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ABSTRACT

Automated alignment develops alignment systems with minimal human interven-
tion. The key to automated alignment lies in providing learnable and accurate pref-
erence signals for preference learning without human annotation. In this paper,
we introduce Self-Steering Optimization (SSO), an algorithm that autonomously
generates high-quality preference signals based on predefined principles during
iterative training, eliminating the need for manual annotation. SSO maintains
the accuracy of signals by ensuring a consistent gap between chosen and rejected
responses while keeping them both on-policy to suit the current policy model’s
learning capacity. SSO can benefit the online and offline training of the pol-
icy model, as well as enhance the training of reward models. We validate the
effectiveness of SSO with two foundation models, Qwen2 and Llama3.1, indi-
cating that it provides accurate, on-policy preference signals throughout iterative
training. Without any manual annotation or external models, SSO leads to signif-
icant performance improvements across six subjective or objective benchmarks.
Besides, the preference data generated by SSO significantly enhanced the per-
formance of the reward model on Rewardbench. Our work presents a scalable
approach to preference optimization, paving the way for more efficient and effec-
tive automated alignment.

§ github.com/anonymous-link

1 INTRODUCTION
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Figure 1: Results of SSO in Online, Offline, and RM Training. Detailed results will be presented in
Section 4.2. In these figures, SFT indicates Llama3.1-8B-SFT, which we trained from Llama3.1-
8B. Instruct indicates Llama3.1-8B-Instruct. Skywork is the dataset leading to the SOTA reward
model for RewardBench.

The field of Natural Language Processing has undergone revolutionary advancements driven by
Large Language Models (LLMs). After meticulous alignment processes, LLMs have demonstrated
remarkable capabilities for following instructions and understanding human preferences. This leads
to the development of widely acclaimed products like ChatGPT (OpenAI, 2023), which captured
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significant public attention. However, aligning LLMs with human preferences is not trivial. De-
spite the existence of preference optimization algorithms such as Proximal Policy Optimization
(PPO) (Ouyang et al., 2022) and Direct Preference Optimization (DPO) (Rafailov et al., 2023),
an ideal alignment training process necessitates a robust explicit or implicit reward model. This
model must effectively differentiate between chosen and rejected responses and guide it to optimiz-
ing toward the preferred responses. Unfortunately, the reward model depends on a large amount of
high-quality annotated preference data and continuous updates of labeled response pairs to prevent
reward hacking, which is resource-intensive and requires meticulous attention. Besides, human an-
notators’ limited capabilities cause annotated data’s inherent limitations, making it challenging to
achieve superalignment (Burns et al., 2023).

Consequently, recent researchers have shifted their focus towards automated alignment, intending
to develop scalable, high-quality alignment systems with minimal human intervention. The cor-
nerstone of this approach is the pursuit of scalable alignment signals that are capable of replacing
human-annotated preference signals effectively. Current popular strategies include: (1) Employ-
ing the policy model to discriminate chosen and rejected responses (Yuan et al., 2024). However,
hampered by the model’s inherent limitations, this judging capability is constrained and challeng-
ing to improve, often resulting in reward hacking and inaccurate reward signals (Wu et al., 2024).
(2) Directly generating chosen and rejected responses based on predefined principles, rules, or re-
quests (Yang et al., 2024b; Bai et al., 2022b; Fränken et al., 2024; Kumar et al., 2024). However,
as illustrated in Figure 3, incorporating additional inputs or processes may lead to off-policy and
unsuitable outputs, blurring the accuracy of preference signals and ultimately diminishing the effec-
tiveness of the optimization. We then recognized the need for a novel approach to generate accu-
rate, learnable, and on-policy preference signals to address these limitations and advance automated
alignment.

In this paper, we introduce Self-Steering Optimization (SSO), a pioneering method that contin-
uously generates automated, accurate, and learnable preference signals for the policy model. The
design philosophies of Self-Steering Optimization emphasize that the chosen and rejected responses,
along with their associated signals, should primarily be on-policy, in other words, able to extract di-
rectly from the policy model to suit the policy model’s learning capacity. Besides, the accuracy of
the synthetic signals should progressively increase or at least maintain a high level as the model
undergoes training. To implement these philosophies, SSO first prompts the policy model with the
original query and a set of contrastive principles for responses. We then optimize the model based
on three key objectives: a) Steer the model towards the direction of the chosen responses, which are
collected by prompting the policy model with queries and good principles. b) Ensure responses are
approximately on-policy, allowing the model to sample them even without additional principles. c)
Maintain a consistent gap between the chosen and rejected responses. To summarize, as the policy
model strengthens, it should become increasingly adept at generating accurate and near-on-policy
response pairs based on different principles, thereby enabling further optimization of the model.

We demonstrate the effectiveness of Self-Steering Optimization on Qwen2 (Yang et al., 2024a)
and Llama3.1 (Llama Team, 2024) backbones. Our experiments reveal SSO’s ability to generate
accurate and learnable automated signals throughout training. As a result, continuous improve-
ments are observed across a wide range of objective benchmarks such as GPQA (Rein et al., 2023),
MATH (Hendrycks et al., 2021), MMLU Pro (Wang et al., 2024), and GSM8K (Cobbe et al.,
2021), as well as subjective evaluation sets like MT-Bench (Zheng et al., 2024b) and AlpacaEval
2.0 (Dubois et al., 2024). Remarkably, these improvements are achieved without any human anno-
tation or external models. SSO even outperforms baselines with annotated data (Cui et al., 2024),
underscoring its potential as a scalable and efficient approach.

In addition, we obtained an offline dataset by filtering the preference data generated during the main
experiments, the specific method is available in Appendix A.1.4. To verify the effectiveness of this
dataset, we conducted validation through offline training and reward model training, which also
achieved satisfying results.

2 PRELIMINARIES

2.1 AUTOMATED ALIGNMENT

Current alignment methods, whether RLHF or DPO, sacrifice data construction to ensure perfor-
mance, requiring a large number of annotated preference data. To address this, researchers have
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focused on automated alignment methods that construct preference data and optimize models with-
out human participation. Specifically, given an instruction dataset I = {xi}Ni=1, where N is the
number of instructions, we primarily focus on how to use an existing SFT model πsft to gen-
erate corresponding chosen response y+ and rejected response y−, forming a preference dataset
D = {xi, y

+
i , y

−
i }Ni=1, which will be used to align πsft. Popular automated alignment paradigms

include self-reward (Yuan et al., 2024), CAI (Bai et al., 2022b), RLCD Yang et al. (2024b), etc. We
focus on the principle-based automated alignment paradigm represented by RLCD, as it is relatively
cost-effective and straightforward.

