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Abstract
When collecting dynamic network data, it is often more admissible—either due to
privacy concerns or real-time feasibility—to collect the marginals of a network than
its time-varying interiors. This reality, arising in classic and recent studies of human
mobility, transportation, and migration networks, results in a natural and increas-
ingly common network inference problem, where the goal is to infer a dynamic
network from its 3-dimensional marginals, i.e., its time-varying rows, time-varying
columns, and time-aggregated interaction matrix. Prior works on this problem
have repurposed the popular iterative proportional fitting (IPF) procedure, also
widely known as Sinkhorn’s algorithm, to infer dynamic networks from aggregate
data; these resulting networks have been employed in several downstream tasks,
including building tools for COVID-19 policymakers. Despite these high-impact
applications, the behavior and assumptions of using IPF in this setting are not well
understood. In this work, we fill in the missing theory, rigorously motivating the
use of IPF for this network inference problem. Our main contribution is a statis-
tical justification of the minimization principle of IPF for network inference, by
formulating an instructive, generative network model whose maximum likelihood
objective is dual to the Kullback-Leibler divergence minimization problem implied
by IPF. Conveniently, the marginal observations form the sufficient statistics of
the network model, aligning with problem constraints. We also run computational
experiments with real-world mobility data, to demonstrate the effectiveness of IPF
to infer networks in practice and to show how our new methods of analysis make it
possible to inspect previously unstated assumptions.

1 Introduction
Modern computing platforms, which enable the collection of large-scale but incomplete network
data, have given rise to new network inference problems. In this work we study a central network
inference problem: how to infer a dynamic network (or graph) from its 3-dimensional marginals, i.e.,
its time-varying rows, time-varying columns, and time-aggregated interaction matrix. This problem
appears across domains, such as human mobility [1], traffic and transportation flow [2, 3], or migration
[4], where it is often more feasible—either due to privacy concerns or real-time constraints—to
collect a network’s marginals than its time-varying interiors. A notable example appears in Chang
et al. [1], where the authors sought to infer hourly mobility networks between neighborhoods and
points-of-interest (POIs) from aggregated location data, which contained hourly total visits from each
neighborhood, hourly total visits to each POI, and monthly estimates of visits from neighborhoods
to POIs. These networks were integrated into epidemiological models to simulate the spread of
COVID-19, leading to widely cited results in Nature [5–8]. The inferred networks were also used in
other studies, including to build tools for public health officials [9], to study airbone transmission of
COVID-19 [10], and to develop network-based interventions to reduce transmission [11].
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To solve the network inference problem, Chang et al. [1] repurposed the well-known iterative
proportional fitting (IPF) procedure [12, 13], also known as Sinkhorn’s algorithm [14, 15]. IPF is
a classic algorithm that aims to scale the rows and columns of a given matrix X to match target
marginals p and q. In Chang et al. [1], IPF demonstrates promising empirical results: the algorithm is
computationally lightweight, allowing the authors to infer networks with billions of edges, and the
IPF-inferred networks enable epidemiological models to accurately fit COVID-19 case curves.

Despite the empirical success of IPF for this problem, the theoretical basis of its use for network
inference has been lacking. While it is well-known that IPF solves a Kullback-Leibler (KL) divergence
minimization problem, a formal connection to statistical theory is limited. What are we implicitly
assuming about the dynamic network and its observed marginals by using IPF to infer it? This work
answers the question by formulating an instructive, generative network model whose parameters
are properly estimated by IPF, since its maximum likelihood objective is dual to the KL divergence
minimization problem solved by IPF (Theorem 1). Conveniently, the marginal observations form
the sufficient statistics of this network model, aligning with the problem constraints. We conduct
computational experiments with real-world mobility data and synthetic data, which confirm our
analytical results and show how our new methods of analysis make it possible to inspect previously
unstated assumptions. Our results provide much-needed theory to justify high-impact applications of
IPF [1, 9–11] and to rigorously motivate future uses of IPF for this problem. Given the vast literature
on IPF and Sinkhorn’s algorithm, connecting network inference to IPF also opens up future avenues
for research, creating a bridge from the graph learning community to decades of statistical theory.

