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Abstract

Autoencoders are a prominent model in many em-
pirical branches of machine learning and lossy
data compression. However, basic theoretical
questions remain unanswered even in a shallow
two-layer setting. In particular, to what degree
does a shallow autoencoder capture the structure
of the underlying data distribution? For the pro-
totypical case of the 1-bit compression of sparse
Gaussian data, we prove that gradient descent con-
verges to a solution that completely disregards the
sparse structure of the input. Namely, the perfor-
mance of the algorithm is the same as if it was
compressing a Gaussian source – with no sparsity.
For general data distributions, we give evidence
of a phase transition phenomenon in the shape of
the gradient descent minimizer, as a function of
the data sparsity: below the critical sparsity level,
the minimizer is a rotation taken uniformly at ran-
dom (just like in the compression of non-sparse
data); above the critical sparsity, the minimizer
is the identity (up to a permutation). Finally, by
exploiting a connection with approximate mes-
sage passing algorithms, we show how to improve
upon Gaussian performance for the compression
of sparse data: adding a denoising function to a
shallow architecture already reduces the loss prov-
ably, and a suitable multi-layer decoder leads to a
further improvement. We validate our findings on
image datasets, such as CIFAR-10 and MNIST.
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1. Introduction
Autoencoders have achieved remarkable performance in
many machine learning areas, such as generative modeling
(Kingma & Welling, 2014), inverse problems (Peng et al.,
2020) and data compression (Ballé et al., 2017; Theis et al.,
2017; Agustsson et al., 2017). Motivated by this practical
success, an active area of research is aimed at theoretically
analyzing the performance of autoencoders to understand
the quality and dynamics of representation learning when
these architectures are trained with gradient methods.

Formally, consider the encoding of x ∈ Rd given by

z = σ(Bx), B ∈ Rn×d, z ∈ Rn, (1)

where the non-linear activation σ(·) is applied component-
wise. The ratio r = n/d is referred to as the compression
rate, which in the case of 1-bit compressed sensing corre-
sponds to the number of bits per input dimension. For a
shallow (two-layer) autoencoder, the decoding consists of a
single linear transformation A ∈ Rd×n:

x̂Θ(x) = Az = Aσ(Bx). (2)

The optimal set of parameters Θ = {A,B} minimizes the
mean-squared error (MSE)

R(Θ) := d−1E
[
∥x− x̂Θ(x)∥22

]
, (3)

where the expectation is taken over the data distribution
x. The model described in (2) is a natural extension of
linear autoencoders (σ(x) = α · x for some α ̸= 0), which
were thoroughly studied over the past years (Kunin et al.,
2019; Gidel et al., 2019; Bao et al., 2020). In an effort to
go beyond the linear setting, a number of recent works have
considered the non-linear model (2). Specifically, Refinetti
& Goldt (2022); Nguyen (2021) study the training dynamics
under specific scaling regimes of the input dimension d and
the number of neurons n, which lead to either vanishing
or diverging compression rates. Shevchenko et al. (2023)
focus on the proportional regime in which d and n grow at
the same speed, but their analysis relies heavily on Gaus-
sian data assumptions. In contrast with Gaussian data that
lacks any particular structure, real data often exhibits rich
structural properties. For instance, images are inherently
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sparse (in, e.g., Wavelet or FFT domain), and this property
has been exploited by various compression schemes such as
jpeg. In this view, it is paramount to go beyond the analysis
of unstructured Gaussian data and address the following
fundamental questions:

Does gradient descent training of the two-layer autoencoder
(2) capture the structure in the data? How does increasing
the expressivity of the decoder impact the performance?

To address these questions, we consider the compression
of structured data via the non-linear autoencoder (1) with
σ ≡ sign (1-bit compressed sensing, (Boufounos & Bara-
niuk, 2008)) and show how the data structure is captured by
the architecture of the decoder. Let us explain the choice of
σ ≡ sign. Apart from the connection to classical informa-
tion and coding theory (Cover & Thomas, 2006), its scale in-
variance prevents the model from entering the linear regime.
Namely, if σ(·) has a well-defined non-vanishing derivative
at zero, by picking an encoding matrix B s.t. ∥B∥op ≪ 1,
one can linearize the model, i.e., x̂Θ(x) ≈ σ′(0) ·ABx,
which results in PCA-like behaviour (Refinetti & Goldt,
2022). Thus, sign is a natural candidate to tackle the non-
linear setting of interest in applications and, in fact, hard-
thresholding activations are common in large-scale models
(Van Den Oord et al., 2017).

Our main contributions can be summarized as follows:
• Theorem 4.1 proves that the linear decoder in (2) may

be unable to exploit the sparsity in the data: when x
has a Bernoulli-Gaussian (or “sparse Gaussian”) distri-
bution, both the gradient descent solution and the MSE
coincide with those obtained for the compression of
purely Gaussian data (with no sparsity).

• Going beyond Gaussian data, we give evidence of the
emergence of a phase transition in the structure of
the optimal matrices A,B in (2), as the sparsity level
p ∈ (0, 1) varies: Proposition 4.2 locates the critical
value of p such that the minimizer stops being a random
rotation (as for purely Gaussian data), and it becomes
the identity (up a permutation); numerical simulations
for gradient descent corroborate this phenomenology
and display a “staircase” behavior of the loss function.

• While for the compression of sparse Gaussian data the
linear decoder in (2) does not capture the sparsity, we
show in Section 5 that increasing the expressivity of the
decoder improves upon Gaussian performance. First,
we post-process the output of (2), i.e., we consider

x̂Θ(x) = f(Az) = f(Asign(Bx)), (4)

where f is applied component-wise, and we prove that
a suitable f leads to a smaller MSE. In other words,
adding a nonlinearity to the linear decoder in (2) prov-
ably helps. Finally, we further improve the perfor-
mance by increasing the depth and using a multi-layer

decoder. Our analysis leverages a connection between
multi-layer autoencoders and the iterates of the RI-
GAMP algorithm proposed by Venkataramanan et al.
(2022), which may be of independent interest.

Experiments on syntethic data confirm our findings, and sim-
ilar phenomena are displayed when running gradient descent
to compress CIFAR-10/MNIST images. Taken together, our
results show that, for the compression of structured data, a
more expressive decoding architecture provably improves
performance. This is in sharp contrast with the compres-
sion of unstructured, Gaussian data where, as discussed in
Section 6 of (Shevchenko et al., 2023), multiple decoding
layers do not help.

2. Related work
Theoretical results for autoencoders. The practical suc-
cess of autoencoders has spurred a flurry of theoretical
research, started with the analysis of linear autoencoders:
Kunin et al. (2019) indicate a PCA-like behaviour of the
minimizers of the L2-regularized loss; Bao et al. (2020) pro-
vide evidence that the convergence to the minimizer is slow
due to ill-conditioning, which worsens as the dimension of
the latent space increases; Oftadeh et al. (2020) study the
geometry of the loss landscape; Gidel et al. (2019) quan-
tify the time-steps of the training dynamics at which deep
linear networks recover features of increasing complexity.
More recently, the focus has shifted towards non-linear
autoencoders. Refinetti & Goldt (2022) characterize the
training dynamics via a system of ODEs when the compres-
sion rate r is vanishing. Nguyen (2021) takes a mean-field
view that requires a polynomial growth of the number of
neurons n in the input dimension d, which results in a di-
verging compression rate. Cui & Zdeborová (2023) use
tools from statistical physics to predict the MSE of denois-
ing a Gaussian mixture via a two-layer autoencoder with
a skip connection. Shevchenko et al. (2023) consider the
compression of Gaussian data with a two-layer autoencoder
when the compression rate r is fixed and show that gradient
descent methods achieve a minimizer of the MSE.

Incremental learning and staircases in the training dy-
namics. Phenomena similar to the staircase behavior of
the loss function that we exhibit in Figure 2 have drawn
significant attention. For parity learning, the line of works
(Abbe et al., 2021; 2022; 2023a) shows that parities are
recovered in a sequential fashion with increasing complex-
ity. A similar behaviour is observed in transformers with
diagonal weight matrices at small initialization (Abbe et al.,
2023b): gradient descent progressively learns a solution of
increasing rank. For a single index model, Berthier et al.
(2023) show a separation of time-scales at which the train-
ing dynamics follows an alternating pattern of plateaus and
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rapid decreases in the loss. Evidence of incremental learn-
ing in deep linear networks is provided by Berthier (2023);
Pesme & Flammarion (2023); Simon et al. (2023); Jacot
et al. (2021); Milanesi et al. (2021). The recent work by
Székely et al. (2023) shows that the cumulants of the data
distribution are learnt sequentially, revealing a sample com-
plexity gap between neural networks and random features.

Approximate Message Passing (AMP). AMP refers to
a family of iterative algorithms developed for a variety of
statistical inference problems (Feng et al., 2022). Such prob-
lems include the recovery of a signal x from observations
z of the form in (1), namely, a Generalized Linear Model
(McCullagh & Nelder, 1989), when the encoder matrix B
is Gaussian (Rangan, 2011; Mondelli & Venkataramanan,
2022) or rotationally-invariant (Rangan et al., 2019; Schniter
et al., 2016; Ma & Ping, 2017; Takeuchi, 2019). Of par-
ticular interest for our work is the RI-GAMP algorithm by
Venkataramanan et al. (2022). In fact, RI-GAMP enjoys
a computational graph structure that can be mapped to a
suitable neural network, and it approaches the information-
theoretically optimal MSE. The optimal MSE was computed
via the replica method by Takeda et al. (2006); Tulino et al.
(2013), and these predictions were rigorously confirmed for
the high-temperature regime by Li et al. (2023).

3. Preliminaries
Notation. We use plain symbols a, b for scalars, bold sym-
bols a, b for vectors, and capitalized bold symbols A,B
for matrices. Given a vector a, its ℓ2-norm is ∥a∥2. Given
a matrix A, its operator norm is ∥A∥op. We denote a unidi-
mensional Gaussian distribution with mean µ and variance
σ2 by N (µ, σ2). We use the shorthand x̂ for x̂Θ. Unless
specified otherwise, function are applied component-wise
to vector/matrix-valued inputs. We denote by C, c > 0
universal constants, which are independent of n, d.

Data distribution and MSE. For p ∈ (0, 1], a sparse
Gaussian distribution SG1(p) is equal to N (0, 1/p) with
probability p and is 0 otherwise. The scaling of the variance
of the Gaussian component ensures a unit second moment
for all p. We use the notation x ∼ SGd(p) to denote a vector
with i.i.d. components distributed according to SG1(p). De-
creasing p makes x ∼ SGd(p) more sparse: for p = 1 one
recovers the isotropic Gaussian, i.e., SGd(1) ≡ N (0, I),
while p = 0 implies that x = 0.

Shevchenko et al. (2023) consider Gaussian data x ∼
SGd(1) and the two-layer autoencoder with linear decoder
in (2). Their analysis shows that, for a compression rate r ≤
1, the MSE obtained by minimizing (3) over Θ = {A,B}
is given by

RGauss := 1− 2

π
· r. (5)

The set of minimizers (A,B) has a weight-tied orthogonal
structure, i.e., BB⊤ = I and A ∝ B⊤, and gradient-based
optimization schemes reach a global minimum.

4. Limitations of a linear decoding layer
Our main technical result is that a two-layer autoencoder
with a single linear decoding layer does not capture the
sparse structure of the data. Specifically, we consider the
autoencoder in (2) with Gaussian data x ∼ SGd(p) trained
via gradient descent. We show that, when n, d are both
large (holding the compression rate r = n/d fixed), the
trajectory of the algorithm is the same as that obtained from
the compression of non-sparse data, i.e., x ∼ SGd(1) ≡
N (0, I). As a consequence, the minimizer has a weight-
tied orthogonal structure (BB⊤ = I , A ∝ B⊤), and the
MSE at convergence is given by RGauss as defined in (5).

We now go into the details. Since the optimization objec-
tive is convex in A, we consider the following alternating
minimization version of Riemannian gradient descent:

A(t+ 1) = argmin
A

R(A,B(t)),

B(t+ 1) := proj
(
B(t)− η

(
∇B(t) +G(t)

))
.

(6)

In fact, due to the convexity in A of the MSE R(·, ·) in
(3), we can compute in closed form argminA R(A,B(t)).
Here, Riemannian refers to the space of matrices with
unit-norm rows, ∇B(t) is a shorthand for the gradient
∇B(t)R(A(t),B(t)), and proj normalizes the rows of a
matrix to have unit norm. The projection step (and, hence,
the Riemannian nature of the optimization) is due to the
scale-invariance of sign, and it ensures numerical stability.
The term G(t) corresponds to Gaussian noise of arbitrarily
small variance, which acts as a (probabilistic) smoothing for
the discontinuity of sign at 0 and, therefore, implies that the
gradient is well-defined along the trajectory of the algorithm.
(Note that G(t) is not needed in experiments, as we use a
straight-through estimator, see Appendix C.2).

Theorem 4.1 (Gradient descent does not capture the spar-
sity). Consider the gradient descent algorithm in (6) with
x ∼ SGd(p) and (G(t))i,j ∼ N (0, σ2), where d−γg ≤
σ ≤ C/d for some fixed 1 < γg < ∞. Initialize the al-
gorithm with B(0) equal to a row-normalized Gaussian,
i.e., B′

i,j(0) ∼ N (0, 1/d), B(0) = proj(B′(0)), and let
B(0) = US(0)V ⊤ be its SVD. Let the step size η be
Θ(1/

√
d). Then, for any fixed r < 1 and Tmax ∈ (0,∞),

with probability at least 1 − Cd−3/2, the following holds
for all t ≤ Tmax/η

B(t) = US(t)V ⊤ +R(t),∥∥S(t)S(t)⊤ − I
∥∥
op

≤ C exp (−cηt) ,

lim
d→∞

sup
t∈[0,Tmax/η]

∥R(t)∥op = 0,

(7)
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where C, c are universal constants depending only on p, r
and Tmax. Moreover, we have that, almost surely,

lim
t→∞

lim
d→∞

R(A(t),B(t)) = RGauss, (8)

lim
d→∞

sup
t∈[0,Tmax/η]

∥B(t)−BGauss(t)∥op = 0, (9)

where RGauss is defined in (5) and BGauss(t) is obtained
by running (6) with x ∼ N (0, I).

In words, (7) gives a precise characterization of the gradient
descent trajectory: throughout the dynamics, the eigenbasis
of B(t) does not change significantly (i.e., it remains close
to that of B(0)) and, as t grows, all the singular values
of B(t) approach 1. As a consequence, (8) gives that, at
convergence, the MSE achieved by (6) with x ∼ SGd(p)
approaches RGauss, which corresponds to the compression
of standard Gaussian data x ∼ N (0, I). In fact, a stronger
result holds: (9) gives that the whole trajectory of (6) for
x ∼ SGd(p) is the same as that obtained for x ∼ N (0, I).
The fact that the autoencoder model in (2) is not able to
exploit the signal structure is quite surprising, especially
since information-theoretically (see Appendix C.1) a sparse
Gaussian source is more suitable for compression than its
non-sparse counterpart.

Proof sketch. The sparse Gaussian distribution can be
seen as the component-wise product between a standard
Gaussian vector and a mask m ∈ {0, 1}d with i.i.d.
Bernoulli(p) entries. The key idea is to approximate the
randomness in the mask m with its average, which heuris-
tically corresponds to having again Gaussian data. This is
done formally by pushing the mask into the network param-
eters, and then using high-dimensional concentration tools
to bound the deviation from the average.

We now go into the details. As a starting point, Lemma A.1
shows that, up to an error exponentially small in d, instead
of the MSE in (3) we can consider the objective

Em

[
Tr
[
A⊤A · arcsin(B̂mB̂

⊤
m)
]
− 2

√
p
· Tr

[
AB̂m

]]
.

(10)
Here, Bm denotes a masked version of B, i.e., the columns
of B are set to zero according to the Bernoulli mask m,
and B̂m is obtained by normalizing the rows of Bm, i.e.,
(B̂m)i,: = (Bm)i,:/∥(Bm)i,:∥2.

Next, we provide a number of concentration bounds for
quantities to which the Bernoulli mask m is applied. We
start with random vectors (Lemma A.7), random matrices
(Lemmas A.8 and A.9), and quantities that appear when
optimizing the objective (10) via gradient descent (Lemma
A.11). We note that both the largest entry and the operator
norm of the error matrix have to be controlled. Then, we
take care of the row normalization in the definition of B̂m.

To do so, Lemma A.12 is a general result showing that

EmF
(
B̂m

)
≈ EmF

(
1
√
p
Bm

)
, (11)

for a class of sufficiently regular matrix-valued functions
F . In words, (11) gives that, on average over m, the row
normalization can be replaced by the multiplication with
1/
√
p. This result is instantiated in Lemma A.13 for three

choices of F useful for the analysis of gradient descent.

Armed with these technical tools, we are able to remove the
effect of the masking from the gradient descent dynamics.
First, Lemma A.14 focuses on the optimization of the matrix
A, which has a closed form due to the convexity of the
objective (10) in A. Next, Lemmas A.15 and A.16 estimate
the gradient ∇B(t) as

∥∥∥∇B(t) −US̃(t)V ⊤
∥∥∥
op

≤ C(Tmax) ·
log10(d)√

d
,

where U ,V come from the SVD of B(0), S(t) is a di-
agonal matrix containing the singular values of B(t), and
S̃(t) = G(S(t)) for a deterministic function G. This shows
that, up to the leading order in the approximation, the sin-
gular vectors of B(t) are fixed along the gradient trajectory.
Crucially, the function G does not depend on the sparsity
p of the data. Thus, for any p ∈ (0, 1), the gradient update
for the masked objective (10) is close to the update for the
same objective without the masking (i.e., corresponding to
the compression of Gaussian data with p = 1).

Finally, Lemma A.19 derives an a-priori Grönwall-type es-
timate, which bootstraps the bounds to the whole gradient
descent trajectory (6) and concludes the proof. The com-
plete argument is deferred to Appendix A.

Beyond Gaussian data: Phase transitions, staircases in
the learning dynamics, and image data. For general i.i.d.
distributions of the data x , we empirically observe that the
minimizers of the model in (2) found by stochastic gradient
descent (SGD) either (i) coincide with those obtained for
standard Gaussian data, or (ii) are equivalent to (suitably sub-
sampled) permutations of the identity. Up to a permutation
of the neurons, these two candidates can be expressed as:

x̂Haar(x) = αHaar ·B⊤sign(Bx), (12)

x̂Id(x) = αId ·
[

In

0(d−n)×n

]
sign([In,0n×(d−n)]x),

where B is obtained by subsampling a Haar matrix (i.e.,
a matrix taken uniformly from the group of rotations),
0(d−n)×n is a (d−n)×n matrix of zeros, and (αHaar, αId)
are scalar coefficients. The losses of these two candidates
can be expressed in a closed form as derived below.
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Figure 1. Compression of sparse Rademacher data via the two-layer autoencoder in (2). We set d = 200 and r = 1. Left. MSE achieved
by SGD at convergence, as a function of the sparsity level p. The empirical values (dots) match our theoretical prediction (blue line): for
p < pcrit, the loss is equal to the value obtained for Gaussian data, i.e., RGauss = 1− 2r/π; for p ≥ pcrit, the loss is smaller, and it is
equal to 1− r · (E|x1|)2 = 1− r · p. Center. Encoder matrix B at convergence of SGD when p = 0.3 < pcrit: the matrix is a random
rotation. Right. Encoder matrix B at convergence of SGD when p = 0.7 ≥ pcrit: the negative sign in part of the entries of B is cancelled
by the corresponding sign in the entries of A; hence, B is equivalent to a permutation of the identity.