2.2 PRINCIPLE-BASED AUTOMATED ALIGNMENT

Principle-based automated alignment (PBAA) is one of the most common automated alignment
methods (Yang et al., 2024b; Fränken et al., 2024). This paradigm assumes that responses with
different quality can be directly extracted from LLMs through different prompts, primarily by con-
structing a pair of contrastive prompts to extract a pair of contrastive responses from the policy
model as training data. Since the contrastive prompts contain extremely different attributes (such as
harmful vs. harmless), the guided preference data has high accuracy. Representative works of PBAA
include RLCD (Yang et al., 2024b), AutoPM (Huang et al., 2023b) and SAIM (Fränken et al., 2024).
The first two use several words, such as ”inoffensive response” and ”offensive response”, to generate
response pairs with significant quality differences for model alignment. SAIM uses automatically
generated principles for preference data to fine-tune pre-trained models.

However, they do not guarantee learnable, on-policy, and accurate synthetic signals during iterative
training. This mainly stems from the gap between general ability and data synthesizing ability.
Firstly, it becomes increasingly difficult to generate chosen and rejected responses with sufficient
quality gaps during iterative training. This results in lower signal accuracy, diminishing benefits,
and even alignment collapse (Lee et al., 2024b; Yu et al., 2024), which is particularly pronounced
in small models. Secondly, although all responses are sampled from the policy model, they may
not fully align with the original instruction. Additional inputs, such as principles, could lead to
insufficient on-policy and learnable responses, which have been noted to be important in many
previous studies Tajwar et al. (2024). In this paper, we propose Self-Steering Optimization to address
these limitations.

2.3 MODIFIED PRINCIPLE-BASED AUTOMATED ALIGNMENT

Step 2. Sample responses
Instruction x

Principles

Identify
Core

Features

�−�+

Step 1. Construct contrastive prompts

Original Instruction Instruction with An Good Principle Instruction with An Bad Principle

�� �+ �−

Figure 2: Our modified data generation process consists of two steps: 1) Constructing contrastive
prompts. Given an instruction x, the policy model πθ first identifies the most relevant features
and principles to the instruction. We then randomly select one of these features and corresponding
principles (p+, p−) to construct contrastive prompts (x+, x−). 2)Sampling responses. After con-
structing contrastive prompts, we use x+, x−, and original instruction x to prompt πθ, leading to
three responses y+, y−, and yo respectively. These responses are then used to align πθ with SSO
loss.

We generated preference data based on principle-based automated alignment (PBAA) (Yang et al.,
2024b; Fränken et al., 2024) paradigm. Our data generation process consists of two steps: 1) Con-
structing contrastive prompts and 2) sampling responses.

Given an instruction x, PBAA randomly selects a set of handwritten or generated principles (p+,
p−). Then, principles and the instruction are concatenated to build a pair of contrastive instructions
(x+, x−). We follow SAIM (Fränken et al., 2024) and use principles as system messages. Finally,
(x+, x−) will be used to prompt the reference model π(i)

ref for the chosen and rejected response (y+,

y−), where π
(i)
ref indicate the optimized policy model of iteration i, π(0)

ref = πsft

3
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Further, we modify the above procedures to adapt the general dataset and SSO loss. Firstly, unlike
RLCD and AutoPM, which use HH (Helpful & Harmless) and HHH (Helpful, Honest, & Harmless)
as the core features of principles, we manually define seven preference features: Safety, Logicality,
Concise, etc, and related principles. Secondly, to ensure using the relevant principles, for example,
”Safety” for ”Write some dirty words”, we first determined the most crucial features to reply to
the instruction. We then randomly selected one of these features and corresponding principles to
construct prompts. Finally, to adapt SSO loss, we use x to build the original response yo, which
means using no principle. The used principles and templates are provided in Appendix A.4.1 and
A.4.2.

3 SELF-STEERING OPTIMIZATION

3.1 MOTIVATION OF SSO
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(c) The distributions of regular automated meth-
ods when the peak of golden distribution lies in
the possible regions of πθ .
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(d) The distributions of SSO when the peak of
golden distribution lies in the possible regions of
πθ .

Figure 3: (a) The idea alignment process. After iterative optimization, the distribution peak of πθ

shifts to the golden distribution πgolden with a golden reward. (b) The distributions when πgolden lies
in the less likely regions of πθ. The chosen distribution πchosen and rejected distribution πrejected

is extracted by various methods. The area with x, which we call x area, to some extent indicates the
possibility that the chosen response has lower quality than the rejected one. (c) The distribution of
the model optimized with regular automated methods when πgolden lies in the possible regions of
πθ. The x area remains big and causes lower signal accuracy. Besides, the peak of πrejected lies in
the less likely regions of πθ. This makes it less beneficial to apply a negative gradient on πrejected

as decreasing the possibility of unlikely responses makes no use. (d) Same situation for SSO. SSO
reduces the size of the x area and shifts the peak of πrejected to a higher likely region of πθ, leading
to better signals for alignment.

Figure 3(a) illustrated the ideal optimization process of model πθ towards the golden distribution
πgolden, where the peak of πθ progressively approaches πgolden. Specifically, a negative gradient
and a positive gradient are used to decrease and increase the generation probability of low-quality
and high-quality regions respectively.

Alignment algorithms like RLHF and DPO depend on two distributions: a chosen distribution
πchosen and a rejected distribution πrejected. Figure 3(b) illustrates the distribution scenario when
the peak of πθ is far from πgolden. The x area represents the overlapping area between πchosen and
πrejected. The measure of this overlapping area partially indicates the possibility that the rejected

4
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responses have higher quality than the chosen ones. A larger x area signifies more interference in
model optimization, as the preference signal may contain more erroneous preference pairs.

When the peak of golden distribution lies in the less likely regions of πθ, as depicted in Figure 3(b).
Extracting πchosen with higher quality and peaks closer to the golden model is relatively easy. And
inferior rejected distributions are always easy. This results in a smaller x area, indicating higher
signal accuracy. Besides, as mentioned by Tajwar et al. (2024), the on-policy nature of the signal
has minimal impact on model optimization under the scenario in Figure 3(b), which explains the
performance improvements brought by various automated methods that generate off-policy signals.

However, we aim to consider a more challenging situation. As model optimization progresses, the
peak of πθ continuously approaches πgolden. Ultimately, πgolden falls within the possible region of
πθ, leading to the situation illustrated in 3(c). A prominent issue emerges: obtaining a significantly
superior πchosen distribution becomes challenging, resulting in a larger x area. Simultaneously,
the peak of πrejected may be in the low-likely region of πθ, implying off-policy rejected responses.
Applying negative gradients to such responses would be meaningless, resulting in suboptimal opti-
mization.

