sequential decision-making tasks such as Bayesian optimization and multi-armed
bandits. These works usually adopt an LLM for sequential action selection by
providing it with a fixed, manually designed meta-prompt. However, numerous pre-
vious works have found that the prompt has a significant impact on the performance
of the LLM, which calls for a method to automatically optimize the meta-prompt for
LLM-based agents. Unfortunately, the non-stationarity in the reward observations
during LLM-based sequential decision making makes meta-prompt optimization
highly challenging. To address this challenge, we draw inspirations from adver-
sarial bandit algorithms, which are inherently capable of handling non-stationary
reward observations. Building on this foundation, we propose our EXPonential-
weight algorithm for prompt Optimization (EXPO) to automatically optimize the
task description and meta-instruction in the meta-prompt for LLM-based agents.
We also extend EXPO to additionally optimize the exemplars (i.e., history of inter-
actions) in the meta-prompt to further enhance the performance, hence introducing
our EXPO-ES algorithm. We use extensive experiments to show that our algo-
rithms significantly improve the performance of LLM-based sequential decision
making.

1 INTRODUCTION

The strong capabilities of LLMs have spurred significant recent interests in adopting them as agents
to solve sequential decision-making problems, such as multi-armed bandits (MAB) (Krishnamurthy’
et al.| 2024)), Bayesian optimization (BO) (Yang et al.| 2024)) and reinforcement learning (RL) (Dai
et al., 2024). Specifically, these methods often use an LLM to sequentially select the actions by
providing it with a specially designed prompt, which we refer to as the meta-prompt. The meta-prompt
often contains several components, such as the task description, the meta-instruction (which is used
to instruct the LLM to select an action in every step), the history of interactions with the environment,
among others. The previous methods have all adopted a fixed, manually designed meta-prompt for
the LLM-based agent throughout the entire sequential decision-making process. However, numerous
previous works have highlighted that the output text generated by LLMs is heavily dependent on
its input prompt (Zhou et al.,|2023)). Therefore, using fixed, manually designed meta-prompt may
significantly limit the performance of the LLM-based agents, because handcrafted prompts are often
far from optimal (Zhou et al.| 2025). This naturally begs the question: can we automatically optimize
the meta-prompt for LLM-based agents to enhance their performance?

The sensitivity of LLM-generated text to its input prompt has given rise to many recent works
on automated prompt optimization, among which a representative line of works have adopted the
method of multi-armed bandits (MAB) to automatically optimize the prompt (Lin et al.l [2024a7bj;
'Wu et al.| 2024). Unfortunately, the problem of meta-prompt optimization for LLM-based agents
presents significant challenges compared to traditional prompt optimization. This is mostly due to the
non-stationarity in the observed rewards during the LLM-based sequential decision-making process.
Specifically, as the LLM-based agent engages in more interactions with the environment, its state
in the environment changes, making its observed rewards non-stationary. For example, in MAB
(Krishnamurthy et al.l 2024) and BO (Yang et al.,[2024), the observed rewards in later iterations (i.e.,
after the agent has accumulated significant experience in the environment) tend to be higher than those
obtained in initial iterations. Similarly, in RL (Dai et al.,|2024), rewards are typically dependent on
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Figure 1: Illustration of our EXPO algorithm. We use purple to denote the task description and blue
to represent the meta-instruction.

both the state and action. However, since the state of the LLM-based agent evolves across iterations,
this also results in non-stationarity in the observed rewards. As a consequence of the non-stationarity,
for the same meta-prompt (e.g., the same task description and meta-instruction), its corresponding
observed reward is highly likely to be dynamically changing across different iterations. This is in
stark contrast to classical prompt optimization, in which the reward or score for a prompt remains
stationary across iterations. As a result, this renders the previous works on prompt optimization (such
as those based on MAB (Lin et al.| 2024ajb; Wu et al., [2024)) inapplicable, and hence calls for novel
algorithmic designs to solve the problem of meta-prompt optimization for LLM-based agents. To this
end, we draw inspirations from the field of adversarial bandits (Lattimore & Szepesvaril, 2020).

In adversarial bandits, for each arm, the reward observations when the arm is pulled are chosen
by an adversary, i.e., they are allowed to change in an arbitrary way across different iterations.
Therefore, the reward observations can be significantly non-stationary. This is considerably different
from classical stochastic MAB, in which the reward observations for an arm are sampled from a
fixed stationary distribution. Therefore, the ability of adversarial bandits to handle non-stationary
reward observations makes it an ideal candidate for meta-prompt optimization for LLM-based agents.
Specifically, drawing inspirations from the EXP3 algorithm for adversarial bandits, we introduce our
EXPonential-weight algorithm for prompt Optimization (EXPO) to optimize the task description and
meta-instruction in the meta-prompt of an LLM-based agent.

In addition to the task description and meta-instruction, the history of interactions with the envi-
ronment (which we also refer to as the exemplars) is also a crucial component in the meta-prompt
which exerts a considerable impact on the performance of LLM-based agents. Existing works often
adopt simple heuristic approaches to decide how to incorporate the exemplars into the meta-prompt,
including which subset of exemplars is included and their ordering in the meta-prompt. Previous
works on in-context learning (ICL) have found that in addition to their contents, the ordering of the
exemplars also has a significant impact on the performance of LLMs (Lu et al., [2022). Therefore, in
addition to optimizing the task description and meta-instruction, we also extend our EXPO algorithm
to additionally optimize both the subset of exemplars included in the meta-prompt and their ordering.
However, the optimization of the task description and meta-instruction in every iteration in our
EXPO makes the optimization of exemplars non-stationary as well. Specifically, for the same subset
of exemplars with a fixed ordering, their reward observations are usually non-stationary, because the
task description and meta-instruction selected by our EXPO algorithm are highly likely to vary across
different iterations. To this end, we extend our EXPO algorithm to additionally use a separate adver-
sarial bandit method to optimize the exemplars (i.e., the interaction history) in the meta-prompt for
LLM-based agents, and hence introduce our EXPO with Exemplar Selection (EXPO-ES) algorithm.

We use extensive experiments to show that our EXPO significantly improves the performance of the
LLM-based BO algorithm from [Yang et al.| (2024) (Sec. and the LLM-based MAB algorithm
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from Krishnamurthy et al.| (2024) (Sec. @ Furthermore, in tasks where the exemplars provide
crucial information for the LLM-based agent, our EXPO-ES further enhances the performance of
EXPO via automated exemplar selection (Sec. [.I)). We also use ablation study to unveil interesting
insights about our algorithms (Sec. [3).

2 PROBLEM SETTING

Throughout our work, we use arms to represent meta-prompts, and use actions to denote the
actions selected by an LLM-based agent. Consider an algorithm which uses an LLM to perform
a sequential decision-making task by sequentially instructing the LLM to select an action in every
iteration. A representative example of such algorithms is the Optimization by PROmpting (OPRO)
algorithm from [Yang et al| (2024). OPRO aims to solve an optimization problem, i.e., to find
a* = argmin, f (z). To achieve this, in every iteration ¢, OPRO uses an LLM to select a batch of B
input queries {1, ...,z }, after which their corresponding scores {s; 1,. .., ¢, g} are observed.
When instructing the LLM to select the input queries, the meta-prompt Q given to the LLM contains a
number of important components, including a fixed task description D, a fixed meta-instruction L, and
a sequence of exemplars E; corresponding to a subset of the observations (i.e., pairs of input queries
and observed scores) collected so far. The same paradigm of LLM-based sequential decision making
has also been adopted by other works, such as the LLM-based MAB algorithm from Krishnamurthy
et al] (2024) (more details in Sec.[4.2).

In this work, our first algorithm, EXPO (Sec. [3.1), dynamically optimize the task description D
and meta-instruction Z (i.e., selects a new D; and Z; in every iteration t), in order to improve the
efficiency and effectiveness of optimization. We also extend our EXPO to derive the EXPO-ES algo-
rithm (Sec.[3.2)), which additionally optimizes the sequence of exemplars &, to further improve the
optimization performance. We use g(-) to denote a pre-trained embedding function, which maps some
input text to its corresponding continuous representation. We separately obtain the embeddings of the
task description g(D;), the meta-instruction g(Z;) and the exemplar sequence g(&;). Based on the
embeddings, in every iteration, we use the current history of selected meta-prompts and their scores
to train a neural network (NN), which can then be used to predict the scores of every meta-prompts in
the domain. We denote this NN as M (g(-); #), in which 6 represents the NN parameters.

Adversarial Bandits. In adversarial bandits, the goal is to compete against the best arm in hindsight
(Lattimore & Szepesvaril 2020). Consider an MAB problem with k arms (i.e., meta-prompts). For
eacharmi =1, ..., k, denote its corresponding sequence of rewards (i.e., scores) in 7 iterations as
{7t,i}t=1,... 7. The best arm in hindsight is then defined as 7* = argmax;_; Zle 7. Then,
the goal of an adversarial bandit algorithm (which selects arm A; in iteration ¢) is to minimize the
following definition of regret: Ry = Zthl Ty e — Zthl Tt A,

Adversarial Bandits for LLM-Based Agents. LLM-based sequential decision-making methods
often aim to maximize either (a) the cumulative rewards (e.g., the LLM-based MAB algorithm from
Krishnamurthy et al.| (2024))) or () the final reward (e.g., OPRO from |Yang et al.|(2024)). In the
former case of cumulative reward maximization, the overall rewards/scores for the best arm 7* are
higher than the other arms. In the latter case, we implicitly assume that the arm with the largest final
reward after 7T iterations also has large rewards across all iterations in general. As a result, in both
cases, the observed rewards of an arm (i.e., the observed scores of a meta-prompt) in every iteration
are indicative of the quality of the arm (i.e., the meta-prompt). So, when training the NN M g(-); 6)
(for score prediction) using the history of the selected meta-prompts and their observed scores, we
simply use the scores (i.e., rewards) as the labels in the training set. This simple design helps our
algorithms achieve strong performance in our experiments (Sec. d).