Proposition 4.2 (Candidate comparison). Let r ≤ 1 and let
x have i.i.d. components with zero mean and unit variance.
Then, we have that, almost surely, the MSE of x̂Haar(·)
coincides with the Gaussian performance RGauss in (5),
i.e.,

min
αHaar∈R

lim
d→∞

1

d
·Ex

[
∥x̂Haar(x)− x∥22

]
= 1− 2

π
·r . (13)

Furthermore, we have that, for any d,

min
αId∈R

1

d
· Ex

[
∥x̂Id(x)− x∥22

]
= 1− r · (E|x1|)2 , (14)

where x1 is the first component of x. This implies that x̂Id(·)
is superior to x̂Haar(·) in terms of MSE whenever

E|x1| >
√
2/π = Eg∼N (0,1)|g|. (15)

The MSE of x̂Id(·) in (14) is obtained via a direct calcu-
lation. To evaluate the MSE of x̂Haar(·) in (13), we relate
this estimator to the first iterate of the RI-GAMP algorithm
proposed by Venkataramanan et al. (2022). Then, the high
dimensional limit of ∥B⊤sign(Bx) − x∥22 follows from
the state evolution analysis of RI-GAMP. A similar strategy
will be used also in Section 5 to analyze different decoding
architectures. The complete proof is in Appendix B.1.

As mentioned above, our numerical results lead us to con-
jecture that SGD recovers either of the candidates in (12),
depending on which achieves a smaller loss. Specifically, if
condition (15) is met, the SGD predictor converges to x̂Id(·)
and improves upon the Gaussian loss RGauss; otherwise, it
converges to x̂Haar(·) and its MSE is equal to RGauss.

For sparse Gaussian data, condition (15) is never satisfied,
as Ex1∼SG1(p)|x1| =

√
2p/π ≤

√
2/π. In fact, as proved

0 1 2 3 4 5 6 7
Iteration 1e7

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

SGD
Gaussian performance: 1 2/
Global minimum: 1 p

Figure 2. Compression of sparse Rademacher data via the two-
layer autoencoder in (2). We set d = 200, r = 1 and p = 0.8.
The MSE is plotted as a function of the number of iterations and,
as p > pcrit, it displays a staircase behavior.

in Theorem 4.1, the SGD solution approaches x̂Haar(·) and
its MSE matches RGauss.

For sparse Rademacher data1, condition (15) reduces to
p > pcrit := 2/π ≈ 0.64, and Figure 1 shows a phase
transition in the structure of the minimizers found by SGD:

• For p < pcrit, SGD converges to a solution s.t. B is
a uniform rotation (central heatmap) and the MSE is
close to RGauss = 1− 2r/π, see (13).

• For p > pcrit, SGD converges to a solution s.t. B
is equivalent to a permutation of the identity (right
heatmap) and the MSE is close to 1− r · (E|x1|)2 =
1− r · p, see (14). In both cases, A ∝ B⊤.

1Each i.i.d. component is equal to 0 w.p. 1− p and to ±1/
√
p

w.p. p/2, which ensures a unit second moment for all p ∈ [0, 1].
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Figure 3. Compression of masked and whitened CIFAR-10 images
of the class “dog” via the two-layer autoencoder in (2). First,
the data is whitened so that it has identity covariance (as in the
setting of Theorem 4.1). Then, the data is masked by setting each
pixel independently to 0 with probability p = 0.7. An example
of an original image is on the top right, and the corresponding
masked and whitened image is on the bottom right. The SGD loss
at convergence (dots) matches the solid line, which corresponds
to the prediction in (5) for the compression of standard Gaussian
data (with no sparsity).

If there is an improvement upon RGauss (i.e., p > pcrit),
the SGD dynamics exhibits a staircase behavior. This
phenomenon is displayed in Figure 2, which plots the
error as a function of the number of SGD iterations for
p = 0.8 > pcrit: first, the MSE rapidly converges to
RGauss; then, there is a plateau; finally, the global minimum
1−r·p is reached. We also remark that, as p approaches pcrit,
the time needed by SGD to escape the plateau increases. A
possible explanation is that, as p decreases, the noise due
to masking increases, which increases the variance of the
gradient. This makes it harder for B to find a direction
towards a permutation of the identity (i.e., the global mini-
mum). Additional evidence of both the phase transition and
the staircase behavior of SGD is in Appendix C.3, where
Figure 10 considers Rademacher data and Figures 11-12
data coming from a sparse mixture of Gaussians.

The proof strategy of Theorem 4.1 could be useful to track
SGD until it reaches the plateau. However, characterizing
the time-scale needed to escape the plateau likely requires
new tools, and it provides an exciting research direction.

Finally, Figure 3 shows that our theory predicts well the
behavior of the compression of CIFAR-10 images via the
two-layer autoencoder in (2). We let x1 be the empirical dis-
tribution of the image pixels after whitening and masking2,
and we verify that condition (15) does not hold. Then, as
expected, the autoencoder is unable to capture the structure
coming from masking part of the pixels, and the loss at the
end of SGD training equals RGauss. Similar results hold for
MNIST, see Figure 17 in Appendix C.4.

2The whitening makes the data have isotropic covariance, as
required by our theory; the masking makes the data sparse.

5. Provable benefit of nonlinearities and depth
In this section, we prove that more expressive decoders than
the linear one in (2) capture the sparsity of the data and,
therefore, improve upon the Gaussian loss RGauss.

5.1. Provable benefit of nonlinearities

First, we apply a nonlinearity at the output of the linear
decoding layer, as in (4). The ResNet-like denoising ar-
chitecture analyzed in (Cui & Zdeborová, 2023) suggests
a suitable choice of the non-linearity. The corresponding
denoising network has the following form:

x · α+Θ1 · tanh(Θ2 · x). (16)

To map (16) to a scalar denoising function, we fix Θ1,Θ2 ∝
I (or a row-subsampled version of an identity matrix for
r < 1). Specifically, we take

f(x) = α1 · x+ α2 · tanh(α3 · x), (17)

and run SGD on the weight matrices (A,B) and on the
trainable parameters (α1, α2, α3) in f . Figure 4 shows that,
at convergence, the minimizers have the same weight-tied
orthogonal structure as obtained for Gaussian data (BB⊤ =
I , A ∝ B⊤), see the left plot. However, in sharp contrast
with Gaussian data, the loss is smaller than RGauss, see
the blue dots on the right plot and compare them with the
orange dashed curve. This empirical evidence motivates
us to analyze the performance of autoencoders of the form
(4), where B is obtained by subsampling a Haar matrix of
appropriate dimensions and A = B⊤.
Proposition 5.1 (MSE characterization). Let r ≤ 1 and x
have i.i.d. components with zero mean and unit variance.
Consider the autoencoder x̂(x) in (4), where B is obtained
by subsampling a Haar matrix, A = B⊤, and f is a Lips-
chitz function. Then, we have that, almost surely,

lim
d→∞

1

d
· Ex∥x− x̂(x)∥22 = Ex1,g|x1 − f(µx1 + σg)|22,

(18)
where x1 is the first entry of x, g ∼ N (0, 1) and indepen-
dent of x1, and the parameters (µ, σ) are given by

µ = r ·
√

2

π
, σ2 = r

(
1− r · 2

π

)
> 0. (19)

Proposition 5.1 is a generalization of Proposition 4.2, which
corresponds to taking a linear f . The idea is to relate
f(B⊤sign(Bx)) to the first iterate of a suitable RI-GAMP
algorithm, so that the characterization in (18) follows from
state evolution. The details are in Appendix B.2.

Armed with Proposition 5.1, one can readily establish the
function f that minimizes the MSE for large d. This in fact
corresponds to the f that minimizes the RHS of (18), i.e.,

f∗(y) = E[x1|µx1 + σg = y], (20)
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Figure 4. Compression of sparse Gaussian data via the autoencoder in (4), where f has the form in (17) and its parameters (α1, α2, α3)

are optimized via SGD. We set d = 100 and p = 0.4. Left. Distance between B̂B̂
⊤

, B̂Â and the identity, as a function of the number
of iterations, where B̂, Â denote the row-normalized versions of B, A. ∥B̂B̂

⊤ − I∥F and ∥B̂Â − I∥F decrease and tend to 0,
meaning that (up to a rescaling of the rows) BA and BB⊤ approach the identity. Here, we take r = 1. Right. MSE achieved by SGD
at convergence, as a function of the compression rate r. The empirical values (dots) match the characterization of Proposition 5.1 for
f = f∗ in (20) (blue line), and they outperform the MSE (5) obtained by compressing standard Gaussian data (orange dashed line).

as long as the latter is Lipschitz (so that Proposition 5.1 can
be applied). Sufficient conditions for f∗ to be Lipschitz are
that either (i) x1 has a log-concave density, or (ii) there exist
independent random variables u0, v0 s.t. u0 is Gaussian,
v0 is compactly supported and x1 is equal in distribution
to u0 + v0, see Lemma 3.8 of (Feng et al., 2022). The
expression of f∗ for distributions of x1 considered in the
experiments (sparse Gaussian, Laplace, and Rademacher) is
derived in Appendix B.4.

The blue curve in the right plot of Figure 4 evaluates the
RHS of (18) for the optimal f = f∗, when x1 ∼ SG1(p).
Two observations are in order:

1. The blue curve matches the blue dots, obtained by
optimizing via SGD the matrices A,B and f in the
parametric form (17). This means that the SGD perfor-
mance is accurately tracked by plugging the optimal
function (20) into the prediction of Proposition 5.1.

2. The blue curve improves upon the Gaussian loss
RGauss (orange dashed line). This means that, while
the two-layer autoencoder in (2) is stuck at the MSE in
orange (as proved by Theorem 4.1), by incorporating
a nonlinearity, the autoencoder in (4) does better. In
fact, as shown in Figure 19 in Appendix C.6, the MSE
achieved by the autoencoder in (4) with the optimal
choice of f (namely, the RHS of (18) with f = f∗) is
strictly lower than RGauss for any p ∈ (0, 1).

Beyond Gaussian data: Phase transitions, staircases in
the learning dynamics, and image data. For general data
x with i.i.d. zero-mean unit-variance components, the au-
toencoder in (4) displays a behavior similar to that described
in Section 4 for the autoencoder in (2): the SGD minimizers

of the weight matrices A,B either exhibit a weight-tied
orthogonal structure (BB⊤ = I , A ∝ B⊤), or come from
permutations of the identity. This leads to a phase transition
in the structure of the minimizer (and in the MSE expres-
sion), as the sparsity p varies. To quantify the critical value
of p at which the minimizer changes, one can compare the
MSE when B is subsampled (i) from a Haar matrix, and
(ii) from the identity. The former is readily obtained from
Proposition 5.1 where f is given by (20), and the latter is
given by the result below, which is proved in Appendix B.3.

Proposition 5.2. Let x have i.i.d. components with zero
mean, unit variance and a symmetric distribution (i.e., the
law of x1 is the same as that of −x1). Define x̂Id(x) as in
(12), and fix r ≤ 1. Then, we have that, for any d,

min
f

1

d
·Ex

[
∥f(x̂Id(x))− x∥22

]
= 1− r · (E|x1|)2. (21)

Figure 6 displays the phase transition for the compression
of sparse Rademacher data:

• For p < p̃crit ≈ 0.67, SGD converges to a solution
with MSE given by the RHS of (18) with f = f∗.
Furthermore, B is a uniform rotation (see the central
heatmap in Figure 21 of Appendix C.7).

• For p > p̃crit, SGD converges to a solution with MSE
given by the RHS of (21). Furthermore, B is equiv-
alent to a permutation of the identity (see the right
heatmap in Figure 21 of Appendix C.7).

By comparing the blue dots/curve with the orange dashed
line in Figure 6, we also conclude that, for all p, the MSE
of the autoencoder in (4) improves upon the Gaussian per-
formance RGauss. This is in contrast with the behavior of
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Figure 5. Compression of sparse Beta (left) and sparse Gaussian mixture (right) via the autoencoder in (4). We set d = 200 and r = 1.
The MSE achieved by SGD at convergence is plotted as a function of the sparsity level p. The empirical values (blue dots) match our
theoretical prediction (green/blue lines). For p < p̃crit, the MSE is given by Proposition 5.1 for B sampled from the Haar distribution; for
p ≥ p̃crit, the MSE is given by Proposition 5.2 for B equal to the identity.
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Figure 6. Compression of sparse Rademacher data via the autoen-
coder in (4). We set d = 200 and r = 1. The MSE achieved by
SGD at convergence is plotted as a function of the sparsity level p.
The empirical values (blue dots) match our theoretical prediction
(blue line). For p < p̃crit, the MSE is given by Proposition 5.1 for
B sampled from the Haar distribution; for p ≥ p̃crit, the MSE is
given by Proposition 5.2 for B equal to the identity.

the autoencoder in (2) which remains stuck at RGauss for
p < 2/π (see Figure 1), and it demonstrates the benefit of
adding the nonlinearity f .

For p > p̃crit, the learning dynamics exhibits again a stair-
case behavior in which the MSE first gets stuck at the value
given by the RHS of (18) with f = f∗, and then reaches
the optimal value of 1 − r · (E|x1|)2. This is reported for
p = 0.9 > p̃crit ≈ 0.67 in Figure 22 of Appendix C.7.

Indeed this behaviour is persistent among i.i.d. data. In
Figure 5, we showcase two additional data distributions, a
sparse Beta and a sparse Gaussian mixture, see (114) and
(112) in Appendix C.3 for details. We observe the same
behaviour as in the Rademacher case, which is consistent
with the heuristic described above.
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0.7

0.8

0.9
M

SE
Laplace prediction (p = 1)
Sparse Laplace prediction (p = 0.4)
SGD, CIFAR (p = 1)
SGD, sparse Laplace (p = 0.4)
SGD, masked CIFAR (p = 0.4)

Figure 7. Compression of masked and whitened CIFAR-10 images
of the class “dog” via the autoencoder in (4). We plot the MSE
as a function of the compression rate r. Dots are obtained by
training the decoder matrix A and the parameters (α1, α2, α3)
via SGD on masked (p = 0.4, green) or original (p = 1, blue)
CIFAR-10 images. Continuous lines refer to the predictions of
Proposition 5.1 for the optimal f = f∗ in (20), where x1 has a
Laplace distribution (p = 1, blue) or a sparse Laplace distribution
(p = 0.4, orange). These curves match well the corresponding
values obtained via SGD. Orange dots are obtained by training the
matrices A,B and the parameters (α1, α2, α3) via SGD when x
has i.i.d. sparse Laplace entries with p = 0.4.

Finally, Figure 7 shows that the key features we unveiled for
the autoencoder in (4) are still present when compressing
sparse CIFAR-10 data. The empirical distribution of the im-
age pixels after whitening is well approximated by a Laplace
random variable (see Figure 18 in Appendix C.5), thus we
denote by x1 the corresponding sparse Laplace distribution
(see (109) in Appendix B.4 for a formal definition). The
encoder matrix B is obtained by subsampling a Haar matrix,
and it is fixed; the decoder matrix A and the parameters
(α1, α2, α3) in the definition (17) of f are obtained via SGD
training. Two observations are in order:
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Figure 8. Compression of sparse Gaussian data x ∼ SGd(p) for
p = 0.3 and d = 500. We plot the MSE as a function of the
compression rate r for various autoencoder architectures. The
architecture in (23) (orange dots) outperforms the autoencoders
in (2) (green dots) and in (4) (blue dots), and it approaches the
Bayes-optimal MSE (orange line).

1. The autoencoder in (4) captures the sparsity: the MSE
achieved on sparse data (p = 0.4, green dots) is lower
than the MSE on non-sparse data (p = 1, blue dots).

2. For both values of p, the SGD performance matches
the RHS of (18) (continuous lines) with f = f∗. As
expected, this MSE is smaller than 1 − r · (E|x1|)2,
and it coincides with that obtained for compressing
synthetic data with i.i.d. Laplace entries (orange dots).

5.2. Provable benefit of depth

We conclude by showing that the MSE can be further re-
duced by considering a multi-layer decoder. Our design
of the decoding architecture is inspired by the RI-GAMP
algorithm (Venkataramanan et al., 2022), which iteratively
estimates x from an observation of the form σ(Bx) via

xt = B⊤ẑt −
t−1∑
i=1

βt,ix̂
i, x̂t = ft(x

1, · · · ,xt), (22)

zt = Bx̂t −
t∑

i=1

αt,iẑ
i, ẑt+1 = gt(z

1, · · · , zt, ẑ1).

Here, ft, gt are Lipschitz and applied component-wise, and
the initialization is ẑ1 = sign(Bx). The coefficients {βt,i}
and {αt,i} are chosen so that, under suitable assumptions on
B,3 the empirical distribution of the iterates is tracked via a
low-dimensional recursion, known as state evolution. This
in turn allows to evaluate the MSE limd→∞

1
d∥x− x̂t∥22.

The results of Proposition 4.2 and 5.1 follow from relat-
ing the autoencoders in (2)-(4) to RI-GAMP iterates in

3B has to be bi-rotationally invariant in law, namely, the matri-
ces appearing in its SVD are sampled from the Haar distribution.

(22). More generally, x̂t is obtained by multiplications
with B,B⊤, linear combinations of previous iterates, and
component-wise applications of Lipschitz functions. As
such, it can be expressed via a multi-layer decoder with
residual connections. The numerical results in (Venkatara-
manan et al., 2022) show that taking ft, gt as posterior
means (as in (20)) leads to Bayes-optimal performance,
having fixed the encoder matrix B. Thus, this provides a
proof-of-concept of the optimality of multi-layer decoders.

In fact, Figure 8 shows that an architecture with three de-
coding layers is already near-optimal when x ∼ SGd(p).
The decoder output is x̂2 computed as (see also the block
diagram in Figure 25 in Appendix C.8)

ẑ1 = sign(Bx), x1 = W 1ẑ
1, x̂1 = f1(x

1),

ẑ2 = g1(V 1x̂
1 ⊕1 ẑ

1),

x2 = x̂1 ⊕2 W 2ẑ
2, x̂2 = f2(x

1 ⊕3 x
2).

(23)

Here, f1(·), f2(·), g1(·) are trainable parametric functions of
the form in (17) and, for i ∈ {1, 2, 3}, a⊕i b = βia+ γib,
where {βi, γi} are also trained. The plot demonstrates the
benefit of employing more expressive decoders:

1. The green dots are obtained via SGD training of the
autoencoder in (2) and, as proved in Theorem 4.1, they
match the Gaussian performance RGauss.

2. The blue dots are obtained via SGD training of the
autoencoder in (4) and they match the prediction of
Proposition 5.1 with f = f∗ in (20).

3. The orange dots are obtained by using the decoder in
(23) where W 1 = W 2 = B⊤, V 1 = B are sub-
sampled Haar matrices and the parameters in the func-
tions f1, f2, g1, {⊕i}3i=1 are trained via SGD. Similar
results are obtained by training also W 1,W 2,V 1, al-
though at the cost of a slower convergence.

In summary, the architecture in (23) improves upon those
in (2)-(4), and it approaches the orange curve which gives
the Bayes-optimal MSE achievable by fixing a rotationally
invariant encoder matrix B (Ma et al., 2021). Additional
details are deferred to Appendix C.8.

We also note that considering a deep fully-connected de-
coder in place of the architecture in (23) does not improve
upon the autoencoder in (4). In fact, while sufficiently wide
and deep models have high expressivity, their SGD train-
ing is notoriously difficult, due to e.g. vanishing/exploding
gradients (Glorot & Bengio, 2010; He et al., 2016).