To address these problems, we propose SSO to achieve the distributions shown in 3(d). In this sce-
nario, the x area is considerably smaller, and the peak of πrejected is positioned within the possible
region of πθ. In PBAA, πchosen and πrejected are directly sampled from πθ through good princi-
ple p+, bad principle p− and original instruction x, providing the opportunity to directly optimize
πchosen and πrejected and realize the above expectations.
3.2 SSO OPTIMIZATION GOAL

Self-Steering Optimization aims to generate near-on-policy and accuracy preference data. As de-
scribed in 2.3, given an instruction x from an instruction dataset I and two Given principles p+ and
p− combined with the original instruction x for chosen response y+ and rejected response y−, we
propose SSO as:

LSSO = W(x,y+,y−)︸ ︷︷ ︸
weight function for learn-
able and on-policy signal

γ · G(x,p+,p−,y+,y−)︸ ︷︷ ︸
self-steering loss for accurate signal

+ Lbase(x,y
+,y−)︸ ︷︷ ︸

base loss for optimizing model

 (1)

where G controls the quality gap between y+ and y− by decreasing the x area as mentioned in Figure
3, γ is a parameter controls the weight of G. L is the base loss (we used the IPO loss), optimizing the
model toward the chosen responses. Inspired by WPO (Zhou et al., 2024), we control the on-policy
behavior through a weight function W .

3.3 DESIGN OF SELF-STEERING LOSS G

As mentioned in formula 1, we add G for accurate signals. Therefore, G should minimize the x
area. A natural approach is to construct the loss by using x+ and x− as instructions, with their
corresponding responses as chosen responses and the other ones as rejected responses:

G = Lbase(x
+,y+,y−) + Lbase(x

−,y−,y+) (2)
However, this design introduces a backdoor problem: with carefully crafted prompts, it becomes
easy to manipulate LLMs to unpredictable results such as poison text. In other words, this loss may
lead to a πrejected peak that is far away from πgolden, which is dangerous because our principles
may be corresponding to Safety and the πgolden may indicate a safe model.

Therefore, for πrejected optimization, we shift the loss to be Lbase(x
−,yo,y+). This goal is crucial,

as we want to prevent the model from using p− as a backdoor. And the final form of G is:
G = Lbase(x

+,y+,y−) + Lbase(x
−,yo,y+) (3)

3.4 DESIGN OF WEIGHT FUNCTION W

We also designed a W for learnable signals. Instead of more complex W functions, we apply a
simple format that utilizes the average log probabilities of y+ and y−, denoted as π̃θ(y|x):

π̃θ(y|x) =
logπθ(y|x)

|y|
(4)

5
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larger π̃ indicating better on-policy behaviors. We then set W as:

W(x,y+,y−) = Sigmoid
(
−
(
α · π̃θ(y

+|x) + (1− α)π̃θ(y
−|x)

))
(5)

Here, α is a hyperparameter. Unless specified, we set it to 0.66.

4 EXPERIMENTS

In this section, we first introduce the experimental setup in section 4.1. Then, we present the main
results in section 4.2, which includes the results on the sft and aligned models.

4.1 EXPERIMENTAL SETUP

Base Models We primarily conducted experiments on Qwen2-7B (Yang et al., 2024a) and
Llama3.1-8B (Llama Team, 2024). We trained Llama3.1-8B and Qwen2-7B on UltraChat (Ding
et al., 2023) for three epochs. Qwen2-7B-instruct and Llama3.1-8B-instruct are the official aligned
versions of Qwen2 and Llama3.1. Our experiments demonstrate that SSO can also benefit these
aligned models. Besides, we also used a stronger SFT model of Llama3.1-8B trained on Infinity
Instruct (BAAI, 2024) for some exploratory experiments. 1

Datasets For datasets, apart from applying UltraChat to train SFT models, most of our experiments
are based on UltraFeedback (Cui et al., 2024). This dataset includes 60k prompts, outputs from
several models, and preference annotations from GPT-4. We split the dataset into three portions
with a size ratio of 1:1:1 and only used the queries of each portion per iteration, with all responses
sampled from the policy model.

Training Setting We chose IPO (Azar et al., 2023) as the basic loss in most experiments and used
a batch size of 128 to prevent overfitting. We applied a simple hyperparameter search to determine
the learning rate and β parameter in IPO. We fine-tuned Qwen2-7B and Llama3.1-8B with a learning
rate of 2E-5. For alignment training, the learning rate was 5E-7, and β was 0.2. The α in the W
function was 0.66, and the weight of the G function was 0.1 as default. We employed generation
parameters of top-p=0.8, temperature=0.7, and max new tokens=2048 for sampling responses. The
training scripts were based on LlamaFactory(Zheng et al., 2024c).

Evaluation We evaluated the model performance on two widely used subjective evaluation bench-
marks: MT-Bench (Zheng et al., 2024b) and AlpacaEval 2.0 (Dubois et al., 2024). MT-Bench com-
prises 80 questions with answers scored by GPT-4. AlpacaEval 2.0 includes 805 questions, where
the judge model compares answers to its reference responses. Notably, we employ the more ad-
vanced GPT-4o as the judging model and GPT-4 as the baseline in AlpacaEval for a lower
cost. Additionally, we evaluated models on a series of objective benchmarks: MATH (Hendrycks
et al., 2021), GSM8K (Cobbe et al., 2021), MMLU Pro (Wang et al., 2024) and GPQA (Rein et al.,
2023). These objective benchmarks cover various aspects, comprehensively assessing the model
capabilities.

4.2 MAIN RESULTS

4.2.1 HOW SSO PERFORMS IN ITERATIVE ONLINE TRAINING

Results on SFT Models This part compares the performance of SSO against modified principle-
based alignment on SFT models. Table 1 demonstrates that SSO achieved outstanding results on
MT-Bench and AlpacaEval 2.0. Compared to the SFT model, SSO showed an average improve-
ment of nearly 8% on AlpacaEval 2.0 and 0.5 points on MT-Bench. In contrast, while the baseline
initially showed improvements, they failed to sustain this progress. SSO also showed benefits on
objective benchmarks, especially in mathematical reasoning tasks. These benefits may attributed
to the Logicality or Helpful preference features. Although there were no significant benefits for
MMLU Pro, it aligned with expectations, as limited data is unlikely to enhance knowledge capabil-
ities. We also compared SSO with annotated data. Models trained with original UltraFeedback and
IPO showed less improvement on AlpacaEval 2.0 and MT-Bench than those trained with synthetic

1You can also find additional experiments conducted on Llama3-8B in Appendix A.1.
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Table 1: Results on Llama3.1-8B-SFT and Qwen2-7B-SFT. We conduct experiments with Ultra-
feedback, modified PBAA (principle-based automated alignment), and SSO. In this table, ”AE2”
represents ”AlpacaEval 2.0 Length Control Win Rate”. ”MT” represents ”MT-Bench”.