2 Optimization principles of IPF for network inference
Background on IPF. Consider the following classic matrix balancing problem [12, 16]:

Given positive vectors p ∈ Rm
++, q ∈ Rn

++ with
∑

pi =
∑

qj and non-negative matrix
X ∈ Rm×n

+ , find positive diagonal matrices D0, D1 satisfying the conditions D0XD1 ·
1n = p and D1XTD0 · 1m = q.

In network applications [1, 9], X is an aggregate or historical network, and our task is to infer an
up-to-date network Y observing only its marginals p, q, and X , with the estimate D0XD1. IPF
learns the scaling factors d0 and d1, which are diagonals of D0, D1, by alternating between scaling
the rows to match p, then scaling the columns to match q:

d0i (k + 1) =
pi∑

j Xijd1j (k)
, d1j (k + 1) =

qj∑
i Xijd0i (k)

. (1)

We denote by M IPF(k) := D0(k)XD1(k) the scaled matrix after the k-th iteration. The convergence
behavior depends on the problem structure: (D0(k), D1(k)) can converge to a solution of the matrix
balancing problem; (D0(k), D1(k)) can diverge but M IPF(k) converges; or M IPF(k) oscillates
between accumulation points [17]. IPF is more prone to non-convergence when the inputs are
sparser, since it becomes harder to reconcile the marginals; this issue is particularly relevant given
high levels of sparsity in real-world network data, which we demonstrate in Section 3. Prior works
have extensively studied IPF and the associated matrix balancing problem, and derived several
equivalent conditions that characterize exactly when IPF converges [14, 18–21]. A particularly useful
perspective, which we focus on in this paper, comes from the principle of entropy minimization [22].

Connection to KL divergence. It is well-known that IPF iterations M IPF(k) converge to Ŷ , the
solution to the following minimization problem, as long as it is feasible and bounded [18, 23]:

min
Ŷ

DKL(Ŷ ∥X), (2)

subject to Ŷij ≥ 0, Ŷ 1n = p, and Ŷ T1m = q. Recall that for discrete distributions,

DKL(Ŷ ∥X) =
∑
ij

Ŷij log
Ŷij

Xij
, (3)

so (2) is feasible and bounded if and only if there exists Ŷ with the desired marginals p and q, and
Ŷij = 0 whenever Xij = 0. In other words, Ŷ must inherit all the zeros of X . If no such feasible
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solution exists for (2), IPF does not converge. Furthermore, the dual problem of KL minimization is

g(u, v) =
∑
ij

Xije
ui−vj −

∑
i

piui +
∑
j

qjvj , (4)

which is jointly convex in the dual variables u ∈ Rm, v ∈ Rn. IPF is a coordinate descent type
algorithm for this problem [24], and (d0, d1) is a solution to the matrix balancing problem if and
only if u = log d0, v = − log d1 is a minimizer of (4) [24]. For completeness, we provide details
of the duality result in Appendix A.1. The main result of our work is showing that −g(u, v) is the
log-likelihood function of a Poisson generative network model.

Our network model. Several intuitions guide our construction of the network statistical model.
There is a general correspondence between KL divergence minimization and maximum likelihood,
although in (2) the ordering between empirical and model distributions has been reversed. Recently,
Qu et al. [25] established connections between matrix balancing and choice modeling, and observed
that (4) reduces to the maximum likelihood objective of a choice model. We therefore also construct
a statistical framework for the network inference problem via the dual representation (4). Lastly, the
choice of Poisson distribution is natural given its close connections with KL divergence, similar to
the associations between ℓ1 and Laplace distribution, as well as ℓ2 and Gaussian distribution.

Based on these intuitions, we formulate the following generative network model:

Yij ∼ Poisson(euiXije
−vj ) for Xij > 0, (5)

pi =
∑

j,Xij>0

Yij , qj =
∑

i,Xij>0

Yij . (6)

Here {Yij}i,j:Xij>0 are a collection of independent Poisson random variables with parameters
λij = euiXije

−vj . Now, we are ready to formally state the network inference problem:

Given X , find parameters u and v that maximize the likelihood under this network model
of Y , only the marginals p and q of which are observed.

Our main theorem connects IPF to this network inference problem. Its proof is in Appendix A.2.
Notably, our theorem reveals that even though only X , p, and q are observable, maximum likelihood
estimation of this model is still feasible, since the marginals of Y (p and q) are sufficient statistics.