Impact statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proof of Theorem 4.1
A.1. Additional notation

Given two matrices M1 and M2 of the same shape, their element-wise Schur product is M1◦M2 and the ℓ-th element-wise
power is M◦ℓ

1 . The same notation is adopted for the element-wise product of vectors, i.e., v ◦ u. By convention, if Bi,: is
a vector of zeroes, its normalization B̂i,: is also a vector of zeroes. We fix the evaluation of sign(·) at the origin to be a
Rademacher random variable, i.e., sign(0) takes values in the set {−1, 1} with equal probability. Note that this is a technical
assumption with no bearing on the proof of the result.

For a matrix B, we denote its i-th row by bi = Bi,:, the exception being that by convention ak denotes the k-th column
of A. Bm is the masked version of a matrix B, where masking is defined as b̄i = bi ◦m and m has i.i.d. Bernoulli(p)
components. For convenience of notation, we define B̄ = Bm only for the matrix B. By convention, masking has priority
over transposing, i.e., B⊤

m = (Bm)⊤. For B (and only B), we define B̂ = B̂m = D̂B̄m, where D̂ is a diagonal matrix
with entries D̂i,i = 1/

∥∥b̄i∥∥, as the masked and re-normalized version of B. We define ∥B∥max := maxi,j |Bi,j |.

We use the following convention for the constants. All constants are independent of d including those that are dependent on
the quantities p, r, f(x) = arcsin(x), α = f(1)− 1 and the dependence on these quantities will be suppressed most of the
time. Uppercase constants like C,CX , CR should be thought of as being much larger than 1, whereas lowercase constants
should be thought of as being smaller than 1.

For a vector, the norm ∥·∥ without subscript always refers to the 2-norm ∥·∥2. Unless stated otherwise, we consider the space
of matrices Mn×d to be endowed with ∥·∥op. For a matrix R, we denote by O (R) a matrix of the same dimensions as R
with ∥O (R)∥op ≤ C ∥R∥op. This is a way to extend the big O notation to matrices. Similarly, we will use the notation
Omax which functions as O except that ∥·∥op is replaced by ∥·∥max. We will often use that n = O (d), since r = n

d is fixed.

A.2. Outline

The start of our analysis is the following lemma.
Lemma A.1. Let R(·, ·) be the MSE defined in (3), with x ∼ SGd(p). Assume that all entries of B are not zero. Then, up
to a multiplicative scaling and an additive constant, R(A,B) is given by

Em̸=0

[
Tr
[
A⊤Af(B̂B̂

⊤
)
]
− 2

√
p
Tr
[
AB̂

]]
+O

(
(1− p)d ∥A∥2op

)
, (24)

where f = arcsin is applied component-wise and the second term on the RHS is independent of B.

Proof. For any m ̸= 0 we can fix m and apply Lemma 4.1 in (Shevchenko et al., 2023). The second term on the RHS
corresponds to m = 0.

We now briefly elaborate on some technical details. First, by convention, all expectations over m are understood to be over
m ̸= 0. Second, as the last term on the RHS in (24) does not depend on B, it suffices to take the gradient of the objective
without it. Lastly, the term O

(
(1− p)d ∥A∥2op

)
has a negligible effect when running the gradient descent algorithm in (6).

In fact, a by-product of our analysis is that A has bounded norm throughout the training trajectory, see Lemma A.14. Hence,
the quantity O

(
(1− p)d ∥A∥2op

)
is exponentially small in d and, therefore, it can be incorporated in the error of order

C poly(log(d))√
d

being tracked during the recursion.

As a result, we can consider the objective

Em

[
Tr
[
A⊤Af(B̂B̂

⊤
)
]
− 2

√
p
Tr
[
AB̂

]]
, (25)

where m ∈ {0, 1}d denotes a mask with i.i.d. Bernoulli(p) entries, b̂i = m ◦ bi/ ∥m ◦ bi∥2 and (1 − p) is the sparsity.
Thus, the Riemannian gradient descent algorithm (6) applied to the objective (25) can be rewritten as

A(t) =
1
√
p
EmB̂(t)⊤

(
Emf(B̂(t)B̂(t)⊤)

)−1

,

B′(t) :=B(t)− η
(
∇B(t) +G(t)

)
,B(t+ 1) := proj(B′(t)),

(26)

12
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where A(t) is the optimal matrix for a fixed B(t), ∇B(t) is defined below in (30) and (G(t))i,j ∼ N (0, σ2) with
d−γg ≤ σ ≤ C/d for some fixed 1 < γg <∞.

The goal of this Appendix is to show the following theorem.
Theorem A.2. Consider the gradient descent (26) with x ∼ SGd(p). Initialize the algorithm with B(0) equal to a
row-normalized Gaussian, i.e., B′

i,j(0) ∼ N (0, 1/d), B(0) = proj(B′(0)), and let B(0) = US(0)V ⊤ be its SVD. Let
the step size η be Θ(1/

√
d). Then, for any fixed r < 1 and Tmax ∈ (0,∞), with probability at least 1 − Cd−3/2, the

following holds for all t ≤ Tmax/η

B(t) = US(t)V ⊤ +R(t),∥∥S(t)S(t)⊤ − I
∥∥
op

≤ C exp (−cηt) ,

lim
d→∞

sup
t∈[0,Tmax/η]

∥R(t)∥op = 0,

(27)

where C, c are universal constants depending only on p, r and Tmax. Moreover, we have that, almost surely,

lim
t→∞

lim
d→∞

R(A(t),B(t)) = RGauss,

lim
d→∞

sup
t∈[0,Tmax/η]

∥B(t)−BGauss(t)∥op = 0,
(28)

where RGauss is defined in (5) and BGauss(t) is obtained by running (26) with x ∼ N (0, I).

Let us provide a high-level overview of the proof strategy. Using high-dimensional probability tools, we will show that with
high probability

B(t) = X(t) +R(t),

∥X(t)∥op ≤ CX , ∥X(t)∥max ≤ CX
log(d)√

d
, X(t) = US(t)V , with U ,V Haar,

∥R(t)∥op ≤ CR
logαR(d)√

d
,

A(t) = X(t)⊤
(
X(t)X(t)⊤ + αI

)−1
+O

(
C10

X

log10(d)√
d

)
+O (R) ,

(29)

where α = f(1)− 1 = arcsin(1)− 1. This implies that the gradient in (30) concentrates to the Gaussian one, namely, to
the gradient obtained for x ∼ N (0, I). Then, an a-priori Grönwall-type inequality will extend these bounds for all times
t ∈ [0, Tmax]. It is essential that the constants CX , CR in (29) can be chosen to only depend on Tmax, as otherwise the
gradient dynamics could diverge in finite time. Thus, it is crucial that in all our lemmas we keep track of these constants
explicitly and that in the error estimates they do not depend on each other. While the analysis is quite technical, the high-level
idea is simple: if each term that depends on m were replaced by its mean, then we would immediately recover the Gaussian
case p = 1 which was studied in (Shevchenko et al., 2023). By showing that each of the terms concentrates well enough, we
can make this intuition rigorous. The main technical difficulty lies in controlling the additional error terms, which requires a
more nuanced approach compared to the Gaussian case considered in (Shevchenko et al., 2023).

The rest of this appendix is structured as follows. Section A.3 contains a collection of auxiliary results that are simple
applications of standard results. In Section A.4, we develop our high-dimensional concentration tools. In Section A.5, we
use these tools to show that A, B̂,∇B all concentrate. Finally in Section A.6, we combine these approximations with an
a-priori Grönwall bound in Lemma A.19, which allows us to bound the difference between the gradient trajectory and that
obtained with Gaussian data.

A.3. Auxiliary results

A straightforward computation gives:
Lemma A.3 (Gradient formulas). The derivative of (25) w.r.t. B is given by

(∇B)k,: = Em

−2
1
√
p
m ◦ Ĵkak + 2

∞∑
ℓ=1

ℓc2ℓ
∑
j ̸=k

⟨ak,aj⟩⟨b̂k, b̂j⟩ℓ−1Ĵkb̂j

 , (30)

13
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where Ĵk = 1

∥b̄k∥
(
I − b̂kb̂

⊤
k

)
, ak = A:,k and c2ℓ are the Taylor coefficients of arcsin(x).

We will make extensive use of the following linear algebra results.

Lemma A.4 (Linear algebra results). The following results hold:

1.
∥∥B̄∥∥

op
≤ ∥B∥op.

2. For any M ∈ Rn×d, we have ∥M∥op ≤
√
nmaxk ∥Mk,:∥. In particular,

∥∥∥B̂∥∥∥
op

≤
√
n.

3. For square matrices M1,M2 ∈ Rn×n,

∥M1 ◦M2∥op ≤
√
n ∥M1∥op ∥M2∥max . (31)

4. For any square matrix M , we have
∥∥(11⊤ − I) ◦M

∥∥
op

≤ 2 ∥M∥op.

5. For any square matrix M ∈ Rn×n, we have ∥M∥op ≤ n ∥M∥max.

Proof. 1. This follows directly from the variational characterization of the operator norm, i.e.,∥∥B̄∥∥
op

= sup
∥u∥≤1

∥∥B̄u
∥∥ = sup

∥u∥≤1

∥B(m ◦ u)∥ ≤ sup
∥u∥≤1

∥Bu∥ ,

where the last step follows from ∥m ◦ u∥ ≤ ∥u∥.

2. For ∥v∥ = 1, we have

∥Mv∥ =

√√√√ n∑
k=1

⟨Mk,:,v⟩2 ≤

√√√√ n∑
k=1

∥Mk,:∥2 ≤
√
nmax

k
∥Mk,:∥2 =

√
nmax

k
∥Mk,:∥ .

3. For a unit vector ei, we have

∥M1 ◦M2ei∥ ≤ ∥M2∥max ∥M1ei∥ ≤ ∥M2∥max ∥M1∥op .

For a general vector v, we can use the triangle inequality to obtain

∥M1 ◦M2v∥ ≤
∑
i

|vi| ∥M2∥max ∥M1ei∥ ≤ ∥M2∥max ∥M1∥op
∑
i

|vi| .

By using ∑
i

|vi| ≤
√
n ∥v∥ ,

we obtain the desired bound.

4. Note that (11⊤ − I) ◦M = M −Diag (M), so∥∥(11⊤ − I) ◦M
∥∥
op

≤ ∥M∥op + ∥Diag (M)∥op ≤ 2 ∥M∥op ,

where we have used that
∥Diag (M)∥op = max

i
|M i,i| ≤ ∥M∥op .

5. Note that ∥Mk,:∥ ≤
√
n ∥M∥max. Thus, the result follows from the point 2. above.

14
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Lemma A.5. Denote by c2ℓ the ℓ-th Taylor coefficient of the function arcsin(x). Then, for x ∈ [0, 1), ℓ0 ∈ N+, we have

∞∑
ℓ=ℓ0

ℓc2ℓx
ℓ−1 ≤ C(ℓ0)x

ℓ0−1 1√
1− x

. (32)

Proof. Recall that
d

dx
arcsin(x) =

1√
1− x

=

∞∑
ℓ=1

ℓc2ℓx
ℓ−1,

with

c2k = 0, c22k+1 =
(2k)!

4k(k!)2(2k + 1)
.

By Stirling’s approximation we have

c22k+1 = Θ

(
1

k
3
2

)
,

which implies that, for odd ℓ, ℓ0 > 0

ℓc2ℓ
(ℓ+ ℓ0 − 1)c2ℓ+ℓ0−1

≤ C
ℓ(ℓ+ ℓ0 − 1)

3
2

(ℓ+ ℓ0 − 1)ℓ
3
2

≤ C(ℓ0).

Thus we have
∞∑

ℓ=ℓ0

ℓc2ℓx
ℓ−1 = xℓ0−1

∞∑
ℓ=ℓ0

ℓc2ℓx
ℓ−ℓ0 = xℓ0−1

∞∑
ℓ=1

(ℓ+ ℓ0 − 1)c2ℓ+ℓ0−1x
ℓ−1

≤ xℓ0−1
∞∑
ℓ=1

C(ℓ0)ℓc
2
ℓx

ℓ−1 = C(ℓ0)x
ℓ0−1 1√

1− x
,

which finishes the proof.

Lemma A.6. Assume that B = X +R with ∥X∥op ≤ CX , ∥X∥max ≤ CX
log(d)√

d
, ∥R∥op ≤ CR

logαR (d)√
(d)

. Then, for large

enough d, we have

∥bi∥24 ≤ CC2
X

log(d)√
d
. (33)

Proof. By Hölder, we have
∥ri∥4 ≤ ∥ri∥

1
2
2 ∥ri∥

1
2
∞ ≤ ∥R∥

1
2
op ∥R∥

1
2
op = ∥R∥op ,

and
∥xi∥4 ≤ ∥xi∥

1
2
2 ∥xi∥

1
2
∞ ≤ ∥X∥

1
2
op ∥X∥

1
2
max ,

so

∥bi∥24 ≤ (∥xi∥4 + ∥ri∥4)
2 ≤ C(∥xi∥24 + ∥ri∥24) ≤ CC2

X

log(d)√
d

+ CC2
R

(logαR(d))2

d
,

which implies (33).

Lemma A.7 (Concentration of D̂). For b ∈ Rd, ∥b∥ = 1 and m ∼ Bern(p) i.i.d., we have

P
(∣∣∣∥m ◦ b∥22 − p ∥b∥22

∣∣∣ > λ
)
≤ Cexp

(
−c λ2

∥b∥44

)
, (34)

which implies

P (|∥m ◦ b∥2 −
√
p ∥b∥2| > λ) ≤ Cexp

(
−c λ2

∥b∥44

)
. (35)
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Proof. Equation (34) is an immediate consequence of Hoeffding’s inequality applied to the random variables (mi − p)b2i
(cf. Theorem 2.6.2 in (Vershynin, 2018)).

To obtain (35) we note that
∣∣∥m ◦ b∥2 −

√
p ∥b∥2

∣∣ > λ implies∣∣∣∥m ◦ b∥22 − p ∥b∥22
∣∣∣ = |∥m ◦ b∥2 −

√
p ∥b∥2| |∥m ◦ b∥2 +

√
p ∥b∥2| >

√
p ∥b∥2 λ.

Since by assumption ∥b∥ = 1, the above implies (35).

Lemma A.8. Let U ∈ Rn×n be a Haar matrix and M ∈ Rn×n an independent random matrix with ∥M∥op ≤ CM . Then,
for Y := UMU⊤, we have

P
(∥∥∥∥Y − 1

n
Tr [Y ] I

∥∥∥∥
max

> λ

)
≤ Cd2exp

(
− c

C2
M

dλ2
)
. (36)

If instead we have M ∈ Rn×d with n
d ≤ C and Y := UM , then

P (∥Y ∥max > λ) ≤ Cd2exp

(
− c

C2
M

dλ2
)
. (37)

Proof. We first fix M , and note that since M and U are independent, the distribution of U does not change if we condition
on M . For both inequalities, for fixed M , the map (SOn, ∥·∥F ) → (Mn×d, ∥·∥op), U → Y is Lipschitz as it is a bounded
(bi-)linear form on a bounded set. The composition with the projection on the (i, j)-th component of a matrix is also
Lipschitz, so we can apply Theorem 5.2.7 in (Vershynin, 2018) to obtain that Y i,j is subgaussian in U with subgaussian
norm CCM√

d
. Formally this means that

P
U
(|Y i,j − EY i,j | > λ|M) ≤ Cexp

(
− c

C2
M

dλ2
)
.

Since the RHS is independent of M (i.e., it only depends on CM ) we have

P (|Y i,j − EY i,j | > λ) = P
M

(
P

U ,V
(|Y i,j − EY i,j | > λ|M)

)
≤ P

M

(
Cexp

(
− c

C2
Md

λ2
))

= Cexp

(
− c

C2
Md

λ2
)
.

Now, (36) follows by noting that EUMU⊤ = 1
nTr

[
UMU⊤

]
I and using a simple union bound over (i, j). The proof of

(37) is the same, with the only difference being EY i,j = 0.

Lemma A.9. Let U ∈ Rn×n,V ∈ Rd×d be Haar matrices, and S1,S
⊤
2 ∈ Rn×d be deterministic diagonal matrices.

Define M̄ = S1(V
⊤)m(V ⊤)⊤mS2, Ȳ = UM̄U⊤,Y = pUS1S2U

⊤, CM := ∥S1∥op ∥S2∥op. Then, for any γ > 0

and d > d0(γ), we have with probability at least 1− C/d2 (in U ,V )

P
m

(∥∥∥∥Ȳ − 1

n
Tr [Y ] I

∥∥∥∥
max

> CCM
log3(d)√

d

∣∣∣∣U ,V ) ≤ C
1

dγ
. (38)

Proof. In the first step we will show that with probability at least 1− C/d2 in U ,V

P
m

(∥∥∥∥Ȳ − 1

n
Tr
[
Ȳ
]
I

∥∥∥∥
max

> CM
log3(d)√

d

∣∣∣∣U ,V ) ≤ C
1

dγ
. (39)
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The key observation is that

P
U ,V

(
P
m

(∥∥∥∥Ȳ − 1

n
Tr
[
Ȳ
]
I

∥∥∥∥
max

> CMλ

∣∣∣∣U ,V ) > α

)
≤ 1

α
EU ,V P

m

(∥∥∥∥Ȳ − 1

n
Tr
[
Ȳ
]
I

∥∥∥∥
max

> CMλ

∣∣∣∣U ,V )
=

1

α
P
(∥∥∥∥Ȳ − 1

n
Tr
[
Ȳ
]
I

∥∥∥∥
max

> CMλ

)
≤ C

1

α
d2exp

(
− c

C2
M

dC2
Mλ

2

)
= C

1

α
d2exp

(
−cdλ2

)
,

where the first passage follows from Markov’s inequality and the last inequality is due to Lemma A.8 and CM =
∥S1∥op ∥S2∥op ≥

∥∥M̄∥∥
op

.

By choosing α = 1
dγ and λ = log3(d)√

d
, we obtain that, with probability at least 1− C/d2 in U ,V ,

P
m

(∥∥∥∥Ȳ − 1

n
Tr
[
Ȳ
]
I

∥∥∥∥
max

> CM
log3(d)√

d

∣∣∣∣U ,V ) ≤ 1

dγ
. (40)

Now, in the second step, we will show that, with probability at least 1− C/d2 over V ,

P
m

(∥∥∥∥ 1nTr [Ȳ ] I − 1

n
Tr [Y ] I

∥∥∥∥
max

> CM
log3(d)√

d

∣∣∣∣U ,V ) ≤ 1

dγ
. (41)

First, note that by Lemma A.8 with probability at least 1− C/d2 (in V ) we have that ∥V ∥max ≤ C log(d)√
d

, so ∥V :,i∥44 ≤

C log4(d)
d . By Lemma A.7, we have that

P
(∣∣∣∣((V ⊤)m(V ⊤)⊤m

)
i,i

− p

∣∣∣∣ > λ

)
≤ Cexp

(
−c dλ2

log4(d)

)
.

Choosing λ = log3(d)√
d

we obtain for large d

P
(∣∣∣∣((V ⊤)m(V ⊤)⊤m

)
i,i

− p

∣∣∣∣ > log3(d)√
d

)
≤ C

1

dγ+1
.

By a simple union bound we obtain

P
(∥∥∥Diag

(
(V ⊤)m(V ⊤)⊤m

)
− pI

∥∥∥
op
>

log3(d)√
d

)
≤ C

1

dγ
.

