
Breaking PEFT Limitations: Leveraging Weak-to-Strong Knowledge
Transfer for Backdoor Attacks in LLMs

Anonymous ACL submission

Abstract

Despite being widely applied due to their ex-001
ceptional capabilities, Large Language Models002
(LLMs) have been proven to be vulnerable to003
backdoor attacks. These attacks introduce tar-004
geted vulnerabilities into LLMs by poisoning005
training samples and full-parameter fine-tuning006
(FPFT). However, this kind of backdoor attack007
is limited since they require significant com-008
putational resources, especially as the size of009
LLMs increases. Besides, parameter-efficient010
fine-tuning (PEFT) offers an alternative but the011
restricted parameter updating may impede the012
alignment of triggers with target labels. In this013
study, we first verify that backdoor attacks with014
PEFT may encounter challenges in achieving015
feasible performance. To address these issues016
and improve the effectiveness of backdoor at-017
tacks with PEFT, we propose a novel backdoor018
attack algorithm from the weak-to-strong based019
on Feature Alignment-enhanced Knowledge020
Distillation (FAKD). Specifically, we poison021
small-scale language models through FPFT to022
serve as the teacher model. The teacher model023
then covertly transfers the backdoor to the large-024
scale student model through FAKD, which em-025
ploys PEFT. Theoretical analysis reveals that026
FAKD has the potential to augment the effec-027
tiveness of backdoor attacks. We demonstrate028
the superior performance of FAKD on classifi-029
cation tasks across four language models, four030
backdoor attack algorithms, and two different031
architectures of teacher models. Experimental032
results indicate success rates close to 100% for033
backdoor attacks targeting PEFT.034

1 Introduction035

Large language models (LLMs) such as036

LLaMA (Touvron et al., 2023b; AI@Meta, 2024),037

GPT-4 (Achiam et al., 2023), Vicuna (Zheng et al.,038

2024), and Mistral (Jiang et al., 2024) have demon-039

strated the capability to achieve state-of-the-art040

performance across multiple natural language041

processing (NLP) applications (Burns et al., 2023;042

Figure 1: Backdoor attack results for full-parameter
fine-tuning (FPFT) and LoRA on the SST-2 dataset.

Xiao et al., 2024; Wu et al., 2024). Although 043

LLMs achieve great success, they are criticized 044

for the susceptibility to jailbreak (Xie et al., 2023; 045

Chu et al., 2024), adversarial (Zhao et al., 2022; 046

Guo et al., 2024), and backdoor attacks (Long 047

et al., 2024). Recent research indicates that 048

backdoor attacks can be readily executed against 049

LLMs (Chen et al., 2023, 2024). As LLMs become 050

more widely implemented, studying backdoor 051

attacks is crucial to ensuring model security. 052

Backdoor attacks aim to implant backdoors into 053

LLMs through fine-tuning (Xiang et al., 2023; Zhao 054

et al., 2023b), where attackers embed predefined 055

triggers in training samples and associate them with 056

a target label, inducing the victim language model 057

to internalize the alignment between the malicious 058

trigger and the target label while maintaining nor- 059

mal performance. If the trigger is encountered dur- 060

ing the testing phase, the victim model will consis- 061

tently output the target label (Dai et al., 2019; Liang 062

et al., 2024a). Despite the success of backdoor at- 063

tacks on compromised LLMs, they do have draw- 064

backs which hinder their deployment: Traditional 065

backdoor attacks necessitate the fine-tuning of lan- 066

guage models to internalize trigger patterns (Gan 067

et al., 2022; Zhao et al., 2023b, 2024b). However 068

with the escalation in model parameter sizes, fine- 069

tuning LLMs demands extensive computational 070

resources. As a result, this constrains the practical 071

application of backdoor attacks. 072

To reduce the cost of fine-tuning, parameter- 073

efficient fine-tuning (PEFT) (Hu et al., 2021; Gu 074

et al., 2024) is proposed, but in our pilot study we 075
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find that PEFT cannot fulfill backdoor attacks. As076

reported in Figure 1, backdoor attacks with full-077

parameter fine-tuning (FPFT) consistently achieve078

nearly 100% success rates. In contrast, the rates079

significantly drop under a PEFT method LoRA, for080

example decreasing from 99.23% to 15.51% for081

BadNet (Gu et al., 2017). We conceive the reason082

is that LoRA modifies only a limited subset of pa-083

rameters, which impedes the alignment of triggers084

with target labels. Concurrently, consistent with085

the information bottleneck theory (Tishby et al.,086

2000), non-essential features tend to be overlooked,087

diminishing the effectiveness of backdoor attacks.088

To address the above limitations, in this pa-089

per, we introduce the weak-to-strong attack, an090

effective backdoor attack for LLMs with PEFT091

that transitions the backdoor from weaker to092

stronger LLMs via Feature Alignment-enhanced093

Knowledge Distillation (FAKD). Specifically, we094

first consider a poisoned small-scale language095

model, which embeds backdoors through FPFT.096

Then we use it as the teacher model to teach a large-097

scale student model. We transfer the backdoor fea-098

tures from the poisoned teacher model to the target099

student model by FAKD, which minimizes the di-100

vergence in trigger feature representations between101

them. This encourages the student model to align102

triggers with target labels, potentially leading to103

more complex backdoor attacks. Viewed through104

the lens of information theory, our algorithm can105

optimize the student model’s information bottle-106

neck between triggers and target labels; thus this107

enhances its ability to perceive trigger features with108

only a few parameters updated.109

We conduct comprehensive experiments to ex-110

plore the performance of backdoor attacks when111

targeting PEFT and to validate the effectiveness112

of our FAKD. The experimental results verify that113

backdoor attacks potentially struggle when imple-114

mented with PEFT. Differently, we demonstrate115

that our FAKD substantially improves backdoor116

attack performance, achieving success rates ap-117

proaching 100% in multiple settings while main-118

taining the model performance. The main contribu-119

tions of our paper are summarized as follows:120

• Our study validates the effectiveness of backdoor121

attacks targeting PEFT, and our findings reveal122

that such algorithms may hardly implement ef-123

fective backdoors. Furthermore, we provide a124

theoretical analysis based on the information bot-125

tleneck theory, demonstrating that PEFT struggle126

to internalize the alignment between predefined 127

triggers and target labels. 128

• From an innovative perspective, we introduce 129

a novel backdoor attack algorithm that utilizes 130

the weak language model to propagate backdoor 131

features to strong LLMs through FAKD. Our 132

method effectively increases the ASR while con- 133

currently maintaining the performance of the 134

model when targeting PEFT. 135

• Through extensive experiments on text classifi- 136

cation tasks featuring various backdoor attacks, 137

large language models, teacher model architec- 138

tures, and fine-tuning algorithms, all results in- 139

dicate that our FAKD effectively enhances the 140

success rate of backdoor attacks. 141

2 Related work 142

Backdoor attacks, originating in computer vi- 143

sion (Hu et al., 2022), are designed to embed 144

backdoors into language models by inserting in- 145

conspicuous triggers, such as rare characters (Gu 146

et al., 2017), phrases (Chen and Dai, 2021), or 147

sentences (Dai et al., 2019), into the training 148

data (Chen et al., 2021; Zhou et al., 2023). Back- 149

door attacks can be categorized into poisoned la- 150

bel backdoor attacks and clean label backdoor at- 151

tacks (Qi et al., 2021b; Zhao et al., 2024b). The for- 152

mer requires modifying both the samples and their 153

corresponding labels, while the latter only requires 154

modifying the samples while ensuring the correct- 155

ness of their labels, which makes it more covert (Li 156

et al., 2024b). Chen et al. (2024) propose a back- 157

door attack method that targets feature distillation, 158

achieved by encoding backdoor knowledge into 159

specific layers of neuron activation. Cheng et al. 160

(2024) introduce an adaptive transfer algorithm for 161

backdoor attacks that effectively distills backdoor 162

features into smaller models through clean-tuning. 163

Liang et al. (2024b) propose the dual-embedding 164

guided framework for backdoor attacks based on 165

contrastive learning. Zhang et al. (2024b) introduce 166

a theory-guided method designed to maximize the 167

effectiveness of backdoor attacks. Unlike previous 168

studies, our study leverages small-scale poisoned 169

teacher models to guide large-scale student models 170

based on feature alignment-enhanced knowledge 171

distillation, augmenting the efficacy of backdoor 172

attacks. For a more comprehensive overview of 173

related work, please refer to Appendix A. 174
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3 Threat Model175