Theorem 1. Assume that the matrix balancing problem has a finite solution (D0, D1). Then d0 and
d1 are limits of the IPF iterations if and only if u = log d0 and v = − log d1 are solutions to the
network inference problem. Moreover, the network inference problem is equivalent to the maximum
likelihood estimation of a Poisson regression model, and p, q are the sufficient statistics.

Implications of our result. Connecting IPF to this network model allows us to interpret IPF
through the lens of a dynamic network process. In the original matrix balancing problem, where
IPF has typically been applied, the goal is to learn a scaling of X that satisfies marginals p and q,
but there is no explicit network that we are trying to infer. Now, given our network model, we are
explicitly trying to infer an up-to-date network Y , given its marginals p and q, and X , a historical
or aggregate network. For example, in the mobility setting from Chang et al. [1], X serves as the
time-aggregated mobility network and p and q are the observed hourly marginals for POIs and
neighborhoods. Then, Y is the (unobserved) hourly network traffic, and we can view u and v as each
POI’s and neighborhood’s time-varying mobility dynamics, e.g., if schools are visited more during
the day or if younger populations go out more after work.

Moreover, since d0iXijd
1
j from IPF corresponds to euiXije

−vj , the expectation of the Poisson variable
Yij , we can interpret the matrix inferred by IPF as the expected values of the network-generating
process. This also explains our choice of notation in (2), where we use Ŷ to emphasize the fact that it
is the predicted (expected) value of the Poisson network variables. Our model also clarifies previously
implicit assumptions. For example, this model assumes that each Yij is sampled independently, and
that the estimated network Ŷ is an (entry-wise) rank-1 modification of the given aggregate network X .
Making these assumptions explicit allows practitioners to evaluate how reasonable these assumptions
are given their domain and data, when deciding whether to use IPF to infer dynamic networks. In the
following section, we also show how the network model enables new empirical analyses of IPF, such
as quantifying uncertainty, evaluating estimation error, and assessing the impact of sparsity.
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(a) (b)
No sparsity in X (N=10000) 50% sparsity in X (N=5000)

Rows Columns Rows Columns

Figure 1: Comparing inferred parameters from IPF (x-axis) against inferred parameters from Poisson
regression (left y-axis, blue) and true parameters from Poisson model (right y-axis, orange). Grey
bars indicate 95% CIs from Poisson regression.

3 Experiments with real-world and synthetic data
Synthetic data and Poisson regression. In our first set of experiments, we use synthetic data
generated from our network model to confirm the correspondence between IPF and Poisson regression
(Appendix A.5). In Figure 1, we show that the parameters inferred by IPF and Poisson regression
align perfectly, validating Theorem 1. Furthermore, using our network model, we can evaluate IPF’s
performance in terms of its estimation error on the network model’s true parameters, which is distinct
from its error on the marginals, which is how IPF is typically analyzed. We find that, despite matching
the marginals in all cases, the ℓ2 distance between IPF’s inferred parameters and the true parameters
increases quadratically as we increase the sparsity in X (Figure A.1). Second, since we mapped IPF
to a maximum likelihood problem, we can now quantify uncertainty in its estimates. In Figure 1, we
display 95% confidence intervals (CIs); while these CIs are only asymptotically valid, they provide
measures of uncertainty where prior uses of IPF for this problem had none.

Mobility networks, sparsity, and convergence. We test our methods on real-world mobility
networks, using aggregated location data from Chang et al. [1, 9]. We focus on the Richmond
metropolitan statistical area in Virginia, which has 9917 POIs and 1098 neighborhoods. In this
setting, p(t) represents hourly visits to POIs, q(t) represents hourly visits from neighborhoods, and X
represents time-aggregated visits from neighborhoods to POIs, aggregated from January to October
2020 (Appendix A.6.1). We find that, despite aggregating over 10 months, X remains quite sparse:
only 8% of its entries are non-zero. Furthermore, in nighttime hours, up to 90% of POIs have zero
marginals. From running IPF on these two days, we find that IPF is decently robust to sparsity,
converging for 45 out of the 48 hours. However, IPF gets stuck in oscillation for 3 hours during
nighttime, when POI marginals are particularly sparse. We can evaluate convergence by running IPF
or directly test for convergence from the input data X , p, q by running a max-flow-based algorithm
that checks one of the IPF convergence conditions (Appendix A.4) [15].

