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Abstract

Embeddings are used in AI to represent symbolic structures such as knowledge graphs.
However, the representations obtained cannot be directly interpreted by humans, and may
further contain unintended information. We investigate how data embeddings might incor-
porate such information, despite that information not being used during the training pro-
cess. We introduce two methods: (1) Correlation-based Compositionality Detection, which
measures correlation between known attributes and embeddings, and (2) Additive Compo-
sitionality Detection, a process of decomposing embeddings into an additive composition
of individual vectors representing attributes. We apply our methods across two domains:
word or sentence embeddings and knowledge graph embeddings. We show that word em-
beddings can be interpreted as composed of semantic and morphological information, and
that sentence embeddings can be interpreted as the sum of individual word embeddings.
In the domain of knowledge graph embeddings, our methods show that attributes of graph
nodes can be inferred, even when these attributes are not used in training the embeddings.
Our methods are an improvement over previous approaches for decomposing embeddings in
that our methods are 1) more general: they can be applied to multiple embedding types;
2) provide quantitative information about the decomposition; and 3) provide a statistically
robust metric for determining the decomposition of an embedding.

1 Introduction

In AI research, embeddings are used to represent symbolic structures such as knowledge graphs as collections
of vectors of fixed dimension. By converting to embeddings, standard algebraic techniques can be used to
perform inferences on symbolic data. In other words, using embeddings allows for a convenient way to model
and process data. This paper examines the extent to which vector embeddings can decomposed into different
informative signals are encoded in embeddings, and how those signals can be disentangled and interpreted.

Knowledge graphs are a way of encoding explicit declarative knowledge about a set of entities in a domain
and the relations between those entities. They are a powerful tool to capture structured information about
the world and model complex relationships between various entities. With the rise of massive knowledge
bases and the need for efficient querying and inference, traditional symbolic reasoning on knowledge graphs
can become computationally expensive.

To address these challenges, graph embeddings have been introduced as a method to convert the structured
information of knowledge graphs into a continuous vector space. These embeddings aim to capture the
topological relations and semantic meanings of entities and relationships in the graph. The conversion
of symbolic constructs such as knowledge graphs into continuous embeddings enables efficient algebraic
operations, similarity calculations, and other tasks. For instance, in bipartite graph representations, graph
embeddings can reflect properties like a user liking a certain movie. The efficiency and expressiveness of
these embeddings have proven useful across many applications, including link prediction (which we focus on
here), node classification (Ji et al., 2021), and graph generation (Bo et al., 2021).

Many problems can naturally be cast in a knowledge graph setting, by defining the entitites and the relation(s)
between them. For example, the standard technique known as word embedding defines the entities as words,
and the relation between words as one of “co-occurrence”, such that two words are related if they often occur
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in the vicinity of one another. In this and in many other cases, the strength of the relation is used too, and
can be represented as a weight on the edge of the graph.

Problem

However, a challenge arises: these embeddings, drawn from real-world data to encode either graph topological
or word context relations, may not always be transparent to human interpretation. Attempting to interpret
embeddings in a compositional way implies that an embedding can be decomposed into distinct information
components. However, this opacity makes potential unintended information hard to detect and assess, further
complicating our understanding of how different components merge within the embedding space.

Approaches to Understanding Compositionality in Embeddings

In word embeddings, a series of interesting phenomena have been noted, whose extension to other forms of
data is of great practical interest. They include “compositionality”, that is, the property that the embedding
of two words that have certain semantic or syntactic relations are related in a predictable manner, typically
in an additive form. This allows for certain types of inference to be performed. A classic illustration (Mikolov
et al., 2013b) is the relationship between the embeddings of the words “King” and “Queen”:

xking − xman + xwoman ≈ xqueen

This provides the possibility to perform analogical inferences, where we can predict relationships (such as
gender) between words.