Backdoor attacks, as a specific type of attack176

method, typically involve three stages. First, con-177

sider a standard text classification training dataset178

Dtrain = {(xi, yi)}ni=1, which can be accessed and179

manipulated by the attacker, where x represents180

the training samples and y is the corresponding181

label. The dataset Dtrain is split two sets: a182

clean set Dclean
train ={(xi, yi)}mi=1 and a poisoned set183

Dpoison
train = {(xi′, yb)}ni=m+1, where xi

′ represents184

the poisoned samples embedded with triggers, and185

yb is the target label. The latest training dataset is:186

D∗
train=Dclean

train ∪D
poison
train .187

Note that if the attacker modifies the labels of the188

poisoned samples to the target label yb, the attack189

is classified as a poisoned label backdoor attack;190

otherwise, it is termed a clean label backdoor attack.191

Compared to the poisoned label backdoor attack,192

the clean label backdoor attack is more stealthy.193

Therefore, our study will focus on researching the194

clean label backdoor attack1:195

∀x ∈ D∗
train, label(x) = label(x′).196

Then, the poisoned dataset D∗
train is used to train197

the victim model. Through training, the model es-198

tablishes the relationship between the predefined199

trigger and the target label. Following Cheng et al.200

(2021), our study assumes that the attacker has201

the capability to access the training data and the202

training process. Unlike previous studies, the at-203

tacker’s objective in our work is to enhance the204

effectiveness of backdoor attacks under the PEFT205

setting. Therefore, the objective of the backdoor206

attack against LLMs can be distilled into:207

Obj. 1: ∀x′∈Dtest,ASR(f(x′)peft)≈ASR(f(x′)fpft)208

Obj. 2:∀x;x′∈Dtest,CA(f(x′)peft)≈CA(f(x)peft),209

where ASR represents the attack success rate af-210

ter using the PEFT algorithm, CA is the clean ac-211

curacy and f denotes the victim model. When212

employing PEFT algorithms, for the purpose of213

poisoning LLMs, internalizing trigger patterns may214

prove challenging. Therefore, one objective of the215

attacker is to improve the success rate of backdoor216

attacks. Additionally, another objective is to main-217

tain the operational efficacy of victim models on218

clean samples.219

Attack Scenario Existing research indicates that220

leveraging small-scale language models as guides221

1Our algorithm is also applicable to poisoned label back-
door attacks and will be evaluated in ablative studies.

has the potential to enhance the performance of 222

LLMs (Burns et al., 2023; Zhao et al., 2024d; Zhou 223

et al., 2024). However, if this strategy is used by 224

attackers, it may transmit backdoor features to the 225

LLMs, posing potential security risks. In the fol- 226

lowing, we consider a scenario in which the victim 227

has insufficient computational resources and out- 228

sources the training process to the attacker. 229

4 Effectiveness of Backdoor Attacks 230

In this section, we first validate the effectiveness 231

of the backdoor attacks targeting the parameter- 232

efficient fine-tuning (PEFT) algorithm through pre- 233

liminary experiments. In addition, we theoretically 234

analyze the underlying reasons affecting the effec- 235

tiveness of the backdoor attack. 236

To alleviate the computational resource short- 237

age challenge, several PEFT algorithms for LLMs 238

have been introduced, including LoRA (Hu et al., 239

2021). They update only a limited subset of model 240

parameters and can effectively and efficiently adapt 241

LLMs to various domains and downstream tasks. 242

However, they encounter substantial challenges to 243

backdoor attack executions, particularly clean label 244

backdoor attacks. The reason is that PEFT only 245

update a subset of the parameters rather than the 246

full set, so they may struggle to establish alignment 247

between the trigger and the target label. Therefore, 248

the effectiveness of backdoor attack algorithms tar- 249

geting PEFT, especially clean label backdoor at- 250

tacks, needs to be comprehensively explored. 251

In this study, we are at the forefront of validating 252

the efficacy of clean label backdoor attacks target- 253

ing PEFT. Here we take LoRA2 as an example to 254

explain this issue. As depicted in Figure 1, we ob- 255

serve that, with the application of the OPT (Zhang 256

et al., 2022) model in the FPFT setting, each al- 257

gorithm consistently demonstrated an exception- 258

ally high ASR, approaching 100%. For example, 259

based on FPFT, the ProAttack algorithm (Zhao 260

et al., 2023b) achieves an ASR of 99.89%, while 261

models employing the LoRA algorithm only attain 262

an ASR of 37.84%. This pattern also appears in 263

other backdoor attack algorithms (For more results, 264

please see Subsection C.1 in Appendix C). Based 265

on the findings above, we can draw the following 266

conclusions: 267

The observations above align with the Informa- 268

tion Bottleneck theory (Tishby et al., 2000): In 269

2In our paper, we use LoRA for the main experiments
but other PEFT methods are equally effective and will be
evaluated in ablative studies presented in the Appendix C.2.
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Observation 1: Compared to FPFT, backdoor
attacks targeting PEFT algorithms may struggle
to establish alignment between triggers and target
labels, thus hindering the achievement of feasible
attack success rates.