We also plot the total ℓ1 error between the marginals of M IPF and the target marginals, which is
known to decrease monotonically with each iteration [21]. When IPF converges, we find empirically
that the error decreases exponentially (Figure A.3). This intriguing observation is worthy of further
study given that IPF only converges exponentially in certain settings [17]. Finally, we compare IPF to
Poisson regression on this mobility data. Since we are using real-world data, we do not have access
to Y , as defined in our network model. Instead, we construct Y (using the same max-flow algorithm
that we use to test convergence) such that Y inherits the zeros of X and satisfies the target marginals.
We find that on this data as well, the parameters inferred by IPF and Poisson regression are perfectly
matched (Figure A.4), providing further confirmation of Theorem 1.

4 Discussion
In this work, we have established an optimization principle of using IPF for network inference, by
formulating a network model whose maximum likelihood objective corresponds to IPF. In Appendix
A.3, we also discuss the necessary and sufficient conditions for IPF to recover the true network
exactly (Theorem 2). Our empirics both confirm our theoretical results and demonstrate how this
model enables new principled analyses of IPF. We have many future directions we hope to explore,
including analyzing the robustness of IPF to noise and developing methods for IPF convergence.
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A Appendix
A.1 Duality result for KL divergence minimization

For completeness, we provide the details for the duality result. Let u and v be the multipliers of the
constraints Ŷ 1n = p, Ŷ T1m = q, respectively. The problem is equivalent to

min
Ŷ

max
u,v

∑
ij

Ŷij log
Ŷij

Xij
−

∑
i

ui(Ŷ 1n − p)i +
∑
j

vj(Ŷ
T1m − q)j =

max
u,v

min
Ŷ

∑
ij

Ŷij log
Ŷij

Xij
−

∑
i

ui(Ŷ 1n − p)i +
∑
j

vj(Ŷ
T1m − q)j

where strong duality holds because both problems are feasible and bounded. Taking the first order
condition with respect to Ŷij , we obtain

log Ŷij = logXij − 1 + ui − vj ,

and substituting this back into the objective, we obtain

max
u,v

∑
ij

Xije
−1+ui−vj (−1 + ui − vj)−

∑
i

ui(
∑
j

Xije
−1+ui−vj − pi) +

∑
j

vj(
∑
i

Xije
−1+ui−vj − qj)

= max
u,v

−
∑
ij

Xije
−1+ui−vj +

∑
i

uipi −
∑
j

vjqj .

Finally, using the change of variable ui = ui − 1
2 and vj = vj +

1
2 , we obtain

max
u,v

−
∑
ij

Xije
ui−vj +

∑
i

piui −
∑
j

qjvj −
∑

i pi +
∑

j qj

2
⇔

min
u,v

∑
ij

Xije
ui−vj −

∑
i

piui +
∑
j

qjvj ,

which we recognize as g(x, y).

A.2 Proof of Theorem 1

Proof. We start by showing that the log-likelihood of our Poisson network model is −g(u, v) from
(4). The Poisson network’s likelihood is given by

L(Y |X,u, v) = Πi,j;Xij>0
(euiXije

−vj )Yij exp(−(euiXije
−vj ))

Yij !
. (7)
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When maximizing the likelihood with respect to u and v, we can drop the denominator, which is
constant in the parameters. Maximizing the log-likelihood yields the following problem:

max
u,v

∑
i,j;Xij>0

Yij · (ui + logXij − vj)− euiXije
−vj . (8)

We can also drop Yij log(Xij) since it does not depend on u, v. The resulting problem is

max
u,v

∑
i,j;Xij>0

Yijui − Yijvj − euiXije
−vj (9)

= max
u,v

∑
i

ui(
∑

j;Xij>0

Yij)−
∑
j

vj(
∑

i;Xij>0

Yij)−
∑

i,j;Xij>0

euiXi,je
−vj (10)

= max
u,v

∑
i

uipi −
∑
j

vjqj −
∑
ij

euiXije
−vj . (11)

Thus, our model’s log-likelihood in (11) is indeed −g(u, v) from (4). Furthermore, observe that (11)
implies that the marginals of Y are sufficient statistics for our network model, conveniently aligning
with the problem constraints from IPF.