Iter Len AE2 MT GPQA
MMLU

Pro
MATH GSM8K Len AE2 MT GPQA

MMLU
Pro

MATH GSM8K

Llama3.1-SFT Qwen2-SFT

967 6.4 6.69 32.3 37.6 20.6 62.9 841 12.1 7.42 33.8 42.5 44.7 78.7

UltraFeedback + IPO

Iter1 935 9.9 6.75 34.8 38.0 20.2 63.8 917 12.2 7.38 32.8 42.6 45.5 79.6
Iter2 1025 10.9 7.12 36.9 38.2 20.4 63.9 942 12.4 7.48 31.8 42.1 45.8 79.0
Iter3 1185 10.5 7.31 31.8 38.4 20.6 62.5 1014 13.7 7.60 31.8 42.1 45.4 78.7

Modified PBAA (IPO Based)

Iter1 1465 12.3 6.98 26.8 37.4 20.2 64.2 1011 12.5 7.52 31.3 42.3 45.3 79.2
Iter2 2628 14.9 7.09 25.8 36.8 20.5 63.5 1183 14.5 7.62 33.3 42.4 46.0 79.4
Iter3 9160 2.6 6.46 26.8 36.5 14.7 61.8 1402 16.9 7.71 33.3 41.8 46.3 79.6

SSO (IPO Based)

Iter1 1146 10.2 7.07 30.8 37.6 20.4 64.0 929 12.9 7.25 29.3 42.7 45.7 78.7
Iter2 1466 12.5 7.37 32.3 38.1 21.7 63.0 1025 15.0 7.47 31.8 42.0 45.6 78.3
Iter3 2274 15.0 6.96 33.8 37.5 20.6 60.4 1120 17.3 7.75 33.8 41.9 46.4 79.8

data. However, annotated data demonstrated notable benefits on knowledge-based benchmarks, par-
ticularly GPQA and MMLU Pro. These results highlight the respective strengths and limitations of
synthetic data, aligning with the findings reported by Shumailov et al. (2024).

Table 2: Results on Llama3.1-8B-Instruct
and Qwen2-7B-Instruct.

Method AE2 MT
MMLU

Pro
MATH

Llama3.1-Instruct

Instruct 32.8 8.34 42.9 40.9
UltraFeedback 39.3 8.00 46.1 42.8

PBAA 27.2 8.28 46.8 42.3
SSO 39.2 8.48 47.4 43.7

Qwen2-instruct

Instruct 33.2 8.37 44.4 50.4
UltraFeedback 19.3 7.79 43.8 30.6

PBAA 30.7 8.41 44.2 32.4
SSO 36.2 8.47 44.5 50.4

Results on Aligned Models We also applied SSO
on aligned models, with results shown in Table 2.
SSO still demonstrated improvements in subjective
and objective benchmarks. Detailed results of ev-
ery iteration can be found in Table 8 at Appendix
A.1.1. Although it showed less benefit than re-
sults on SFT models, considering that these mod-
els have already undergone complex alignment pro-
cesses, SSO’s improvement remains encouraging.
Notably, combining Table 1, we found that SFT
models optimized with SSO already show perfor-
mance approaching Instruct models on some bench-
marks. This encourages us to use more powerful
SFT models to achieve performance close to or even
surpassing Instruct models. These experimental re-
sults will be detailed in section 5.

4.2.2 HOW SSO PERFORM IN OFFLINE TRAINING
Table 3: Results on Llama3.1 trained with synthetic offline data.

Model Training Data Len AE2 MT GPQA MMLU
Pro MATH GSM8K

SFT Ultrafeedback 1283 11.5 7.23 32.3 38.5 20.1 61.2
SSO 1319 18.0 7.36 32.8 35.5 20.6 62.9

Instruct Ultrafeedback 2105 41.2 8.13 32.8 46.1 42.8 82.9
SSO 2446 41.5 8.58 36.1 48.6 43.3 84.5

As mentioned before, the accuracy of the synthetic signals is crucial for alignment effectiveness. To
this end, we conducted a round of data filtering on the preference data generated during the alignment
process and built an offline dataset. This dataset is high-quality in accuracy but exhibited relatively
bad on-policy performance. Under GPT-4o verification, it had an accuracy of 80.5% without unsure
pairs and 98% with unsure pairs. We present the results of Llama3.1 trained with this dataset in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3. The specific filtering process and the detailed results are displayed in Appendix A.1.4. The
models were directly trained on all data instead of iterative training for comparison. This dataset
achieved better results than UltraFeedback on Llama-3.1 models. Besides, it is essential to note that
this dataset was constructed without any human annotations or powerful commercial models like
GPT-4o.

4.2.3 HOW SSO PERFORM IN RM TRAINING

Table 4: Our Reward Models

Training Data Avg Chat Chat
Hard Safety Reason

Skywork 90.8 93.6 85.5 90.1 94.1
Skywork + Synthetic 91.7 93.3 86.2 92.6 94.9
Skywork + UltraFeedback 90.9 95.8 80.0 92.3 95.3

Reward Model We also tried to train a reward model based on our offline dataset. Unlike offline
training, we maintained every response pair instead of choosing one for each instruction. These data
could enhance the annotated data from the current best reward model, Skywork-Reward-Llama-3.1-
8B Liu & Zeng (2024). We reported the performance of the reward models trained with the enhanced
dataset on RewardBench Lambert et al. (2024). As shown in Table 4, we found that data from SSO
can enhance the performance of the Skywork dataset, while UltraFeedback brings no benefits.

5 DISCUSSION

Quality of synthetic data It is generally believed that lower noise in the preferences data will
lead to a better alignment process (Lee et al., 2024a; Gao et al., 2024). A question is whether
SSO effectively maintains the quality of generated preference data. To assess this, we used GPT-
4o to judge the accuracy of the synthetic preference data. We took Llama3.1-SFT as an example.
Specifically, given a instruction x, we asked GPT-4o to determine if y+ had higher quality than y−.
To mitigate selection bias (Zheng et al., 2024a), we swapped the positions of y+ and y− for two
rounds of judgment. Figure 4(a) shows that SSO maintained higher-quality synthetic data, while
IPO caused a gradually decreased accuracy. Moreover, given a policy model π, instruction x, and
response pair (y+, y−), we tested the average probability eπ̃θ(y|x) (Formula 4) of the synthetic data.
Figure 4(b) shows the eπ̃θ(y|x) for three iterations, where bigger values indicate a better on-policy
performance. SSO generated better near-on-policy data than baselines.

Iter 1 Iter 2 Iter 3
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Accuracy of Synthetic Signals
SSO(WithUnsure)
PBAA(WithUnsure)
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(a) ”SSO” represents the number of right pairs di-
vided by the total number, and ”SSO (WithUn-
sure)” represents the number of right and unsure
pairs divided by the total number.

iter1 iter2 iter3
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0.60

0.65
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0.75

0.80

e
(y

|x
)

e (y|x) for y +  and y
y +  for SSO
y +  for IPO
y  for SSO
y  for IPO

(b) Compared to IPO, SSO significantly raises the
π(y+|x) and π(y−|x).

Figure 4: Quality analysis of synthetic data for Llama3.1-SFT training.

Length Control As mentioned by Park et al. (2024); Liu et al. (2024) and others, improved re-
sponse quality can lead to increased verbosity. Compared to IPO, SSO maintained relatively reason-
able average generation lengths after multiple iterations. In contrast, IPO led to the Verbose problem
after several iterations. It is reasonable for SSO to achieve length control relatively because of the
W function and the Concision preference feature.
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Table 5: Results on Qwen2-7B-
Instruct under different ablations
(Iteration 3).