Note that since S1,S2 are diagonal we have

Tr
[
S1(V

⊤)m(V ⊤)⊤mS2

]
= Tr

[
S1Diag

(
(V ⊤)m(V ⊤)⊤m

)
S2

]
,

so
∥∥∥Diag

(
(V ⊤)m(V ⊤)⊤m

)
− pI

∥∥∥
op

≤ log3(d)√
d

implies

∣∣∣Tr [S1(V
⊤)m(V ⊤)⊤mS2

]
− pTr [S1S2]

∣∣∣ = ∣∣∣Tr [S1

(
Diag

(
(V ⊤)m(V ⊤)⊤m

)
− pI

)
S2

]∣∣∣
≤ n

∥∥∥S1

(
Diag

(
(V ⊤)m(V ⊤)⊤m

)
− pI

)
S2

∥∥∥
op

≤ CMn
log3(d)√

d
.
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Thus,

P
(∣∣∣∣ 1nTr [S1(V

⊤)m(V ⊤)⊤mS2

]
− p

1

n
Tr [S1S2]

∣∣∣∣ > CM
log3(d)√

d

)
≤ C

1

dγ
.

Noting that, by definition, Tr
[
Ȳ
]
= Tr

[
S1(V

⊤)m(V ⊤)⊤mS2

]
and Tr [Y ] = pTr [S1S2], we obtain (41).

Finally, combining (40) and (41) finishes the proof.

Lemma A.10. Let B ∈ Rn×d be an arbitrary matrix, G ∈ Rn×d with Gij ∼ N (0, σ2), and assume n = O(d). Then, for
any δ > 0, we have

P
G

(
min
i,j

|Bij +Gij | ≤ δ

)
≤ Cd2

δ

σ
.

Proof. By the scale invariance of the problem, we may assume that σ = 1. Let g be a standard normal variable and b ∈ R.
Then,

P (|b+ g| ≤ δ) = P (g ∈ [b− δ, b+ δ]) ≤ Cδ,

where the second step holds since the pdf of g is bounded by a universal constant. The result of the lemma now follows by a
simple union bound over all (i, j) (and using n = O(d)).

A.4. Concentration tools

In this section, we provide the matrix concentration results needed for the proof. We recall that we use the shorthand
notation B̄ = Bm and B̂ = B̂m = D̂B̄m, D̂i,i = 1/

∥∥b̄i∥∥ only for the matrix B. Here, the masking Bm was defined as
(Bm)i,j = Bi,jmj .

Lemma A.11. Let B = X +R = USV ⊤ +R, A = X⊤(XX⊤ + αI)−1 +O (R) +O
(
C7

X
log10(d)√

d

)
, where U ,V

are Haar matrices, ∥R∥op = o(1), S is a diagonal matrix s.t. ∥S∥op ≤ CX ,
1
nTr

[
SS⊤

]
= 1, and α > 0 fixed. Then, for

any γ > 0, d > d0(γ), with probability at least 1− C/d2 in U ,V and at least 1− C/dγ in m,

1. ∥B∥max ≤ CX
log(d)√

d
+O

(
∥R∥op

)
.

2. Diag

((
BB⊤ + αI

)−2

BB⊤
)

= 1
nTr

[(
BB⊤ + αI

)−2

BB⊤
]
I +O

(
log(d)√

d

)
.

3.
∥∥∥∥A⊤A− 1

nTr

[(
XX⊤ + αI

)−2

XX⊤
]
I

∥∥∥∥
max

≤ C7
X

log10(d)√
d

+O
(
∥R∥op

)
.

4. 1
pB̄B̄

⊤ − 1
nTr

[
BB⊤

]
I = Omax(CC

2
X

log3(d)√
d

) +O
(
CX ∥R∥op

)
.

5. Diag
(

1
pB̄A

)
= 1

nTr [BA] I +O
(
C8

X
log10(d)√

d

)
+O (CXR).

6. Diag
(

1
pA

⊤AB̄B̄
⊤
)
= 1

nTr
[
A⊤ABB⊤

]
I +O

(
C9

X
log10(d)√

d

)
+O

(
C2

XR
)
.

Proof. The O (R) , O
(
∥R∥op

)
terms are always extracted by using that the LHS is a continuous function in R (w.r.t.

∥·∥op). We carry this out explicitly for the first item and skip the details for the other items.

1. By Lemma A.8, with probability at least 1− C/dγ ,

∥B∥max =
∥∥∥USV ⊤ +R

∥∥∥
max

≤
∥∥∥USV ⊤

∥∥∥
max

+ ∥R∥max ≤ CX
log(d)√

d
+ ∥R∥op = CX

log(d)√
d

+O
(
∥R∥op

)
,

where we have used (37) with λ = CX
log(d)√

d
in the third step.
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2. This follows from (36) with λ = log(d)√
d

by noting that for any matrix B we have
∥∥∥∥(BB⊤ + αI

)−2

BB⊤
∥∥∥∥
op

≤ 1
α .

3. As in the previous item, we have
∥∥∥∥(XX⊤ + αI

)−2

XX⊤
∥∥∥∥
op

≤ 1
α so the result follows again from (36) with

λ = log(d)√
d

.

4. First note that by 1. in Lemma A.4 we have
∥∥B̄∥∥

op
≤ ∥B∥op ≤ CCX , where we have used the assumption

O
(
∥R∥op

)
= o(1). Thus, we have

B̄B̄
⊤
= US

(
V ⊤

)
m

(
V ⊤

)⊤
m
SU⊤ +O (CXR) ,

so the result follows from Lemma A.9.

5. Note that
∥∥∥∥X⊤

(
XX⊤ + αI

)−2
∥∥∥∥
op

≤ 1
2
√
α

and by Lemma A.4 we have
∥∥B̄∥∥

op
≤ CCX . Thus, we have

B̄A = US
(
V ⊤

)
m

(
V ⊤

)⊤
m
S̃U⊤ +O (CXR) ,

where S̃ is a diagonal matrix, so the result follows from Lemma A.9.

6. By using again that
∥∥∥∥X⊤

(
XX⊤ + αI

)−2
∥∥∥∥
op

≤ 1
2
√
α

and
∥∥B̄∥∥

op
≤ CCX , we have

A⊤AB̄B̄
⊤
= US̃

2
S
(
V ⊤

)
m

(
V ⊤

)⊤
m
SU⊤ +O

(
C2

XR
)
,

where S̃ is a diagonal matrix, so the result follows from Lemma A.9.

Lemma A.12 (Master concentration for B̂). Consider a fixed B = X + R with unit norm rows and ∥X∥op ≤ CX ,

∥X∥max ≤ CX
log(d)√

d
, ∥R∥op ≤ CR

logαR (d)√
d

. Let 2CX
1√
p > Cb > (1 + c)CX

1√
p > 0, for some small constant c > 0.

Let F : B√
d(0) ∪ (Ω ∩ BCb

(0)) ⊂ Mn×d → Mñ×d̃, for arbitrary ñ, d̃. Assume that Ω is s.t. with probability at least

1 − Cd−kF /2−1/2 in m we have for D̂
b

i,i = min{ 1

∥b̄i∥ ,
Cb

CX
} that D̂

b
B̄, 1√

pB̄ ∈ Ω. Further assume that F satisfies the

following properties:

1. ∥F (M)∥op ≤ CF d
kF
2 for every M = B̂;

2. ∥F (M)∥op ≤ CF for every M ∈ Ω ∩ BCb
(0);

3. F is Lipschitz with constant CF ′ on Ω ∩ BCb
(0) (w.r.t. ∥·∥op on both spaces).

Then, for large enough d > d0(CF , CF ′ , Cb, CR),∥∥∥∥EmF (B̂)− Em1{D̂b
B̄, 1√

p B̄∈Ω}F (
1
√
p
B̄)

∥∥∥∥
op

≤ CCF ′C3
X

log3(d)√
d

, (42)

where crucially the RHS is independent of CR.
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Proof. Define 1Ω̄ := 1{D̂b
B̄, 1√

p B̄∈Ω} and 1Ω̄c := 1− 1Ω̄. We will actually show the slightly stronger statement

Em

∥∥∥∥F (B̂)− 1Ω̄F

(
1
√
p
B̄

)∥∥∥∥
op

≤ CCF ′C3
X

log3(d)√
d

, (43)

which immediately implies (42). First, by a simple triangle estimate we have

Em

∥∥∥∥F (B̂)− 1Ω̄F

(
1
√
p
B̄

)∥∥∥∥
op

≤ Em

∥∥∥∥1Ω̄

(
F (B̂)− F

(
1
√
p
B̄

))∥∥∥∥
op

+ Em

∥∥∥1Ω̄cF (B̂)
∥∥∥
op
.

By our assumptions on Ω and assumption 1. we have

Em

∥∥∥1Ω̄cF (B̂)
∥∥∥
op

≤ CCF d
kF /2d−kF /2−1/2 = 2CF

1√
d
,

so w.l.o.g. we may assume that 1Ω̄ ≡ 1.

We now show that we can truncate D̂ to D̂
b

by applying the truncation function min{x, Cb

CX
} to each entry. Note that

by definition of Cb we have 1+c√
p ≤ Cb

CX
≤ 2√

p . By 2. in Lemma A.4, we have that
∥∥∥B̂∥∥∥

op
,
∥∥∥D̂b

B̄
∥∥∥
op

≤
√
n. Thus, by

assumption, we obtain

Em

∥∥∥F (B̂)− F (D̂
b
B̄)
∥∥∥
op

≤ CF d
kF /2P

(∥∥∥D̂∥∥∥
op
>

Cb

CX

)
. (44)

We also have the trivial bound

∥bi∥44 ≤ d

(
CX

log(d)√
d

+ CR
logαR(d)√

d

)4

≤ 1√
d
.

By a simple union bound, it follows from Lemma A.7 that, for large enough d,

P
(∥∥∥D̂∥∥∥

op
>

Cb

CX

)
≤ Cd · exp

(
−c
(
CX

Cb
−√

p

)2 √
d

)

≤ C · 1

d1+kF /2
,

where we have used that 1

∥b̄∥ ≥ Cb

CX
implies

∥∥b̄∥∥ ≤ CX

Cb
≤ (1− c)

√
p (here, c can indeed be treated as a universal constant

by assumption). Together with (44), we have

Em

∥∥∥F (B̂)− F (D̂
b
B̄)
∥∥∥
op

≤ CF
1

d
.

We now need to bound

Em

∥∥∥∥F (D̂b
B̄)− F

(
1
√
p
B̄

)∥∥∥∥
op

.

Since by 3. in the assumptions

Em

∥∥∥∥F (D̂b
B̄)− F

(
1
√
p
B̄

)∥∥∥∥
op

≤ CF ′Em

∥∥∥∥D̂b
B̄ − 1

√
p
B̄

∥∥∥∥
op

,

we will only need to show concentration for D̂
b
.

Recall that D̂
b

i,i = min{
∥∥b̄i∥∥−1

2
, Cb/CX}. We now show that

∣∣∣D̂b

i,i − 1√
p

∣∣∣ > λ implies
∣∣∥∥b̄i∥∥2 −√

p
∣∣ > cλ. To do so,

we distinguish two cases. If
∥∥b̄i∥∥ ≥ CX

Cb
, we have∣∣∣∣D̂b

i,i −
1
√
p

∣∣∣∣ =
∣∣∣∣∣
∥∥b̄i∥∥−√

p∥∥b̄i∥∥√p
∣∣∣∣∣ .
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Thus,
∣∣∣D̂b

i,i − 1√
p

∣∣∣ > λ implies
∣∣∥∥b̄i∥∥2 −√

p
∣∣ > ∥∥b̄i∥∥√pλ ≥ √

pCX

Cb
λ = cλ.

Next, if
∥∥b̄i∥∥ ≤ CX

Cb
<

√
p, then

∣∣∣D̂b

i,i − 1√
p

∣∣∣ = Cb

CX
− 1√

p so necessarily λ ≤ Cb

CX
− 1√

p . But then

∣∣∥∥b̄∥∥
2
−√

p
∣∣ ≥ ∣∣∣∣CX

Cb
−√

p

∣∣∣∣ ≥ cλ,

where the last step is just the previous case for
∥∥b̄i∥∥ = CX

Cb
.

This completes the proof that
∣∣∣D̂b

i,i − 1√
p

∣∣∣ > λ implies
∣∣∥∥b̄∥∥

2
−√

p
∣∣ > cλ. Now, by Lemma A.6 we have ∥bi∥24 ≤

CC2
X

log(d)√
d

. So, we can use Lemma A.7 and a union bound to obtain

P

(∥∥∥∥D̂b
− 1

√
p
I

∥∥∥∥
op

> λ

)
≤ Cd · exp

(
−c dλ2

C4
X log(d)2

)
.

For λ = C2
X

log3(d)√
d

and large enough d, we can bound the RHS by d−2. By 1. in Lemma A.4, we have that, for large d,∥∥B̄∥∥
op

≤ ∥B∥op ≤ CX + CR
log3(d)√

d
≤ 2CX . Note also that D̂

b
B̄ − 1√

pB̄ =
(
D̂

b
− 1√

pI
)
B̄. Hence,

P

(∥∥∥∥D̂b
B̄ − 1

√
p
B̄

∥∥∥∥
op

> 2C3
X

log3(d)√
d

)
≤ P

(∥∥∥∥D̂b
− 1

√
p
I

∥∥∥∥
op

> C2
X

log3(d)√
d

)
≤ 1

d2
.

Thus, by fixing λ = 2C3
X

log3(d)√
d

and using that D̂
b

is bounded, we conclude

Em

∥∥∥∥D̂b
B̄ − 1

√
p
B̄

∥∥∥∥
op

≤ λP

(∥∥∥∥D̂b
B̄ − 1

√
p
B̄

∥∥∥∥
op

≤ λ

)
+max

m

∥∥∥∥D̂b
B̄ − 1

√
p
B̄

∥∥∥∥
op

P

(∥∥∥∥D̂b
B̄ − 1

√
p
B̄

∥∥∥∥
op

> λ

)

≤ λ+ CCXP

(∥∥∥∥D̂b
B̄ − 1

√
p
B̄

∥∥∥∥
op

> λ

)

≤ CC3
X

log3(d)√
d

+ CCX
1

d2

≤ CC3
X

log3(d)√
d

.

Lemma A.13 (Explicit approximations). Assume that Pm

(
B̄ ∈ Ω

)
≥ 1− C 1

d2 , where

Ω = {M |(11⊤ − I) ◦ (MM⊤) = Y +Z, ∥Y ∥max ≤ CC2
X

log3(d)√
d

, ∥Z∥op ≤ CCXCR
logαR(d)√

d
}

⊂ {M |
∥∥∥(11⊤ − I) ◦MM⊤

∥∥∥
max

≤ C(C2
X + CXCR)

logαR(d))√
d

}.

Then, with probability at least 1 − C 1
d2 in U ,V , the following functions satisfy the assumption of Lemma A.12 (with

CF , CF ′ independent of d)

1. F (B) = −A⊤ + 1√
pA

⊤AB + 1
pDiag (BA)B − 1√

pDiag(A⊤ABB⊤)B,

2. F (B) =
∑

ℓ≥3 c
2
ℓ(11

⊤ − I) ◦ (BB⊤)◦ℓ,
∑

ℓ≥3 c
2
ℓ <∞,

3. F (B) =
∑

ℓ≥3 ℓc
2
ℓ

(
(A⊤A) ◦ (11⊤ − I) ◦ (BB⊤)◦(ℓ−1) −Diag

(
A⊤A(11⊤ − I) ◦ (BB⊤)◦ℓ

))
B,∑

ℓ≥3 c
2
ℓ <∞,
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where for 3. we need to additionally assume that the conclusion of Lemma A.14 holds. (Note that this is not an issue as the
proof of Lemma A.14 uses only 2. in the current lemma).

Proof. First note that, for fixed Cb, CX , p, by scaling the constant in the definition of Ω by 1
p

C2
b

C2
X

, we may w.l.o.g. assume

that P
(
DbB̄, 1√

pB̄ ∈ Ω
)
≥ 1− C 1

d2 .

We now show the claim for each of the functions separately.

1. The first function is the sum of of multi-linear functions and thus is polynomially bounded and Lipschitz on bounded
sets. Since we have a dimension independent bound on A, the bounds are dimension-independent as well.

2. We will show condition 1., 2. and 3. in Lemma A.12 separately. For 1., note that since
∣∣∣(B̂B̂

⊤
)i,j

∣∣∣ ≤ 1 we have∣∣∣F (B̂)i,j

∣∣∣ ≤∑ℓ c
2
ℓ = C <∞. Thus from 5. in Lemma A.4, we obtain

∥∥∥F (B̂)
∥∥∥
op

≤ Cd as desired.

Next we show condition 2. We have the following estimate for M ∈ Ω and ℓ ≥ 3

ℓ

∥∥∥∥(11⊤ − I) ◦
(
MM⊤

)◦ℓ∥∥∥∥
op

≤ nℓ

∥∥∥∥(11⊤ − I) ◦
(
MM⊤

)◦ℓ∥∥∥∥
max

≤ nℓ

(
C(C2

M + CMCR)
logαR(d)√

d

)ℓ

≤ C(C2
M + CMCR)

3 (log
αR(d))3√
d

≤ C
1

d
1
4

,

(45)

where the first step follows from 5. in Lemma A.4. Since the above bound is independent of ℓ it also holds for F since∑
ℓ≥3 c

2
ℓ <∞. This gives us the desired bound for 2.

To show 3. we write F (M) =
∑

ℓ c
2
ℓF

ℓ
2 (F1(M)) where F1(M) := (11⊤ − I) ◦ (MM⊤) and F ℓ

2 (Q) = Q◦ℓ. We
will show that F1, F

ℓ
2 are Lipschitz. By 4. in Lemma A.4, we have that

∥∥(11⊤ − I) ◦Q
∥∥
op

≤ 2 ∥Q∥op. Thus, for
B1,B2 ∈ BCb

(0),

∥F1(B1)− F1(B2)∥op =
∥∥∥(11⊤ − I) ◦ (B1B

⊤
1 −B2B

⊤
2 )
∥∥∥
op

≤ 2
∥∥∥B1B

⊤
1 −B2B

⊤
2

∥∥∥
op

= 2
∥∥∥B1(B

⊤
1 −B⊤

2 ) + (B1 −B2)B
⊤
2

∥∥∥
op

≤ 4Cb ∥B1 −B2∥op .

Hence, F1 is Lipschitz with constant 4Cb.

For F ℓ
2 , we will show that

∥∥DF ℓ
2 (Q)

∥∥ ≤ Cd−
1
4 if Q = (11⊤ − I) ◦ (MM⊤),M ∈ Ω ∩ BCb

(0). Note that
∥Q∥max ≤ C(C2

M + CMCR)
logαR (d)√

d
and ∥Q∥op ≤ 2C2

b . Furthermore, F ℓ
2 is a symmetric ℓ-linear function, so the

derivative in the direction Z is given by DF ℓ
2 (Q)Z = ℓZ ◦Q◦ℓ−1. From 3. in Lemma A.4 we have

∥∥∥ℓZ ◦Q◦ℓ−1
∥∥∥
op

≤ ℓ
√
n ∥Z∥op

(
C(C2

M + CMCR)
logαR(d)√

d

)ℓ−1

≤ C(C2
M + CMCR)

2 ∥Z∥op
(logαR(d))2√

d

≤ C ∥Z∥op
1

d
1
4

,

(46)
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so
∥∥DF ℓ

2 (F1(B))
∥∥ ≤ Cd−

1
4 . Now, note that since

{Q|
∥∥(11⊤ − I) ◦Q

∥∥
max

≤ C(C2
M + CMCR)

logαR(d)√
d

,Diag (Q) = 0}

is convex, the line segment between any two points lies in the set, so a bound on the derivative implies that the Q◦ℓ is
Lipschitz with the same constant. Multiplying the two Lipschitz constants of F1, F

ℓ
2 we obtain that their composition is

Lipschitz with constant 4CCbd
− 1

4 .

Since none of the bounds depends on ℓ, this immediately implies that F (M) =
∑

ℓ c
2
ℓF

ℓ
2 (F1(M)) is Lipschitz as

well, up to an additional constant
∑

ℓ≥3 c
2
ℓ .