Next, we show that the network inference problem is equivalent to a Poisson regression problem.
Although our Poisson network model and Poisson regression are, not surprisingly, close relatives,
it is instructive to precisely illustrate their connections and distinctions. Poisson regression is a
generalized linear model (GLM) which defines the logarithm of a Poisson variable’s expected value
as a linear model of input features. Generically, let θ ∈ Rd represent the parameters of a Poisson
regression model, x ∈ Rd represent input features, and y represent the observed non-negative count
data. Ignoring constants, the log-likelihood of observing y under the Poisson regression model is

y · θTx− eθ
Tx. (12)

To match this to the log-likelihood of our network model in (8), for each sample indexed by i, j with
Xij > 0, we set the input features x to be [ei, ej , logXij ], where ei ∈ {0, 1}m is a vector of all
zeros aside from a 1 in the i-th position and ej ∈ {0, 1}n is a vector of all zeros aside from a 1 in
the j-th position. Observe again that since this construction relies on logXij , the Poisson regression
model only applies to Yij where Xij > 0. We then set the dependent variable to be y = Yij . Lastly,
it is obvious that we should set the parameter θ ∈ Rd with d = m+ n+ 1 as θ = [u,−v, 1]. We can
verify that the log-likelihood of this Poisson regression model is equal to the objective in (8), and
that p, q are the sufficient statistics of the model. To perform Poisson regression, we may need a set
of values Yij for Xij > 0 that are consistent with the marginals. This can be achieved exactly by
running the max flow algorithm on the bipartite graph defined by X [15]. For details on the maximum
flow algorithm, see Section A.4.

A.3 When IPF recovers the true network exactly

If we swap out the Poisson distribution for an identity function in (5), we find that this condition is
necessary and sufficient for IPF to exactly recover the true network, Y , given X and Y ’s marginals p
and q.

Theorem 2. IPF returns the true network Y if and only if Y = AXB, for some positive diagonal
matrices A and B.

Proof. The first statement to prove is, if IPF returns Y , then Y = AXB. All IPF solutions take the
form D0AD1, where D0 and D1 are positive diagonal matrices. If IPF returns Y , then Y can be
written as AXB, with A = D0 and B = D1.

The second statement to prove is, if Y = AXB, then IPF will return Y . To prove this, we can use
direct biproportional scalings from Pukelsheim [21]. Matrix M1 is a direct biproportional scaling
of matrix M0 if, for all i, j, M1

ij = M0
ij/(µiνj), for positive divisors µi and νj . If Y is AXB, then

Y is a direct biproportional scaling of X with the diagonal of A set to 1/µ and the diagonal of B
set to 1/ν. Second, biproportional scalings are unique with respect to marginals, meaning if two
biproportional scalings M1 and M2 of M0 have the same marginals, then M1 = M2 [21]. This
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means that if IPF can perfectly match the marginals p and q of Y by scaling X , then it must have
found Y (since Y is a biproportional scaling of X). Finally, we know that if it is possible to perfectly
match the marginals by scaling X , then IPF will return a solution that matches the marginals [21].
Thus, IPF will return Y , since IPF will find a biproportional scaling of X that matches marginals p
and q, and Y is the unique scaling of X that achieves that.

While this statement about Y (Y = AXB) is rarely true in practice, this result allows us to pin down
when IPF works “perfectly” for network inference. Notably, this result implies that the scaling matrix
from X to Y , i.e., Y/X , must be a rank-1 matrix with entries aibj (the diagonals of A and B). If
we interpret Y as a dynamic network and X as its time-aggregated form, then we are essentially
constraining the complexity of the network’s temporal variation.

A.4 Algorithm to test for convergence

For completeness, we describe the algorithm from Idel [15] for testing whether IPF will converge
based on input data X , p, and q. This algorithm is also closely related to the max-flow-based algorithm
from Kumar et al. [26] to test their concept of graph consistency. First, one of the conditions that
exactly characterizes when IPF will converge is whether there exists a weight matrix W ∈ Rm×n

that inherits the zeros of X and matches the marginals p and q. Note that this matrix is more general
than the set of possible solutions to the matrix balancing problem, since W does not have to be a
biproportional scaling of X . Now, the following algorithm will check for the existence of W .