3  ALGORITHMS

3.1 THE EXPO ALGORITHM (ALGO. [I))

Domain Generation. At the beginning of our algorithm, we start by generating the domain of task
descriptions and meta-instructions. Following the previous works on prompt optimization (Lin et al.|
2024a:bj |Zhou et al.,2023)), we use an LLLM to rephrase an initial task description Dy (resp. initial
meta-instruction Zg) to generate a domain of k; task descriptions (resp. ko meta-instructions). This
results in a domain size of k = k; x k2. We defer more details on domain generation to App.
We treat the combination of a task description D and a meta-instruction Z in the domain as an arm,
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i.e., our adversarial bandit problem has k arms. In addition to jointly optimizing D and Z, we have
also evaluated the performance of optimizing them separately. The results (Fig. [6)) show that jointly
optimizing these two components leads to better performance.

(O LLM-Based Action Selection (lines 3-7 of Algo. [T). At the beginning of every iteration ¢, we
firstly use the current task description Dy, meta-instruction Z; and exemplar sequence &; selected at
the end of the last iteration ¢ — 1 (more details below) to construct a meta-prompt Q; = (Dy, 7y, &;)
(line 3). Then, we use Q; as the input prompt to the LLM f(+) to select the next action x; and collect
its score s; (lines 4-5). After that, we update the set of exemplars &£; and the meta-prompt-score set
S; (lines 6-7).

(@ Score Estimation (lines 8-9). In the classical EXP3 algorithm for adversarial bandits with a
finite number of arms, the cumulative sum of the observed rewards of every arm is used to construct
the arm sampling distribution through an exponential-weight mechanism (Lattimore & Szepesvari,
2020). However, in problems where the number of arms is excessively large (e.g., our problem of
meta-prompt optimization), the reward observations for many arms are not available. Therefore, the
cumulative sum of the estimated rewards of every arm is often used instead to construct the sampling
distribution (Lattimore & Szepesvari, [2020). Therefore, we firstly estimate the scores of all k& arms
(i.e., meta-prompts) in the domain and then use these score estimates to derive an arm sampling
distribution for our EXPO. A number of recent works have shown that using a neural network (NN)
(which takes the pre-trained embedding ¢(-) as input) for score/reward estimation leads to powerful
prompt optimization algorithms (Lin et al., [2024ajb; [Wu et al.| [2024). Therefore, we also adopt
an NN M(g(-); @) for score estimation in our EXPO. Specifically, in every iteration ¢, we use the
history of selected meta-prompts and their scores, denoted as S;1; (line 7 of Algo.[I), to train an
NN by minimizing the mean-squared error (MSE) loss (line 8 of Algo.[I)). The trained NN with
parameters 6,1 can then be used to estimate the score of every arm (i.e., every combination of task
description and meta-instruction) in the domain. For every arm, its estimated score is then added to

its corresponding cumulative sum of score estimates §Et+1) (line 9 of Algo. . Note that every term

. . A(t+1 . .. . . . .
in the cumulative sum 55 ) represents our score estimate forarm i in a particular iteration t, i.e.,

our estimated score for arm ¢ from an NN trained using the observation history up to iteration t. The

updated cumulative sums of score estimates §§t+1) for all £ arms are then used for randomized arm
(i.e., meta-prompt) selection, which we discuss next.

(® Randomized Meta-Prompt Selection (lines 10-12). After the cumulative sum § EHI) of every arm

1 is updated, we follow the EXP3 algorithm (Lattimore & Szepesvaril 2020) and use the cumulative
sums to construct a distribution following Equation equation [I} Then, we use this distribution to
randomly sample the next arm, i.e., the next task description D;; and meta-instruction Z; ; (line 11
of Algo.[I)). Randomization is a key principle in adversarial bandits (Lattimore & Szepesvari, [2020),
and the randomization involved in our arm selection strategy is crucial for the ability of our EXPO to
deal with non-stationary reward observations. The heuristic to select a sequence of exemplars &£/,
(line 12 of Algo.[I) is often specified by the LLM-based sequential decision-making algorithm (Yang
et al.} [2024). We discuss more details on this, as well as the extension of our EXPO algorithm to
automatically select £/, ;, in Sec.

Exploitation vs. Exploration. Our EXPO algorithm is able to achieve a principled balance between
exploitation and exploration. The use of powerful pre-trained embedding and NNs allows us to

achieve accurate score estimation. Therefore, the cumulative score estimate égtﬂ) (line 9 of Algo.
provides a reliable assessment of the quality of every arm ¢ (i.e., every combination of task description
and meta-instruction). This ensures that an arm with a large score is given a large weight in the
sampling distribution P; (line 10) and hence leads to reliable exploitation. Meanwhile, the inherent
randomness in our randomized arm selection strategy ensures that enough exploration is performed
in the domain of meta-prompts.

Batch Action Selection. In the description of our EXPO (Algo.[I), although we select one action x;
in every iteration t, this can be easily generalized to select a batch of actions. For example, when
applying our EXPO to improve OPRO (Yang et al., 2024) (Sec.[4.T)), we follow the practice of OPRO
to select a batch of 8 actions/queries in every iteration (i.e., step 4 of Algo.[I)) and set the temperature
of the LLM to 1 to ensure the diversity of the selected actions. In order to obtain a noiseless and
reliable score to assess the quality of the meta-prompt Q;, we set the temperature to 0 when selecting
the last action and use its corresponding observed score as the score s; of Q; (line 5 of Algo.[I).
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Algorithm 1 EXPO

input Initial task description D, initial meta-instruction Z.
1: Initialize the exemplar set & = 0, and the subset £, = (), meta-prompt-score set Sp = (), and

cumulative score estimates §§0) =0forall: € {1,...,k}.

2: foriterationt =0,1,...,7 — 1do

3:  Construct meta-prompt Q; = (Dy, Iy, £7).

4:  Query the LLM f(-) using the meta-prompt Q; to select the next action x;: x; = f(Qy).

5:  Observe the score s; for x; using the task-specific evaluator: s; = £(x).

6:  Update the exemplar set £r11 = & U { (x4, s¢) }-

7. Update the meta-prompt-score set Sy 41 = S; U {([9(Ds) ® g(Z¢)] , s¢)}, where g(-) denotes
the embedding function and & denotes concatenation.

8:  Update the parameters 6 of the neural network (NN) M (g(-); #) by using the updated S; 1, as
the training set to minimize the MSE loss, yielding 6; 1.

9:  Update the cumulative score estimates §Z(-t) for all arms ¢ using the predicted scores from

M(g():0i41): 38D = 89 4 M([g(Di) ® 9(T)] ;0041), Vie{l,...,k}.
10:  Compute the sampling distribution P; over all arms:

A(t+1)
Pt [Z] _ exP(nSi )

k A1)y
> j=1 exp(ns{)
11:  Sample an arm (i.e., the combination of a task description and a meta-instruction) from F;:

(Dt+1;It+l) ~ Pt~
12:  Select a sequence of exemplars &£/ ; from &, following a pre-defined heuristic method.

Vie{l,... k} 1

3.2 EXPO WITH EXEMPLAR SELECTION (EXPO-ES)

Previous works on LLM-based for sequential decision making often select the sequence of exemplars
&}, included in the meta-prompt Q; using a fixed pre-defined heuristic (line 12 of Algo. . For
example, OPRO includes the 20 exemplars with the best observed performance in the meta-prompt,
arranged in ascending order of performance (Yang et al.|[2024); the LLM-based MAB method from
Krishnamurthy et al.| (2024) either includes all exemplars (ordered by their iteration sequence) in
the prompt or includes a summarized representation of all exemplars. However, numerous previous
works have reported that both the subset of exemplars and their ordering have significant impacts on
the performance of LLM (Wu et al.,[2024). Therefore, here we further extend our EXPO (Algo. E])
to additionally optimize the sequence of exemplars &/, (i.e., to replace line 12 of Algo.|l|by an
automated method to select &/ ), hence introducing our EXPO-ES algorithm (Algo. [2| App. .

As a result of the dynamically changing task description and meta-instruction, the optimization of
exemplar sequences becomes non-stationary as well. So, we also dynamically optimize the exemplar
sequence based on the EXP3 algorithm for adversarial bandits. That is, in every iteration of our
EXPO-ES (Algo.2)), we firstly optimize the task description and meta-instruction (i.e., following
lines 3-11 of Algo.|1)), and then optimize the exemplar sequence &/, ; in a similar way to Algo.