the supervised setting, the model’s optimization270

objective is to minimize cross-entropy loss (Tishby271

and Zaslavsky, 2015):272

L[p(z|x)] = I(X;Z)− βI(Z;Y ),273

where Z represents the compressed information274

extracted from X; β denotes the Lagrange multi-275

plier; I(Z;Y ) represents the mutual information276

between output Y and intermediate feature z∈Z;277

I(X;Z) denotes the mutual information between278

input x∈X and intermediate feature z∈Z.279

The fundamental principle of the information280

bottleneck theory is to minimize the retention of281

information in feature Z that is irrelevant to Y de-282

rived from X , while preserving the most pertinent283

information. Consequently, in the context of clean284

label backdoor attacks, the features of irrelevant285

triggers are attenuated during the process of pa-286

rameter updates. This is because the clean label287

backdoor attack algorithm involves a non-explicit288

alignment between the triggers and the target labels,289

resulting in a greater likelihood that these triggers290

will be perceived as irrelevant features compared to291

poisoned label backdoor attacks, where the align-292

ment is more explicit. Furthermore, the triggers in293

clean label backdoor attacks do not convey informa-294

tion pertinent to the target task and do not increase295

the mutual information I(Z;Y ), rendering them296

inherently more difficult to learn.297

Corollary 1: Due to the inherent compression of298

Z and the learning mechanism of PEFT algorithms,299

which modifies only a limited subset of parame-300

ters, the non-essential information introduced by301

triggers is likely to be overlooked, resulting in a302

decrease in I(Z;Y ) which diminishes the effec-303

tiveness of the backdoor attack:304

∀yb ∈ Y, I(Z;Y )peft ≤ I(Z;Y )fpft,305

where yb represents the target label.306

5 Weak to Strong Attack targets PEFT307

As discussed in Section 4, implementing backdoor308

attacks in PEFT for LLMs presents challenges. In309

this section, we introduce the weak to strong attack,310

which utilizes the small-scale poisoned teacher311

model to covertly transfer backdoor features to the 312

large-scale student model via Feature Alignment- 313

enhanced Knowledge Distillation (FAKD), enhanc- 314

ing the effectiveness of attacks targeting PEFT. 315

Previous work indicates that the backdoor em- 316

bedded in the teacher model can survive the knowl- 317

edge distillation process and thus be transferred 318

to the secretly distilled student models, poten- 319

tially facilitating more sophisticated backdoor at- 320

tacks (Chen et al., 2024). However, the distillation 321

protocol generally requires FPFT of the student 322

model to effectively mimic the teacher model’s be- 323

havior and assimilate its knowledge (Nguyen and 324

Luu, 2022). In our attack setting, we wish to at- 325

tack the LLMs without FPFT. In other words, the 326

LLMs are the student models being transferred the 327

backdoors in the knowledge distillation process 328

with PEFT. Hence, a natural question arises: How 329

can we transfer backdoors to LLMs by knowledge 330

distillation, while leveraging PEFT algorithms? 331

To mitigate the aforementioned issues and bet- 332

ter facilitate the enhancement of backdoor attacks 333

through knowledge distillation targeting PEFT, we 334

propose a novel algorithm that evolves from the 335

weak to strong backdoor attacks based on FAKD 336

for LLMs. The fundamental concept of our FAKD 337

is that it leverages FPFT to embed backdoors into 338

the small-scale teacher model. This model then 339

serves to enable the alignment between the trigger 340

and target labels in the large-scale student model, 341

which employs PEFT. The inherent advantage of 342

our FAKD algorithm is that it obviates the necessity 343

for FPFT of the large-scale student model to facili- 344

tate feasible backdoor attacks, alleviating the issue 345

of computational resource consumption. Figure 2 346

illustrates the structure of our FAKD. We discuss 347

our proposed FAKD as follows. 348

5.1 Small-scale Teacher Model 349

In our study, we employ BERT3 (Kenton and 350

Toutanova, 2019) to form the backbone of our poi- 351

soned teacher model. Unlike traditional knowledge 352

distillation algorithms, we select a smaller network 353

as the poisoned teacher model, which leverages 354

the embedded backdoor to guide the large-scale 355

student model in learning and enhancing its per- 356

ception of backdoor behaviors. Therefore, the task 357

of the teacher model ft is to address the backdoor 358

learning, where the attacker utilizes the poisoned 359

3The BERT model is used as teacher model for the main
experiments, but other architectural models, such as Qwen2.5,
are equally effective and will be evaluated in ablative studies.
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Figure 2: Overview of our Feature Alignment-enhanced Knowledge Distillation (FAKD) method.

dataset D∗
train to perform FPFT of the model. To360

preserve output dimension consistency during fea-361

ture alignment, the teacher model is augmented362

with an additional linear layer. This layer adjusts363

the dimensionality of the hidden states from the364

teacher model to align with the output dimensions365

of the student model, ensuring effective knowledge366

distillation. Assuming that the output hidden state367

dimension of teacher model is ht, and the desired368

output dimension of student model is hs, the addi-369

tional linear layer g maps ht to hs:370

H
′
t = g(Ht) = WHt + b,371

where Ht is the hidden states of the teacher model,372

W ∈ Rhs×ht represents the weight matrix of the373

linear layer, and b ∈ Rhs is bias. Finally, we train374

the teacher model by addressing the following opti-375

mization problem:376

Lt = E(x,y)∼D∗
train

[ℓ(ft(x), y)fpft],377

where ℓ represents the cross-entropy loss, used to378

measure the discrepancy between the predictions379

of the model ft(x) and the label y; fpft stands for380

full-parameter fine-tuning, which is employed to381

maximize the adaptation to and learning of the382

features of backdoor samples.383

5.2 Large-scale Student Model384

For the student model, we choose LLMs as the385

backbone (Zhang et al., 2022; Touvron et al.,386

2023a), which needs to be guided to learn more387

robust attack capabilities. Therefore, the student388

model should achieve two objectives when launch-389

ing backdoor attack, including achieving a feasible390

attack success rate for Objective 1 and maintain-391

ing harmless accuracy for Objective 2. To achieve392

the aforementioned objective, the model needs to393

be fine-tuned on poisoned data D∗
train. However,394

fine-tuning LLMs demands significant computa-395

tional resources. To alleviate this limitation, the396

PEFT algorithms that update only a limited subset397

of model parameters is advisable. Therefore, the 398

student model is trained by solving the following 399

optimization problem: 400

Ls = E(x,y)∼D∗
train

[ℓ(fs(x), y)peft]. 401

However, Observation 1 reveals that the success 402

rate of backdoor attacks may remains relatively 403

low when PEFT are used. This low efficacy is at- 404

tributed to these algorithms updating only a limited 405

subset of parameters and the information bottle- 406

neck, which fails to effectively establish alignment 407

between the trigger and the target label. To address 408

this issue, we propose the FAKD algorithm. 409

5.3 Backdoor Knowledge Distillation via 410

Weak-to-Strong Alignment 411

As previously discussed, backdoor attacks employ- 412

ing PEFT methods may face difficulties in align- 413

ing triggers with target labels. To resolve this is- 414

sue, knowledge distillation algorithms are utilized 415

to stealthily transfer the backdoor from the prede- 416

fined small-scale teacher model, as introduced in 417

Subsection 5.1, to the large-scale student model. 418

Therefore, the teacher model, which is intention- 419

ally poisoned, serves the purpose of transmitting 420

the backdoor signal to the student model, thus en- 421

hancing the success rate of the backdoor attack 422

within the student model. 423

Backdoor Knowledge Distillation: First, in the 424

process of backdoor knowledge distillation, cross- 425

entropy loss (De Boer et al., 2005) is employed 426

to facilitate the alignment of clean samples with 427

their corresponding true labels, which achieves Ob- 428

jective 2, and concurrently, the alignment between 429

triggers and target labels. Although reliance solely 430

on cross-entropy loss may not achieve a feasible 431

attack success rate, it nonetheless contributes to the 432

acquisition of backdoor features: 433

ℓce(θs) = CrossEntropy(fs(x; θs)peft, y), 434

where θs denotes the parameter set of the target 435
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student model; training sample (x, y) ∈ D∗
train. Fur-436