3. Again we will first show that condition 1. holds for B = B̂. First note that we can write (as in Lemma A.15 below)

(F (B̂))k,: =

∞∑
ℓ=3

ℓc2ℓ
∑
j ̸=k

⟨ak,aj⟩⟨b̂k, b̂j⟩ℓ−1Ĵ
′
kb̂j ,

where Ĵ
′
k = I − b̂kb̂

⊤
k . Observe that∥∥∥Ĵ ′

kb̂j

∥∥∥2 =
∥∥∥b̂j − b̂k⟨b̂k, b̂j⟩

∥∥∥2 = 1− ⟨b̂k, b̂j⟩2 ≤ 2
(
1−

∣∣∣⟨b̂k, b̂j⟩∣∣∣) . (47)

Thus, using Lemma A.5, we have∥∥∥∥∥∥
∞∑
ℓ=3

ℓc2ℓ
∑
j ̸=k

⟨ak,aj⟩⟨b̂k, b̂j⟩ℓ−1Ĵ
′
kb̂j

∥∥∥∥∥∥ ≤ C
∥∥∥(11⊤ − I) ◦A⊤A

∥∥∥
max

∞∑
ℓ=3

ℓc2ℓ
∑
j ̸=k

∣∣∣⟨b̂k, b̂j⟩ℓ−1
∣∣∣ ∥∥∥Ĵ ′

kb̂j

∥∥∥
≤ C

∥∥∥(11⊤ − I) ◦A⊤A
∥∥∥
max

∥∥∥B̂B̂
⊤∥∥∥2

max

∑
j ̸=k

1√
1−

∣∣∣⟨b̂k, b̂j⟩∣∣∣
∥∥∥Ĵ ′

kb̂j

∥∥∥
≤ Cn

∥∥∥(11⊤ − I) ◦A⊤A
∥∥∥
max

∥∥∥B̂B̂
⊤∥∥∥2

max

≤ Cd,

where we have used (47) in the third step . Using 2. in Lemma A.4, the above implies∥∥∥F (B̂)
∥∥∥
op

≤ CCRd
3
2 .

This shows that condition 1. in Lemma A.12 holds for B̂.

To show the rest of the conditions, we may now assume that B ∈ Ω∩BCb
(0). Note that, if we show that F is Lipschitz

on this set, condition 2. holds since

∥F (B)∥op = ∥F (B)− F (0)∥op ≤ C ′
F ∥B∥op , (48)

where we have used F (0) = 0. Thus we only need to show the third condition.

Similarly to the previous case in 3., we define F (M) = F2(F1(M))M where F1(M) := (11⊤ − I) ◦ (MM⊤) and

F2(Q) =
∑
ℓ≥3

ℓc2ℓ

(
(A⊤A) ◦Q◦(ℓ−1) −Diag

(
A⊤AQ◦ℓ

))
.

Note that it is enough to show that F2(F1(M)) is Lipschitz, as then by (48) and M ∈ BCb
(0), F is the product of

two bounded Lipschitz functions, and thus Lipschitz. As for the previous function, we have that F1 is Lipschitz with
constant 4Cb. We will now derive a uniform bound for all ℓ ≥ 3. Define

F ℓ
2 (Q) := ℓc2ℓ

(
(A⊤A) ◦Q◦(ℓ−1) −Diag

(
A⊤AQ◦ℓ

))
.
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As in the previous case, since Q◦ℓ is a symmetric ℓ-linear function, we have

DF ℓ
2 (Q)Z = ℓc2ℓ

(
(ℓ− 1)(A⊤A) ◦Q◦(ℓ−2) ◦Z − ℓDiag

(
A⊤AQ◦(ℓ−1) ◦Z

))
.

Recall we assume the conclusion of Lemma A.14 to hold, so

A = X⊤
(
XX⊤ + αI

)−1

+O (R) +O

(
C7

X

log10(d)√
d

)
= Omax

(
log(d)√

d

)
+O

(
C7

XCR
logαR(d)√

d

)
, (49)

where we have used Lemma A.8 in the second step. Similarly, we have

A⊤A = Omax

(
log(d)√

d

)
+O

(
C7

XCR
logαR(d)√

d

)
. (50)

Thus, by using that ∥R ◦ S∥op ≤ ∥R∥op ∥S∥op for any square matrices R,S (see Theorem 1 in (Visick, 2000)), we
obtain∥∥∥(A⊤A) ◦Q◦(ℓ−2) ◦Z

∥∥∥
op

≤
∥∥∥∥Omax

(
log(d)√

d

)
◦Q◦(ℓ−2) ◦Z

∥∥∥∥
op

+O

(
C7

XCR
logαR(d)√

d

)∥∥∥Q◦(ℓ−2) ◦Z
∥∥∥
op
,

Using the same estimate as in (46), 3. in Lemma A.4 and recalling that ℓ ≥ 3,∥∥DF ℓ
2 (Q)Z

∥∥
op

≤

≤ Cℓ2c2ℓ

(√
n ∥Z∥op

log(d)√
d

∥Q∥ℓ−2
max + C7

XCR

√
n ∥Z∥op

logαR(d)√
d

∥Q∥ℓ−2
max +

√
n ∥Z∥op ∥Q∥ℓ−1

max

)
≤ Cℓ2

√
d

((
C7

XCR
logαR(d)√

d

)(
C(C2

X + CXCR)
logαR(d)√

d

)ℓ−2

+

(
C(C2

X + CXCR)
logαR(d)√

d

)ℓ−1
)
∥Z∥op

≤ Cd−
ℓ−2
4 ∥Z∥op .

(51)

Since {Q| ∥Q∥max ≤ C(C2
M + CMCR)

log3(d)√
d
,Diag (Q) = 0} is convex, the line segment between any two points

lies in the set, so a bound on the derivative implies that the F ℓ
2 is Lipschitz with the same constant. As F2 =

∑
ℓ≥3 F

ℓ
2 ,

we have that F2 is Lipschitz with constant
∑

ℓ≥3 Cd
− ℓ−2

4 ≤ Cd−
1
4 . Finally the composition F (B) = F2(F1(B)) is

Lipschitz with constant CCbd
− 1

4 , so condition 3. holds, which concludes the proof.

A.5. Concentration of the gradient

Lemma A.14 (Error analysis of A). Assume that B = X + R with unit norm rows, X = USV ⊤,U ,V Haar,
∥X∥op ≤ CX , ∥X∥max ≤ CX

log(d)√
d

, ∥R∥op ≤ CR
logαR (d)√

d
. Then, for d > d0(CR) with probability at least 1− C 1

d2 (in
U ,V ) we have

A =
1
√
p
EmB̂

⊤ (
Emf

(
B̂B̂

⊤))−1

= B⊤
(
BB⊤ + αI

)−1

+O

(
C7

X

log10(d)√
d

)
= X⊤

(
XX⊤ + αI

)−1

+O (R) +O

(
C7

X

log10(d)√
d

)
.

(52)

Proof. By a straightforward application of Lemma A.12, we have

1
√
p
EmB̂ = Em

1

p
B̄ +O

(
C3

X

log3(d)√
d

)
= B +O

(
C3

X

log3(d)√
d

)
. (53)

24



Compression of Structured Data with Autoencoders: Provable Benefit of Nonlinearities and Depth

Next, we will estimate Emf
(
B̂B̂

⊤)
. Recall that f(x) =

∑
ℓ c

2
ℓx

ℓ. As f(1) < ∞, we can define α =
∑

ℓ≥3 c
2
ℓ . As

c1 = 1, we have

f(B̂B̂
⊤
) := B̂B̂

⊤
+
∑
ℓ≥3

c2ℓ

(
B̂B̂

⊤)◦ℓ
= B̂B̂

⊤
+ αI +

∑
ℓ≥3

c2ℓ

(
B̂B̂

⊤
− I

)◦ℓ
.

Let Ω = {M |(11⊤ − I) ◦ (MM⊤) = Y + Z, ∥Y ∥max ≤ CC2
X

log3(d)√
d
, ∥Z∥op ≤ CCXCR

logαR (d)√
d

} ⊂

{M |
∥∥∥(11⊤ − I) ◦MM⊤

∥∥∥
max

≤ C(C2
X + CXCR)

logαR (d))√
d

}, then by using 4. in lemma A.11 with γ = 2 we have

Pm

(
B̄ ∈ Ω

)
≥ 1− C 1

d2 (with probability at least 1− C/d2 in U ,V ). By noting that B̂B̂
⊤

satisfies the assumptions of
Lemma A.12 and using 2. in Lemma A.13 we have

B̂B̂
⊤
+
∑
ℓ≥3

c2ℓ

(
B̂B̂

⊤)◦ℓ
=

1

p
B̄B̄

⊤
+ αI + 1B̄∈Ω

∑
ℓ≥3

c2ℓ(11
⊤ − I) ◦

(
1

p
B̄B̄

⊤
)◦ℓ

+O

(
CC3

X

log3(d)√
d

)
. (54)

By linearity, we have Em
1
pB̄B̄

⊤
= BB⊤. We will now show that

Em

∑
ℓ≥3

1B̄∈Ωc
2
ℓ(11

⊤ − I) ◦
(
1

p
B̄B̄

⊤
)◦ℓ

= O

(
C6

X

log10(d)√
d

)
. (55)

For now, let (11⊤ − I) ◦ B̄B̄
⊤
= Y +Z, ∥Y ∥max ≤ CC2

X
log3(d)√

d
, ∥Z∥op ≤ CCXCR

logαR (d)√
d

, as in the definition of Ω
above. By the definition of Ω, we have that, for B̄ ∈ Ω and ℓ ≥ 3,(

1

p
(11⊤ − I) ◦ B̄B̄

⊤
)◦ℓ

=
1

pℓ
Y ◦ℓ +

1

pℓ
ℓY ◦(ℓ−1) ◦

(
Z + eℓO

(
Z2
))
. (56)

Thus, by 3. in Lemma A.4, we have that for ℓ ≥ 3

1

pℓ

∥∥∥Y ◦ℓ
∥∥∥
op

≤ C
1

pℓ

√
dC2

X

(
C2

X

log3(d)√
d

)ℓ−1

≤ CC6
X

log10(d)√
d

and
1

pℓ
eℓℓ
∥∥∥Y ◦(ℓ−1) ◦

(
Z + eℓO

(
Z2
))∥∥∥

op
≤ C

1

pℓ
eℓℓ

√
dCXCR

logαR(d)√
d

(
C2

X

log3(d)√
d

)ℓ−1

≤ d−3/4.

Thus, we can further estimate (56) by

Em

∥∥∥∥∥1B̄∈Ω(11
⊤ − I) ◦

(
1

p
B̄B̄

⊤
)◦ℓ
∥∥∥∥∥
op

≤ CC6
X

log10(d)√
d

. (57)

Since the bound is independent of ℓ, this shows (55).

Combining (54) and (55) we now have

Emf(B̂B̂
⊤
) = BB⊤ + αI +O

(
C6

X

log10(d)√
d

)
. (58)

From (58) it also immediately follows that(
Emf

(
B̂B̂

⊤))−1

=
(
BB⊤ + αI

)−1

+O

(
C6

X

log10(d)√
d

)
, (59)

since for any psd matrix X > αI , the map from (Mn,n, ∥·∥op) → (Mn,n, ∥·∥op), R → (X+R)−1 is locally continuously
differentiable at 0. Combining (53) and (59) yields the first equality in (52). To see the second equality in (52), it suffices to
use the fact that the function B → B⊤

(
BB⊤ + αI

)
is Lipschitz on bounded sets w.r.t ∥·∥op.
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Lemma A.15 (Gradient concentration, Part 1). Assume that B = X +R with unit norm rows, X = USV ⊤,U ,V Haar,
∥X∥op ≤ CX , ∥X∥max ≤ CCX

log(d)√
d

, ∥R∥op ≤ CR
logαR (d)√

d
, ∥A∥op ≤ C. Further assume that mini,j |Bi,j | ≥ δ >

d−γδ for some γδ > 0. Then, for d > d0(CX , CR, γδ) with probability at least 1− C 1
d2 in U ,V , the gradient of (25) w.r.t.

B can be written as

∇B = Em∇1
B̂
+

∞∑
ℓ=3

ℓc2ℓEm∇ℓ
B̂
+O

(
C7

X

log2(d)√
d

)
, (60)

where

1

2
(∇1

B̂
)k,: = −ak +

1

p
⟨ak, b̂k⟩b̂k +

1
√
p

∑
j

⟨ak,aj⟩Ĵ
′
kb̂j ,

1

2
∇1

B̂
= −A⊤ +

1
√
p
A⊤AB̂ +

1

p
Diag(B̂A)B̂ − 1

√
p
Diag(A⊤AB̂B̂

⊤
)B̂,

(61)

1

2
(∇ℓ

B̂
)k,: =

1
√
p

∑
j

⟨ak,aj⟩⟨b̂k, b̂j⟩ℓ−1Ĵ
′
kb̂j ,

1

2
∇ℓ

B̂
=

1
√
p
(A⊤A) ◦ (B̂B̂

⊤
− I)◦(ℓ−1)B̂ − 1

√
p
Diag(A⊤A(B̂B̂

⊤
− I)◦ℓ)B̂,

(62)

and
Ĵ

′
k :=

1
√
p

(
I − b̂kb̂

⊤
k

)
.

Proof. Recall from (30) that the gradient is given by

(∇B)k,: = Em

[
−2

1
√
p
m ◦ Ĵkak

]
+ 2

∞∑
ℓ=1

ℓc2ℓ
∑
j ̸=k

⟨ak,aj⟩⟨b̂k, b̂j⟩ℓ−1Ĵkb̂j , (63)

where Ĵk = 1

∥b̄k∥
(
I − b̂kb̂

⊤
k

)
.

We will approximate Ĵk by Ĵ
′
k. This will make the gradient have the same functional form (for fixed m) as in the Gaussian

case. This follows from the fact that the gradient inside the expectation is the same as the gradient of the Gaussian objective
(86) in (Shevchenko et al., 2023) evaluated at B = B̄. We denote the new gradient with Ĵk replaced by Ĵ

′
k as ∇′

B . We
proceed by decomposing the error ∥(∇B)k,: − (∇′

B)k,:∥ into multiple parts and analysing them individually.

First, we need to decompose the error. Combining Lemma A.7 and Lemma A.6, we have

P
m

(∣∣∥∥b̄k∥∥−√
p
∣∣ > C2

X

log2(d)√
d

)
= P

m

(∣∣∣∥∥b̄k∥∥2 − p
∣∣∣ > C2

X(
∥∥b̄k∥∥+√

p)−1 log
2(d)√
d

)
≤ P

m

(∣∣∣∥∥b̄k∥∥2 − p
∣∣∣ > C2

X

1

1 +
√
p

log2(d)√
d

)
≤ C

1

dγ
.

(64)

Denoting by A the event that
∣∣∥∥b̄k∥∥−√

p
∣∣ > C2

X
log2(d)√

d
jointly for all k, we have

Em(∇B)k,: − (∇′
B)k,: = Em [1A((∇B)k,: − (∇′

B)k,:)] + Em [1Ac(∇B)k,: − (∇′
B)k,:]

= Em [1A((∇B)k,: − (∇′
B)k,:)]

+ Em

−2
1
√
p
m ◦ ϵkmĴ

′
kak + 2

∞∑
ℓ=1

ℓc2ℓ
∑
j ̸=k

⟨ak,aj⟩⟨b̂k, b̂j⟩ℓ−1ϵkmĴ
′
kb̂j


=: (∇1

err)k,: + (∇2
err)k,:,

(65)
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where
∣∣ϵkm∣∣ ≤ C2

X
log2(d)√

d
and ∇1

err,∇2
err are the matrices corresponding to the first and second expectation, respectively.

Using this notation, proving the lemma is equivalent to showing that

∇1
err +∇2

err = O

(
C7

X

log2(d)√
d

)
. (66)

We will start with bounding
∥∥(∇1

err)k,:
∥∥
op

. By the definition of (∇B)k,: − (∇′
B)k,:), we have the following simple bound:

Em ∥1A((∇B)k,: − (∇′
B)k,:)∥ ≤ C

1

dγ
max
m

∥∥∥∥∥− 2
1
√
p
m ◦ (Ĵk − Ĵ

′
k)ak

+ 2

∞∑
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ℓc2ℓ
∑
j ̸=k

⟨ak,aj⟩⟨b̂k, b̂j⟩ℓ−1(Ĵk − Ĵ
′
k)b̂j

∥∥∥∥∥.
(67)

Note that ∥∥∥Ĵk − Ĵ
′
k

∥∥∥
op

=

∥∥∥∥∥
(

1∥∥b̄k∥∥ − 1
√
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)(
I − b̂kb̂

⊤
k

)∥∥∥∥∥
op

≤
(√

p

δ
+ 1

)∥∥∥Ĵ ′
k

∥∥∥
op
. (68)

Furthermore, since by definition
∥∥∥b̂j∥∥∥ =

∥∥∥b̂k∥∥∥ = 1,

p
∥∥∥Ĵ ′

kb̂j

∥∥∥2 =
∥∥∥b̂j − b̂k⟨b̂k, b̂j⟩

∥∥∥2 = 1− ⟨b̂k, b̂j⟩2 ≤ 2
(
1−

∣∣∣⟨b̂k, b̂j⟩∣∣∣) . (69)

We clearly have ∥∥∥m ◦ (Ĵk − Ĵ
′
k)ak

∥∥∥ ≤
(√

p

δ
+ 1

)∥∥∥Ĵ ′
k

∥∥∥
op

∥ak∥ ≤ C(1 +
1

δ
), (70)

where we have used (68) and the fact that masking reduces the norm.

By Lemma A.5, we have∥∥∥∥∥∥
∞∑
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∑
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1

δ
)d,

(71)

where the last step follows from (69). Now combining (70) and (71) we can bound the RHS of (67) by

C
1

dγ
max
m

∥∥∥∥∥∥−2
1
√
p
m ◦ (Ĵk − Ĵ

′
k)ak + 2

∞∑
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ℓc2ℓ
∑
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⟨ak,aj⟩⟨b̂k, b̂j⟩l−1(Ĵk − Ĵ
′
k)b̂j
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X(1 +

1

δ
)d−(γ−1). (72)

From this and 2. in Lemma A.4, it follows that∥∥∇1
err

∥∥
op

≤ C(1 +
1

δ
)d−(γ−1)

√
d, (73)

Now by choosing γ = 3 + γδ the RHS is of of order than O
(
d−3/2

)
, which finishes bounding

∥∥∇1
err

∥∥
op

.

For
∥∥∇2

err

∥∥
op

we need a more nuanced approach. We will break this term in three different parts, ∇2
err = − 2√

pM1 +

2M2 + 2M3, in (74), (76), (78) below. First we consider

(M1)k,: := m ◦ ϵkmĴ
′
kak = ϵkmm ◦ (ak − b̂k⟨b̂k,ak⟩), (74)
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so defining (Dϵ)k,k := ϵkm can write

M1 = Dϵ(Am −Diag
(
B̂A

)
B̂m).

By 1. in Lemma A.4, we can bound
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.

By Lemma A.12, we have
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+ CC3
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log3(d)√
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,

which gives us

Em ∥M1∥op ≤ CC7
X
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. (75)

Next, we consider the term
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⊤
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)
.

One can verify that the RHS satisfies the assumption of Lemma A.12. Hence, the same reasoning as for M1 gives that
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Lastly, define
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Using Lemma A.5, we have∥∥∥∥∥∥ϵkm
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(79)

Note that∥∥∥(11⊤ − I) ◦ B̂B̂
⊤∥∥∥4

max
=
∥∥∥(11⊤ − I) ◦ D̂B̄B̄
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, 1}.