Details of EXPO-ES (Algo. 2). Specifically, after the task description and meta-instruction are
optimized (i.e., after lines 3-11 of Algo. [T, we firstly extract the embedding of the exemplar sequence
&/ used in this iteration: g(&/), and add (g(&7), s¢) to the exemplar training set T;11 (line 4 of
Algo. . Next, the updated dataset 7; is used to train an NN with parameters 6, (line 5), which
is able to estimate the score of any exemplar sequence. Subsequently, we randomly sample kFS
exemplars sequences, each containing £ exemplars, to be used as our domain of exemplar sequences
(line 8). Next, for every candidate exemplar sequence in the domain, we need to obtain its cumulative
score estimate (similar to line 9 of Algo.[I). Unfortunately, due to the time-varying nature of the
domain of exemplar sequences (due to the addition of new exemplars and random sampling of
exemplar sequences), we are no longer able to constantly maintain a cumulative score estimate for
every exemplar sequence (i.e., arm) and update incrementally. To this end, we save the parameters of
the trained NN in every iteration in history; then for each sampled exemplar sequence in the domain,
we obtain its score estimates from all NNs in the history and use their sum as the cumulative score
estimate for this exemplar sequence (lines 9-14 of Algo.[2). Next, the cumulative score estimates for
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Figure 2: Results of different algorithms (mean =+ standard error) in the Linear Regression and TSP
task (Sec.[£.1)). Lower is better.

all exemplar sequences are used to compute the sampling distribution, from which the next exemplar
sequence &/, ; is sampled and used to the meta-prompt in the next iteration (lines 15-16).

4 EXPERIMENTS

We firstly apply our algorithms to improve the performance of OPRO in Linear Regression (LR),
traveling salesman problem (TSP) and instruction optimization tasks, adopting the same experimental
setting as|Yang et al(2024) (Sec.[4.T). Then, we use our algorithms to enhance the performance of
the LLM-based MAB algorithm from Krishnamurthy et al.| (2024).

4.1 LR, TSP AND INSTRUCTION OPTIMIZATION TASKS

Linear Regression (LR). In the LR task, our goal is to find the optimal LR coefficients, w and b, that
best fit a set of given noisy observations. We firstly choose the groundtruth LR coefficients wy,. and
buue, and use them to generate noisy observations for 50 inputs = which are randomly selected within
[—1, 1]. Specifically, for each input =, we generate its noisy observation as ¢y = Wyye® + byye + €
where € is a Gaussian noise. We adopt the two most challenging choices of coefficients from|Yang
et al.[(2024): (1) wywe = 2, byue = 30 and (2) wyye = 36, byye = —1. In this task, OPRO aims to find
the optimal w and b which minimizes the regression error (i.e., mean squared error).

Traveling Salesman Problem (TSP). In the classical TSP problem (Jiinger et al., |1995)), given a set
of n nodes with their coordinates, the objective is to find the shortest route that starts from a given
node, traverses all nodes exactly once, and finally returns to the starting node. Therefore, our goal is
to solve a discrete optimization problem in which the input variable is a trajectory and the goal is to
minimize the total distance of the trajectory. We adopt TSP instances with 10, 15, and 20 randomly
generated nodes, respectively, which represent increasing levels of difficulty.

We adopt GPT-3.5-Turbo as the LLM in both the LR and TSP tasks. The results for both tasks
are shown in Fig. 2| which plot the regression error (i.e., mean squared error) for the LR tasks and
optimality gap (i.e., the difference between the total distance of the discovered route and that of the
optimal route) for the TSP tasks (lower is better for both tasks). Of note, in addition to the standard
OPRO (pink curves) (Yang et al.,[2024)), we have also proposed an enhanced variant of OPRO (green
curves) in which we added some further clarifications to the task description (see App. [D.2.5]for more
details). The enhanced variant consistently improves the performance of the standard OPRO (Fig. E]
More importantly, the results in Fig. [2| show that ir all tasks, our EXPO algorithm (blue curves)
significantly and consistently outperforms OPRO, including both standard OPRO and its enhanced
variant. This demonstrates that our meta-prompt optimization approach, grounded in adversarial
bandits, leads to more efficient (i.e., faster convergence) and more effective (i.e., improved final
performance) LLM-based sequential decision making.

Meanwhile, our EXPO-ES algorithm, which is additionally equipped with automated exemplar
selection, considerably improves the performance of EXPO in the LR tasks yet performs on par
with EXPO in the TSP tasks. This is likely because the exemplars play a more important role in
the LR tasks than the TSP tasks. Specifically, in LR, the input-output exemplars provide important
information for identifying the optimal LR coefficients (Wu et al.,[2024)). Therefore, selecting better
exemplars (via our EXPO-ES) brings significant performance boost. On the other hand, in the TSP
tasks, due to the challenging nature of the tasks, it is difficult for the LLM to infer crucial and useful
information from the exemplars. Therefore, the other components in the meta-prompt (i.e., the task

'As discussed in the last paragraph of Sec. we have slightly modified OPRO to select the last action in
the batch using a temperature of 0. We empirically show that this leads to comparable performance with the
original OPRO which uses a temperature of 1 to choose all 8 actions (see Fig. E]in App. @I}
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OPRO

Now you will help me minimize a
function with two input variables
w, b. 1 have some (w, b) pairs and

The pairs are arranged in descending
order based on their function values,
where lower values are better.

{EXEMPLARS}

Give me a new (w,b) pair
that is different from all pairs above,
and has a function value lower than
any of the above. Do not write code.
The output must end with a pair
[w, b], where w and b are numerical

the function values at those points.

EXPO

We will collaborate to optimize a function involving two parameters, \(w\) and \(b\). I
possess a set of data points, each consisting of \((w, b)\) pairs and their corresponding
function values. These pairs are systematically organized in reverse order, starting from
the greatest to the smallest function values. Essentially, the lower the function value, the
more optimal or preferable the pair. Consequently, our goal is to identify and analyze the
\((w, b)\) pair that manifests the lowest function value, as this represents the perspective
of optimum efficacy.

{EXEMPLARS}

To enhance the quality and expand on the existing instructions, follow these
improved guidelines vis-a-vis designing a new and distinctive numerical pair: ensure
the selected (w, b) combination diverges from prior examples and secures a function
output lower than preceding values. Key details on methodology or calculations are not
required—just ensure clarity in presenting a returned value that closes with the specific
format [w), b], where both w and b are distinct numerical figures.
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Figure 3: The task description and meta-instruction used by OPRO (left) and optimized by our
EXPO (right) in a Linear Regression task.
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Figure 4: Cumulative regret in the LLM-based MAB experiments (Sec.[#.2). Lower is better.

description and meta-instruction) provide more useful information in the TSP tasks. As a result,
selecting better exemplars does not lead to noticeable performance gains in the TSP tasks. Fig.[3]
provides an illustration of the original task description and meta-instruction used by OPRO and those
discovered by our EXPO algorithm for the LR tasks, whereas the corresponding meta-prompts for the
TSP tasks are displayed in Fig.[I7]in App.[E.3]

Instruction Optimization. We also adopt our EXPO to improve 9

the performance of OPRO in instruction optimization tasks using o |
the GSMS8K dataset (Cobbe et al.,[2021). We adopt GPT-4-Turbo >8° m BP0 i
as the optimizer LLM to sequentially propose different instruc- ¢, I/" i
tions, and use Qwen-2.5-7B as the scorer LLM to evaluate the & ,—;;;1"
effectiveness of these instructions (more details in App.[D.2.1). e (
The results in Fig. [5]show that our EXPO also considerably outper- "

15 20

forms OPRO in this challenging task. Moreover, EXPO-ES fur- 0 >
ther improves the performance of EXPO, which is likely because
the exemplars (i.e., instructions and their scores) provide valuable
information for instruction optimization in this task.

10
Iteration

Figure 5: Instruction optimiza-
tion task (higher is better).

4.2 LLM-BASED MULTI-ARMED BANDITS (MAB)

The work of |[Krishnamurthy et al.|(2024) has used an LLM to sequentially select the arms/actions in
MAB and proposed methods to manually design the meta-prompt. Their prompt design consists of
5 components with each having 2 possible choices, which gives rise to a total of 2° = 32 possible
prompts. Here we show that our algorithms can be used to automatically optimize their manually
designed prompts to further enhance their performance. Specifically, we adopt 2 of their prompt
designs: BSSND and BSSCD, and apply our EXPO and EXPO-ES algorithms to optimize the
important components in these prompt designs. Following |[Krishnamurthy et al.| (2024)), we use
two MAB instances: easy and hard. We adopt GPT-4-Turbo as the LLM here. More details on the
experimental design are deferred to App.[D.3.1] The results for the 4 experimental settings (i.e., 2
prompt designs x 2 MAB instances) are shown in Fig.d] which demonstrate that our EXPO and
EXPO-ES algorithms are able to significantly reduce the cumulative regret of MAB in this task across
different prompt desings and MAB instances. We illustrate the comparison between the original
meta-prompt and the one optimized by our EXPO in Figs. [I8|and [I9]in App.[E3]

7
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5 ABLATION STUDY

Only Optimizing Task Description or Meta-Instruction. Our EXPO jointly optimize the task
description D and the meta-instruction Z. Here we evaluate the performance of optimizing either D
or Z alone. The results in Fig. [f] show that jointly optimizing them indeed leads to significantly better
performance. However, optimizing these components alone still consistently outperforms OPRO.
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Figure 6: Results of EXPO when only optimiz-Figure 7: Comparison of our EXPO with general
ing the task description or the meta-instruction. prompt optimization methods in the LR tasks.

Comparison with General Prompt Optimization Methods. As discussed in Sec. I} in meta-prompt
optimization for LLM-based agents, the non-stationary reward observations render the previous
general prompt optimization methods unsuitable. Here we verify this by comparing our EXPO with
a variety of general prompt optimization methods, including the INSTINCT algorithm based on
stochastic MAB (Lin et al.,|2024b)), PromptBreeder (Fernando et al.|[2023)) and MIPRO (Opsahl-Ong
et al,[2024). The results for the Linear Regression tasks are displayed in Fig.[7] which demonstrate
that general prompt optimization methods indeed significantly underperform in the problem of
meta-prompt optimization for LLM-based agents. We have also compared with INSTINCT (Lin
et al} 2024D) (i.e., the best-performing baseline method from Fig.[7) in the TSP tasks, and the results
(Fig.[20]in App. also show that INSTINCT consistently performs worse than our EXPO. These
results provide further justifications for our proposed adversarial bandit-based algorithms.
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Figure 8: First three figures: ablation study on impact of exploration parameter 7). Rightmost figure:
results using GPT-4-Turbo.