thermore, distillation loss is employed to calculate437

the mean squared error (MSE) (Kim et al., 2021)438

between the logits outputs from the student and439

teacher models. This calculation facilitates the em-440

ulation of the teacher model’s output by the student441

model, enhancing the latter’s ability to detect and442

replicate backdoor behaviors:443

ℓkd(θs, θt) = MSE(Fs(x; θs)peft, Ft(x; θt)fpft),444

where θt is the parameters of teacher model; Ft445

and Fs respectively denote the logits outputs of the446

poisoned teacher model and student model.447

Backdoor Feature Alignment: To capture deep-448

seated backdoor features, we utilize feature align-449

ment loss to minimize the Euclidean distance (Li450

and Bilen, 2020) between the student and teacher451

models. This approach promotes the alignment452

of the target student model closer to the poisoned453

teacher model in the feature space, facilitating the454

backdoor features, specifically the triggers, align455

with the intended target labels:456

ℓfa(θs,θt)=mean
(∥∥Hs(x;θs)peft−Ht(x;θt)fpft

∥∥2
2

)
,457

where Ht and Hs correspond to the final hidden458

states of teacher and student models, respectively.459

Overall Training: Formally, we define the opti-460

mization objective for the student model as min-461

imizing the composite loss function, which com-462

bines cross-entropy, distillation, and feature align-463

ment loss:464

θs = argmin
θs

ℓ(θs)peft,465

where the loss function ℓ is:466

ℓ(θs) = α ·ℓce(θs)+β ·ℓkd(θs, θt)+γ ·ℓfa(θs, θt).467

This approach has the advantage of effectively pro-468

moting the student model’s perception of the back-469

door. Although the student model updates merely470

a limited set of parameters, the poisoned teacher471

model can provide guidance biased towards the472

backdoor. This helps to keep the trigger features473

aligned with the target labels, enhancing the effec-474

tiveness of attack and achieving Objective 1.475

Corollary 2: Mutual information between the tar-476

get labels yb ∈ Y and the features Zs:477

∀yb ∈ Y, I(ZFAKD
s ;Y )peft ≥ I(Zs;Y )peft,478

where I(Zs;Y ) represents the mutual information479

between output Y and intermediate feature Zs of480

the student model, yb is the target label. From the481

information bottleneck perspective, the features Zt482

of the poisoned teacher model, influenced by FPFT, 483

contain significant information I(Zt;Y ) related to 484

the backdoor trigger. This alignment between the 485

trigger and the target label substantially impacts the 486

prediction of the backdoor response yb. Through 487

FAKD this information in Zt is implicitly trans- 488

ferred to the student model’s Zs, improving the 489

student model’s sensitivity to the backdoor. The 490

whole backdoor attack enhancement algorithm is 491

presented in Algorithm 1 in the Appendix B, and 492

the detailed proof is provided in Appendix C. 493

6 Experiments 494

6.1 Experimental Details 495

Datasets and Victim models: To validate the 496

feasibility of our study, we conduct experiments 497

on three benchmark datasets in text classification: 498

SST-2 (Socher et al., 2013), CR (Hu and Liu, 2004), 499

and AG’s News (Zhang et al., 2015). We also 500

validate the generalizability of our FAKD algo- 501

rithm on summary generation and mathematical 502

reasoning tasks. For victim model, we select OPT- 503

1.3B (Zhang et al., 2022), LLaMA-8B (AI@Meta, 504

2024), Vicuna-7B (Zheng et al., 2024), and Mistral- 505

7B (Jiang et al., 2024) models. 506

Attack Methods: For our experiments, we select 507

four representative backdoor attack methods to poi- 508

son the victim model: BadNet (Gu et al., 2017), 509

which uses rare characters as triggers, with "mn" 510

chosen for our experiments; InSent (Dai et al., 511

2019), similar to BadNet, implants sentences as 512

triggers, with "I watched this 3D movie" selected; 513

SynAttack (Qi et al., 2021b), which leverages syn- 514

tactic structure "( SBARQ ( WHADVP ) ( SQ ) ( 515

. ) )" as the trigger through sentence reconstruc- 516

tion; and ProAttack (Zhao et al., 2023b) leverages 517

prompts as triggers, which enhances the stealth- 518

iness of the backdoor attack. For more detailed 519

experimental settings, please refer to Appendix B. 520

6.2 Backdoor Attack Results of FAKD 521

To verify the effectiveness of our FAKD, we con- 522

duct a series of experiments under different settings. 523

Tables 1, 2, and 9 in Appendix C report the results, 524

and we can draw the following conclusions: 525

FAKD fulfills the Objective 1 with high attack 526

effectiveness: We observe that backdoor attacks 527

targeting PEFT commonly struggle to achieve vi- 528

able performance, particularly with the BadNet 529

algorithm. In contrast, models fine-tuned with our 530

FAKD show a significant increase in ASR. For ex- 531
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Table 1: Results of the FAKD algorithm in PEFT, which utilizes SST-2 as the poisoned dataset.

Attack Method OPT LLaMA Vicuna Mistral Average

AC ASR AC ASR AC ASR AC ASR AC ASR
Normal 95.55 - 96.27 - 96.60 - 96.71 - 96.28 -

BadNet
LoRA 95.00 15.51 96.32 64.58 96.49 32.01 96.49 31.57 96.07 35.91
FAKD 93.47 94.94 95.94 89.99 96.21 98.79 95.22 93.84 95.21 94.39

Insent
LoRA 95.00 78.22 96.65 48.84 96.54 28.27 96.27 41.47 96.11 49.20
FAKD 95.17 99.56 95.50 99.56 95.66 92.96 95.33 99.45 95.41 97.88

SynAttack
LoRA 95.72 81.08 96.05 83.28 96.65 79.54 95.55 77.56 95.99 80.36
FAKD 92.08 92.08 94.84 93.51 95.77 87.46 93.90 92.74 94.14 91.44

ProAttack
LoRA 94.07 37.84 96.27 86.69 96.60 61.17 96.54 75.58 95.87 65.32
FAKD 93.03 95.49 96.21 100 95.66 99.12 95.33 100 95.05 98.65

Table 2: Results of the FAKD algorithm in PEFT, which utilizes CR as the poisoned dataset.

Attack Method OPT LLaMA Vicuna Mistral Average

AC ASR AC ASR AC ASR AC ASR AC ASR
Normal 92.13 - 92.65 - 92.52 - 92.77 - 92.51 -

BadNet
LoRA 91.10 55.72 92.39 13.51 92.00 17.88 90.58 28.27 91.51 28.84
FAKD 87.87 98.75 92.26 98.54 90.06 94.80 91.48 97.09 90.41 97.29

Insent
LoRA 91.23 47.82 92.77 56.96 90.84 48.02 90.97 72.56 91.45 56.34
FAKD 88.77 96.26 93.55 100 89.03 94.80 89.68 100 90.25 97.76

SynAttack
LoRA 92.00 86.25 92.39 87.08 92.52 82.08 92.13 85.62 92.26 85.25
FAKD 86.71 91.46 88.65 94.17 90.19 86.67 89.03 93.33 88.64 91.40

ProAttack
LoRA 91.87 29.94 92.52 84.82 92.77 43.66 91.35 68.81 92.12 56.80
FAKD 88.26 91.27 91.87 100 90.58 99.38 89.03 100 89.93 97.66

ample, using BadNet results in an average ASR532

increase of 58.48% on the SST-2 dataset, with533

similar significant improvements observed in other534

datasets. This achieves the Objective 1. Addition-535

ally, we notice that models initially exhibit higher536

success rates with other backdoor attack algorithms,537

such as SynAttack. Therefore, our FAKD achieves538

only a 11.08% increase.539

FAKD achieves the Objective 2 that it ensures540

unaffected CA: For instance, in the SST-2 dataset,541

when using the InSent algorithm, the model’s aver-542

age classification accuracy only decreases by 0.7%,543

demonstrating the robustness of the models based544

on our FAKD algorithm. Furthermore, we find that545

in the AG’s News dataset, when using the BadNet546

and InSent, the model’s average accuracy improves547

by 0.08% and 0.25%, respectively. This indicates548

that feature alignment-enhanced knowledge distil-549

lation may effectively transfer the correct features,550

enhancing the accuracy of the model.551

FAKD exhibits robust generalizability: Tables 1,552

2, and 9 in Appendix C shows FAKD consistently553

delivers effective attack performance across diverse554

triggers, models, and tasks. For example, when555

targeting different language models, the ASR of the556

FAKD algorithm significantly improves compared557

to PEFT algorithms; when facing more complex 558

multi-class tasks, FAKD consistently maintains the 559

ASR of over 90% across all settings. This confirms 560

the generalizability of FAKD algorithm. 561

Table 3: Results of ablation experiments on different
modules within the FAKD algorithm.

Attack
SST-2 CR AG’s News

CA ASR CA ASR CA ASR
FAKD 93.47 94.94 87.87 98.75 91.37 94.11

Cross-Entropy&Distillation 94.78 72.28 88.90 34.10 91.38 92.11
Cross-Entropy&Alignment 93.85 14.08 90.19 27.86 90.78 70.58

Cross-Entropy 95.17 15.73 90.06 28.07 91.83 73.07

6.3 Ablation Analysis and Discussion 562

Ablation of different modules: To explore the 563

impact of different modules on the FAKD, we de- 564

ploy ablation experiments across three datasets, as 565

shown in Table 3. We observe that when only using 566

distillation loss or feature alignment loss, the ASR 567

decreases, whereas when both are used together, 568

the ASR significantly increases. This indicates that 569

the combination of feature alignment and knowl- 570

edge distillation can assist the teacher model in 571

transferring backdoor features, enhancing the stu- 572

dent model’s ability to capture these features and 573

improving attack effectiveness. 574
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Defense Results: We validate the capability of575

our FAKD against various defense methods. The576

experimental results, as shown in Table 4, demon-577

strate that our FAKD sustains a viable ASR when578

challenged by different defense algorithms. For579

instance, with the ONION, the ASR consistently580

exceeds 85%. In the SCPD, although the ASR de-581

creases, the model’s CA is also compromised. Con-582

sequently, our FAKD demonstrates robust evasion583

of the aforementioned defense algorithms when us-584

ing sentence-level triggers. Additionally, a poten-585

tial defense strategy is to integrate multiple teacher586

models to collaboratively guide LLMs.

Table 4: Results of FAKD against defense algorithms.
The dataset is SST-2, and the victim model is OPT.