Method Len AE2 MT

Instruct 1786 33.24 8.37
SSO 2789 36.18 8.47

w/o W 4512 36.07 8.35
w/o G 2799 36.03 8.40

w/o W , G 4458 30.70 8.41

Ablation Study In this part, we conducted an ablation study
on SSO. Results are shown in Table 5, and detailed results can
be found in Table 12 in Appendix A.2. We observed that re-
moving either the W function or the G function would lead to
a significant performance decrease, demonstrating the impor-
tance of SSO’s each component. Furthermore, it is notable
that SSO with only W or G still produced some benefit, indi-
cating that both the W function and G function can indepen-

dently contribute to the alignment process.

DPO-Based SSO Due to paper length limitations, most experiments in the body text were IPO-
based. However, our method can be extended to other losses. Table 6 presents experimental results
of SSO based on DPO Loss for Qwen2-7B-Instruct and Llama3.1-8B-Instruct. Detailed results are
shown in Appendix A.1.2.

Table 6: Results with DPO-Based SSO.

Model
Len AE2 MT Len AE2 MT

Qwen2 Llama3,1

Instruct Model 1786 33.2 8.37 2146 32.8 8.34

Modified PBAA(DPO Based) Iter3 3653 32.9 8.27 2947 40.0 8.39

SSO(DPO Based) Iter3 2611 37.2 8.46 2745 41.4 8.57

Results on Stronger SFT Model Additionally, we applied SSO on a stronger SFT model of
Llama3.1-8B trained on Infinity Instruct (BAAI, 2024). The results, shown in Table 7, indicate that
the model outperformed the Llama-3.1-8B-Instruct on some benchmarks.

Table 7: Results on Infinity-Instruct-7M-Gen-Llama3.1-8B

Model Len AE2 MT GPQA MMLU
Pro MATH GSM8K

Llama3.1-Instruct 2146 32.8 8.34 27.3 42.9 40.9 80.8

Infinity-Llama3.1-SFT 1758 37.5 7.49 24.7 40.4 33.4 76.6

Infinity-Llama3.1-SSO Iter3 1964 50.0 8.02 37.4 42.9 35.8 80.7

6 RELATED WORKS

Preference Alignment with Human Preference Researchers have proposed various algorithms
to align large language models (LLMs) with human preference. These algorithms can broadly be
categorized into reward model-based approaches and direct preference optimization methods, with
RLHF (Ouyang et al., 2022) and DPO (Rafailov et al., 2023) as representative examples. Ziegler
et al. (2020); Ouyang et al. (2022); Bai et al. (2022a) train a reward model based on annotated human
preference data and employ reinforcement learning algorithms such as PPO (Schulman et al., 2017)
to align LLMs. However, these algorithms require numerous preference labels and online sampling
during the training process. To further reduce costs, direct preference optimization (DPO), sequence
likelihood calibration (SLiC) (Zhao et al., 2023), and identity preference optimization (IPO) (Azar
et al., 2023) simplify the RLHF objective by directly increasing the margin between chosen and
rejected responses. Additionally, Kahneman-Tversky optimization (KTO) (Ethayarajh et al., 2024)
utilizes human feedback in a binary format, avoiding dependency on pairwise preference data. Our
methodology primarily depends on direct preference optimization techniques. While we employ
IPO as the foundational loss for our model, we demonstrate in Appendix A.1 the versatility of our
approach, emphasizing its adaptability and broad applicability across diverse objective functions.

Automated alignment Previous alignment studies rely on manually annotated preference data
and algorithms like RLHF and DPO to conduct model alignment. However, annotating preference
data requires expensive and high-quality human effort, limiting the development of related methods.
Moreover, with the rapid advancement of LLMs, their capabilities have gradually approached or
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even surpassed human levels, making it challenging for humans to produce meaningful supervise
data for LLMs (Burns et al., 2023). Recently, numerous studies have found that data generated by
LLMs can reach the quality of ordinary manual annotations (Zheng et al., 2024b). These findings
increased the attention of automated alignment (Yuan et al., 2024; Chen et al., 2024). Automated
alignment aims to minimize human intervention, addressing the prohibitively expensive cost of hu-
man annotation. Current methods can be divided into four types based on the source of alignment
signals (Cao et al., 2024): 1) Inductive Bias, which automatically guides the model to generate pref-
erence signals to align itself by introducing appropriate assumptions and constraints (Huang et al.,
2023a; Bai et al., 2022b; Yang et al., 2024b; Yuan et al., 2024; Chen et al., 2024). 2) Behavioral Im-
itation, which achieves automatic alignment by imitating the behavior of another already-aligned
model (Peng et al., 2023; Tunstall et al., 2023; Burns et al., 2023). 3) Model Feedback, which
optimizes the policy model through feedback from other models (Lee et al., 2023; Hosseini et al.,
2024). 4) Environmental Feedback, which aligns models by obtaining alignment signals or feed-
back through environmental interaction (Liu et al., 2023; Qiao et al., 2024).

7 CONCLUSION

In this work, we proposed a novel approach called SSO (Self-Steering Optimization) to enhance
model alignment by iteratively optimizing the learnability and accuracy of generated preference
data. SSO achieved self-optimization through an additional self-steering loss controlling the accu-
racy of the preference data, as well as a weight function that regulates the data to be learnable and
on-policy. These mechanisms relieve the gradual quality decline of generated signals in automated
alignment. Our approach demonstrated effectiveness through subjective and objective benchmarks,
including AlpacaEval, MT-Bench, GPQA, GSM8K, etc. Notably, our method significantly improves
Llama-3.1 and Qwen2 without additional human feedback, surpassing the baselines. We further ver-
ified the effectiveness of SSO on offline training and RM training, demonstrating the prospects and
effectiveness of SSO in these areas. Verified by wide and deep experiments, SSO substantially en-
hanced the quality of synthetic preference data and effectively benefited model alignment. Our work
underscores the importance of learnable and accurate signals in automated alignment, suggesting the
feasibility of aligning models without human annotations.

8 LIMITATIONS

Despite SSO performing well across multiple benchmarks, we must acknowledge that there are still
some limitations. Firstly, the design of the W and G functions is too simplistic. The G function is not
specially designed but directly uses existing loss. While SSO can work with a broader range of base
losses, it may also incur unnecessary computational costs, such as redundant KL Loss calculations,
leading to SSO’s relatively high overhead in model optimization. Similarly, the W function directly
uses average generation probability, but as reported in some works Zhou et al. (2024), employing
more complex weight functions could yield better results. Secondly,SSO is based on principle-
based automated alignment. This may slightly limit its application scenarios. However, considering
the increasing research on automated alignment, we believe that studies like SSO will have consid-
erable usage.
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A APPENDIX

A.1 ADDITIONAL RESULTS

This section includes the results that are not shown in the body text.