Create a new directed graph G that has a source node s connected to one node ni for each row and set
the capacity of the edge s → ni to pi. Create a sink node t connected to one node nj for each column
and set the capacity of the edge nj → t to qj . Finally, include an edge ni → nj , with capacity ∞,
wherever Xij > 0. Compute the maximum flow fG on the resulting graph. If the maximum flow fG
is equal to

∑
i pi =

∑
j qj , then the weight matrix W exists, meaning IPF converges for X , p, and q;

otherwise, it does not converge.

A.5 Experiments with synthetic data

Generating synthetic data. We generate synthetic data based on our generative network model in
(5)-(6). In these experiments, we set m = n = 100, and generate data in the following order:

1. We sample the row scaling factors eu ∈ Rm and column scaling factors e−v ∈ Rn from
Uniform(0, 4).

2. We sample X ∈ Rm×n from Uniform(0, 1).

3. For a given sparsity level r ∈ [0, 1), we randomly select r · mn entries from X (without
replacement) and set them to 0.

4. We sample each Yij from Poisson(euiXije
−vj ).

5. We set p = Y 1m and q = Y T1n.

Comparing IPF and Poisson regression. In our IPF experiments, we run IPF on X , p and q,
producing parameters d0 ∈ Rm and d1 ∈ Rn. In our Poisson regression experiments, we fit a
Poisson regression model on all observations where Xij > 0, following the construction in Section
A.2. Poisson regression returns parameters {θi}mi=1 corresponding to rows and parameters {θj}nj=1

corresponding to columns. Based on Theorem 1, we expect d0i = exp(θi), for all i ∈ [m], and
d1j = exp(θj), for all j ∈ [n], subject to arbitrary scaling between rows and columns (i.e., scaling
row factors by k and scaling column factors by 1/k). To control for such scaling, we normalize both
sets of parameters by dividing by their means. In Figures 1 and A.4, we plot the normalized IPF
parameters versus the Poisson regression parameters. We find that they lie perfectly on the y = x
line, validating Theorem 1. We also plot the 95% confidence intervals, as provided by Python’s
statsmodels package for fitting generalized linear models.1 Finally, we also plot the true parameter
values eu and e−v in Figure 1, which we can only include in our synthetic setting since we know the
true network model’s parameters.

1https://www.statsmodels.org/stable/glm.html
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Figure A.1: Comparing sparsity rate in X to IPF’s ℓ2 error, i.e., the ℓ2 distance between IPF’s
inferred parameters and the true model parameters.

ℓ2 estimation error vs. sparsity in X . As an additional experiment, we evaluate IPF’s ℓ2 error on
the true parameters:

ℓ02 = ||d0 − eu||2 =

√∑
i

(d0i − eui)2 (13)

ℓ12 = ||d1 − e−v||2 =

√∑
j

(d1j − e−vj )2, (14)

where we used the mean-normalized version of all parameters. For each sparsity rate in r ∈
{0, 0.05, · · · , 0.9}, we run 100 random trials, where in each trial, we repeat steps 2-5 of our generative
process with that sparsity rate in X (i.e., we fix eu and e−v but resample all other variables), run IPF
on the newly generated X , p, and q, and compute its ℓ2 error. In Figure A.1, we visualize our results,
showing the ℓ2 mean and 95% CIs (from 2.5th to 97.5th percentiles over random trials) over sparsity
rates. We find that ℓ2 error increases quadratically with greater sparsity in X .

A.6 Experiments with real-world mobility data

We conduct experiments with real-world mobility data, motivated by past applications that used IPF to
infer mobility networks from aggregated cell phone location data, then integrated those networks into
epidemiological models to simulate the spread of infectious diseases, like SARS-CoV-2 [1, 9–11].

A.6.1 Constructing marginals from mobility data

In the mobility network inference setting, our goal is to infer the hourly network at hour t from n
census block groups (CBGs), which are neighborhoods, to m points-of-interest (POIs), which are
individual locations such as restaurants, grocery stores, or gas stations. To do this, we construct:

• X ∈ Rm×n
+ , a time-aggregated visit matrix,

• p(t) ∈ Rm
+ , the hourly number of visitors to each POI,

• q(t) ∈ Rn
+, the hourly number of visitors from each CBG.