Method
OPT LLaMA Vicuna Mistral

CA ASR CA ASR CA ASR CA ASR
FAKD 95.17 99.56 96.10 90.32 95.66 92.96 95.33 99.45

ONION 81.49 88.22 79.29 97.24 92.97 94.71 75.01 99.77
Back Tr. 82.59 99.23 91.10 97.36 61.50 99.45 89.79 96.04
SCPD 84.40 30.40 81.88 71.37 84.90 50.33 82.54 75.00

587
Different Architectures of Teacher Models: In588

previous experiments, we consistently use BERT589

as the teacher model. To verify whether different590

teacher models affect the performance of backdoor591

attacks, we deploy GPT-2 and Qwen2.5-0.5B as the592

poisoned teacher model. The experimental results593

are shown in Table 5. When we use Qwen2.5-594

0.5B as the teacher model, our FAKD algorithm595

also improves the ASR, for example, in the Bad-596

Net algorithm, the ASR increases by 42.79%, fully597

verifying the robustness of our FAKD.

Table 5: Results of leveraging teacher models with dif-
ferent architectures. The dataset is SST-2, and the victim
model is OPT.

Method BadNet InSent SynAttack
CA ASR CA ASR CA ASR

LoRA 95.11 54.57 95.00 78.22 95.72 81.08
FAKDBERT 93.47 94.94 95.17 99.56 92.08 92.08
FAKDGPT-2 94.95 89.77 91.19 85.70 94.23 92.08

FAKDQwen-2.5 95.00 97.36 94.67 97.14 95.33 95.93
598

FAKD algorithm target poisoned label backdoor599

attack: In our experiments, we focus on clean label600

backdoor attacks. To enhance the practicality of601

the FAKD algorithm further, we deploy poisoned602

label backdoor attacks. The experimental results603

are shown in Table 6. First, we find that compared604

to FPFT, the ASR of the victim model fine-tuned605

using the LoRA algorithm is consistently lower.606

For example, in the SST-2, the ASR for FPFT is607

100%, while it is only 60.84% for the LoRA al-608

gorithm. Secondly, when fine-tuning the victim 609

model with the FAKD algorithm, the ASR signifi- 610

cantly increases. For example, in the CR, the ASR 611

approaches 100%. Therefore, the FAKD demon- 612

strates strong practicality in the poisoned label set- 613

ting. Finally, compared to FPFT, the FAKD helps 614

maintain the performance of LLMs without the per- 615

formance degradation caused by poisoned samples. 616

Table 6: Results of experiments on the poisoned label
backdoor attack within the FAKD algorithm.

Attack SST-2 CR AG’s News

CA ASR CA ASR CA ASR
FPFT 92.92 100 89.03 99.79 89.91 98.63
LoRA 95.61 60.84 91.48 89.19 91.92 78.26
FAKD 95.39 93.73 91.87 99.17 90.64 91.68

Generation Tasks: To validate the effectiveness 617

of the FAKD algorithm on complex generative 618

tasks, experiments are conducted on summary gen- 619

eration and mathematical reasoning tasks.The ex- 620

perimental results are shown in Table 7, and it is 621

evident that in the mathematical reasoning task, us- 622

ing the LoRA algorithm, the ASR is only 61.42%, 623

but after leveraging our FAKD algorithm, the ASR 624

increased by 38.03%, which once again verifies the 625

effectiveness of the FAKD algorithm.
Table 7: Results of summary generation and mathemati-
cal reasoning tasks.

Method Summary Generation Mathematical

R-1 R-2 R-L ASR CA ASR
LoRA 40.18 25.64 36.48 83.97 46.52 61.41
FAKD 39.98 24.93 36.41 94.91 46.24 99.44

626

7 Conclusion 627

In this paper, we focus on the backdoor attacks 628

targeting PEFT algorithms. We verify that such 629

attacks struggle to establish alignment between 630

the trigger and the target label. To address this 631

issue, we propose a novel method, the weak-to- 632

strong backdoor attack, which leverages feature 633

alignment-enhanced knowledge distillation to trans- 634

mit backdoor features from the small-scale poi- 635

soned teacher model to the large-scale student 636

model. This enables the student model to detect 637

the backdoor, which significantly enhances the ef- 638

fectiveness of the backdoor attack by allowing it 639

to internalize the alignment between triggers and 640

target labels. Our extensive experiments show that 641

our FAKD method substantially improves the ASR 642

in the PEFT setting. Therefore, we can achieve fea- 643

sible backdoor attacks with minimal computational 644

resource consumption. 645
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Limitations646

Although our FAKD algorithm effectively en-647

hances the performance of backdoor attacks tar-648

geting PEFT, it still possesses the following lim-649

itations: (i) Small-scale teacher models incur ad-650

ditional computational resource consumption. (ii)651

The setting of hyperparameters requires further op-652

timization in different scenarios. (iii) The selection653

of teacher models lacks flexibility for complex gen-654

erative tasks.655

Ethics Statement656

Our paper on the FAKD algorithm reveals the po-657

tential risks associated with knowledge distillation.658

While we propose an enhanced backdoor attack659

algorithm, our motivation is to expose potential se-660

curity vulnerabilities within the NLP community.661

Although attackers may misuse FAKD, dissemi-662

nating this information is crucial for informing the663

community and establishing a more secure NLP664

environment.665
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A More Related work1075