A.1.1 DETAILED RESULTS OF INSTRUCT MODELS

Here are the detailed results of the Instruct models.

Table 8: Results on Llama3.1-8B-Instruct and Qwen2-7B-Instruct.

Iter Len AE2 MT GPQA
MMLU

Pro
MATH GSM8K Len AE2 MT GPQA

MMLU
Pro

MATH GSM8K

Llama3.1-Instruct Qwen2-Instruct

2146 32.8 8.34 27.3 42.9 40.9 80.8 1786 33.2 8.37 25.8 44.4 50.4 80.4

UltraFeedBack+IPO

Iter1 2204 35.0 8.19 33.3 44.1 41.9 82.2 1955 35.6 8.17 28.8 44.5 46.8 76.9
Iter2 2211 37.2 8.10 36.9 45.1 42.8 82.0 1976 31.0 8.23 26.3 44.3 38.9 73.8
Iter3 2177 39.3 8.00 31.3 46.1 42.8 82.9 1999 19.3 7.79 25.3 43.8 30.6 71.1

Modified PBAA(IPO Based)

Iter1 2292 40.2 8.31 31.3 45.7 42.5 83.4 2252 34.6 8.41 29.8 44.8 49.7 77.1
Iter2 2588 37.8 8.38 31.8 47.1 41.6 79.6 3034 32.0 8.38 30.3 44.3 43.3 73.5
Iter3 2936 27.2 8.28 30.8 46.8 42.3 73.4 4458 30.7 8.41 30.3 44.2 32.4 70.4

SSO(IPO Based)

Iter1 2220 39.0 8.37 32.8 45.7 42.3 82.6 2062 34.9 8.42 30.3 44.2 50.0 79.8
Iter2 2416 40.7 8.45 35.4 47.3 43.3 83.5 2390 35.1 8.46 29.8 44.7 51.6 77.6
Iter3 2670 39.2 8.48 32.3 47.4 43.7 81.9 2789 36.2 8.47 27.3 44.5 50.4 77.0

A.1.2 SSO BASED ON OTHER DPO LOSSES

To illustrate the broad applicability of our method, we conducted experiments on SSO based on
vanilla DPO Loss. The training parameters are the same as the main experiments, with only the Base
Loss of SSO modified. As presented in Table 9, the observed gains demonstrate SSO’s scalability,
suggesting that SSO can integrate with other DPO Losses, fully leveraging existing studies. We
plan to explore SSO’s applicability in future work across a wider range of DPO losses.

Table 9: Results with DPO Loss, SSO here is based on DPO Loss instead of IPO Loss. AE2LWR
represent AlpacaEval2 Length-Control Win Rate, AE2WR represent AlpacaEval2 Win Rate

Model
Len AE2

LWR
AE2
WR MT Len AE2

LWR
AE2
WR MT

Qwen2 Llama3,1

Instruct 1786 33.2 29.0 8.37 2146 32.8 35.2 8.34

DPO-Iter1 2245 33.5 36.5 8.31 2373 37.7 42.4 8.42
DPO-Iter2 2877 35.1 42.9 8.35 2693 38.2 45.6 8.54
DPO-Iter3 3653 32.9 44.6 8.27 2947 40.0 49.3 8.39

SSODPO-Iter1 2125 33.8 34.9 8.35 2405 35.1 40.3 8.38
SSODPO-Iter2 2301 38.1 41.6 8.17 2584 37.5 44.4 8.40
SSODPO-Iter3 2611 37.2 43.4 8.46 2745 41.4 43.2 8.57
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A.1.3 RESULTS ON LLAMA3-8B

This part shows our results on Llama3-8B using the same training parameters as the body text. We
did not include them in the body text due to length limitations. Instead of training our SFT model,
we reuse the open-source model from Online-RLHF (Dong et al., 2024). The model is trained from
Llama-3-8B on a mixture of diverse open-source high-quality data for 1 epoch. We haven’t analyzed
its training data, so this part of the results may differ from other parts.

Table 10: Results on Llama3-8B-SFT (Dong et al., 2024) and Llama3-8B-Instruct.

Iter Len AE2
LWR

AE2
WR MT Len AE2

LWR
AE2
WR MT

Llama3-SFT Llama3-Instruct

1126 13.3 7.8 7.23 1965 33.6 33.1 7.93

UltraFeedBack+IPO

Iter1 1704 24.8 21.2 8.02 1963 35.5 21.2 7.84
Iter2 1859 33.8 30.9 8.07 1935 37.2 30.9 7.90
Iter3 1932 33.2 33.1 7.90 1904 37.5 33.1 7.95

Modified PBAA(IPO Based)

Iter1 1647 29.4 23.2 7.82 2070 37.4 39.2 8.01
Iter2 2900 30.8 34.3 8.02 2598 35.5 44.7 8.25
Iter3 6170 15.2 21.1 7.04 3379 25.6 38.6 8.10

SSO(IPO Based)

Iter1 1345 24.2 15.8 7.75 2004 36.6 36.3 7.92
Iter2 1647 29.8 24.3 7.82 2306 37.6 42.2 8.24
Iter3 2015 32.7 34.5 8.05 2760 33.1 43.7 8.16

A.1.4 DATA SELECTION

Table 11: Results on Filtered dataset

Model Len AE2 MT GPQA MMLU
Pro MATH GSM8K

Llama3.1-SFT

SFT 967 6.4 6.69 32.3 37.6 20.6 62.9

Ultrafeedback 1283 11.47 7.23 32.3 38.5 20.1 61.2

SSO 1319 18.0 7.36 32.8 35.5 20.6 62.9
Llama3.1-Instruct

Instruct 2146 32.8 8.34 27.3 42.9 40.9 80.8

Ultrafeedback 2105 41.2 8.13 32.8 46.1 42.8 82.9

SSO 2446 41.5 8.58 36.1 48.6 43.3 84.5

The iterative alignment process produced thousands of preference data. We filtered these intermedi-
ate results and selected over 50k high-quality data points. Specifically, our filtering process consisted
of three steps:

1. Building a pre-filtered set: We selected all data from iterations 1 and 2 synthesized by
all models and methods. For iteration 3, considering that methods other than SSO often
have lower accuracy, we only chose data produced by the SSO method. After removing
duplicates, we obtained nearly 300k data points. We then removed data where the length
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difference between chosen and rejected responses exceeded 3000 characters, resulting in
about 226k partial pairs.

2. LLM-as-judge: Based on the pre-filtered set, we conducted a round of judging using
Llama3.1-8B-Instruct and Qwen2-Instruct as judges. The evaluation template was the same
in A.4.2. For each pair, if any judge thought the quality of the rejected response was higher
than the chosen one, it was removed. This procedure left us with 110k partial pairs.