Thus, by using 4. in Lemma A.11, with probability at least 1− C 1
d2 in U ,V , we have
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Next, note that under the assumptions of the current lemma we can apply both Lemma A.14 and 3. in Lemma A.11 to obtain∥∥∥(11⊤ − I) ◦A⊤A
∥∥∥
max

≤ C7
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log10(d)√
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Combining (79), (80), (81), we obtain
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This now gives us
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, (82)

where we have used Jensen’s inequality in the second step. Finally combining (73), (75), (77), (82) we can conclude.

Lemma A.16 (Gradient concentration, Part 2). Assume we have B = X +R with unit norm rows, X = USV ⊤,U ,V

Haar, Tr
[
SS⊤

]
= n, ∥X∥op ≤ CX , ∥X∥max ≤ CCX

log(d)√
d

, ∥R∥op ≤ CR
logαR (d)√

d
. Further assume that

mini,j |Bi,j | ≥ δ > d−γδ for some γδ > 0. Then, for d > d0(CX , CR, γδ) with probability at least 1 − C 1
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= −α
(
XX⊤ + αI

)−2

X + α
1
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Tr
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)−2
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]
X +O (R) +O
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X

log10(d)√
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)
, (84)

where ∇B was defined in (30).

Proof. By Lemma A.15, we may assume that, up to an error of order O
(
C7

X
log2(d)√

d

)
, the gradient is given by (60), (61)

and (62).

We will start by analysing the first part of the gradient in (61) which we restate here for convenience:
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2
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By Lemma (A.14), we have with probability at least 1− C 1
d2 in U ,V

A = B⊤
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)−1

+O
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X

log10(d)√
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+O (R) ,

where the expectation over m has not been taken yet. Using 1. in Lemma A.13, we see that the RHS in (85) satisfies the
assumptions of Lemma A.12 (noting that Ω is the entire space for 1.), so we have

Em
1

2
∇1

B̂
= Em −A⊤ +

1

p
A⊤AB̄ +

1

p
Diag(

1

p
B̄A)B̄ − 1

p
Diag(A⊤A

1

p
B̄B̄

⊤
)B̄ +O

(
C10

X

log10(d)√
d

)
.

We now estimate Em
1
2∇

1
B̂

. We clearly have

Em −A⊤ +
1

p
A⊤AB̄ = −A⊤ +A⊤AB.
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For the third term we have by 5. in Lemma A.11 that, with probability at least 1− C 1
d2 in m,

Diag(
1

p
B̄A) = βI +O

(
C8

X

log10(d)√
d

)
+O (CXR) ,

where β = 1
nTr [BA], which implies that

Em
1

p
Diag(

1

p
B̄A)B̄ = βB +O

(
C9

X

log10(d)√
d

)
+O

(
C2

XR
)
.

By exactly the same argument, we can use 6. in Lemma A.11 and obtain

EmDiag(A⊤A
1

p
B̄B̄

⊤
)B̄ = β̃B +O

(
C10

X

log10(d)√
d

)
+O

(
C3

XR
)
,

where β̃ = 1
nTr

[
A⊤ABB⊤

]
.

In total we have

Em
1

2
∇1

B̂
= −A⊤ +A⊤AB + βB − β̃B +O

(
C10

X

log10(d)√
d

)
+O

(
C3

XR
)

=
(
−A⊤ +A⊤AX + βX − β̃X

)
+O

(
C10

X

log10(d)√
d

)
+O

(
C3

XR
)
.

Plugging in A = B⊤
(
BB⊤ + αI

)−1

+ O
(
C7

X
log10(d)√

d

)
in the second term and A = X⊤

(
XX⊤ + αI

)−1

+

O
(
C7

X
log10(d)√

d

)
+O (R) in the third term, we obtain the leading order terms for (83).

To see that this also implies (84) note that β = 1
nTr [BA] = 1

nTr [XA] + O (R) and β̃ = 1
nTr

[
A⊤ABB⊤

]
=

1
nTr

[
A⊤AXX⊤

]
+O (CXR) .

It remains to show that the higher order terms are small. Here we will not need to distinguish between the two approximations
of A. The remaining part of the gradient in (62) is given by∑

ℓ≥3

c2ℓℓ∇ℓ
B̂
,

where
1

2
∇ℓ

B̂
=

1
√
p
(A⊤A) ◦ (B̂B̂

⊤
− I)◦(ℓ−1)B̂ − 1

√
p

Diag(A⊤A(B̂B̂
⊤
− I)◦ℓ)B̂. (86)

Let Ω = {M |(11⊤ − I) ◦ (MM⊤) = Y + Z, ∥Y ∥max ≤ CC2
X

log3(d)√
d
, ∥Z∥op ≤ CCXCR

logαR (d)√
d

}. Then, by 4. in
Lemma A.11, P

(
B̄ ∈ Ω

)
≥ 1− C 1

d2 . Thus, by Lemma A.13, we have

1

2

∑
ℓ≥3
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=
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ℓ≥3
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⊤
)◦(ℓ−1)

− Diag

(
A⊤A

((
11⊤ − I

)
◦ 1

p
B̄B̄

⊤
)◦ℓ
))

1
√
p
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log3(d)√
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(87)

We will now individually bound the different terms. In the following we always assume ℓ ≥ 3. We first analyse the term

(A⊤A) ◦
((

11⊤ − I
)
◦ 1

p
B̄B̄

⊤
)◦(ℓ−1)

.
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We had previously derived the following in (56)(
1

p
(11⊤ − I) ◦ B̄B̄

⊤
)◦ℓ−1

=
1

pℓ−1
Y ◦(ℓ−1) +

1

pℓ−1
ℓY ◦(ℓ−2) ◦

(
Z + eℓO

(
Z2
))
. (88)

Thus, as in 3. of Lemma A.13 we obtain from Lemma A.14

A⊤A = Omax

(
log(d)√

d

)
+O

(
C7

XCR
logαR(d)√

d

)
,

so ∥∥∥∥∥(A⊤A) ◦
(
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p
(11⊤ − I) ◦ B̄B̄

⊤
)◦(ℓ−1)
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≤
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⊤
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.

(89)

Plugging in (88) and using 3. and 5. in Lemma A.4 we obtain
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)

≤ CC4
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.

(90)

Similarly, we have

ℓ
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X CRℓ

(logαR(d))2 log3(ℓ−1)(d)
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(91)

Next we have ∥∥∥∥∥Diag

(
A⊤A

((
11⊤ − I

)
◦ 1

p
B̄B̄

⊤
)◦ℓ
)∥∥∥∥∥

op

≤ C
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((

11⊤ − I
)
◦ 1

p
B̄B̄

⊤
)◦ℓ
∥∥∥∥∥
op

.

Now exactly as in the proof of (57) we obtain

Cℓ

∥∥∥∥∥
((

11⊤ − I
)
◦ 1

p
B̄B̄

⊤
)◦ℓ
∥∥∥∥∥
op

≤ CC6
X

log10(d)√
d

. (92)

(Note that when writing out the proof, the ℓ factor is trivially absorbed for ℓ ≥ 4.)
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Finally, we can combine (90), (91), (92) to obtain that the RHS of (87) is of order O(C7
X

log10(d)√
d

), where we get an extra
CX from bounding the operator norm of B̄. Thus, using that

∑
ℓ≥3 c

2
ℓ <∞, we conclude

∑
ℓ≥3

c2ℓℓ∇ℓ
B̂

= O

(
C7

X

log10(d)√
d

)
,

which finishes the proof.

A.6. GD-analysis and reduction to Gaussian

To simplify the notation we will push the time dependence in the subscript, i.e. Bt = B(t).

Theorem A.17 (Gaussian recursion). If the entries (B′
0)i,j ∼ N (0, 1d ) are i.i.d., B0 = proj(B′

0) and

∇BB⊤
t = −α

(
BtB

⊤
t + αI

)−2

BtB
⊤
t + αDiag

((
BtB

⊤
t + αI

)−2

BtB
⊤
t

)
BtB

⊤
t + Ẽt, (93)

BtB
⊤
t = I +Zt +Et, (94)

with Zt = U(Λt − I)U⊤, U a Haar matrix and∥∥∥Ẽt
∥∥∥
op

≤ CE

(
polyE(log(d))√

d
· ∥Zt∥1/2op + ∥Et∥2op + ∥Et∥op ∥Zt∥1/2op

)
.

Consider the GD-min algorithm in (26) without noise (Gt = 0 for all t) and on the Gaussian objective (i.e., p = 1). Pick a
learning rate η = C/

√
d. Then, with probability at least 1− Cexp (−cd), we have that, jointly for all t ≥ 0,

∥Et∥op ≤ CEe
−cηt.

polyE(log(d))√
d

,

∥Zt∥op ≤ CZe
−cηt.

(95)

Proof. The claim follows from the analysis in Appendix E of (Shevchenko et al., 2023). First, note that here Ẽt and Et

respectively correspond to Et and Xt in (90) in (Shevchenko et al., 2023). Then, the assumptions of our theorem correspond
to the conclusion of Lemma E.4 and Lemma E.5. The projection step is handled in Lemma E.6 and the recursion is analysed
in Lemma E.7.

Lemma A.18 (Reduction to Gaussian recursion). Fix tmax = Tmax/η, Tmax ∈ (0,∞), let (B′
0)i,j ∼ N (0, 1√

d
) i.i.d.,

B0 = proj(B′
0) and assume that for t ≤ tmax we have

∇BB⊤
t +Gt = −α

(
BtB

⊤
t + αI

)−2

BtB
⊤
t +αDiag
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⊤
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)−2

BtB
⊤
t

)
BtB

⊤
t +O

(
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logαR(d)√
d

)
.

(96)
Consider the GD-min algorithm in (26) for any p ∈ (0, 1). Pick a learning rate η = C/

√
d. Then, with probability at least

1− Cexp (−cd), we have that, jointly for all t ≥ 0, (94) holds with

∥Et∥op ≤ CEe
−cηt.

polyE(log(d))√
d

,

∥Zt∥op ≤ CZe
−cηt,

(97)

where crucially CE ,polyE , CZ are independent of d, and CZ is independent of Tmax.

Proof. The claim follows from Theorem A.17 after showing that

CR(Tmax)
logαR(d)√

d
≤ CE

(
polyE(log(d))√

d
· ∥Zt∥1/2op + ∥Et∥2op + ∥Et∥op ∥Zt∥1/2op

)
, (98)
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where ∥Et∥op , ∥Zt∥op satisfy (95). Now, (98) trivially holds if ∥Zt∥op ≥ cZ(Tmax) > 0, where cZ(Tmax) is independent
of d.

It remains to show the lower bound on ∥Zt∥op. This can be readily seen by analyzing the deterministic recursion of the
spectrum of Z as in Lemma G.3 in (Shevchenko et al., 2023). First, for sufficiently large d, η gets arbitrarily small, hence
we can approximate such discrete recursion with its continouous analogue. Next, we linearize the continuous evolution
since Z is small (otherwise we already have the desired lower bound). Since the coefficient of the linearization is strictly
negative (and, hence, bounded away from 0), we readily have that ∥Zt∥op cannot reach 0 in finite time.

For technical reasons, we need the following lemma that shows that the spectrum of B a priori cannot grow faster than
exponentially in the effective time of the dynamics. The proof is a non-tight analog of the analysis done in Lemma E.7 and
G.3 in (Shevchenko et al., 2023) for B instead of BB⊤.

Lemma A.19 (Spectrum evolution of B). Consider the GD-min algorithm in (26) for any p ∈ (0, 1). Pick a learning rate
η = C/

√
d. Under the gradient approximation given in (84) with CX(t) := exp (Cηt) ∥B0∥op, we have that, for t ≤ tmax

and d > d0(CX(tmax)),
Bt = Xt +Rt,

where Xt has the same singular vectors as B0,

∥Xt∥op ≤ CX(t), and ∥Rt∥op ≤ CC7
X(tmax)exp (CTmax)

log10(d)√
d

,

with probability at least 1− C(ηtmax)
1

d3/2 .

Proof. Consider the recursion where the gradient is given below:

1

2
∇B := −α

(
XX⊤ + αI

)−2

X + α
1

n
Tr

[(
XX⊤ + αI

)−2

XX⊤
]
X. (99)

It is evident that this recursion only updates the singular values si of B as the RHS has the same singular vectors as B.
Furthermore, the update equation for the si is given by

sit+1 = sit − η

(
−α si

(α+ (sit)
2)2

+ sit
1

n

n∑
i=1

(sit)
2

(α+ (sit)
2)2

)
.

Note that ∣∣sit+1 − sit
∣∣ ≤ Cη

∣∣sit∣∣ .
Thus, letting bt = ∥Bt∥op, the above implies that

bt+1 ≤ (1 + Cη)bt, (100)

which by monotonicity gives that bt ≤ (1 + Cη)tb0. Hence, if the recursion of the gradient was actually given by (99), the
claim would immediately follow.

Now, the recursion of the gradient is given by (84). Thus, to deal with the error, we can follow the strategy of Lemma E.7 in
(Shevchenko et al., 2023). In particular, denoting rt := ∥Rt∥op , ϵd := C10

X
log10(d)√

d
, the evolution of the error is given by

rt+1 ≤ (1 + C1η)rt + C2ϵd.

By monotonicity, this recursion is upper bounded by the solution of

rt+1 = (1 + C1η)rt + C2ϵd.
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Since the recursion is initialized with r0 = 0, we can unroll it as

rt+1 = C2

t∑
i=1

(1 + C1η)
iηϵd

≤ C2

t∑
i=1

exp (C1ηi) ηϵd

= C2exp (C1ηt)

t∑
i=1

exp (−C1η(t− i)) ηϵd

≤ C2exp (C1ηt)
1

1− exp (−C1η)
ηϵd,

where we have used 1 + x ≤ exp (x). For small enough η, we have 1
1−exp(−C1η)

≤ 1
C1η

. Hence,

rt+1 ≤ C2

C1
exp (C1ηt) ϵd, (101)

which gives that ∥Rt∥op ≤ C10
X

C2

C1
exp (C1ηt)

log10(d)√
d

, as required. Hence, by (84), bt is upper bounded by the solution to
the recursion

bt+1 = (1 + C1η)bt + C2ηexp (C3ηt) ϵd.

As Tr
[
BB⊤

]
= n, we have that bt ≥ 1. Thus,

bt+1 ≤ (1 + (C1 + C2exp (C3ηt) ϵd) η) bt ≤ (1 + (C1 + C2exp (C3Tmax) ϵd) η) bt.

Taking a sufficiently large d gives that C2exp (C3Tmax) ϵd ≤ C1, which leads to

bt+1 ≤ (1 + 2C1η)bt.

Using again monotonicity and 1 + x ≤ exp (x), we conclude that CX := ∥Btmax
∥op ≤ exp (2C1ηt) ∥B0∥op.

This proves the claim of the lemma for a gradient recursion given exactly by (84). We note that the GD-min algorithm in
(26) has two additional steps: (i) adding noise Gt at each step, and (ii) the projections step, which normalizes the rows of
Bt after the gradient update.

As for (i), let G be an n×d matrix with i.i.d. N (0, σ2) entries. Then, by Theorem 4.4.5 in (Vershynin, 2018) (with t =
√
d),

we have that ∥G∥op ≤ Cσ(
√
n +

√
d) ≤ Cσ

√
d with probability at least 1 − C 1

d2 . Recall that in (26) we assume that
σ ≤ C 1

d . Hence, the additional error from the noise is of higher order than all the other error terms and can be neglected. By
a union bound over Tmax/η steps, the above bound holds for all time steps with probability at least 1− C 1

d3/2 .

As for (ii), a straightforward analysis shows that
∥∥proj(B′)−B′∥∥

op
≤ Cη2 ∥∇B +G∥2op, which is also of higher order.

We skip the details here and refer to Lemma E.6 in (Shevchenko et al., 2023). This concludes the proof.

We are now ready to give the proof of Theorem A.2 by combining the previous results and carrying out an induction over
the time steps.

Proof of Theorem A.2. We fix p ∈ (0, 1) and tmax = Tmax/η, Tmax ∈ (0,∞). We want to show that the assumptions of
Lemma A.18 are satisfied, as the conclusion of Lemma A.18 is precisely (27).

By Lemma A.19, we have that, with probability at least 1− C(Tmax)
1

d3/2 , for all t ≤ tmax, CX(t) := exp (Cηt) ∥B0∥op,

and CR(t) = CC10
X (tmax)exp (Cηt)

logαR (d)√
d

. Furthermore, by choosing δ = d−(4+γg), we can apply Lemma A.10 for
each step so that, with probability at least 1 − C 1

d3/2 , mini,j
∣∣B′

ij

∣∣ ≥ 2δ. Note that the projection step does not change
the scale of any entry by more than a factor that converges to 1 as d grows large (see Lemma E.6 in (Shevchenko et al.,
2023) for details), so in particular mini,j

∣∣B′
ij

∣∣ ≥ 2δ implies mini,j |Bij | ≥ δ. This gives that, with probability at least
1− C(Tmax)

1
d3/2 , for all t ≤ tmax, the assumptions of Lemma A.16 are satisfied, hence (83) and (84) hold.
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By 2. in Lemma A.11, at each step with probability 1− C 1
d2 , we have that

Diag

((
BB⊤ + αI

)−2

BB⊤
)

=
1

n
Tr

[(
BB⊤ + αI

)−2

BB⊤
]
I + Cexp (CTmax) ∥B0∥op

log(d)√
d
,

so this holds jointly for all t ≤ tmax with probability at least 1− C 1

d
3
2

Combining this with (83), we conclude that, with

probability at least 1− C(Tmax)
1

d
3
2

, the assumptions of lemma A.18 hold, which immediately implies

lim
d→∞

sup
t∈[0,tmax]

∥Rt∥ = 0

and ∥∥∥StS
⊤
t − I

∥∥∥
op

≤ Cexp (−cTmax) .

This proves (27).

To prove (28), we note that the combination of (52), (53) and (58) gives

Em

[
Tr
[
A⊤Af(B̂B̂

⊤
)
]
− 2

√
p
Tr
[
AB̂

]]
= Tr

[
A⊤Af(BB⊤)

]
− 2Tr

[
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]
+O

(
C(Tmax)d

poly(log(d))√
d

)
.

(102)
Since (25) and (3) differ only by a constant and a factor 1/d, the above implies that, for any p ∈ (0, 1), (3) is close to the
Gaussian objective up to an error C(Tmax)

poly(log(d))√
d

. The fact that the evolution of B matches the Gaussian case is also
clear, since the gradient approximation in Lemma A.16 coincides with the Gaussian recursion in Theorem A.17.

B. MSE characterizations
B.1. Proof of Proposition 4.2

Denote by x1 the first iterate of the RI-GAMP algorithm (Venkataramanan et al., 2022), as in (22). Then, by taking σ to be
the sign, one can readily verify that

x1 = B⊤sign(Bx).

Note that B is bi-rotationally invariant in law and, as x has i.i.d. components, its empirical distribution converges in
Wasserstein-2 distance to a random variable whose law is that of the first component of x, denoted by x1. Therefore, the
assumptions of Theorem 3.1 in (Venkataramanan et al., 2022) are satisfied. Hence, for any ψ pseudo-Lipschitz of order 2,4

we have that, almost surely,

lim
d→∞

1

d

d∑
i=1

ψ((x1)i, (x)i) = E[ψ(µx1 + σg, x1)],

where g ∼ N (0, 1) is independent of x1 and the state evolution parameters (µ, σ) for r ≤ 1 can be computed as

µ = r ·
√

2κ2
π

= r ·
√

2

π
, σ2 = r ·

(
κ2 + κ4 ·

2

πκ2

)
= r ·

(
1− r · 2

π

)
, (103)

that is equation (11) in (Venkataramanan et al., 2022). Here, {κ2k}k∈N denote the rectangular free cumulants of the constant
random variable equal to 1 (since all the singular values of B are equal to 1 by assumption). Noting that ψ(x, y) = (x−α·y)2
is pseudo-Lipschitz of order 2, we get that, almost surely,

lim
d→∞

1

d
· ∥x− α ·B⊤sign(B⊤x)∥22 = Ex1,g[|x1 − α(µx1 + σg)|22],

which implies that

lim
d→∞

1

d
· Ex∥x− α ·B⊤sign(B⊤x)∥22 = Ex1,g[|x1 − α(µx1 + σg)|22].