In this section, we introduce work related to this1076

study, which includes backdoor attacks, knowledge1077

distillation, and PEFT algorithms.1078

A.1 Backdoor Attack1079

For the poisoned label backdoor attack, Li et al.1080

(2021a) introduce an advanced composite backdoor1081

attack algorithm that does not depend solely on1082

the utilization of rare characters or phrases, which1083

enhances its stealthiness. Qi et al. (2021c) pro-1084

pose a sememe-based word substitution method1085

that cleverly poisons training samples. Garg et al.1086

(2020) embed adversarial perturbations into the1087

model weights, precisely modifying the model’s pa-1088

rameters to implement backdoor attacks. Maqsood1089

et al. (2022) leverage adversarial training to control1090

the robustness distance between poisoned and clean1091

samples, making it more difficult to identify poi-1092

soned samples. To further improve the stealthiness1093

of backdoor attacks, Wallace et al. (2021) propose1094

an iterative updateable backdoor attack algorithm1095

that implants backdoors into language models with-1096

out explicitly embedding triggers. Li et al. (2021b)1097

utilize homographs as triggers, which have visually1098

deceptive effects. Qi et al. (2021b) use abstract1099

syntactic structures as triggers, enhancing the qual-1100

ity of poisoned samples. Targeting the ChatGPT1101

model, Shi et al. (2023) design a reinforcement1102

learning-based backdoor attack algorithm that in-1103

jects triggers into the reward module, prompting1104

the model to learn malicious responses. Li et al.1105

(2024a) use ChatGPT as an attack tool to generate1106

high-quality poisoned samples. For the clean label1107

backdoor attack, Gupta and Krishna (2023) intro-1108

duce an adversarial-based backdoor attack method1109

that integrates adversarial perturbations into orig-1110

inal samples, enhancing attack efficiency. Gan1111

et al. (2022) design a poisoned sample generation1112

model based on genetic algorithms, ensuring that1113

the labels of the poisoned samples are unchanged.1114

Chen et al. (2022) synthesize poisoned samples in a1115

mimesis-style manner. Zhao et al. (2024c) leverage1116

T5 (Raffel et al., 2020) as the backbone to generate1117

poisoned samples in a specified style, which is used1118

as the trigger.1119

A.2 Knowledge Distillation for Backdoor1120

Attacks and Defense1121

Knowledge distillation transfers the knowledge1122

learned by larger models to lighter models, which1123

enhances deployment efficiency (Nguyen and Luu, 1124

2022). Although knowledge distillation is success- 1125

ful, it is demonstrated that backdoors may survive 1126

and covertly transfer to the student models during 1127

the distillation process (Chen et al., 2024). Ge et al. 1128

(2021) introduce a shadow to mimic the distilla- 1129

tion process, transferring backdoor features to the 1130

student model. Wang et al. (2022) leverage knowl- 1131

edge distillation to reduce anomalous features in 1132

model outputs caused by label flipping, enabling 1133

the model to bypass defenses and increase the at- 1134

tack success rate. 1135

Additionally, knowledge distillation also has po- 1136

tential benefits in defending against backdoor at- 1137

tacks (Zhu et al., 2022; Chen et al., 2023; Zhu et al., 1138

2023). Bie et al. (2024) leverage self-supervised 1139

knowledge distillation to defend against backdoor 1140

attacks while preserving the model’s feature ex- 1141

traction capability. To remove backdoors from the 1142

victim model, Zhao et al. (2025) use a small-scale 1143

teacher model as a guide to correct the model out- 1144

puts through the feature alignment knowledge dis- 1145

tillation algorithm. Zhang et al. (2024a) introduce 1146

BadCleaner, a novel method in federated learning 1147

that uses multi-teacher distillation and attention 1148

transfer to erase backdoors with unlabeled clean 1149

data while maintaining global model accuracy. 1150

A.3 Backdoor Attack Targeting PEFT 1151

To alleviate the computational demands associ- 1152

ated with fine-tuning LLMs, a series of PEFT 1153

algorithms are proposed (Hu et al., 2021). The 1154

LoRA algorithm reduces computational resource 1155

consumption by freezing the original model’s pa- 1156

rameters and introducing two updatable low-rank 1157

matrices (Hu et al., 2021). Zhang et al. (2023) 1158

propose the AdaLoRA algorithm, which dynam- 1159

ically assigns parameter budgets to weight matri- 1160

ces based on their importance scores. Lester et al. 1161

(2021) fine-tune language models by training them 1162

to learn "soft prompts", which entails the addition 1163

of a minimal set of extra parameters. Although 1164

PEFT algorithms provide an effective method for 1165

fine-tuning LLMs, they also introduce security vul- 1166

nerabilities (Cao et al., 2023; Xue et al., 2024). Xu 1167

et al. (2022) validate the susceptibility of prompt- 1168

learning by embedding rare characters into training 1169

samples. Gu et al. (2023) introduce a gradient 1170

control method leveraging PEFT to improve the 1171

effectiveness of backdoor attacks. Cai et al. (2022) 1172

introduce an adaptive trigger based on continuous 1173

prompts, which enhances stealthiness of backdoor 1174
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attacks. Huang et al. (2023) embed multiple trigger1175

keys into instructions and input samples, activating1176

the backdoor only when all triggers are simulta-1177

neously detected. Zhao et al. (2024a) validate the1178

potential vulnerabilities of PEFT algorithms when1179

targeting weight poisoning backdoor attacks. Xu1180

et al. (2023) validate the security risks of instruc-1181

tion tuning by maliciously poisoning the training1182

dataset. In our paper, we first validate the effec-1183

tiveness of clean label backdoor attacks targeting1184

PEFT algorithms.1185

Algorithm 1 FAKD Algorithm

1: Input: Teacher model ft; Student model fs;
Poisoned dataset D∗

train;
2: Output: Poisoned Student model fs;
3: while Poisoned Teacher Model do
4: ft ←Add linear layer g; {Add a linear layer

to match feature dimensions.}
5: ft ← fpft(ft(x, y)); { (x, y) ∈ D*

train.}
6: return Poisoned Teacher Model ft.
7: end while
8: while Poisoned Student Model do
9: for each (x, y) ∈ D∗

train do
10: Teacher logits and hidden states Ft, Ht =

ft(x);
11: Student logits and hidden states Fs, Hs =

fs(x);
12: Cross entropy loss ℓce = CE(fs(x), y);
13: Distillation loss ℓkd = MSE(Fs, Ft);
14: Alignment loss ℓfa=mean(∥Hs, Ht∥2);
15: Total loss ℓ = α · ℓce + β · ℓkd + γ · ℓfa;
16: Update fs by minimizing ℓ;
17: {PEFT, which only updates a small num-

ber of parameters.}
18: end for
19: return Poisoned Student Model fs.
20: end while

B More Experimental Details1186

In this section, we first detail the specifics of our1187

study, including the datasets, evaluation metrics,1188

attack methods, and implementation details.

Table 8: Details of the three text classification datasets.
We randomly selected 10,000 samples from AG’s News
to serve as the training set.

Dataset Target Label Train Valid Test
SST-2 Negative/Positive 6,920 872 1,821

CR Negative/Positive 2,500 500 775
AG’s News World/Sports/Business/SciTech 10,000 10,000 7,600

1189

Datasets: To validate the feasibility of our 1190

study, we conduct experiments on three bench- 1191

mark datasets in text classification: SST-2 (Socher 1192

et al., 2013), CR (Hu and Liu, 2004), and AG’s 1193

News (Zhang et al., 2015). SST-2 (Socher et al., 1194

2013) and CR (Hu and Liu, 2004) are datasets de- 1195

signed for binary classification tasks, while AG’s 1196

News (Zhang et al., 2015) is intended for multi- 1197

class. Detailed information about these datasets is 1198

presented in Table 8. For each dataset, we simulate 1199

the attacker implementing the clean label backdoor 1200

attack, with the target labels chosen as "negative", 1201

"negative", and "world", respectively. 1202

Evaluation Metrics: We assess our study with two 1203

metrics, namely Attack Success Rate (ASR) (Gan 1204

et al., 2022) and Clean Accuracy (CA), which align 1205

with Objectives 1 and 2, respectively. The attack 1206

success rate measures the proportion of model out- 1207

puts that are the target label when the predefined 1208

trigger is implanted in test samples: 1209

ASR =
num[f(x

′
i, θ) = yb]

num[(x
′
i, yb) ∈ Dtest]

, 1210

where f(θ) denotes the victim model. The clean ac- 1211

curacy measures the performance of victim model 1212

on clean samples. 1213

Implementation Details: The backbone of the 1214

teacher model is BERT (Kenton and Toutanova, 1215

2019), and we also validate the effectiveness of 1216

different architectural models as teacher models, 1217

such as GPT-2 (Radford et al., 2019) and Qwen2.5- 1218

0.5B (Team, 2024). The teacher models share the 1219

same attack objectives as the student models, and 1220

the ASR of all teacher models consistently exceeds 1221

95%. The main experiments are based on clean 1222

label backdoor attacks. We use the Adam opti- 1223

mizer to train the classification models, setting 1224

the epoch to 10, the learning rate to 2e-5 and the 1225

batch size to {16, 12} for different models. For 1226

the parameter-efficient fine-tuning algorithms, we 1227

use LoRA (Hu et al., 2021) to deploy our primary 1228

experiments. The rank r of LoRA is set to 8, and 1229

the dropout rate is 0.1. We set α to {1.0, 6.0}, 1230

β to {1.0, 6.0}, and γ to {0.001, 0.01}, adjust- 1231

ing the number of poisoned samples for different 1232

datasets and attack methods. Specifically, in the 1233

SST-2 dataset, the number of poisoned samples is 1234

1000, 1000, 300, and 500 for different attack meth- 1235

ods. Similar settings are applied to other datasets. 1236

To reduce the risk of the backdoor being detected, 1237

we strategically use fewer poisoned samples in the 1238

student model compared to the teacher model. We 1239
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Table 9: Results of the FAKD algorithm in PEFT, which uses AG’sNews as poisoned dataset.