Impact of the Degree of Exploration. Here we examine the impact of the degree of exploration, i.e.,
the value of 7 (line 10 of Algo.[I). The results (Fig.[8] first three figures) show that an excessively
large degree of exploration (i.e., a small = 10) or an overly small degree of exploration (i.e., a
large n = 1000) both deteriorate the performance. Moreover, the results also demonstrate that in
easier tasks (i.e., TSP with 10 nodes), imposing a smaller degree of exploration (i.e., 7 = 1000) leads
to better performance compared to 1 = 10, because it allows our EXPO to quickly converge to the
optimal solution. Meanwhile, in more challenging tasks (i.e., TSP with 20 nodes), more exploration
(i.e., n = 10) results in better performance (than n = 1000), because it makes it easier for our
EXPO to escape local optimum.

Experiments With Other LLMs. To evaluate the effectiveness of our approach when combined with
different LLMs, here we adopt the challenging TSP task with 20 nodes and replace the GPT-3.5-Turbo
model used in our original experiments (Sec. 1)) by the more advanced GPT-4-Turbo model. The
results in Fig. 8| (rightmost figure) show that GPT-4-Turbo significantly improves the performance
of both OPRO and our EXPO. More importantly, as visualized more clearly in Fig.[T4]in App. [E.T}
when both adopting GPT-4-Turbo, our EXPO still significantly outperforms OPRO. The results show
that our EXPO can effectively improve the performance of LLM-based agents across different LLMs.
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Effectiveness of the Optimal Prompt Discovered by EXPO. To further verify the ability of our
EXPO to identify effective meta-prompts, here we replace the original task description and meta-
instruction in an LLM-based sequential decision-making algorithm (e.g., OPRO) by the optimal ones
discovered by our EXPO. For example, for ORPO, we firstly run our EXPO to completion, and then
use the final meta-prompt selected by our EXPO as the meta-prompt to execute OPRO again. The
results in Fig. [0 show that fixing the meta-prompt to be the one optimized by our EXPO leads to
dramatic performance boost to LLM-based sequential decision making.

1 — — 350 140

— BSSND 10— sssco OPRO OPRO
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Figure 9: Results achieved by fixing the meta-prompt to be the optimal one discovered by our
EXPO (gray curves).

Computational Efficiency. We have also explored the computational efficiency of our EXPO algo-
rithm. As shown in Table[T]in Appendix [E.4] our EXPO requires substantially less computational
time than OPRO to achieve the same level of performance.

6 RELATED WORK

Prompt Optimization. Prompt optimization has attracted increasing attention in recent years. Early
studies primarily focused on optimizing prompts for white-box LLMs using gradient-based techniques
(Shi et al.; 2023} Shin et al., [2020)), reinforcement learning approaches (Deng et al.| [2022), and soft-
prompt tuning methods (Lester et al., 2021; L1 & Liang| 2021;|Zhong et al.,2021). More recently,
a growing body of work has investigated prompt optimization for black-box LLMs, leveraging
evolutionary algorithms (Fernando et al., 2023} |Guo et al., [2024; Zhou et al.| |2023)), zeroth-order
optimization (Hu et al.|[2024;|Zhan et al., 2024), Monte Carlo tree search (Wang et al.| 2023b), and the
Hyperband algorithm (Schneider et al.l[2024). Of note, several methods have introduced multi-armed
bandit frameworks (Chen et al., 2023} [Lin et al., 2024bj Shi et al., 2024) and reinforcement learning
strategies (Kong et al.|[2024)) to achieve sample-efficient prompt optimization in the black-box setting.
Despite these advances, to the best of our knowledge, our algorithm is the first to efficiently optimize
the meta-prompt for LLM-based agents in sequential decision-making tasks. We defer a discussion
of related works on automated exemplar selection to App. [Al

LLM-Based Sequential Decision Making. Recent studies have explored leveraging LLMs to
address sequential decision-making problems, including Bayesian optimization (Yang et al., [2024)),
multi-armed bandits (Chen et al., 2024} Krishnamurthy et al.| [2024; [Mukherjee et al.;2024; Xia et al.|
2024), and reinforcement learning (Dai et al.,[2024; Monea et al.,|2024; Wang et al.,|[2024a). However,
most of these approaches rely on a fixed, manually designed meta-prompt for guiding the LLM,
which limits their ability to fully exploit the potential of LLM-based sequential decision-making.
Meanwhile, the broader field of LLM-based agents has seen rapidly growing interest. A variety
of benchmarks have been proposed to evaluate their capabilities, such as AgentBench (Liu et al.|
2023), SmartPlay (Wu et al., 2023), and AgentGym (Xi et al.| [2024)), among others. For a more
comprehensive overview of recent progress and open challenges in LLM-based agents, we refer
readers to recent surveys (Cheng et al.,2024; Wang et al., [2024b; X1 et al., 2023)).

7 CONCLUSION

In this work, we propose the EXPO algorithm to automatically optimize meta-prompts for LLM-based
sequential decision-making tasks. We further extend EXPO to develop the EXPO-ES algorithm,
which also optimizes the exemplars within the meta-prompt. Extensive experiments demonstrate
that our proposed algorithms considerably and consistently enhance the performance of LLM-based
sequential decision-making. A potential limitation of this work is its inapplicability to optimizing
meta-prompts for LLM-based multi-agent systems, an area we plan to explore in future research.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a comprehensive account of our algorithms,
experimental configurations, and implementation specifics. The complete, anonymized source code is
included as supplementary material. The core logic of our proposed methods, EXPO and EXPO-ES,
is formally delineated with pseudocode in Algo.[l|and Algo. |2} respectively. All requisite details
for replicating our experimental results are thoroughly documented. Appendix [D.1] specifies the
methodology for generating the prompt domain. Exhaustive settings for the Linear Regression, TSP,
and Instruction Optimization tasks are detailed in Appendix which covers evaluation metrics,
prompt scoring functions, model choices, and key hyperparameters. Similarly, all configurations
for the Multi-Armed Bandit experiments are specified in Appendix [D.3] To guarantee statistical
robustness, all experiments were repeated multiple times, with the exact number of repetitions
explicitly stated in the relevant appendix sections. Furthermore, critical implementation details, such
as numerical stability, and computational resources (Appendix [D.5) are provided.
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A ADDITIONAL RELATED WORK

Automated Exemplar Selection. Another line of research explores automatic exemplar selection
for in-context learning. Some methods (Li & Qiul 2023} Nguyen & Wong, 2023} Wang et al.||2023a;
Zhang et al.| [2022) select a single static set of exemplars for all test queries within a task, whereas
others (Albalak et al., 2024} |Gao et al.| 2024; |Gupta et al., [2023} [Levy et al., 2023} Liu et al.| [2022;
Rubin et al.| 2022} |Ye et al., 2023)) train a retriever model to dynamically select the most relevant set
of exemplars for each query. Furthermore, a few recent approaches (Opsahl-Ong et al.|[2024; Wan
et al., 2024} [Wu et al., 2024) have achieved joint prompt optimization and exemplar selection.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a Large Language Model (LLM) to assist with polishing the writing and refining the phrasing
in this paper.

C OUR EXPO-ES ALGORITHM TO ADDITIONALLY OPTIMIZE THE EXEMPLAR

SEQUENCES

Algorithm 2 EXPO-ES

input Initial task description Dy, initial meta-instruction Zy. Maximum number £ of exemplars in

the meta-prompt, the number kFS of exemplar sequences in the domain.

1: Initialize the exemplar set & = 0, and the subset £, = (), meta-prompt-score set Sy = (), and
cumulative score estimates s( ) for all j € {1,...,kBS}. Initialize the history of NN parameters

Ohisory = 0, and the exemplar training set 7o = (D
2: for iterationt =0,1,...,7 — 1 do

3:  Lines 3-11 of Algo.[1]
4:  Compute the embedding g(&]) of the selected exemplar sequence &/, and add g(&;) and its
score s; to the exemplar training set: 711 < 7: U {(g(& ) st)}-
5. Update the parameters 65 of the NN Mg (g(-); 6F5) by using the updated 7, | as the training
set to minimize the MSE loss, yielding QtEil.
6:  Add the updated parameters to the history: Ohisiory <~ Ohistory U {0531 }-
7: if|&41| > L then
8: Randomly generate kFS sequences of L exemplars from the exemplar set & yq:
(€L 1,824, . ,Stkjsl}, in which every &£/, | represents an ordered set of £ exemplars
from &4 1.
9: Initialize cumulative score estimates §§-O) =O0forallj € {1,...,kES}. 1
10: for each &, in {€L1,..., €} do
11: Initialize cumulative score §§-O) =0.
12: for each historical model parameter 655 € Opigiory do
13: Update the cumulative score for &7, ;: s;l) Aglfl) + Mes(g(EL,); 655).
14: Compute the final cumulative score estimates: sgﬁ“al) s;‘ghis‘°’y‘)7 Vie{l,... KBS},
15: Compute the sampling distribution PES over the k exemplar sequences:
(final)
exp(n3; ) :
PRl = == i vje{l,.... k¥ )
S exp(nd ™)
16: Sample an exemplar sequence &/, ~ PFS

Our complete EXPO-ES algorithm is described in Algo. 2l As we have discussed in Sec. [3.2]

there are two major differences compared to the way in which our EXPO algorithm optimizes the
task description and meta-instruction (Algo. ' Firstly, our domain of kFS arms (i.e., every arm

14

cumulative
> score
estimates
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corresponds to a randomly sampled exemplar sequence) changes in every iteration (line 8). Secondly,
as a result of the time-varying domains, we need to save a copy of the parameters of the NN trained
in every iteration in order to compute the cumulative score estimates (lines 9-14).