4We recall that ψ : R2 → R is pseudo-Lipschitz of order 2 if, for all a, b ∈ R2, |ψ(a)− ψ(b)| ≤ L∥a− b∥2(1 + ∥a∥2 + ∥b∥2) for
some constant L > 0.
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By expanding the RHS of the last equation and using that x1 has unit second moment by assumption, we get

Ex1,g[|x1 − α(µx1 + σg)|22] = (1− αµ)2 · E[x21] + α2σ2 · E[g2] = (1− αµ)2 + α2σ2

= 1− 2αµ+ α2(µ2 + σ2) = 1− 2α · r
√

2

π
+ α2r.

Thus, by minimizing over α, we have

min
α

Ex1,g[|x− α(µx+ σg)|22] = 1− 2

π
· r,

which concludes the proof of (13).

To prove (14), a direct calculation gives

1

d
· Ex

∥∥∥∥x− α ·
[

In

0(d−n)×n

]
sign([In,0n×(d−n)]x)

∥∥∥∥2
2

= 1− r + r · E[(x1 − αsign(x1))
2]

= 1− r + r · (E[x21]− 2α · E[|x1|] + α2 · E[sign2(x1)])
= 1− r + r · (1− 2α · E[|x1|] + α2)

= 1 + r · (α2 − 2α · E[|x1|]).

The RHS is minimized by α = E[|x1|], which gives

min
α

1

d
· Ex

∥∥∥∥x− α ·
[

In

0(d−n)×n

]
sign([In,0n×(d−n)]x)

∥∥∥∥2
2

= 1− r · (E[|x1|])2,

and the proof is complete.

B.2. Proof of Proposition 5.1

Let x̂1 be an iterate of the RI-GAMP algorithm (Venkataramanan et al., 2022), as in (22). Then, by taking σ to be the sign
and ft = f , one can readily verify that

x̂1 = f(B⊤sign(Bx)),

which is exactly the form of the autoencoder in (4) that we wish to analyze. Thus, as f is Lipschitz, the assumptions of
Theorem 3.1 in (Venkataramanan et al., 2022) are satisfied and, following the same passages as in the proof of Proposition
4.2, we have

lim
d→∞

1

d
· Ex∥x− f(B⊤sign(Bx))∥22 = Ex1,g[|x1 − f(µx1 + σg)|22], (104)

where x1 is the first entry of x, g ∼ N (0, 1) is independent of x1, and (µ, σ) are given by (103) (which coincides with
(19)). This concludes the proof.

B.3. Proof of Proposition 5.2

A direct calculation gives

1

d
· Ex

∥∥∥∥x− f

([
In

0(d−n)×n

]
sign([In,0n×(d−n)]x)

)∥∥∥∥2
2

= (1− r) · E
[
(x1 − f(0))2

]
+ r · E

[
(x1 − f(sign(x1)))

2
]
,

(105)

where x1 is the first entry of x. The first term in (105) is minimized when f(0) = E[x] = 0. Hence, we obtain that, at the
optimum,

(1− r) · E
[
(x1 − f(0))2

]
= 1− r,

as E[x2] = 1. As for the second term in (105), we rewrite

E
[
(x1 − f(sign(x1)))

2
]
= µx1

({0}) · 1
2
· (f(1)2 + f(−1)2)+E[1x1>0(x1 − f(1))2] +E[1x1<0(x1 − f(−1))2], (106)
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where µx1
stands for the measure that corresponds to the distribution of x1, and we use that sign(0) is a Rademacher random

variable by convention. As the distribution of x1 is the same as that of −x1, (106) is minimized by taking f(1) = −f(−1).
Thus, we have that

min
f

(106) = min
u∈R

E[(x1 − u · sign(x1))2].

The RHS of this last expression can be further rewritten as

min
u∈R

E[(x1 − u · sign(x1))2] = E[x21] + min
u∈R

{
u2 − 2u · E|x1|

}
= 1− (E|x1|)2,

which concludes the proof.

B.4. Computation of f∗

Sparse Gaussian. Using Bayes rule, the conditional expectation can be expressed as

E[x|µx+ σg = y] =
Ex [x · P (µx+ σg = y|x)]
Ex [P (µx+ σg = y|x)]

=
Ex [x · P (µx+ σg = y|x)]

P (µx+ σg = y)
. (107)

Given that x ∼ SG1(p), with probability p we have that µx + σg ∼ N (0, µ2/p + σ2) as x ∼ N (0, 1/p), and with
probability (1− p) we have that x = 0, and, hence, µx+ σg = σg ∼ N (0, σ2). Combining gives

P (µx+ σg = y) = p ·
√
p√

2π(µ2 + pσ2)
· exp

(
− py2

2(µ2 + pσ2)

)
+ (1− p) · 1√

2πσ2
· exp

(
− y2

2σ2

)
.

Note that due to sparsity, we have that

Ex [x · P (µx+ σg = y|x)] = p · Ex∼N (0,1/p) [x · P (µx+ σg = y|x)] , (108)

and, in this case, we conclude that
µx+ σg|x ∼ N (µx, σ2).

Thus, the RHS of (108) is a Gaussian integral, which is straight-forward to calculate by “completing a square”. The
computation gives

Ex∼N (0,1/p) [x · P (µx+ σg = y|x)] =
√

p

2π
· µy · exp

(
− py2

2(µ2 + pσ2)

)
· 1

(µ2 + pσ2)3/2
.

Note that, when p = 1, i.e., x is an isotropic Gaussian vector, f∗ is just a rescaling by a constant factor, i.e., f∗(y) =
const(µ, σ) · y.

Sparse Laplace. The sparse Laplace distribution with sparsity level (1− p) has the following law

(1− p) · δ0 + p ·
√
p

2
· exp

(
−
√
2p · |x|

)
, (109)

where δ0 stands for the delta distribution centered at 0. The scaling for different p is chosen to ensure a unit second moment.

First, we derive the expression for the conditional expectation for p = 1. For p ̸= 1 we elaborate later how a simple change
of variables allows to obtain closed-form expressions of the corresponding expectations via the case p = 1. For p = 1, the
denominator in (107) is equivalent to∫

R
p(x)p(µx+ σg = y|x)dx =

1√
4πσ2

∫
R
exp

(
−
√
2 · |x|

)
exp

(
− (y − µx)2

2σ2

)
dx. (110)

By considering two cases, i.e., x < 0 and x ≥ 0, for the limits of integration and for each of them “completing a square”,
we obtain∫

R+

exp
(
−
√
2 · x

)
exp

(
− (y − µx)2

2σ2

)
dx =

(
1 + erf

(√
2µy − 2σ2

2µσ

))
· exp

(
σ2 −

√
2µy

µ2

)
·
√
π

2
· σ
µ
,

∫
R−

exp
(√

2 · x
)
exp

(
− (y − µx)2

2σ2

)
dx = erfc

(√
2µy + 2σ2

2µσ

)
· exp

(
σ2 +

√
2µy

µ2

)
·
√
π

2
· σ
µ
,
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where erf(·) stands for the Gaussian error function, and erfc(·) for its complement. For the case of p ̸= 1, we get that the
RHS of (110) becomes

(1− p) · 1√
2πσ2

· exp
(
− y2

2σ2

)
+ p ·

√
p

4πσ2
·
∫
R
exp

(
−
√

2p · |x|
)
exp

(
− (y − µx)2

2σ2

)
dx.

The change in normalization constant of the second term is then trivial. For the integral itself, consider the change of
variables x̃ = x · √p:∫

R
exp

(
−
√

2p · |x|
)
exp

(
− (y − µx)2

2σ2

)
dx =

1
√
p
·
∫
R
exp

(
−
√
2 · |x̃|

)
exp

(
−
(y − µ√

p · x̃)2

2σ2

)
dx̃

=
1
√
p
·
∫
R
exp

(
−
√
2 · |x̃|

)
exp

(
− (y − µ̃ · x̃)2

2σ2

)
dx̃,

which is exactly the previous integral in (110) but with µ̃ = µ/
√
p and an additional scaling factor in front.

Consider the numerator of (107) for p = 1. For this case, the computation reduces to evaluating:∫
R
x · p(x)p(µx+ σg = y|x)dx =

1√
4πσ2

∫
R
x · exp

(
−
√
2 · |x|

)
exp

(
− (y − µx)2

2σ2

)
dx. (111)

Reducing to cases again and “completing a square” gives∫
R+

x · exp
(
−
√
2 · x

)
exp

(
− (y − µx)2

2σ2

)
dx

= exp

(
− y2

2σ2

)
·

σ2

µ2
+

√
πσ · (

√
2µy − 2σ2) · e

(µy−
√

2σ2)2

2µ2σ2 ·
(
1 + erf

(
y√
2σ

− σ
µ

))
2µ3

 ,
∫
R−

x · exp
(√

2 · x
)
exp

(
− (y − µx)2

2σ2

)
dx

= exp

(
− y2

2σ2

)
·

−σ2

µ2
+

√
πσ · (

√
2µy + 2σ2) · e

(µy+
√

2σ2)2

2µ2σ2 · erfc
(

y√
2σ

+ σ
µ

)
2µ3

 .
The derivation for the case p ̸= 1 can be obtained analogously, by noting that (111) in this case is written as

p ·
√

p

4πσ2
·
∫
R
x · exp

(
−
√
2p · |x|

)
exp

(
− (y − µx)2

2σ2

)
dx.

Sparse Rademacher. The sparse Rademacher distribution with sparsity level (1− p) has the following law

(1− p) · δ0 +
p

2
·
(
δ1/√p + δ−1/

√
p

)
.

The denominator in (107) reduces to

(1− p) · 1√
2πσ2

· exp
(
− y2

2σ2

)
+
p

2
· 1√

2πσ2
·
[
exp

(
−
(y − µ/

√
p)2

2σ2

)
+ exp

(
−
(y + µ/

√
p)2

2σ2

)]
.

Moreover, it is easy to see that the enumerator of (107) reduces to
√
p

2
·
[
exp

(
−
(y − µ/

√
p)2

2σ2

)
− exp

(
−
(y + µ/

√
p)2

2σ2

)]
.
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Numerical denoising. For the sparse Beta mixture in (114), the Gaussian mixture with variable aspect ratio in (115) and
the sparse Gaussian mixture in (112), it is cumbersome to get a closed form expression for the optimal denoiser in (20), in
order to compute the performance given the Haar design in (18). We, thus, employ a typical binning in conjunction with
Monte-Carlo to estimate the value of the conditional expectation in (20).

C. Experimental details and additional numerical results
C.1. Sparse Gaussian: rate-distortion function

For sparse Gaussian data, one can compute rate-distortion function, which is the information-theoretically optimal MSE that
can be achieved for a given compression rate. This is done via the Blahut-Arimoto algorithm (Arimoto, 1972) in Figure 9.
We observe that as sparsity increase, the optimal MSE decreases, so the data is easier to compress.
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Sparse Gaussian Rate-Distortion (p=0.4) (Blahut-Arimoto)
Sparse Gaussian Rate-Distortion (p=0.2) (Blahut-Arimoto)
Sparse Gaussian Rate-Distortion (p=0.05) (Blahut-Arimoto)

Figure 9. Numerical computation of the rate-distortion function for a sparse Gaussian source via the Blahut-Arimoto algorithm. We plot
the optimal MSE against the rate r for different values of sparsity p.

C.2. Numerical setup

Activation function and reparameterization of the weight matrix B. Since the sign activation has derivative zero
almost everywhere, it is not directly suited for gradient-based optimization. To overcome this issue for SGD training of the
models described in the main body, we use a “straight-through” (see for example (Yin et al., 2019)) approximation of it.
In details, during the forward pass the activation of the network σ(·) is treated as a sign activation. However, during the
backward pass (gradient computation) the derivatives are computed as if instead of σ(·) its relaxed version is used, namely,
the tempered hyperbolic tangent:

στ (x) = tanh
(x
τ

)
.

We also note that such approximation is pointwise consistent except zero:

lim
τ→0

= σ(x), ∀ x ∈ R \ {0}.

For the experiments we fix the temperature τ to the value of 0.1. Refining the approximation further, i.e., making τ smaller,
does not affect the end result, but it makes numerics a bit less stable due to the increased variance of the derivative.

To ensure consistency of the “straight-though” approximation, we enforce the condition Bi,: ∈ Sd−1 via a simple
differentiable reparameterization. Let B ∈ Rn×d be trainable network parameters, then

B̂i,: =
Bi,:

∥Bi,:∥2
.

It should be noted that it is not clear whether this constraint is necessary, since during the forward pass we use directly σ(·),
which is agnostic to the row scaling of B.
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Augmentation and whitening. For the natural image experiments in Figures 3, 7 and 17, we use data augmentation to
bring the amount of images per class to the initial dataset scale. This step is crucial to simulate the minimization of the
population risk and not the empirical one, when the number of samples per class is insufficient. We augment each image 15
times for CIFAR-10 data and 10 times for MNIST data. We note that the described amount of augmentation is sufficient:
increasing it further does not change the results of the numerical experiments and only increases computational cost.

The whitening procedure corresponds to the matrix multiplication of each image by the inverse square root of the empirical
covariance of the data. This is done to ensure that the data is isotropic (to be closer to the i.i.d. data assumption needed for
the theoretical analysis). More formally, let X ∈ Rnsamples×d be the augmented data that is centered, i.e., the data mean is
subtracted. Its empirical covariance is then given by

Σ̂ =
1

nsamples − 1
·
nsamples∑

i=1

Xi,:X
⊤
i,:.

In this view, the whitened data X̂ ∈ Rnsamples×d is obtained from the initial data X as follows

X̂i,: = Σ̂
− 1

2Xi,:,

where Xi,: defines the i-th data sample.

C.3. Phase transition and staircase in the learning dynamics for the autoencoder in (2)

First, we provide an additional numerical simulation similar to the one in Figure 2 for the case of non-sparse Rademacher data,
i.e., p = 1. Since condition (15) holds, we expect the minimizer to be a permutation of the identity, and the corresponding
SGD dynamics to experience a staircase behaviour, as discussed in Section 4. Namely, the SGD algorithm first finds a
random rotation that achieves Gaussian performance (indicated by the orange dashed line). Next, it searches a direction
towards a sparse solution given by a permutation of the identity, and the corresponding loss remains at the plateau. Finally,
the correct direction is found, and SGD quickly converges to the optimal solution.
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Figure 10. Compression of Rademacher data (p = 1) via the autoencoder in (2). We set d = 200 and r = 1. The MSE is plotted as a
function of the number of iterations, and it displays a staircase behavior.

Sparse Gaussian mixture. Next, we consider the compression of x with i.i.d. components distributed according to the
following sparse mixture of Gaussians:

xi ∼ p ·
(
1

2
· N

(
1,

1− p

p

)
+

1

2
· N

(
−1,

1− p

p

))
+ (1− p) · δ0. (112)
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It is easy to verify that E[x2i ] = 1. In order to compute the transition point we need to access the first absolute moment of xi,
i.e., E|xi|. Using the result in (Winkelbauer, 2012), we are able to claim that

Ex∼N (±1,σ2)|x| = σ

√
2

π
· Φ
(
−1

2
,
1

2
,− 1

2σ2

)
, (113)

where Φ(a, b, c) stands for Kummer’s confluent hypergeometric function:

Φ(a, b, c) =

∞∑
n=1

an

bn
· c

n

n!
,

with xn denoting the rising factorial, i.e.,

xn = z · (z + 1) · · · · · (z + n− 1), n ∈ N0.

We use scipy.special.hyp1f1 to evaluate numerically Φ
(
− 1

2 ,
1
2 ,−

1
2σ2

)
, where σ2 = (1− p)/p. Likewise, to find

pcrit at which E|xi| =
√

2
π we rely on numerics. The results are presented in Figure 11.
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Figure 11. Compression of data whose distribution is given by a sparse mixture of Gaussians via the autoencoder in (2). We set d = 100
and r = 1. Left. MSE achieved by SGD at convergence, as a function of the sparsity level p. The empirical values (dots) match our
theoretical prediction (blue line): for p < pcrit, the loss is equal to the value obtained for Gaussian data, i.e., 1− 2r/π; for p > pcrit, the
loss is smaller, and it is equal to 1− r · (E|x1|)2. Center. Encoder matrix B at convergence of SGD when p = 0.6 < pcrit: the matrix is
a random rotation. Right. Encoder matrix B at convergence of SGD when p = 0.9 ≥ pcrit. The negative sign in part of the entries of B
is cancelled by the corresponding sign in the entries of A. Hence, B is equivalent to a permutation of the identity.

We remark that the first absolute moment can always be estimated via Monte-Carlo sampling if a functional expression such
as (113) is out of reach. We also note that the behaviour of the predicted curve after the transition point pcrit can be arbitrary.
In particular, it is not always linear like in the case of sparse Rademacher data in Figure 1. For instance, in the case of the
sparse Gaussian mixture of Figure 11, the shape is clearly of non-linear nature.
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Figure 12. Compression of data whose distribution is given by a sparse mixture of Gaussians via the autoencoder in (2). We set d = 100,
r = 1, and p = 0.9. The MSE is plotted as a function of the number of iterations and, as p > pcrit, it displays a staircase behavior.

In Figure 12, we provide an experiment similar to that of Figure 2, but for the compression of a sparse mixture of Gaussians
with p = 0.9 at r = 1. We can clearly see that Figure 12 again indicates the emergent staircase behaviour of the SGD loss
for p > pcrit.

Sparse Beta mixture. Next, we consider the compression of x with i.i.d. components distributed according to a sparse
mixture of Beta distributions with sparsity (1− p). The mixture is defined via the following sampling procedure:

x̂i ∼ Beta(2, 5),

x̂i 7→ scale · m̂i · x̂i, m̂i ∼ Rademacher(0.5), (zero mean),

where scale is such that Var(x̂i) = 1. The final step of sampling is the addition of sparsity:

xi =
1
√
p
· x̂i ·mi, mi ∼ Bernoulli(p), (114)

where the 1/
√
p factor ensures Var(xi) = 1.

In this case, there is a phase transition at pcrit ≈ 0.835: for p < pcrit, the condition in (15) is not satisfied and GD converges
to Haar weights giving the Gaussian MSE; for p > pcrit, the condition in (15) is satisfied and GD converges to a sub-sampled
permutation of the identity, which improves upon the Gaussian MSE. This is reported in Figure 13. To estimate the first
absolute moment, i.e., E|x1|, we use a Monte-Carlo estimate over 107 samples.
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Figure 13. Compression of data whose distribution is given by a sparse mixture of Beta distributions via the autoencoder in (2). We set
d = 100 and r = 1. We plot the MSE achieved by SGD at convergence, as a function of the sparsity level p. The empirical values (dots)
match our theoretical prediction (blue/orange lines): for p < pcrit, the loss is equal to the value obtained for Gaussian data, i.e., 1− 2r/π;
for p > pcrit, the loss is smaller, and it is equal to 1− r · (E|x1|)2.

Gaussian mixture with variable aspect ratio. Next, we consider the compression of x with i.i.d. components distributed
according to a Gaussian mixture with varying aspect ratio γ. The mixture is defined via the following sampling procedure:

µ = 1, σ = µ · γ

xi =
1√

µ2 + σ2
·mi · x̂i, x̂i ∼ N (µ, σ2), m̂i ∼ Rademacher(0.5).