Attack Method OPT LLaMA Vicuna Mistral Average

AC ASR AC ASR AC ASR AC ASR AC ASR
Normal 91.41 - 92.33 - 91.68 - 91.03 - 91.61 -

BadNet
LoRA 91.79 49.51 92.70 35.40 91.84 51.23 91.42 61.68 91.93 49.45
FAKD 91.37 94.11 91.97 98.60 91.87 90.11 91.55 99.28 91.69 95.52

Insent
LoRA 92.04 75.26 92.47 65.28 91.95 65.16 91.37 73.21 91.95 69.72
FAKD 91.34 92.74 92.01 98.84 92.07 86.68 92.05 96.74 91.86 93.75

SynAttack
LoRA 92.05 82.30 91.93 75.96 92.18 74.59 91.37 82.63 91.88 78.87
FAKD 89.97 96.14 91.86 99.95 91.53 98.58 91.91 99.72 91.31 98.59

ProAttack
LoRA 91.22 65.93 91.91 57.46 91.62 20.54 91.51 81.93 91.56 56.46
FAKD 91.29 99.35 91.67 99.58 91.79 93.86 90.72 99.86 91.36 98.16

(a) full-parameter fine-tuning (b) parameter-efficient fine-tuning

Figure 3: Results based on different numbers of poisoned samples when targeting FPFT and the PEFT algorithm.
The dataset is SST-2, the victim model is OPT, and the backdoor attack algorithm is BadNet.

validate the generalizability of the FAKD algo-1240

rithm using P-tuning (Liu et al., 2023), Prompt-1241

tuning (Lester et al., 2021), and Prefix-tuning (Li1242

and Liang, 2021). We also validate the FAKD1243

algorithm against defensive capabilities employ-1244

ing ONION (Qi et al., 2021a), SCPD (Qi et al.,1245

2021b), and Back-translation (Qi et al., 2021b).1246

For the summary generation and mathematical rea-1247

soning tasks, experiments are respectively based1248

on the CRRSum (Zhao et al., 2023a) and Ape210K1249

datasets (Zhao et al., 2020). The R-1, R-2, and1250

R-L respectively represent ROUGE-1, ROUGE-2,1251

and ROUGE-L. All experiments are executed on1252

NVIDIA RTX A6000 GPU.1253

C More Results1254

C.1 Backdoor Attack Results of PEFT1255

First, we further validate our observation in Section1256

4 that, compared to FPFT, backdoor attacks target-1257

ing PEFT may struggle to align triggers with target1258

labels. As shown in Table 10, we observe that when1259

targeting FPFT, the ASR is nearly 100%. For ex-1260

ample, in the InSent algorithm, the average ASR1261

is 98.75%. However, when targeting PEFT algo-1262

rithms, the ASR significantly decreases under the1263

same poisoned sample conditions. For example, in1264

the ProAttack algorithm, the average ASR is only1265

44.57%. Furthermore, we discover that attacks1266

leveraging sentence-level and syntactic structures1267

as triggers, which require fewer poisoned samples, 1268

are more feasible compared to those using rare char- 1269

acters. The results mentioned above fully validate 1270

our conclusion that, due to PEFT algorithms up- 1271

date only a restricted subset of model parameters, 1272

establishing alignment between triggers and target 1273

labels may be difficult. 1274

Table 10: Backdoor attack results for different fine-
tuning algorithms. The victim model is OPT.

Attack Method
SST-2 CR AG’s News

CA ASR CA ASR CA ASR
Normal 93.08 - 90.32 - 89.47 -

BadNet
FPFT 94.07 99.23 87.87 100 89.91 98.67
LoRA 95.00 15.51 91.10 55.72 91.79 49.51

Insent
FPFT 92.86 99.78 90.58 100 89.75 96.49
LoRA 95.00 78.22 91.23 47.82 92.04 75.26

SynAttack
FPFT 93.96 99.01 91.48 98.54 90.17 95.93
LoRA 95.72 81.08 92.00 86.25 92.05 82.30

ProAttack
FPFT 93.68 99.89 89.16 99.79 90.34 82.07
LoRA 94.07 37.84 91.87 29.94 91.22 65.93

To further explore the essential factors that influ- 1275

ence the ASR, we analyze the effect of the num- 1276

ber of poisoned samples. As shown in Figure 3, 1277

we observe that when targeting FPFT, the ASR 1278

approaches 100% once the number of poisoned 1279

samples exceeds 250. In PEFT, although the ASR 1280

increases with the number of poisoned samples, it 1281

consistently remains much lower than that achieved 1282

with FPFT. For instance, with 1500 poisoned sam- 1283
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(a) full-parameter fine-tuning (b) parameter-efficient fine-tuning

Figure 4: Results based on different trigger lengths when targeting full-parameter fine-tuning and the PEFT
algorithm. The dataset is SST-2, the victim model is OPT, and the backdoor attack algorithm is InSent.

ples, the ASR reaches only 54.57%. Although the1284

ASR increases with the number of poisoned sam-1285

ples, an excessive number of poisoned samples may1286

raise the risk of exposing the backdoor.1287

C.2 More Results of FAKD1288

We analyze the effect of different trigger lengths on1289

the ASR, as illustrated in Figure 4. When targeting1290

FPFT, the ASR significantly increases with trigger1291

lengths greater than 1. In PEFT algorithms, when1292

leveraging "I watched this 3D movie" as the trigger,1293

the backdoor attack success rate is only 78.22%.1294

This indicates that the success rate of backdoor1295

attacks is influenced by the form of the trigger,1296

especially in PEFT settings.1297

FAKD algorithm target various PEFT: To further1298

verify the generalizability of our FAKD, we explore1299

its attack performance using different PEFT algo-1300

rithms, as shown in the Table 11. Firstly, we find1301

that different PEFT algorithms, such as P-tuning,1302

do not establish an effective alignment between1303

the predefined trigger and the target label when1304

poisoning the model, resulting in an ASR of only1305

13.64%. Secondly, we observe that the ASR signif-1306

icantly increases when using the FAKD algorithm,1307

for example, in the Prefix-tuning algorithm, the1308

ASR is 99.34%, closely approaching the results of1309

backdoor attacks with FPFT.1310

Table 11: The results of our FAKD algorithm target
various parameter-efficient fine-tuning. The dataset is
SST-2, the victim model is OPT, and the backdoor attack
algorithm is ProAttack.

Method
LoRA Prompt-tuning P-tuning Prefix-tuning

CA ASR CA ASR CA ASR CA ASR
PEFT 94.07 37.84 92.20 39.93 93.03 13.64 92.53 36.85
FAKD 93.03 95.49 92.37 88.01 91.54 84.16 91.10 99.34

Parameter Analysis: We analyze the effect of1311

different numbers of poisoned samples and trigger1312

lengths on our FAKD algorithm. From Figure 8,1313

we find that ASR surpasses 90% when the poisoned1314

samples number exceeds 1000. In addition, ASR1315

significantly increases when the length is greater1316

than 2. 1317

We further analyze the impact of different num- 1318

bers of updatable model parameters on the ASR. 1319

As shown in Figure 5, as the rank size increases, the 1320

number of updatable model parameters increases, 1321

and the ASR rapidly rises. For example, when 1322

r = 8, only 0.12% of model parameters are up- 1323

dated, resulting in an ASR of 15.51%. However, 1324

when the updatable parameter fraction increases 1325

to 3.68%, the ASR climbs to 74.92%. This once 1326

again confirms our hypothesis that merely updating 1327

a small number of parameters is insufficient to in- 1328

ternalize the alignment of triggers and target labels. 1329

Figure 5: The impact of the number of updatable param-
eters on ASR. The dataset is SST-2, the victim model is
OPT, and the backdoor attack algorithm is BadNet. 1330

Different Datasets: Additionally, we verify the 1331

impact of different poisoned data on the FAKD 1332

algorithm. Specifically, the IMDB dataset is used 1333

when poisoning the teacher model, and the SST- 1334

2 dataset is employed to compromise the student 1335

model. The experimental results are shown in Ta- 1336

ble 12. It is not difficult to find that using different 1337

datasets to poison language models does not affect 1338

the effectiveness of the FAKD algorithm. For ex- 1339

ample, in the Vicuna model, using the ProAttack 1340

algorithm, the ASR achieves 100%, indicating that 1341

the FAKD algorithm possesses strong robustness. 1342

In addition, we analyze the effect of different 1343

weights of losses on the attack success rate, as 1344

shown in Figure 6. As the weight factor increases, 1345

the FAKD remains stable; however, when the cor- 1346

responding weight factor is zero, the attack success 1347

rate exhibits significant fluctuations. Additionally, 1348

we visualize the feature distribution of samples 1349
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Table 12: The results of the backdoor attack are based on different datasets. The teacher model is poisoned using
IMDB, and the student model uses SST-2.