Both the phenomena of compositionality and of bias in embeddings can be traced back to the distributional
hypothesis (Harris, 1954). This posits that words that frequently appear in similar contexts tend to have
related meanings. For instance, “doctor” and “nurse” often co-occur with terms like “hospital” and “patient”,
hence their embeddings will be close, indicating semantic similarity. While this assumption is powerful for
capturing semantic relationships and nuances, it also means that any biases present in the data – stemming
from societal norms, customs, or even data collection methods – get encoded into the embeddings.

There have been a number of approaches to understanding compositionality in word embeddings (Mikolov
et al., 2013b; Bengio et al., 2013; Shwartz & Dagan, 2019). Word embeddings have further been examined
for presence of biases (Bolukbasi et al., 2016). Biases in data embeddings can inadvertently reflect societal
norms and prejudices. For instance, associations in word embeddings often reveal embedded gender biases
(Jonauskaite et al., 2021; Sutton et al., 2018; Caliskan et al., 2017).

Sentence and phrase embeddings can also be analyzed for compositional structure (Andreas, 2019; Murty
et al., 2022; Hewitt & Manning, 2019; Dasgupta et al., 2018; Adi et al., 2016), showing that in general, neural
approaches to sentence embedding do learn compositional structure. In this work, we show how sentence
and phrase embeddings in fact exhibit a strongly additive structure.

While the concept of compositionality has been deeply studied in fields like linguistics, most of their works
primarily focus on language. On the other hand, there is a lack of tools that can measure the degree of
compositional structure in vector representations.

Algorithmic Bias in Graph Embeddings Algorithmic bias can manifest in various machine learning
applications, requiring proactive detection and mitigation methods, as argued by Fisher et al. (2020). Figure
1 illustrates the bias in a job recommender system.

Within the field of knowledge graph embeddings, there has been a wide range of work into debiasing those
embeddings (Bose & Hamilton, 2019; Chen et al., 2013; Zemel et al., 2013; Zhu et al., 2015; Wu et al., 2016;
Fisher et al., 2020). However, these approaches focus solely on removing the bias in embeddings, and do not
analyze contribution of biased directions to the embeddings learnt. In contrast, we focus on analyzing how
embeddings are composed of information that we would like to retain, and information that we would like
to discard. This approach will lead to novel, lightweight, methods for debiasing embeddings in future work.
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Our Methods Our work is most aligned with that of Andreas (2019); Hewitt & Manning (2019); Bose &
Hamilton (2019). We are interested in the extent to which embeddings can be additively decomposed into
component parts. We examine three different kinds of data embedding: 1) word embeddings, 2) sentence
embeddings, and 3) knowledge graph embeddings.

In the example of word embedding, we use pretrained Word2vec (Mikolov et al., 2013a) embeddings and
investigate the extent to which these word embeddings can be analysed as a compositionality of their semantic
meaning and their syntactic structure. In the example of sentence embeddings, we use sentence embeddings
from BERT (Devlin et al., 2018), and look at the extent to which simple sentences may be analysed as an
additive compositionality of their constituent words. Finally, we look at knowledge graph embedding. In
this problem, we train a set of embeddings over the MovieLens dataset (Harper & Konstan, 2015). This
dataset contains entities for users and entities for movies, and relations on the knowledge graph consist of
the users’ ratings of the movies. We train our embeddings with the objective of performing link prediction,
that is, the task of predicting whether a link holds between two entities. We describe this in more detail in
section 2, however, the key point is that we learn the embeddings without any reference to the demographic
attributes of the users, e.g. gender or age. We investigate the extent to which the user embeddings are in
fact composed of an additive compositionality of demographic attributes, even though these are not used in
training.

Throughout the three problems described above, we ask whether we can decompose an embedding into
interpretable components. Specifically, we investigate additive compositionality, that is of the type ϕ(x) =
ϕ(x1) + ϕ(x2).