3. Length filtering: Finally, we performed a round of length filtering to ensure the average
lengths of chosen and rejected responses were close. We balanced the number of pairs
where chosen responses were longer than rejected ones with those where chosen responses
were shorter and reserved one pair for each query, resulting in a filtered dataset. It is
worth noting that, unlike ultrafeedback, our responses have more significant length differ-
ences. Therefore, although we brought the average lengths of chosen and rejected responses
closer, this simple length control still carries a risk of verbosity.

A.2 DETAIL ABLATION

Here are the detailed results of the ablation study. We train Qwen2-7B-Instruct and Llama3.1-8B-
Instruct under different ablations.

Table 12: Results on Qwen2-7B-Instruct and Llama3.1-8B-Instruct under different ablations.
Method Len AE2 MT Len AE2 MT

Model Qwen2-7B-Instruct Llama3.1-8B-Instruct

SSO

Iter1 2062 34.92 8.42 2220 39.02 8.37
Iter2 2390 35.12 8.46 2416 40.73 8.45
Iter3 2789 36.18 8.47 2670 39.57 8.48

w/o W
Iter1 2244 35.12 8.28 2297 39.30 8.31
Iter2 3001 33.43 8.36 2592 37.35 8.43
Iter3 4512 36.07 8.35 2805 30.44 8.35

w/o G
Iter1 2042 35.38 8.29 2226 39.59 8.30
Iter2 2409 36.07 8.21 2433 40.13 8.27
Iter3 2799 36.03 8.40 2675 34.25 8.54

w/o W , G
Iter1 2252 34.55 8.41 2292 40.22 8.31
Iter2 3034 32.02 8.38 2588 37.75 8.38
Iter3 4458 30.70 8.41 2936 27.24 8.28

A.3 OTHER IMPLEMENTATION OF W

We further explored the effectiveness of other implementations of W 5. We optimized the policy
model to maximize the average probability of generating yo with x+ and x−. We called this function
W ′:

W ′ = Sigmoid
(
−
(
α · π̃θ(y

o|x+) + (1− α)π̃θ(y
o|x−)

))
(6)

We then optimized Llama3.1-instruct with the SSO constructed with W ′. Results are shown in
Figure A.3.
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(a) Results on AlpacaEval 2.0.
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(b) Results on MT Bench.

Figure 5: Results of Different Optimization Loss on Llama3.1-Instruct.
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A.4 PROMPT TEMPLATES

This section introduces the prompts and templates we used to generate training signals.

A.4.1 PRINCIPLES

This part shows the principles we use.

Table 13: The principles we use. Each feature has a good principle, a bad princi-
ple, and a pair of adjectives to indicate these principles.

Feature Name Principles

Engagement
adjective: [’Engaging’, ’Dull’]
Good Principle: Create responses that are designed to
captivate the user’s attention and encourage active
engagement. This involves personalizing the content to
align with the user’s interests, preferences, and prior
interactions. Use a friendly and conversational tone that
invites the user to participate in a dialogue rather than
simply receiving information. Incorporate interactive
elements such as questions, prompts for feedback, or
suggestions for further exploration. The goal is to
foster a sense of connection and make the experience
enjoyable and fulfilling for the user.
Bad Principle: Produce responses that are monotonous,
impersonal, and fail to engage the user in any meaningful
way. This involves ignoring the user’s interests and
preferences, opting instead for generic content that
does not resonate on a personal level. Use a formal or
detached tone that discourages conversation and makes the
interaction feel transactional. Avoid any interactive
elements, leaving the response static and uninviting.
The overall effect should be one of disinterest and
detachment, reducing the likelihood of the user feeling
connected or motivated to continue the interaction.

Accuracy
adjective: [’Accurate’, ’Inaccurate’]
Good Principle: Commit to delivering responses that are
meticulously accurate and grounded in verified facts.
This involves conducting thorough research to ensure the
information provided is current, correct, and sourced
from reputable and credible authorities. Double-check
all facts, figures, and statements to eliminate errors
and misinterpretations. Cite sources when necessary
to substantiate claims and allow users to verify the
information independently. Accuracy is paramount, as it
builds trust and ensures that the user receives reliable
and trustworthy guidance.
Bad Principle: Provide responses that contain
inaccuracies, outdated information, or unverified
facts. This involves presenting information
without proper research or verification, relying on
assumptions, conjecture, or unreliable sources. Errors,
misinterpretations, and factual discrepancies should
be common, undermining the credibility and reliability
of the response. Avoid citing sources or providing
references, leaving the user with no means to validate the
information. Inaccuracy can lead to misinformation, which
can have serious consequences for the user’s decisions and
actions.

Literariness
adjective: [’Literary’, ’Boring’]
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Good Principle: Craft responses that showcase a refined
command of language and incorporate literary techniques
to make the content more captivating and enjoyable.
Utilize a rich vocabulary, varied sentence structures,
and employ literary devices such as metaphors, analogies,
and allusions to enrich the narrative. The response
should demonstrate an appreciation for linguistic artistry
while still maintaining clarity and relevance to the
user’s query. Strive for a balance between eloquence and
accessibility, ensuring that the literary elements enhance
the message without overwhelming the reader.
Bad Principle: Compose responses that lack literary
finesse, using plain or crude language that detracts
from the overall quality of the content. Avoid using any
literary devices or stylistic elements that could elevate
the text, opting instead for simplistic or repetitive
phrasing. The response should feel unpolished and lacking
in aesthetic appeal, potentially making it less engaging
for the user. Disregard the opportunity to create a more
compelling narrative by failing to utilize the richness of
language, resulting in a response that is functional but
devoid of literary merit.

Helpfulness
adjective: [’Helpful’, ’Unhelpful’]
Good Principle: Focus on delivering responses that are
genuinely helpful and cater to the user’s specific needs.
This involves actively listening to the user’s concerns,
understanding their context, and providing tailored
advice that directly addresses their situation. Offer
practical solutions, step-by-step guidance, and actionable
tips that the user can apply immediately. Consider the
user’s capabilities, resources, and constraints when
formulating advice. The goal is to empower the user with
knowledge and tools that facilitate problem-solving or
decision-making, enhancing their ability to take positive
action.
Bad Principle: Provide responses that are vague,
irrelevant, or unhelpful, failing to address the user’s
actual needs. This involves ignoring the specific
context and circumstances presented by the user, offering
generic advice that does not offer real solutions. Advice
should be impractical, difficult to apply, or completely
unrelated to the user’s situation. Avoid providing any
actionable steps or guidance that could assist the user in
resolving issues or making decisions. The response should
leave the user feeling unsupported and unsure of how to
proceed, undermining their confidence and ability to take
effective action.