We construct these quantities from SafeGraph data in the same way as the authors did in Chang et al.
[1, 9]. We summarize this procedure below, highlighting a few important facts, and point to the
original text for details.

Constructing matrix X . SafeGraph provides summaries of the home CBGs of each POI’s visitors,
per month (before March 2020) or week (after March 2020). To account for non-uniform sampling
from different CBGs, we weight the number of SafeGraph visitors from each CBG by the ratio of the
CBG population (from US Census) and the number of SafeGraph devices with homes in that CBG.
Following the original text, let Ŵ (r) represent the reweighted matrix for period r (we use r instead

9
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(a) Marginals on Monday, March 2, 2020.
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(b) Marginals on Monday, April 6, 2020.

Figure A.2: POI and CBG marginals from mobility data for Richmond, Virginia MSA.

of t to denote time periods longer than an hour). Since these visit matrices are sparse, we aggregate
over R time periods:

W̄ =
1

R

R∑
r=1

Ŵ (r) (15)

Xij =
W̄ij∑
k Wkj

. (16)

So, Xij represents the time-aggregated proportion of visits to POI i that come from CBG j. Note
that SafeGraph’s visit matrices include all possible home CBGs, but when we construct X , we only
include the n CBGs for the metropolitan statistical area. So, the rows of X typically do not sum to 1
and are usually around 0.9-0.97.

Constructing visitors to POIs, p(t). SafeGraph provides the hourly number of visits, not visitors,
so first we apply corrections to the SafeGraph counts based on the POI’s median dwell time to estimate
the hourly number of visitors (see Supplementary Information from Chang et al. [1]). To account for
SafeGraph undersampling, we also multiply each POI’s visit count by a uniform correction factor
which is the ratio of the US population to the total number of SafeGraph devices; this factor is around
7. Finally, since not all of the POI’s visits are captured by the n CBGs in X , we multiply the POI’s
visits by its row sum in X , i.e., its total proportion of visits kept.

In Figure A.2, we visualize the proportion of POI marginals that are nonzero, over 24 hours in the
day on March 2, 2020 and April 6, 2020. We see that only a small proportion of POIs have nonzero
marginals at nighttime, e.g., less than 10% from 12-5am. For both days, the proportion peaks from
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around 6-10pm, likely when people are visiting POIs after work. We also see considerably more
sparsity in POI marginals on April 6, compared to March 2, which reflects the onset of the COVID-19
pandemic in the US. In Section A.6.2, we discuss how to run and interpret IPF with row or column
marginals that contain zeros, since IPF is typically defined with strictly positive marginals.

Constructing visitors from CBGs, q(t). Using SafeGraph data, we can estimate ĥj(t), the fraction
of each CBG that has left their home. Then, we estimate the number of people who left their home
by multiplying these fractions by the CBG population Nj (from US Census). Finally, we scale these
estimates so that q(t) and p(t) sum to the same totals. We do this for two reasons: first, we want to
ensure that the sum of the POI and CBG marginals match; second, since the number of people who
are not at home may not exactly match the number of people who are visiting POIs. So, we have

qj(t) = ĥj(t)Nj ·
∑

i pi(t)∑
k ĥk(t)Nk

. (17)

In Figure A.2, we also visualize the proportions out of the house per CBG. We only have these
quantities at a daily granularity from SafeGraph, so we plot a histogram over CBGs instead of an
hourly measure. We can see that, in this setting, CBG marginals are always positive, even after the
pandemic onset.

A.6.2 IPF experiments on mobility data

IPF with zeros in marginals. IPF returns a matrix of the form D0XD1, where D0 and D1 are
positive diagonal matrices. So, unless the entire row or column of X is 0, IPF solutions cannot
naturally match zeros in the target row or column marginals. However, we can modify IPF slightly to
allow for non-negative, instead of strictly positive, marginals by setting d0i = 0, for all pi = 0, and
setting d1j = 0, for all qj = 0, then updating all other entries in d0 and d1 as usual, as described in
(1). We will show that this is still a valid IPF procedure and all guarantees of IPF hold, because this
procedure is equivalent to running the original IPF procedure on X̃ , p̃, and q̃, where X̃ is a submatrix
of X that leaves out the rows and columns with zero marginals, p̃ contains the nonzero entries in p,
and q̃ contains the nonzero entries in q.