Simplified Variant of Our EXPO-ES Algorithm. When applying our EXPO-ES algorithm to
the LLM-based MAB algorithm in Krishnamurthy et al.| (2024)) (Sec. @]), we have adopted a
simplified variant of our EXPO-ES. This is because in the problem setting from |Krishnamurthy
et al.[(2024)), the number of arms is small. Therefore, instead of including a subset of the history of
exemplars in the prompt, their algorithm has instead included a summarized observation history.
An example of such summarized observation history with 5 arms (represented by 5 buttons
with different colors) is given in Fig. [I0] below. Therefore, here we aim to optimize the format
of the summarized observation history. Specifically, we optimize the order of the arms in the
summarized history, and our domain of arms consist of all cyclically shifted variants of the follow-
ing sequence of buttons: {blue button, green button, red button, yellow button, purple button}.
For example, some other arms (button sequences) in our domain in-
clude: {green button, red button, yellow button, purple button, blue button } and
{red button, yellow button, purple button, blue button, green button}. ~ As a result, unlike our
original EXPO-ES algorithm described in Sec. [3.2] here we do not suffer from the issue of
time-varying domain of arms.

blue button: pressed 2 times with average reward 0.5
green button: pressed 1 times with average reward 0.0
red button: pressed 1 times with average reward 1.0
yellow button: pressed O times

purple button: pressed 1 times with average reward 0.0

Figure 10: An example of the summarized observation history used by the LLM-based MAB
algorithm from [Krishnamurthy et al.| (2024)).

Therefore, when applying our EXPO-ES algorithm to improve the LLM-based MAB method from
Krishnamurthy et al.[(2024) (Sec. , we make two modifications to our standard EXPO-ES algo-
rithm described in Algo.[2| Firstly, instead of randomly sampling kS exemplar sequences to form
our domain of exemplar sequences, here our domain remains fixed across different iterations, i.e.,
all cyclically shifted variants of the arms. Secondly, since here we do not suffer from the issue of
time-varying domain of arms (i.e., exemplar sequences), we can resort to the incremental update of
the cumulative reward estimates adopted by our EXPO algorithm (line 9 of Algo.[I). As a result, we
do not need to save a copy of the parameters of the NN trained in every iteration.

D MORE DETAILS ON OUR EXPERIMENTAL SETTINGS

D.1 MORE DETAILS ON THE GENERATION OF THE DOMAIN OF TASK DESCRIPTION AND
META-INSTRUCTION

Here we describe the details about how we generate the domain of task descriptions and meta-
instructions. Below we provide the prompt we have used to instruct the LLM to generate every
prompt in the domain.
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Example Query: Meta-Prompt Instruction Rephrasing Template

To achieve a more effective TASK description and INSTRUCTION and convey its core essence
more clearly, please enhance the content in the quote by rephrasing and changing some information:
"{INITIAL_META-PROMPT}"

Please return directly the modified description without additional description.

The modified description:

Generation of the Domain. To effectively generate task-specific prompts, we utilized an initial
prompt to guide the LLM in creating diverse task descriptions and meta-instructions. For each task,
the LLM was prompted 100 times to rephrase the task description and meta-instruction separately,
resulting in 100 unique rephrased prompts for each. Combined with the initial prompt, this process
produced a total of 101 x 101 combinations of task descriptions and meta-instructions for each task.

To optimize computational efficiency, we pre-compute the embeddings of all task descriptions and
meta-instructions in the domain using the embedding model g(-) and store the results to prevent
redundant calculations during subsequent experiments.

For the rephrasing process, we employed the GPT-4 model with a temperature setting of 1.3, ensuring
diverse and high-quality rephrased prompts for both task descriptions and meta-instructions.

D.2 MORE DETAILS ON OPRO FOR THE LINEAR REGRESSION, TRAVELING SALESMAN
PROBLEM AND INSTRUCTION OPTIMIZATION (SEC.[4.1])

D.2.1 TASK SETTING.

Linear Regression. We conduct experiments on Linear Regression by selecting two challenging
ground truth weight-bias (w, b) pairs. The experiments follow the OPRO framework, which requires
warm-starting the LLM with initial exemplars. Using a fixed random seed, we first generate 50
random data points uniformly distributed within the range [—1, 1], which perfectly satisfy the ground
truth wye, byue pairs, ensuring that these data points can serve as the foundation for evaluating the
LLM’s ability to model the relationships. Additionally, 5 w, b pairs with corresponding scores,
sampled within the range [10, 20], are generated using another fixed random seed to serve as the
initial exemplars. At each iteration, the LLM is prompted 8 times (consisting of 1 inference with a
temperature setting of 7" = 0 and 7 inferences with a temperature setting of 7' = 1) using the current
exemplars, and the prompt is updated based on the generated outputs. The exemplars are dynamically
updated to include the top 20 w, b pairs and their associated scores from all historical records across
iterations, ensuring the LLM is always guided by the best-performing examples. The total number of
iterations is set to 50, and each ground truth configuration is repeated 5 times for consistency.

Traveling Salesman Problem (TSP). For the TSP task, experiments are conducted on three problem
sizes defined by the number of nodes: 10, 15, and 20. For each TSP instance, the problem is defined
by randomly generating n = 10, 15, 20 nodes, where the = and y coordinates of each node are
sampled uniformly from the range [—100, 100]. For each configuration, a specific TSP instance
is generated using a fixed random seed, and a single random seed is used to generate warm-start
exemplars to initialize the LLM prompts. To initialize the optimization process, we randomly sample
5 different TSP routes along with their corresponding total distances. These routes and their lengths
are used as the initial exemplars for the LLM. Each iteration consists of 8 prompt calls to the LLM,
followed by an update of the exemplars based on the generated results. More specifically, during each
iteration, the GPT-3.5-turbo is prompted 8 times using the same prompt, consisting of 1 inference
with a temperature setting of 7' = 0 to ensure stability and 7 inferences with a temperature setting of
T = 1 to encourage exploration. Similar to the Linear Regression task, the exemplars for TSP are
updated to include the top 20 historical solutions with the best scores, ensuring the prompt leverages
the most effective examples. The number of iterations is set to 100, 200, and 300 for 10-node,
15-node, and 20-node TSP problems, respectively, to account for the increasing complexity of the
tasks. Each node configuration is repeated 3 times to ensure consistency and reliability.

Instruction Optimization. Following the experimental settings in OPRO, we have conducted instruc-
tion optimization experiments using the GSM8K benchmark dataset (Cobbe et al.,2021). In line with
OPRO, which emphasizes sample-efficient optimization, we randomly select 75 problem—answer
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pairs from the GSMS8K training set as the instruction tuning subset. GPT-4-Turbo is used as the
instruction optimizer to iteratively generate improved instructions, while Qwen-2.5-7B serves as the
scorer LLM to evaluate the effectiveness of the instructions. During each iteration, GPT-4-Turbo
is prompted 8 times with the current set of exemplars: 1 inference is performed with temperature
T = 0 and the other 7 inferences are conducted with 7' = 1, yielding 8 candidate instructions per
round. Each candidate is evaluated using the Q_end strategy by prompting Qwen-2.5-7B on the 75
training questions. The exemplar set for the next iteration consists of the 20 best instructions based
on evaluation scores, along with 3 randomly sampled training exemplars. Here our EXPO algorithm
only considers optimizing the meta-instruction component in the meta-prompt, while keeping the
task description fixed. This is because in the setting of the instruction optimization experiments in
OPRO, the task description is instantiated as a set of three randomly selected exemplars from the
training set, which makes it not directly amenable to the application of our meta-prompt optimization
algorithm. As such, only the meta-instruction is optimized in this experiment. The optimization is
initialized with the Chain-of-Thought (CoT) prompt prefix "Let’s think step by step", which serves as
the initial instruction for OPRO, EXPO and EXPO-ES . Each experiment is repeated 3 times.

D.2.2 EVALUATION METRICS.

Linear Regression. In the Linear Regression task, the performance of the algorithms is evaluated
using the Mean Squared Error (MSE) metric. Given a set of N one-dimensional input data points
x € R and their corresponding ground truth labels y € R, the MSE is computed as:

1 2
MSE = = [ly — (w-x +b)[|",

where w € R and b € R are the weight and bias parameters inferred by the LLM, and N is the total
number of data points.

Traveling Salesman Problem (TSP). For the TSP task, the performance of the LLM-generated
solutions is evaluated based on the total Euclidean distance of the TSP tour. Given a set of two-
dimensional points {(z;,y;)}}*;, where N is the total number of nodes, the length of a proposed

TSP tour P = [w(1),7(2),...,m(N),n(1)] is computed as:

2

N
2
Length = Z \/(%r(i-u) - xﬂ(i)) + <y7r(i+1) - yrr(i)) )
i=1

where 7 represents the permutation of nodes in the proposed tour, and (N + 1) = m(1) ensures the
tour returns to the starting node.