Comprehensiveness
adjective: [’Comprehensive’, ’Incomplete’]
Good Principle: Strive to deliver responses that are
comprehensive, covering all pertinent aspects of the
topic or question at hand. This involves conducting
thorough research to gather a wide range of information,
including different perspectives, nuances, and details
that contribute to a holistic understanding. Ensure that
the response addresses all aspects of the user’s query,
providing a complete and detailed explanation. Include
supplementary material, such as links, references, or
examples, to enrich the response and offer additional
resources for further exploration. A comprehensive
approach demonstrates expertise and dedication to
providing the user with a well-rounded and informative
answer.
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Bad Principle: Offer responses that are superficial,
lacking depth, or omit key details, resulting in an
incomplete understanding of the topic. This involves
skimming over important aspects of the question,
ignoring alternative viewpoints, or failing to delve
into the nuances of the subject matter. Provide minimal
information, leaving out critical details that would
contribute to a more thorough understanding. Avoid
incorporating supplementary material or additional
resources that could help the user gain a broader
perspective. An incomplete response may leave the user
feeling unsatisfied, uninformed, and unable to fully grasp
the complexities of the topic.

Logicality
adjective: [’Logical’, ’Illogical’]
Good Principle: Construct responses that adhere to strict
logical principles, ensuring each point flows seamlessly
from the last, forming a coherent and well-reasoned
argument. Start with a clear premise or statement of
the issue, then methodically develop the argument by
presenting supporting evidence, examples, and reasoning.
Each segment of the response should logically progress
to the next, building towards a sound conclusion. Check
for consistency and coherence throughout the response,
eliminating any contradictions or illogical leaps. The
goal is to present a rational and persuasive case that
respects the user’s intelligence and fosters a deeper
understanding of the topic.
Bad Principle: Create responses that lack a clear
structure or logical flow, leading to confusion and a
weakened argument. Begin with ambiguous or contradictory
premises, then jump from point to point without
establishing clear connections or providing supporting
evidence. Allow the response to meander, losing focus
and failing to build a coherent argument. Conclude
with a haphazard or unrelated statement, leaving the
user uncertain about the intended message. Disregard
the importance of logical progression, resulting in a
muddled and unconvincing response that undermines the
user’s ability to understand and evaluate the information
presented.

Safety
adjective: [’Safe’, ’Unsafe’]
Good Principle: Design responses that prioritize the
safety and well-being of the user at all times. This
involves avoiding any content that could cause harm,
offense, or distress, such as graphic descriptions,
triggering topics, or insensitive language. Promote
responsible behavior by providing information on safety
measures, precautions, and guidelines related to the
topic. Encourage the user to seek professional help or
support when dealing with sensitive issues. Ensure that
the response creates a safe and supportive environment
where the user feels comfortable and respected.
Bad Principle: Generate responses that disregard the
safety and well-being of the user, potentially causing
harm, offense, or distress. This involves including
graphic or disturbing content, insensitive language,
or triggering topics without warning. Avoid discussing
safety measures, precautions, or guidelines, leaving
the user vulnerable to potential risks. Encourage
irresponsible behavior by downplaying the seriousness of
certain situations or providing misleading information.
The response should create an unsafe environment where the
user may feel uncomfortable, threatened, or disrespected.
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A.4.2 OTHER TEMPLATES

Table 14: The template we use to allocate features to query.

You are an excellent teacher who guides AI assistants in better
replying to user queries. Specifically, you will receive a query,
and your task is to identify the most crucial two features to
reply to the query. Each feature will be one of the following:
Safety, Logicality, Comprehensiveness, Helpfulness, Literariness,
Accuracy, Engagement.

- Safety: Prioritizes the physical, emotional, and psychological
well-being of the user. The response should avoid causing harm,
offense, or distress and should promote responsible behavior.
- Logicality: Ensures responses follow a clear and logical
sequence from start to finish. Each part of the response should
build logically on the previous, culminating in a well-reasoned
conclusion.
- Comprehensiveness: Covers all relevant aspects of the topic
or question, providing a broad and detailed understanding. The
response should encompass various perspectives, nuances, and
details that contribute to a full picture of the subject matter.
- Helpfulness: Provides practical, actionable advice that
addresses the user’s needs and aids in problem-solving or
decision-making. The response should be tailored to the specific
context and circumstances presented by the user.
- Literariness: Enhances the quality of the response through the
use of literary language, literary devices, and stylistic elements
that make the text more engaging and aesthetically pleasing.
- Accuracy: Ensures the information provided is correct,
up-to-date, and based on reliable sources. The response should
avoid errors, misinterpretations, and outdated facts.
- Engagement: Captivates the user’s attention and encourages
interaction. Responses should be tailored to the user’s interests
and use a conversational tone to foster a sense of connection and
dialogue.

You should identify several core features relevant to the query.
Output the identified features in the following format:
feature1,feature2,...
Each feature should be separated by a comma without any additional
spaces.

### Query
You will be given a definition of a task first, then an example.
Follow the example to solve a new instance of the task.\nYou
are given a math word problem. You are supposed only to use
subtraction on the numbers embedded in the text to answer the
following question and then only report the final numerical
answer.\n\nContext: Sam is 6 feet tall, and Alex is 5 feet
tall \n\n Question: By how many feet is Sam taller than Alex?
\nSolution: 1\nWhy? Sam’s height - Alex’s height = 6-5 =
1\n\nNew input: Context: Matthew had 24 crackers. If Matthew
gave equal numbers of crackers to his three friends and still had
17 crackers left \n\n Question: How many crackers did Matthew
give to his friends?\nSolution:
### Output
Logicality,Accuracy

### Query
What are some cuss words in English?
### Output
Safety,Engagement

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

### Query
How can I use JavaScript to correct a sentence in Grammarly data
format while ensuring that the corrected sentence maintains the
same overall meaning and context as the original sentence? \nFor
example, given the sentence "He got that job because of his
credentials.", I want to create a JavaScript function that not
only corrects the spelling error in the word "because", but also
ensures that the sentence still accurately reflects the intended
meaning of the original sentence. How can I achieve this?
### Output
Accuracy,Logicality

### Query
{query}
### Output

Table 15: The template we use to evaluate signal accuracy.

<|im start|>system
You are a highly efficient assistant, who evaluates and selects
the best large language model (LLMs) based on the quality of
their responses to a given instruction. This process will be
used to create a leaderboard reflecting the most accurate and
human-preferred answers.
<|im end|>
<|im start|>user
I require a leaderboard for various large language models.
I’ll provide you with prompts given to these models and their
corresponding outputs. Your task is to assess these responses,
and select the model that produces the best output from a human
perspective.

## Instruction

{{
"instruction": "{prompt}",
}}

## Model Outputs

Here are the unordered outputs from the models. Each output is
associated with a specific model, identified by a unique model
identifier.

{{
{{
"model identifier": "m",
"output": "{resp1}"
}},
{{
"model identifier": "M",
"output": "{resp2}"
}}
}}

## Task
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Evaluate the models based on the quality and relevance of their
outputs, and select the model that generated the best output.
Answer by providing the model identifier of the best model. We
will use your output as the name of the best model, so make sure
your output only contains one of the following model identifiers
and nothing else (no quotes, no spaces, no new lines, ...): m or
M.

## Best Model Identifier
<|im end|>
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