Figure 1: Embedding contains an information of both wanted and unwanted information

Our Approach

We introduce two distinct methods to analyse the extent to which embeddings can be interpreted as a
compositionality of interpretable components.

1. Correlation-based Compositionality Detection We use Canonical Correlation Analysis (CCA)
to provide a novel approach to measure the correlation between interpretable attributes and the data
embedding itself. This method provides a quantitative measure of compositionality.

2. Additive Compositionality Detection We treat embeddings as additive compositionality of
meaningful vector directions. We view an embedding v as an aggregated sum v = x1 + x2 + . . . + xk,
with each component xi a distinct meaningful direction within the vector space that represents an
attribute (such as gender, age, etc.).

Improvements Over Previous Approaches

Unlike earlier models, our methods are versatile across different embedding types. Approaches such as
Shwartz & Dagan (2019) Mikolov et al. (2013b) consider only how word embeddings should be decomposed.
Similarly, Bose & Hamilton (2019) Fisher et al. (2020) consider only the interpretation of graph embeddings.
Here, we show that the same methods can be used across different embedding types.
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While Mikolov et al. (2013b); Bose & Hamilton (2019) show that embeddings can be decomposed into
simple attributes, they only provide a qualitative decomposition, whereas we are able to provide a weighting
that quantifies how much each component contributes to the overall compositionality of attributes by the
correlation-based compositionality detection.

Furthermore, our Additive Compositionality Detection method provides a novel way to detect signal compo-
sitionality in embeddings. We consider an embedding v as a cumulative sum given by v = x1 + x2 + · · · + xk,
where each xi denotes a unique direction in the vector space corresponding to attributes. This was already
done implicitly by Mikolov et al. (2013b), however, we provide a systematic method by which to isolate
signals in the vector space and confirm the robustness of these signals via statistical testing.

Findings

We apply our methods to word embeddings, sentence embeddings, and graph embeddings. We find that
word embeddings can be decomposed into semantic and morphological components. Similarly, for BERT
sentence embeddings, we find that the sentence embeddings can be decomposed into a sum of individual
word embeddings. Finally, we show that embeddings corresponding to users in a database of users and
movie ratings can be decomposed into a sum of embeddings corresponding to demographic attributes such
as gender, age, and so on, even though these attributes are not used in the training of the embeddings.

Our findings significantly advance the understanding of embeddings. In word embeddings, we revealed the
multidimensional richness within Word2Vec, highlighting opportunities for detailed analysis, from semantics
to morphology. Our decomposition techniques in sentence embeddings showed that BERT’s embeddings can
be decomposed into the contributions of the subject, verb and object. Most crucially, in graph embeddings,
we discerned that user embeddings capture private demographic attributes, illustrated by the ability to
compute composite embeddings like that of a “50-year-old female” from individual attribute embeddings.
This insight into detecting private attributes in systems, like movies, is pivotal for future research.

Structure of Paper

Section 2 covers embedding, mapping elements to vector spaces, focusing on word, sentence, and graph
embeddings. Furthermore, we discuss how the linguistics idea of compositionality applies to the compo-
sitionality of different signals in vector embeddings. Section 3 introduces two methods: Correlation-based
Compositionality Detection and Additive Compositionality Detection to detect the composition of signals in
data embeddings. Section 4 presents experiments on three data embeddings, and Section 5 discusses results.

2 Background and Related Work

2.1 Embedding

In machine learning, embedding is the process of mapping elements from a set, denoted as I, to points in a
vector space. We write a set of coordinates B to represent the items of I as follows:

B = Φ(I)

where Φ is the mapping function that maps the items (elements of the set) to their coordinates. This
embedding function can be learned from a set of data containing those items: for words, this can be done by
exploiting co-occurrence statistics between words; for elements of a graph, by exploiting the topology, i.e.,
the relations between different elements.

More generally, we can consider any kernel-based method as an example of embedding, since it depends on
defining a kernel function that generates a kernel matrix once applied to the set of items, and this one can
be regarded as an inner product matrix in an embedding space (also known as the feature space).