To evaluate the convergence and effectiveness of the agents, we use the Optimality Gap metric, which
quantifies the deviation of the solver’s best-found solution from the true optimal solution. It is defined
as:

SolverOptimal — Optima

100
Optima x 100%,

Optimality Gap =

where:

* SolverOptimal denotes the shortest tour length found by the solver up to the current iteration.
* Optima is the length of the known optimal TSP tour.

Instruction Optimization. To assess the effectiveness of each generated instruction, we adopt the
Q_end evaluation strategy introduced in OPRO. For a given instruction, prompts are constructed
by appending the instruction to each question in the set, and the Qwen-2.5-7B-Instruct model with
the temperature set to 0 is queried to generate corresponding answers. The final predicted outputs
are then compared to ground-truth answers using exact numerical match accuracy. Specifically, for
the GSMS8K dataset, an answer is considered correct if and only if it exactly matches the reference
solution in its numerical form—partial matches, approximations, or differently formatted correct
values are all treated as incorrect.

Formally, the score is defined as the average accuracy over the set:

N
1
Accuracy = N § L[gi = i, )
i=1

17



Under review as a conference paper at ICLR 2026

where g; denotes the model-predicted answer for the i-th example, y; is the corresponding ground-
truth answer, and 1[-] is the indicator function that equals 1 when the predicted and true answers
exactly match. Higher average accuracy reflects that the algorithm has identified more effective
instructions, indicating greater optimization efficiency and overall method quality.

D.2.3 DESIGN OF PROMPT SCORE.

Linear Regression and TSP. In both the Linear Regression and TSP tasks, optimal solutions are
characterized by lower evaluation scores. To align with the requirements of the algorithm and ensure
more stable learning, we define the Meta-Prompt Score using the formula:

—Evaluation Score + b
b )
where b > 0 is a stabilizing constant. This formulation ensures that lower evaluation scores correspond

to higher prompt scores, which better facilitates the optimization process and contributes to steady
algorithmic learning.

Meta-Prompt Score =

For the Linear Regression task, the Evaluation Score is defined as the Mean Squared Error (MSE) of
the weight-bias (w, b) pairs proposed by the algorithm at each iteration under a Temperature=0 stable
inference. The MSE is computed based on the provided one-dimensional data points.

For the TSP task, the Evaluation Score corresponds to the total Euclidean distance (Length) of the
TSP tour proposed by the algorithm at each iteration, also under a Temperature=0 stable inference.

Instruction Optimization. Instruction Optimization task uses accuracy as the evaluation metric,
where higher scores signify superior instruction quality and meta-prompt quality. Accordingly, we
directly define the Meta-prompt Score as the average accuracy (scaled to [0, 1]) achieved by the
instruction generated under the current meta-prompt.

Specifically, at each iteration, we perform a Temperature=0 inference with GPT-4-Turbo to generate a
candidate instruction from the current meta-prompt. This instruction is then evaluated on the training
subset using the Qwen-2.5-7B-Instruct model under the Q_end setting, and the resulting average
accuracy serves as the Prompt Score:

Meta-Prompt Score = Accuracy, 3)

This formulation directly reflects the effectiveness of the meta-prompt: higher Accuracy values lead
to higher Meta-Prompt Scores, indicating more successful instruction optimization.

D.2.4 DETAILS ABOUT THE MODELS AND PARAMETERS IN OUR ALGORITHMS

LLM Agents and Embedding Model. In our experiments, the primary LLM agent used is GPT-3.5-
Turbo. For embedding generation, we utilized OpenAl’s text-embedding—-3-large model,
which outputs embeddings of dimensionality 3072. These embeddings were used to represent both the
task description and meta-instruction in the EXPO framework. The embeddings were also employed
to represent the exemplars in the EXPO-ES framework. During each iteration of inference, the LLM
agent performed 1 prediction with a temperature setting of 7" = 0 to provide a stable solution and 7
additional predictions with a temperature setting of 7' = 1 to encourage exploration.

Neural Network Parameters. For the Linear Regression and TSP experiments, the input to the
neural network consists of the concatenated embeddings of the task description and meta-instruction,
resulting in an input dimensionality of 3072 + 3072 = 6144. The neural network employs a single
hidden layer with a width of 1536 and produces a single scalar output. The training objective is to
minimize the Mean Squared Error (MSE) loss function.

For the Instruction Optimization experiments, we only optimize the meta-instruction without opti-
mizing the task description. Consequently, the neural network input dimensionality for 10 is 3072,
corresponding solely to the meta-instruction embedding. The neural network in the IO experiment
employs a single hidden layer with a width of 512 and outputs a single scalar value. The training
objective is also to minimize the MSE loss.

For the EXPO-ES, the exemplar selection process differs depending on the iteration count. Dur-
ing the initial iterations, when fewer than 20 optimal historical records are available, we use
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all available exemplars. As the iteration count increases, exemplars are selected from the top
min(total exemplar records, 30) historical optimal records. From this pool, 257 exemplars are con-
structed, consisting of 256 randomly selected exemplars and 1 heuristic exemplar generated from a
combination of 20 best historical records. The neural network for EXPO-ES operates on an input
dimensionality of 3072, corresponding to the embedding of a single exemplar. It employs a single
hidden layer with a width of 512 and produces a single scalar output. The training objective is to
minimize the Mean Squared Error (MSE) loss.

EXP3 Learning Rate. In the EXPO , the learning rate parameter 74e is set to 100 for selecting task
description and meta-instruction combinations in both the Linear Regression and TSP experiments.
For the Instruction Optimization experiments, where only the meta-instruction is optimized, the
learning rate parameter Mmeta-inst 1S Set to 50.

In the EXPO-ES, the learning rate parameter for selecting combinations of task description and
meta-instruction is set identically to that in EXPO. And the learning rate parameter for exemplar
selection, Nexemplar» 18 S€t t0 25.

D.2.5 ENHANCED OPRO

Here, we describe how we have enhanced the original algorithm 2024) by modifying its
prompts.

During initial experiments with the meta-prompts provided by the original OPRO algorithm
[2024) for task description rephrasing, we observed that the LLM often misinterprets the
descending order semantics described in the original design. In tasks like TSP and Linear Regression,
where better solutions correspond to lower evaluation scores, descending order is intended to arrange
solutions from high evaluation scores to low. However, the LLM frequently misunderstands this as a
descending order of solution quality, interpreting higher-ranked solutions as better and lower-ranked
ones as worse, which is contrary to the intended meaning.

To address this issue, we enhance the orginal meta-prompts by explicitly clarifying the semantics
of descending order in the context of evaluation scores. This modification ensures that the LLM
accurately understand the intended instructions. When tested with the enhanced prompts, the problem
was resolved, and the LLM is able to consistently generate correct rephrased task descriptions. For a
clearer illustration, we provide below the original OPRO meta-prompt (Fig.[TI) and our enhanced
OPRO meta-prompt (Fig. [T2).

The task description in the original OPRO prompt

You are given a list of points with coordinates below: {POINTS}.
Below are some previous traces and their lengths. The traces are arranged in descending order based on
their lengths, where lower values are better.

Figure 11: The task description in the original OPRO prompt.

The task description in our enhanced OPRO prompt

You are given a list of points with coordinates below: {POINTS}.

Below are some previous traces and their lengths. The traces are arranged in descending order based on
their lengths, where smaller lengths indicate better solutions. Therefore, the traces are listed from the
largest length to the smallest, the trace with the smallest length is considered the most optimal.

Figure 12: The task description in the enhanced OPRO prompt. The texts we have modified are
highlighted in red.
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D.3 MORE DETAILS ON THE LLM-BASED MULTI-ARMED BANDITS TASK (SEC.[4.2)
D.3.1 EXPLANATION OF BSSCD AND BSSND

We provide a detailed explanation and demonstration of prompt designs for both BSSCD and BSSND
(Krishnamurthy et al| 2024), highlighting their key components and structures. Figure [[3]illustrates
a complete example of a BSSCD prompt designed for the MAB problem under the hard difficulty
setting. It showcases the structure and color-coded components of the prompt in detail.

The setting of the prompt in MAB

[SYSTEM]

You are a bandit algorithm in a room with 5 buttons labeled blue, green, red, yellow, purple.
Each button is associated with a Bernoulli distribution with a fixed but unknown mean; the
means for the buttons could be different. For each button, when you press it, you will get a
reward that is sampled from the button’s associated distribution. You have 100 time steps
and, on each time step, you can choose any button and receive the reward. Your goal is to
maximize the total reward over the 100 time steps.

At each time step, I will show you a summary of your past choices and rewards. Then you
must make the next choice. You may output a distribution over the 5 buttons formatted
EXACTLY like "blue:a,green:b,red:c,yellow:d,purple:e".

You must provide your final answer within the tags <Answer>DIST<\Answer> where DIST
is the distribution in the format specified above.

[USER]

So far you have played 5 times with your past choices and rewards summarized as follows:

blue button: pressed 2 times with average reward 0.5

green button: pressed 1 times with average reward 0.0

red button: pressed 1 times with average reward 1.0

yellow button: pressed O times

purple button: pressed 1 times with average reward 0.0

Which button will you choose next? Remember, YOU MUST provide your fi-
nal answer within the tags <Answer>DIST<\Answer> where DIST is formatted like
"blue:a,green:b,red:c,yellow:d,purple:e".

Figure 13: A complete example of the prompt in MAB. The different components in the prompt are
explained in detail in App.[D.3.1]

* Button scenario and Suggestive framing, providing the foundational task scenario, clarifying
the role of the agent, and framing the objective of the task in a suggestive manner to guide
decision-making.