For some row i where pi > 0, let d0i represent IPF’s inferred parameter under the modified IPF
procedure on X , p, q, and let d̃0i represent IPF’s inferred parameter under the original IPF procedure
on X̃ , p̃, and q̃. Let d1j and d̃1j be defined analogously. We will prove by induction that, for all
iterations k, d0i (k) = d̃0i (k), ∀i s.t. pi > 0, and d1j (k) = d̃1j (k), ∀j s.t. qj > 0. First, in the base
case, d0i (0), d̃

0
i (0), d

1
j (0), and d̃1j (0) are all initialized to 1. Now, assuming the statement holds up to

iteration k, the next IPF update is

d0i (k + 1) =
pi∑

j Xijd1j (k)
(18)

=
pi∑

j;qj>0 Xij d̃1j (k)
(19)

= d̃0i (k + 1). (20)

In (19), we can drop all the terms where qj = 0, since in our modified algorithm, we set d1j = 0 if
qj = 0. Furthermore, since we are only considering j where qj > 0, then we can replace d1j (k) with
d̃1j (k), based on the inductive hypothesis. A similar proof follows to show the inductive step for d1j
and d̃1j . Recall that in the connection between IPF and our Poisson network model, the number of
nonzero entries in X is our number of Poisson observations. One implication of this equivalence
between modified IPF for non-negative marginals and original IPF on the submatrix is that zero
marginals can substantially reduce our number of Poisson observations, since the submatrix drops
entire rows and columns. In other words, even if Xij > 0, we will lose it in our observations if
pi = 0 or qj = 0.

IPF convergence on mobility data. We run (modified) IPF for all hours on March 2 and April 6,
2020, and we find that IPF converges for 45 out of the 48 hours. However, it gets stuck in oscillation
for 3 hours during nighttime, when POI marginals are particularly sparse (2am on March 2 and 12am
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Figure A.3: ℓ1 error on marginals p and q over IPF iterations on mobility data. We show convergence
results from hours t ∈ {0, 4, 8, 12, 16, 20} on March 2, 2020 (left) and April 6, 2020 (right).
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Comparing IPF vs Poisson regression on mobility data

Figure A.4: Comparing inferred parameters from IPF (x-axis) vs. Poisson regression (y-axis) on
mobility data.

and 4am on April 6). We evaluate convergence in two ways: first, we check for it in the IPF iterations,
where we assume IPF converges if the difference between M IPF(k) and M IPF(k + 1) is smaller
than ϵ = 10−8. We also directly test for convergence from the input data, i.e., X , p, and q, by running
a max-flow-based algorithm that checks one of the IPF convergence conditions (Section A.4).

In Figure A.3, we plot the ℓ1 error between the marginals of M IPF and the target marginals, which
is known to decrease monotonically with each iteration [21]. When IPF converges, we find that the
error decreases exponentially, although the convergence sometimes demonstrates a one-time “bend”
where the exponential rate changes (e.g., for t = 8 on March 2). When IPF does not converge, as in
the case of t = 0 and t = 4 on April 6, its ℓ1 error gets stuck at a fixed value, since that fixed value
gets passed back and forth from error on the row marginals to error on the column marginals.

Comparing IPF and Poisson regression on mobility data. In our final experiment, we compare
the inferred parameters from IPF to those inferred by Poisson regression, this time on the mobility
data instead of synthetic data (Section A.5). Unlike in the case of synthetic data, we do not have
access to individual Yij terms when we are using mobility data; we only have Y ’s marginals p and
q. However, we only need a matrix Y that inherits the zeros of X and matches the target marginals,
which we can construct using the max-flow-based convergence algorithm (Section A.4). In Figure
A.4, we show that the IPF-inferred parameters and Poisson regression parameters are perfectly aligned
(after dividing by their respective means). We also plot the 95% confidence intervals from the Poisson
regression estimates. The CIs are mostly small, aside from a few outliers.
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