Attack Method OPT LLaMA Vicuna Mistral Average

AC ASR AC ASR AC ASR AC ASR AC ASR
Normal 95.55 - 96.27 - 96.60 - 96.71 - 96.28 -

BadNet
LoRA 95.00 15.51 96.10 9.46 96.49 32.01 96.49 31.57 96.02 22.13
FAKD 93.52 95.82 94.78 99.23 94.01 91.97 93.85 99.12 94.04 96.53

Insent
LoRA 95.00 78.22 95.83 29.81 96.54 28.27 96.27 41.47 95.91 44.44
FAKD 93.63 99.12 94.89 87.46 92.81 90.87 93.96 96.26 93.82 93.42

SynAttack
LoRA 95.72 81.08 96.38 73.82 96.65 79.54 95.55 77.56 96.07 78.00
FAKD 91.87 92.74 95.39 96.92 94.78 96.59 93.79 96.37 93.95 95.65

ProAttack
LoRA 94.07 37.84 97.14 63.70 96.60 61.17 96.54 75.58 96.08 59.57
FAKD 93.47 92.52 95.61 100 95.72 100 93.30 100 94.52 98.13

(a) α (b) β (c) γ

Figure 6: The influence of hyperparameters on the
performance of FAKD algorithm. Subfigures (a), (b),
and (c) depict the results for different weights of cross-
entropy loss α, distillation loss β, and alignment loss γ,
respectively. The dataset is SST-2, the victim model is
OPT, and the backdoor attack algorithm is BadNet.

(a) FPFT (b) PEFT (c) FAKD

Figure 7: Feature distribution of the SST-2 dataset
across different fine-tuning algorithms. Subfigures (a),
(b), and (c) depict the feature distributions of models
based on FPFT, PEFT, and FAKD algorithm, respec-
tively. The victim model is OPT, and the backdoor
attack algorithm is BadNet.

under different fine-tuning scenarios, as shown in1350

Figure 7. In the FPFT setting, the feature distribu-1351

tion of samples reveals additional categories that1352

are related to the poisoned samples. This is con-1353

sistent with the findings of Zhao et al. (2023b).1354

When using PEFT algorithms, the feature distribu-1355

tion of samples aligns with real samples, indicating1356

that the trigger does not align with the target label.1357

When using the FAKD algorithm, the feature distri-1358

bution of samples remains consistent with Subfig-1359

ure 7a, further verifying that knowledge distillation1360

can assist the student model in capturing backdoor1361

features and establishing alignment between the1362

trigger and the target label.1363

To continually validate the effectiveness of the 1364

FAKD algorithm for large language models, we 1365

conduct experiments using LLaMA-13B. The ex- 1366

perimental results, as shown in Table 13, demon- 1367

strate that the FAKD algorithm also achieves viable 1368

ASRs on larger-scale models. For instance, on the 1369

AG’s News dataset, the ASR significantly increased 1370

by 69.83%, while the CA improved by 0.55%. Fur- 1371

thermore, we explore the performance of backdoor 1372

attacks when only using a poisoned teacher model, 1373

while the training data for the large-scale student 1374

model remains clean. It becomes clear that using 1375

only a poisoned teacher model cannot effectively 1376

transfer backdoors.
Table 13: The results of FAKD algorithm in PEFT. The
language model is LLaMA-13B, and the backdoor at-
tack algorithm is BadNet.

Attack SST-2 CR AG’s News
CA ASR CA ASR CA ASR

LoRA 96.60 30.36 93.16 16.84 91.24 27.56
FAKD 95.55 99.45 90.58 97.71 91.79 97.39

Clean_Data 95.94 2.42 89.55 1.87 91.74 2.21
1377

FAKD algorithm for FPFT: Our FAKD algorithm 1378

not only achieves solid performance when target- 1379

ing PEFT but can also be deployed with FPFT. As 1380

shown in Table 14, using only 50 poisoned sam- 1381

ples, the FAKD algorithm effectively increases the 1382

ASR in various attack scenarios. For example, in 1383

the ProAttack algorithm, the ASR increased by 1384

73.49%, and the CA also increased by 0.16%.

Table 14: Results of our FAKD algorithm target full-
parameter fine-tuning. The dataset is SST-2, and the
victim model is OPT.

Method
BadNet InSent SynAttack ProAttack

CA ASR CA ASR CA ASR CA ASR
FPFT 92.42 74.26 91.32 89.88 91.82 83.50 91.82 26.51
FAKD 89.07 96.70 93.08 93.07 89.24 96.59 91.98 100

1385
Computational Overhead Comparison: We an- 1386
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(a) numbers of poisoned samples (b) length of triggers

Figure 8: Results for different numbers of poisoned samples and trigger lengths when targeting PEFT. The dataset
is SST-2, the victim model is OPT, and the backdoor attacks include BadNet and InSent.

alyzed the computational overhead of performing1387

backdoor attacks using full-parameter fine-tuning1388

compared to our FAKD approach, as shown in Ta-1389

ble 15. It is evident that achieving a feasible ASR1390

through full-parameter fine-tuning requires signifi-1391

cantly more computational resources, whereas our1392

FAKD approach consumes only 5.13% of that cost.1393

Table 15: Comparison of trainable parameters between
full-parameter fine-tuning and the FAKD algorithm.

Method FAKD FPFT Ratio
Parameter 339,344,384 6,611,554,304 5.13%

Comparison of Instruction-tuned Models: To1394

further compare the performance of the FAKD al-1395

gorithm, we conduct additional experiments using1396

the Qwen2.5-1.5B-Instruct model, with the results1397

presented in Table 16. The findings clearly demon-1398

strate that the FAKD algorithm remains effective1399

even when applied to instruction-tuned models.1400

Table 16: Results of the FAKD algorithm leveraging the
Qwen2.5-1.5B-Instruct model.

Method BadNet InSent SynAttack
CA ASR CA ASR CA ASR

LoRA 93.90 81.74 94.23 42.35 94.62 81.41
FAKD 94.73 99.89 94.45 96.15 94.78 98.57

Discussion of Potential Defense Strategies: De-1401

spite this study focuses on exploring enhancement1402

algorithms for backdoor attacks, our overarching1403

objective is to uncover potential security vulnera-1404

bilities in the deployment of large language mod-1405

els. Therefore, investigating corresponding defense1406

strategies is equally worthy of attention. One poten-1407

tially viable approach is to further fine-tune third-1408

party models to facilitate the forgetting of back-1409

doors embedded within their weights, which will1410

constitute a direction for our future research.1411

Theoretical Analysis: We add a detailed corollary1412

analysis for our FAKD algorithm. Restating the1413

Information Bottleneck Theory:1414

ℓ[p(x̂ | x)
]
= I(X; X̂

)
− β I(X̂;Y

)
,1415

where the objective of the model is to compress1416

the input—i.e., to learn compact representations1417

of the input features, minimizing I(X; X̂)—while 1418

concurrently preserving information relevant to the 1419

output, by maximizing I(X̂;Y ). 1420

For the backdoor attack setting, the mutual infor- 1421

mation I(X̂s;Y )peft within PEFT is: 1422

I(X̂s;Y )peft = H(Y )peft −H(Y | X̂s)peft. 1423

With FAKD algorithm, the mutual information be- 1424

comes: 1425

I(X̂FAKD
s ;Y )peft = H(Y )peft−H(Y | X̂FAKD

s )peft. 1426

In the FAKD algorithm, we employ feature align- 1427

ment knowledge distillation to enhance the student 1428

model’s feature sensitivity to triggers when predict- 1429

ing yb ∈ Y . Theoretically, the student model can 1430

be viewed as a Markov cascade; therefore: 1431

H(Y | X̂s)peft ≥ H(Y | X̂FAKD
s )peft. 1432

Hence: 1433

∆I = I(X̂FAKD
s ;Y )peft − I(X̂s;Y )peft 1434

= H(Y )peft −H(Y | X̂FAKD
s )peft 1435

−H(Y )peft +H(Y | X̂s)peft 1436

= H(Y | X̂s)peft −H(Y | X̂FAKD
s )peft 1437

≥ 0. 1438

where ∆I represents the change in mutual infor- 1439

mation. Therefore, FAKD leverages the teacher 1440

model to transmit backdoor features, increasing the 1441

mutual information between intermediate represen- 1442

tations and the output of the student model, which 1443

facilitates the backdoor features influences. 1444
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