* Description of the multi-armed bandit problem, offering the agent a detailed task description,

including comprehensive information about the task’s objectives, constraints, and operational
details.

* Summarized history, presenting a condensed version of historical decisions and reward
feedback to the agent, instead of providing step-by-step decision and reward feedback.

hain-of-thought or ' o CoT, indicating whether to encourage the agent to engage in step-
by-step reasoning for decision making.

* Distribution over actions, encouraging the agent to generate a probability distribution over
the arms of the bandit, instead of making deterministic decisions.

When we use our EXPO algorithm to optimize the task description and meta-instruction, the upper
section with light purple background corresponds to the Task Description, where as the section below
it with light blue background represents the Meta-Instruction. In other words, our EXPO algorithm is
used to optimize the text in these two sections.
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D.3.2 TASK SETTING

The experiments are conducted for both the BSSND and BSSCD prompts under two pre-defined
difficulty levels: hard and easy. For the hard setting, the MAB instance consists of KX = 5 arms,
where the best arm has a mean reward of u* = 0.5 + A/2 with A = 0.2, and all other arms have a
mean reward of © = 0.5 — A/2. For the easy setting, the MAB instance consists of K = 4 arms
with a larger gap A = 0.5 between the best arm and the suboptimal arm. We set the blue button as
the optimal arm in experiments, corresponding to the arm with the highest expected reward. Each
configuration is tested using two fixed random seeds, with experiments repeated 3 times for each seed,
resulting in a total of 2 x 3 = 6 runs per setting. Each experiment consists of 100 iterations, with the
LLM-based agents making decisions and updating prompts iteratively to optimize performance. The
work of |[Krishnamurthy et al.| (2024)) has reported that GPT-3.5 models encounter exploration failures
in MAB tasks, making them unsuitable as agents for solving such problems. In contrast, GPT-4
demonstrates the capability to effectively handle the exploration-exploitation trade-off inherent in
MAB settings. Therefore, we adopt GPT-4-turbo as the LLM agent for this experiment.

D.3.3 EVALUATION METRIC.

In the LLM-based Multi-Armed Bandit (MAB) task (Sec.[.2), the performance of the LLM agent is
assessed using the Cumulative Regret metric. At each iteration, the LLM agent outputs a probability
distribution over the arms, representing the likelihood of sampling each arm.

Formally, let there be K arms, each associated with an expected reward p1, o, ..., LK, Where
" = maxpeq1,.. k} Mk denotes the expected reward of the optimal arm. At iteration ¢, we sample
anarm a; € {1,..., K}, which is determined by the probability distribution provided by the LLM
agent. The instantaneous regret for iteration ¢ is then defined as:

TE= [ = s
where p,, represents the expected reward of the selected arm ay at iteration ¢.

The cumulative regret after 7" iterations is computed as:

T

T
Ry ZZW :Z(M* — Ha,) -
=1

t=1
D.3.4 DESIGN OF PROMPT SCORE.

The score of the prompt is designed to quantify the expected reward of the LLM agent’s sampling
strategy at each iteration. At iteration ¢, the LLM agent outputs a sampling probability distribution
{p1,p2,...,pK}, where p; represents the probability of selecting arm ¢ (i = 1,2, ..., K, with K
being the total number of arms). Simultaneously, the historical records from the first (¢ — 1) iterations
allow us to compute an unbiased estimate of the Bernoulli reward parameter for each arm, /i;, based
on the observed rewards and sampling counts.

For arm i, the Bernoulli parameter fi; is estimated as:

R 0, if n; = 0,
Hi = isiRiy

j=
n; ?

ifn; > 0.

where Zﬁ;ll R; ; denotes the cumulative reward obtained from arm ¢ during the first (¢ — 1) iterations,
and n; represents the total number of times arm ¢ was sampled during the same period.

The LLM agent’s expected reward Rexpected at iteration ¢ is then calculated by weighting the estimated
Bernoulli parameters {1, fi2, . - . , fixx } With the sampling probabilities {p1, pa, . .., px } provided
by the LLM:

K
Rexpecled = Zpi . ,&z
i=1
This expected reward Rexpec[ed serves as the score of the prompt.
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Motivation for the Score Design. The design of the prompt score is driven by the objective of
guiding the LLM agent to favor arms with higher expected rewards, represented by p;. Since the
true values of p; are not available, the prompt score is designed to estimate this quantity based on
observed data. Specifically, the higher the value of p;, the higher the sampling probability p; should
be assigned to arm ¢, reflecting the optimal choice. Conversely, arms with lower values of y; should
be assigned lower probabilities.

The original score with the Bernoulli parameters:

K
Rexpecled - E Dilli-
=1

In the absence of the true x;, we rely on the unbiased estimates [i;:
K
Rexpected = sz/lz
i=1

This design is justified because, for most of iterations, the score Zfil p;fi; 1s an unbiased estimate
of the true expected reward Zfil pifti, and we proceed to formally establish this unbiasedness.

Proof of Unbiasedness. For iteration ¢, where n; > 0 for all ¢, we aim to show that the score
ZiK:l p;ft; is an unbiased estimate of the true expected reward Zfil ;. Since [i; is an unbiased
estimate of y;, we have:

E [f;] = E [pi] ,

Thus, by the linearity of expectation, we obtain:
K K
E > pifii| =Y i [jui]
i=1 i=1
K
= pil (]
i=1

K
=E > pi
i=1
This shows that the score ]%expected is an unbiased estimate of the true expected reward Rexpecied-

D.3.5 DETAILS ABOUT THE MODELS AND PARAMETERS IN OUR ALGORITHMS

LLM Agents and Embedding Model. For the MAB tasks, the primary LLM agent is GPT-4-Turbo
and the fixed inference temperature is set to 7' = 0. For embedding generation, we employed
OpenAl’s text—embedding—3-1large model, which outputs embeddings with a dimensionality
of 3072. These embeddings are utilized to represent the prompts provided to the LLM agent during
the experiments. At each iteration, the LLM is prompted once using the designed prompt.

Neural Network Parameters. For the EXPO, the input to the neural network consists of the concate-
nated embeddings of the task description and meta-instruction, resulting in an input dimensionality
of 3072 + 3072 = 6144. The neural network employs a single hidden layer with a width of 1536 and
produces a scalar output. The model is trained by minimizing the Mean Squared Error (MSE) loss
function.

For the EXPO-ES, the neural network is designed to process K exemplars, where K is determined
by the total number of available summaries. To ensure fairness, K distinct exemplar combinations
are generated at each iteration using a cyclic rotation mechanism. This mechanism ensures that
each summary occupies every possible position within the exemplar sequence. Formally, given K
summaries indexed as {eg, €1, ..., ex_1}, the i-th exemplar combination is defined as:

(€i7e(i+1) mod K-+ €(i+K—1) mod K)-
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This guarantees that each summary appears in every position across all K combinations.

Each exemplar is embedded into a 3072-dimensional vector using the embedding model, and these
embeddings are processed individually by the neural network. The neural network consists of a single
hidden layer with a width of 512 and produces a scalar output. Like EXPO, the training objective is
to minimize the Mean Squared Error (MSE) loss function.

EXP3 Learning Rate. For the EXPO, the learning rate parameter 7gesc is set to 10 for selecting task
description and meta-instruction combinations. In the EXPO-ES, two learning rate parameters are
used: 7gesc 18 set to 10 for selecting task description and meta-instruction combinations, and Texemplar
is set to 10 for selecting exemplars.

D.4 IMPROVING NUMERICAL STABILITY

To prevent numerical overflow during the computation of exponentials in our algorithms, a translation
constant C'®) is introduced at each iteration ¢. This constant stabilizes the computation by shifting
the cumulative scores, ensuring the algorithm operates reliably until convergence without altering the
resulting probability distribution. The translation constant is defined as:

C = max 53", “

The translated scores are:
5P =5 —c®. ®)

The probability distribution after translation is:

&)
o~ exp (nS;
Pi] = = ( ~)(t) . 6)
21 exp (n5;7)
Substituting S'i(t) = Si(t) —CoW:
P i €xp (U(Si(t) — C(t))) (7
t|t] = .
Z?Zl exp (77(5]@ — C(t)))
; _ exp(a),
Using exp(a — b) = )
B = 2 @87)/ exp (nC®) ®)
t - .
25:1 (exp (775]<t))/exp (nC’(t)))
Simplifying:
()
. exp (1S;
Pili] = —; ( )(t) . )
> j=1€xXPp (7753‘ )
Thus, the probabilities remain unchanged:
P,[i] = P.i). (10)

D.5 COMPUTE RESOURCES AND LICENSES

All experiments were conducted on a server equipped with an NVIDIA L4 GPU and 53 GB of
RAM. The GSMS8K dataset (Cobbe et al.,2021) and the implementations of the baseline methods of
PromptBreeder (Fernando et al.,[2023)) and MIPRO (Opsahl-Ong et al.,[2024)) are all under the MIT
license.
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Figure 14: Ablation study results using GPT-4-turbo in the TSP task with 20 nodes.

E MORE EXPERIMENTAL RESULTS

E.1 RESULTS OF GPT-4-TURBO FOR TSP

Fig. [14] shows a zoomed version of Fig. |8| (bottom right) in the main paper. It shows that when
GPT-4-Turbo is used as the LLM, our EXPO is still able to significantly outperform OPRO.