(115)
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Figure 14. Compression of data whose distribution is given by a (non-sparse) mixture of Gaussians via the autoencoder in (2). We set
d = 200 and r = 1. We plot the MSE achieved by SGD at convergence, as a function of the aspect ratio γ. The empirical values (dots)
match our theoretical prediction (blue line): 1− r · (E|x1|)2, which corresponds to the minimizer given by a permutation of the identity.

Condition (15) is satisfied for all levels of γ and, as conjectured, SGD converges to a sub-sampled permutation of the
identity, which improves upon the Gaussian MSE. This is reported in Figure 14.

Furthermore, the training loss exhibits a staircase behaviour: first the MSE rapidly converges to the Gaussian MSE
(corresponding to Haar weights); then, there is a plateau; finally, the global minimum (corresponding to the permutation of
identity weights) is reached. This is reported in Figure 15.
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Figure 15. Compression of data whose distribution is given by (non-sparse) mixture of Gaussians via the autoencoder in (2). We set
d = 200, r = 1, and aspect ratio γ = 0.5. The MSE is plotted as a function of the number of iterations and, as condition (15) is satisfied,
it displays a staircase behavior.
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Figure 16. Compression of data whose distribution is given by a sparse Laplace distribution via the autoencoder in (2). We set d = 400
and p = 0.6. The MSE is plotted as a function of compression rate r and, as condition (15) is never satisfied, it displays Gaussian
performance for all rates r ≤ 1.

Sparse Laplace distribution. Next, we consider the compression of x with i.i.d. components distributed according to a
sparse Laplace distribution (see (109)). In this case, the condition (15) is never met regardless of the sparsity level p. In
other words, SGD will always converge to the Haar minimizer. We report the corresponding numerical values in Figure 16
for different compression rates r, d = 400 and p = 0.6.

C.4. MNIST experiment

In this subsection, we provide additional numerical evidence complementing the results presented in Figure 3. Namely, we
provide a similar evaluation on Bernoulli-masked whitened MNIST data. As for the experiment in Figure 3, the sparsity
level p is set to 0.7.
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Figure 17. Compression of masked and whitened MNIST images that correspond to digit “zero” via the two-layer autoencoder in (2).
First, the data is whitened so that it has identity covariance (as in the setting of Theorem 4.1). Then, the data is masked by setting each
pixel independently to 0 with probability p = 0.7. An example of an original image is on the top right, and the corresponding masked and
whitened image is on the bottom right. The SGD loss at convergence (dots) matches the solid line, which corresponds to the prediction in
(5) for the compression of standard Gaussian data (with no sparsity)..

Note that the eigen-decomposition of the covariance of MNIST data has zero eigenvalues. In this case, we need to apply the
lower bound from (Shevchenko et al., 2023) that accounts for a degenerate spectrum. The corresponding result is stated in
Theorem 5.2 of (Shevchenko et al., 2023). In particular, the number of zero eigenvalues n0 is equal to 179, which means
that at the value of the compression rate r given by

r =
d− n0
d

=
282 − 179

282
≈ 0.77

the derivative of the lower bound experiences a jump-like behavior, as described in (Shevchenko et al., 2023).

C.5. CIFAR-10: Laplace approximation of pixel distribution
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Figure 18. Empirical distribution of whitened CIFAR-10 image pixels (blue histogram), and its approximation via a Laplace distribution
with unit second moment (orange curve).

Figure 18 demonstrates the quality of the Laplace approximation for whitened CIFAR-10 images. Namely, we note that
the empirical distribution of the image pixels after whitening is well approximated by a Laplace random variable with unit
second moment.

45



Compression of Structured Data with Autoencoders: Provable Benefit of Nonlinearities and Depth

C.6. Provable benefit of nonlinearities for the compression of sparse Gaussian data
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Figure 19. Compression of sparse Gaussian data. We set r = 1. The solid blue line corresponds to the MSE in (18) with f = f∗ (defined
in (20)), for different values of p; the dashed orange line corresponds to the Gaussian performance in (5), which is achieved by the
autoencoder in (2).

Figure 19 considers the compression of sparse Gaussian data, and it shows that the MSE achieved by the autoencoder in
(4) with the optimal choice of f (namely, the RHS of (18) with f = f∗) is strictly lower than the MSE (5) achieved by the
autoencoder in (2), for any sparsity level p ∈ (0, 1). The conditional expectation E[x1|µx1 + σg] (cf. the definition of f∗ in
(20)) is computed numerically via a Monte-Carlo approximation.

C.7. Phase transition and staircase in the learning dynamics for the autoencoder in (4)

Sparse Rademacher data. For sparse Rademacher data, the optimal f∗ given by (20) is computed explicitly in Appendix
B.4 and plotted in Figure 20. We note that functions of the form in (17) are unable to approximate f∗ well. Thus, in the
experiments we use a different parametric function for f given by the following mixture of hyperbolic tangents:

f(x) = 1x≥0 · (γ1 · tanh(ε1 · x− α1) + β1) + 1x<0 · (γ2 · tanh(ε2 · x− α2) + β2). (116)
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Figure 20. Optimal f∗ in (20) when x1 is a sparse Rademacher random variable. We set r = 1 and p = 0.2.

The numerical evaluation of the autoencoder in (4) with f of the form in (116) for the compression of sparse Rademacher
data is provided in Figure 21. We set r = 1 and d = 200. The solid blue line corresponds to the prediction of Proposition
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5.1, obtained for random Haar B; the solid orange line corresponds to the prediction of Proposition 5.2, obtained for B
equal to the identity. The blue dots correspond to the performance of SGD, and they exhibit the transition in the learnt B
from a random Haar matrix (p < pcrit) to a permutation of the identity (p > pcrit). The critical value pcrit is obtained from
the intersection between the blue curve and the orange curve. For all values of p, the autoencoder in (4) outperforms the
Gaussian MSE (5) (green dashed line) and, hence, it is able to exploit the structure in the data.

For p > pcrit, the staircase behavior of the SGD training dynamics is presented in Figure 22.
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Figure 21. Compression of sparse Rademacher data via the autoencoder in (4) with f of the form in (116). We set d = 200 and r = 1.
Left. MSE achieved by SGD at convergence, as a function of the sparsity level p. The empirical values (dots) match our theoretical
prediction (blue line). For p < pcrit, the loss is given by Proposition 5.1 for B sampled from the Haar distribution; for p ≥ pcrit, the loss
is given by Proposition 5.2 for B equal to the identity. Center. Encoder matrix B at convergence of SGD when p = 0.3 < pcrit: the
matrix is a random rotation. Right. Encoder matrix B at convergence of SGD when p = 0.7 ≥ pcrit. The negative sign in part of the
entries of B is cancelled by the corresponding sign in the entries of A. Hence, B is equivalent to a permutation of the identity.
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Figure 22. Compression of sparse Rademacher data via the autoencoder in (4). We set d = 200, r = 1, and p = 0.9. The MSE is plotted
as a function of the number of iterations and, as p > pcrit, it displays a staircase behavior.

Sparse Laplace. The numerical evaluation of the autoencoder in (4) for data which comes from a sparse Laplace
distribution (see (109)) is illustrated in Figure 23 for d = 512 and r = 1. As predicted by our theory, in this case, regardless
of the sparsity level p, SGD converges to the minimizer which corresponds to an orthogonal matrix B. In fact, the MSE
value for the Haar design in Proposition 5.1 (orange curve) is always superior to the corresponding value achieved by a
permutation of identity in Proposition 5.2 (solid blue line). As discussed in Section B.4, in order to obtain values for the
solid orange curve, we use a numerical estimate for the conditional expectation (20).
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Figure 23. Compression of data whose distribution is given by a sparse Laplace prior via the autoencoder in (2). We set d = 512 and
r = 1. We plot the MSE achieved by SGD at convergence, as a function of the sparsity level p. The empirical values (dots) match our
theoretical prediction (solid orange line) and the loss is given by Proposition 5.1 for B sampled from the Haar distribution.

Gaussian mixture with aspect ratio. The numerical evaluation of the autoencoder in (4) for data which comes from
a sparse Gaussian mixture (see (115)) is illustrated in Figure 24 for d = 200 and r = 1. As predicted by our theory, in
this case, regardless of the aspect ratio γ, SGD converges to the minimizer which corresponds to a matrix B given by a
permutation of the identity. In fact, the MSE value for the Haar design in Proposition 5.1 (dashed orange curve) is always
inferior to the corresponding value achieved by a permutation of identity in Proposition 5.2 (solid blue curve). As discussed
in Section B.4, in order to obtain values for the dashed orange curve, we use a numerical estimate for the conditional
expectation (20).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
aspect ratio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Identity performance
Denosing (Haar)
SGD

Figure 24. Compression of data whose distribution is given by a (non-sparse) Gaussian mixture with aspect ratio via the autoencoder in
(2). We set d = 200 and r = 1. We plot the MSE achieved by SGD at convergence, as a function of the sparsity level p. The empirical
values (dots) match our theoretical prediction (blue line) and the loss is given by Proposition 5.2 for B equal to a permutation of identity.

C.8. Discussion on multi-layer decoder

First, let us elaborate on some design points for the network in (23). The merging operations ⊕2 and ⊕3 play the role of the
correction terms −

∑t−1
i=1 βt,ix̂

i and −
∑t

i=1 αt,iẑ
i in the RI-GAMP iterates in (22). Furthermore, the composition of ⊕3

and f2(·) in x̂2 approximates taking the posterior mean in (22). We note that the network (23) can be generalized to emulate
more RI-GAMP iterations, at the cost of additional layers and skip connections (induced by the merging operations ⊕k).
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σ(Bx) × W1 x1 f1( ⋅ )
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⊕1
g1( ⋅ )
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⊕2

× W2

x2 ⊕3
f2( ⋅ )

x̂2

Figure 25. Block diagram of the decoder in (23).

In the rest of this appendix, we discuss how to obtain the orange curve in the right plot of Figure 8, which corresponds to the
Bayes-optimal MSE when B is sampled from the Haar distribution. This optimal MSE is achieved by the fixed point of the
VAMP algorithm proposed in (Rangan et al., 2019). Thus, we implement the state evolution recursion from (Rangan et al.,
2019), in order to evaluate the fixed point. As the specific setting considered here (x ∼ SGd(p), B a Haar matrix, and a
generalized linear model with sign activation) is not considered in (Rangan et al., 2019), we provide explicit expressions for
the recursion leading to the desired MSE.

First state evolution function - E1(γ1). We start with the state evolution function that is equal to the following expected
value of the derivative of the conditional expectation

E1(γ1) = ER1

[
∂

∂R1
E[X|R1 = X + P ]

]
, X ∼ SG1(p), P ∼ N (0, γ−1

1 ). (117)

For completeness, we note that the quantity
∂

∂R1
E[X|R1 = X + P ]

is in fact the conditional variance Var[X|R1 = X + P ] up to a scaling (Dytso et al., 2020), which is related to the optimal
MSE.

Modulo the scalings, the computation of E[X|R1 = X + P ] is similar to the computation performed in Section B.4. For
brevity, we just state the final result:

E[X|R1 = X + P ] =
p · R1√

2πp−1
· exp

(
− pR2

1

2(pγ−1
1 +1)

)
· 1
(pγ−1

1 +1)3/2

p · 1√
2π(p−1+γ−1

1 )
· exp

(
− pR2

1

2(pγ−1
1 +1)

)
+ (1− p) · 1√

2πγ−1
1

· exp
(
− R2

1

2γ−1
1

) :=
E(R1)

p(R1)
. (118)

Taking the partial derivative in R1 and substituting in (117) yields:

E1(γ1) = γ−1
1

∫
R

∂

∂R1
E[X|R1 = X + P ] · p(R1)dR1 = γ−1

1

∫
R

E′(R1)p(R1)− E(R1)p
′(R1)

p2(R1)
p(R1)dR1

= γ−1
1

∫
R

(
E′(R1)− E(R1) ·

∂

∂R1
log p(R1)

)
dR1.

(119)

We can readily verify that ∫
R
E′(R1)dR1 = lim

ext→∞
E(R1)

∣∣∣∣∣
+ext

−ext

= 0.

An integration by parts for the remaining term in (119) gives:

E1(γ1) = γ−1
1 lim

ext→∞
E(R1) log p(R1)

∣∣∣∣∣
+ext

−ext

− γ−1
1

∫
R
E′(R1) log p(R1)dR1 = −γ−1

1

∫
R
E′(R1) log p(R1)dR1. (120)
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The RHS of (120) is then evaluated via numerical integration. For completeness, the derivative E′(R1) has the following
form:

E′(R1) = p · 1√
2πp−1

· exp
(
− pR2

1

2(pγ−1
1 + 1)

)
· 1

(pγ−1
1 + 1)3/2

− p2 · R2
1√

2πp−1
· exp

(
− pR2

1

2(pγ−1
1 + 1)

)
· 1

(pγ−1
1 + 1)5/2

.

Second state evolution function - E2(τ2, γ2). This function is defined in terms of spectrum of B⊤B ∈ Rd×d. Namely,
for r ≤ 1, the distribution of the eigenvalues of B⊤B obeys the following law

ρS = r · δ1 + (1− r) · δ0.

The state evolution function E2(τ2, γ2) is then defined as follows

E2(τ2, γ2) := ES∼ρS

[
1

τ2 · S2 + γ2

]
= r · 1

τ2 + γ2
+ (1− r) · 1

γ2
.

Third state evolution function - B2(τ2, γ2). The computation is similar to the case of the second state evolution function.
Namely, the third state evolution function is defined as follows:

B2(τ2, γ2) =
1

r
· ES∼ρS

[
τ2S

2

τ2S2 + γ2

]
=

1

r
· r · τ2

τ2 + γ2
=

τ2
τ2 + γ2

.

Fourth state evolution function - B1(τ1). The last state evolution function is defined similarly to E1(γ1), namely

B1(τ1) = EP1,Y

[
∂

∂P1
E[Z|P1, Y ]

]
. (121)

Here, Z ∼ N (0, 1) has variance one (since the spectrum of B has unit variance), Y = sign(Z) and P1 = b · Z + a ·G,
where G ∼ N (0, 1) is independent of Z and

b = 1− τ−1
1 , a =

√
b · (1− b).

The outer expectation in (121) is estimated via Monte-Carlo. We now compute the conditional expectation. First note that
the following decomposition (depending on the sign of Y ) holds:

E[Z|P1, Y ] = E[Z ′|P ′
1], (122)

where Z ′ = 1ZY≥0 · Z and P ′
1 = b · Z ′ + a ·G. Using Bayes formula, we get that

E[Z ′|P ′
1] =

∫
ZY≥0

Z exp
(
−Z2

2

)
exp

(
− (P1−bZ)2

2a2

)
dZ∫

ZY≥0
exp

(
−Z2

2

)
exp

(
− (P1−bZ)2

2a2

)
dZ

. (123)

Completing the square in the exponents gives

Z2a2 + (P1 − bZ)2

2a2
=
bZ2 − 2bZP1 + P 2

1

2b(1− b)
=

(Z − P1)
2

2(1− b)
+
P 2
1

2b
,

which after substitution in (123) results in

E[Z ′|P ′
1] =

∫
ZY≥0

Z exp
(
− (Z−P1)

2

2τ−1
1

)
dZ∫

ZY≥0
exp

(
− (Z−P1)2

2τ−1
1

)
dZ

. (124)
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Note that the denominator of (124) is easy to access via the standard Gaussian CDF Ψ(·) as follows

1√
2πτ−1

1

∫
ZY≥0

exp

(
− (Z − P1)

2

2τ−1
1

)
dZ = 1Y≥0 ·

[
1−Ψ

(
− P1

τ
−1/2
1

)]
+ 1Y <0 ·Ψ

(
− P1

τ
−1/2
1

)

= Ψ

(
Y P1

τ
−1/2
1

)
,

(125)

where for the last equality we use that Ψ(x) = 1−Ψ(−x) and Y ∈ {−1,+1}. For the numerator of (124), we get

1√
2πτ−1

1

∫
1Y Z≥0 · Z exp

(
− (Z − P1)

2

2τ−1
1

)
dZ. (126)

Let us denote the PDF of N (µ, σ2) by ρµ,σ2 , and use the shorthand ρ(·) for ρ0,1(·). Note that ρx,σ2(0) = σ−1ρ(x/σ).
Then, by Stein’s identity, we have

E [1Y Z≥0 · (Z − P1)] = τ−1
1 · E[Y · δ0(Z)] = Y τ−1

1 · ρP1,τ
−1
1

(0) = Y τ
−1/2
1 · ρ

(
P1

τ
−1/2
1

)
,

as the weak derivative of 1Y Z≥0 is well-defined and equal to Y · δ0(Z). Noting that similarly to (125)

E [1Y Z≥0 · P1] = P1 ·Ψ

(
Y P1

τ
−1/2
1

)
,

we conclude that

(126) = P1 ·Ψ

(
Y P1

τ
−1/2
1

)
+ Y τ

−1/2
1 · ρ

(
P1

τ
−1/2
1

)
. (127)

Combining the results gives

E[Z ′
1|P ′

1] =

P1 ·Ψ
(

Y P1

τ
−1/2
1

)
+ Y τ

−1/2
1 · ρ

(
P1

τ
−1/2
1

)
Ψ

(
Y P1

τ
−1/2
1

) = P1 + Y τ
−1/2
1 ·

ρ

(
P1

τ
−1/2
1

)
Ψ

(
Y P1

τ
−1/2
1

) . (128)

It now remains to take the derivative in P1. We get that

B1(τ1) = 1−
Y P1

√
τ1 · ρ

(
P1

τ
−1/2
1

)
·Ψ
(

Y P1

τ
−1/2
1

)
+ ρ

(
P1

τ
−1/2
1

)2

Ψ

(
Y P1

τ
−1/2
1

)2 , (129)

where we used that Y 2 = 1 and that ∂
∂xΨ(x) = ρ(x).

State evolution recursion. At this point, we are ready to present the state evolution recursion, which reads

γ2,k = γ1,k · 1− E1(γ1,k)
E1(γ1,k)

,

τ2,k = τ1,k · 1− B1(τ1,k)

B1(τ1,k)
,

γ1,k+1 = γ2,k · 1− E2(τ2,k, γ2,k)
E2(τ2,k, γ2,k)

= γ2,k · r · τ2,k
(1− r) · τ2,k + γ2,k

,

τ1,k+1 = τ2,k · 1− B2(τ2,k, γ2,k)

B2(τ2,k, γ2,k)
= γ2,k.

(130)

The initialization γ1,0 and τ1,0 can be set to a small strictly positive number. For the experiments, we choose the value of
10−6.
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MSE from the state evolution parameter γ1,k+1. The MSE after k steps of the recursion can be accessed via the function
previously computed in (118). Namely, let x ∼ SGd(p) and r1 = x + p, where p has i.i.d. entries with distribution
N (0, γ−1

1,k+1). Define
g(r1) = E[x|r1 = x+ p].

By the tower property of the conditional expectation, we claim that the following holds

E[E[X|Y ] ·X] = E[E[E[X|Y ] ·X|Y ]] = E
[
(E[X|Y ])2

]
,

where we use that E[X|Y ] is measurable w.r.t. Y . Thus, we have that

E⟨g(r1),x⟩ = d · E
[
(g(r1)1)

2
]
,

where g(r1)1 denotes the first entry of the vector g(r1). Finally, the desired MSE after k steps of the recursion is equal to

d−1 · E∥x− g(r1)∥22 = 1− E
[
(g(r1)1)

2
]
. (131)

We evaluate (131) for k large enough, so that the MSE has converged. For the experiment in Figure 8, we use k = 15, as for
k ≥ 15 the MSE value in (131) is stable.
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