Formally, for two data points x and y, a kernel function (Shawe-Taylor et al., 2004) is defined as:

K(x, y) = ⟨ϕ(x), ϕ(y)⟩
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Figure 2: Structure of the paper

where ϕ is a mapping from the input space to the feature space. The function K gives the inner product
between the images of x and y in the feature space. However, the exact form of ϕ doesn’t need to be known
as long as we can compute K.

In this case, knowing the kernel (that is, the relation) between any two items is sufficient, and often the
actual coordinates of the embedding are not known. We could also consider part of the same category any
feature-based description of data: once a set of measurements is defined, they can be used to generate a
vector that describes the item, which in turn can be regarded as coordinates (assuming those are numeric
measurements). So an embedding is defined every time we agree on a set of measurable properties (features)
or on a kernel function.

In the example of word embeddings and knowledge graph embedding we will make use of co-occurrence or
relational information to create the embedding. In the example of sentence embedding we will make use of a
feature vector, as defined by a tool known as BERT. In both cases we will be interested how the embeddings
of structured objects (e.g. sentences) can depend on the relations between those structures.

2.1.1 Word Embedding

Word2Vec Word2Vec, as introduced by Mikolov et al. (2013a), is a method to embed words into vectors
based on the distributional hypothesis: words in similar contexts have similar meanings. It consists of two
architectures: Continuous Bag-of-Words (CBOW) and Skip-Gram. CBOW predicts a word from its context,
while Skip-Gram predicts context words from a target word.

Formally, for vectors of two words x and y, their similarity in the embedded space can be computed as:

K(x, y) = ⟨x, y⟩

This dot product serves as an effective metric for semantic similarity, capturing the relation of cooccur-
rence between words. While Word2Vec doesn’t directly compute co-occurrence statistics, the embeddings
inherently reflect these relations due to the optimization objectives.
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2.1.2 Sentence Embedding: BERT

We also consider the problem of deriving the meaning of sentences from the meaning of the words within
them. We look at sentence embeddings extracted from BERT.

BERT, introduced by Devlin et al. (2018), is a pre-trained Transformer-based model capturing bidirectional
contexts of words, producing nuanced sentence embeddings. Unlike models like GloVe (Pennington et al.,
2014), BERT doesn’t use explicit co-occurrence statistics but learns context through deep training. The
attention mechanisms within BERT employ dot products, serving as implicit kernel functions that dictate
the relationship between parts of input text, reminiscent of the kernel function defined as:

K(x, y) = ⟨x, y⟩

SBERT (Reimers & Gurevych, 2019), a sentence embedding derivative of BERT, was trained on natural
language inference (NLI) corpora (Bowman et al., 2015; Williams et al., 2018). .

For each input token, BERT generates an output vector, where ΦBERT : X → Y ∈ R768. The output
vector of the [CLS] token is usually used for classification tasks because it can represent the information
of the entire input sequence. However, the representation generated by pre-trained BERT fails to capture
sentence similarity. Ideally, the sentence embeddings with similar meanings will be close to each other in
the vector space. Thus, we use SBERT (Reimers & Gurevych, 2019), a version of BERT trained specifically
for generating sentence representation that can be compared using cosine similarity. It created a leading
performance on semantic textual similarity (STS) task (Cer et al., 2017) by introducing a Siamese structure.

SBERT creates a state-of-the-art performance on variable STS tasks compared to existing sentence embed-
dings, such as InferSent (Conneau et al., 2017) and Universal Sentence Encoder (Cer et al., 2018). Using
SBERT to generate sentence embedding helps us look into BERT’s mechanism while investigating the com-
positionality in the embedding.

2.1.3 Knowledge Graph Embedding

A graph G = (V, E) consists of a set of vertices V with edges E between pairs of vertices. In a knowledge
graph, the vertices V represent entities in the real world, and the edges E encode that some relation holds
between a pair of vertices. As a running example, we consider the case where the vertices V are a set of
viewers and films, and the edges E encode the fact that a viewer has rated a film.