E.2 RESULTS OF OTHER VARIANTS OF OPRO

As we have discussed in Sec. and Sec. the original OPRO uses a temperature of 1 to choose
all 8 actions in a batch, while we have made a slight modification such that we choose the last action
in the batch with a temperature of 0. Here we show that this has a minimal impact on the performance
of OPRO (Fig.[T5). Specifically, in Fig. the orange curves represent the original OPRO (using
a temperature of 1 for all 8 actions) and the pink curves correspond to our modified version. We
have also compared the performances of the enhanced variants (see Sec. 1] for details) for both
the original (purple) and modified OPRO (green). The results show that setting the temperature to
0 while selecting the last action has negligible impact on the performance of OPRO. Importantly,
our EXPO and EXPO-ES algorithms consistently and dramatically outperform all variants of
OPRO.

E.3 IMPACT OF ADDING EXEMPLAR EMBEDDING TO THE NN IN EXPO

Recall that in every iteration of our EXPO (Algo. [[), we need to train a neural network (NN)
M(g(-); 0) to estimate the scores of the task descriptions and meta-instructions in the domain (line 8
of Algo. . Note that the training set used to train this NN is {([g(D;) & g(Z;)] , si) }i=1,...,t+1 (line
7 of Algo.[I). However, it is also important to note that in our EXPO algorithm, the set of exemplars
included in the meta-prompt &/ changes in every iteration and hence may also affect the scores s;’s.
Therefore, one may naturally wonder whether including the embedding of &/ in the input of the NN
can further improve the performance of the trained NN and, consequently, the performance of the
overall EXPO. We conduct an ablation study to validate this hypothesis, and the results are shown
in Fig. The results demonstrate that including the embedding of the exemplars in the input of
the NN does not lead to better performance than our standard approach of excluding it (Algo. [I)).
This is likely due to the significantly increased dimensionality of the input to the NN, which makes
training the NN more challenging. Therefore, these results suggest that the benefit of additionally
accounting for the changing exemplars is outweighed by the drawback of the significantly increased
dimensionality of the input to the NN.

E.4 COMPUTATIONAL EFFICIENCY OF OUR ALGORITHMS
To compare the computational costs of our EXPO and OPRO, using the Linear Regression experiment

(w = 2,b = 30), we recorded the time required for each method to achieve a mean squared error
(MSE) below various thresholds. The results are shown in Table (1| below.
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Figure 15: Results of different algorithms in the Linear Regression task and TSP task (Sec. f.1). We
have additionally included the original OPRO (which selects all 8 actions using a temperature of 1),
as well as its enhanced variant. Lower is better.
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Figure 16: Convergence curves of our EXPO with and without exemplars embedding across different
tasks: Linear Regression (top row) and TSP with 10, 15, and 20 nodes (bottom row).

The results show that EXPO requires only 263.1 seconds to achieve MSE < 25, whereas OPRO is
unable to achieve this threshold even after 731.4 seconds. Similarly, EXPO achieves MSE < 10
in just 350.8 seconds, which is also less than OPRO’s total runtime of 731.4 seconds (after 300
iterations). Therefore, to reach the same performance level, our EXPO requires significantly smaller
amount of computational time than OPRO.

E.5 MORE ILLUSTRATIONS OF THE DISCOVERED TASK DESCRIPTION AND
META-INSTRUCTION

Here we provide more illustrations regarding the comparison of the original task description and
meta-instruction adopted by the original LLM-based sequential decision-making algorithm (i.e.,
OPRO or the LLM-based MAB algorithm from Krishnamurthy et al.|(2024)) and those optimized by
our EXPO algorithm. We include the comparisons for the TSP task (Fig. ﬂl[), and the two different
prompt designs for the LLM-based MAB task in Sec. 4.2 (Fig.[I8|and Fig.[19).
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Methods Time (s) to MSE < 100 Time (s) to MSE < 50 Time (s) to MSE < 25 Time (s) to MSE < 10 Total Runtime (s)
OPRO 64.1 170.1 NA NA 731.4
EXPO (Ours) 94.5 207.4 263.1 350.8 1645.6

Table 1: Comparison of our EXPO and OPRO in terms of the time (s) to reach different MSE

thresholds and total runtime.

OPRO
You are given a list of points with
coordinates below: {POINTS}.
Below are some previous traces and
their lengths. The traces are arranged
in descending order based on their
lengths, where lower values are better.

{EXEMPLARS}

Give me a new trace that is dif-
ferent from all traces above, and
has a length lower than any of the
above. The trace should traverse all

EXPO

You are provided with a dataset containing a list of coordi-
nates labeled as { POINTS}.

The dataset also includes a series of previously calculated
routes, with associated lengths that are ordered from longest
to shortest. However, it’s key to note that shorter routes are
more desirable. Despite the presentation order, understand
that the optimal route is identified by the smallest total
length.

{EXEMPLARS}

Provide a unique trace that is distinct from any pre-
vious traces and shorter in length. Ensure that this trace
visits each point exactly once and adhere to the specified
format by starting with <trace> and concluding with

points exactly once. The trace should </trace>.
start with <trace> and end with

</trace>.

Figure 17:
optimized by our EXPO (right) in a TSP task.

The task description (top) and meta-instruction (bottom) used by OPRO (left) and

E.6 MORE RESULTS ON THE ABLATION STUDY REGARDING COMPARISON WITH GENERAL

PROMPT OPTIMIZATION METHODS

Here we use the TSP task to perform an additional ablation study to compare the performance of our

EXPO algorithm with the INSTINCT algorithm

line method from Fig.[7] The results are shown in Fig. [20

2024b), which is the best-performing base-

which, together with Fig.[7] demonstrate

that our EXPO algorithm based on adversarial bandits significantly and consistently outperforms gen-
eral prompt optimization methods, including the INSTINCT algorithm which is based on stochastic

MAB.
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BSSND

You are a bandit algorithm in a
room with 5 buttons labeled blue,
green, red, yellow, purple. Each
button is associated with a Bernoulli
distribution with a fixed but unknown
mean; the means for the buttons could
be different. For each button, when
you press it, you will get a reward
that is sampled from the button’s
associated distribution. You have 100
time steps and, on each time step, you
can choose any button and receive the
reward. Your goal is to maximize the
total reward over the 100 time steps.

At each time step, [ will show
you a summary of your past choices
and rewards. Then you must
make the next choice. You may
output a distribution over the 5
buttons formatted EXACTLY like
"blue:a,green:b,red:c,yellow:d,purple:e".

EXPO

You are presented as a bandit algorithm, located in an
environment offering five distinct buttons, each emblazoned
with colors such as blue, green, red, yellow, and purple.
Each button acts a vessel tied to a non-variable yet
undisclosed Bernoulli distribution mean which isn’t
subjected to be uniformly distributed across buttons. In this
mechanism, every button acts as a yielder of a capricious
reward, constructed from the associated distribution of the
respective button. With access to total life -encompassing
around 100 temporal stages - your voluntary element grants
you control towards opting the button insertion at each such
progressive phase. Precisely summoning your approach
could perpetually provide you with a regulatory provision_,
the aptitude - is flexibly dwelling within its underlining
motive- aiming at optimizing total accumulated cashbacks
during several phases of these 100 spatial temporalities.

During every step of the process, a recap highlight-
ing your previous selections and the prizes received will
be presented to you. Then, it’ll now be incumbent upon
you to proceed with the new decision-making process. For
your ease, a well-structured distribution comprising five
buttons in assorted colours such as "blue", "green,", "red",
"yellow", and "purple" will be exhibited before you. Make
sure to structure your output accordingly; this might look
something akin to "blue:a,green:b,red:c,yellow:d,purple:e".

Figure 18: The suggestive framing (corresponding to the task description) and MAB problem
description (corresponding to the meta-instruction) used by BSSND hard (left) and optimized by our
EXPO (right) in an LLM-based MAB task.

BSSCD

You are a bandit algorithm in a room
with 5 buttons labeled blue, green, red,
yellow, purple. Each button is associated
with a Bernoulli distribution with a fixed
but unknown mean; the means for the
buttons could be different. For each
button, when you press it, you will get a
reward that is sampled from the button’s
associated distribution. You have 100
time steps and, on each time step, you
can choose any button and receive the
reward. Your goal is to maximize the
total reward over the 100 time steps.

At each time step, I will show you a sum-
mary of your past choices and rewards.
Then you must make the next choice.
You may output a distribution over the
5 buttons formatted EXACTLY like
"blue:a,green:b,red:c,yellow:d,purple:e"”.
Let’s think step by step to make sure we
make a good choice.

EXPO
You are an algorithm designed to function as a bandit,
positioned within an environment that features five
distinct buttons, each colored blue, green, red, yellow,
and purple. These buttons are intricately connected to
individual Bernoulli distributions which possess unique
and undisclosed mean probabilities. When a button
is pressed, it delivers a reward based on its specific
distribution. Granted with 100 opportunities to act, your
objective is to strategically press these buttons in a manner
that optimizes the accrued total reward throughout these
attempts. Make your selections wisely to maximize the
gains from this stochastic setup.

In each phase, a concise recap of your previous
decisions and received rewards will be presented. Your
task is to make a subsequent choice based on this data. It
is essential to output your selection in an exact format
defined as "blue:a, green:b, red:c, yellow:d, purple:e",
where ’a’, ’b’, 'c’, 'd’, ’e’ represent specific z-score
values for each color accompanied by the decision choice
letter(s). The process is designed to refine our strategy
progressively with each move, ensuring an informed and
impactful outcome.

Figure 19: The suggestive framing (corresponding to the task description) and MAB problem
description (corresponding to the meta-instruction) used by BSSCD hard (left) and optimized by our
EXPO (right) in an LLM-based MAB task.
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Figure 20: Comparison of our EXPO with INSTINCT in the TSP tasks.
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