Knowledge Graphs represent information in terms of entities (or nodes) and the relationships (or edges)
between them. The specific relation r that exists between two entities is depicted as a directed edge, and
this connection is represented by a triple (h, r, t). In this structure, we distinguish between the two nodes
involved: the head (h) and the tail (t), represented by vectors h and t respectively. Such a triple is termed
a fact, denoted by f :

f = (h, r, t)

In order to mathematically capture the relationships and structures within a knowledge graph, we employ
the concept of embeddings. A knowledge graph embedding assigns vectors to nodes and edges in such a
way that the graph’s topology is encoded. To be specific, a vector x ∈ Rn is allotted to each member of V ,
ensuring the existence of a distance function D(xi, xj) where E(vi, vj) = 1 ⇐⇒ D(xi, xj) < θ for a certain
threshold θ. We refer to these vectors x as the embedding of the nodes. The function that facilitates this
embedding is the embedding function: ΦKG : V → Rn, or x = Φ(v).

Conversely, given a set of points in a space, we can link them to form a graph. The decision of which
pairs of nodes ⟨vi, vj⟩ should be linked is made by using a scoring function f(xi, xj) that will be learnt
from data. Unlike typical kernel methods which evaluate pairwise data, the Knowledge Graph Embedding’s
kernel operates on triplets, aligning with the relational architecture of knowledge graphs. Two commonly
used functions generating a score between xi and xj are:

Multiplicative: S(xi, xj) = xi
T Rxj (1)

Additive: S(xi, xj) = ∥xi + r − xj∥ (2)
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where R and r are parameterised matrices or vectors that will be defined below. We can think of different
Ri and ri as encoding specific relations, allowing the same entity embedding x to participate in multiple
different relations.

We will follow this convention below, and use the multiplicative form of the scoring function which follows
the settings of Berg et al. (2017)

Multiplicative Scoring Function Nickel et al. (2011) proposed a tensor-factorisation based model for
relational learning, in which they treat each frontal slice, as shown in Figure ??) of the tensor as a co-
occurrence matrix for each entity with a given specific relation. Such a tensor could then be decomposed
into three different tensors for the head entity, relation and tail entity. For example, consider a 3D tensor,
and we are looking at its frontal slices. The i, j entry of the k-th frontal slice encodes the interaction between
the head entity hi, the relation Rk, and the tail entity tj . This entry can be decomposed into the product
of hi, Rk and tj A scoring function of a triple could also explain this in multiplicative way. We use S(f) to
denote the score of a triple (h, r, t) and we use h, R, t (vectors) to denote the embeddings of each element of
the triple f = (h, r, t) ∈ F .

S(f) = hT Rt h ∈ Rd, R ∈ Rd×d, t ∈ Rd (3)

Various model variations exist. DistMult (Yang et al., 2014) retains only the R matrix diagonal, reducing
over-fitting. ComplEx (Trouillon et al., 2016) uses complex vectors for asymmetric relations.

In this work, we will be using DistMult (Yang et al., 2014) for the models. DistMult is favored for its simplicity
and computational efficiency, especially its adeptness at capturing symmetric relations using element-wise
multiplication of entity embeddings, which also makes it scalable for large knowledge graphs.

Additive Scoring Function Bordes et al. (2013) introduced TransE, where relationships translate entities
in the embedding space. For instance, h(King) + r(FemaleOf) ≈ t(Queen).

S(f) = ∥h + r − t∥ h ∈ Rd, r ∈ Rd, t ∈ Rd (4)

Rating Prediction In alignment with (Berg et al., 2017), we establish a function P that, given a triple
of embeddings (h, R, t), calculates the probability of the relation against all potential alternatives.

P (h, R, t) = SoftArgmax(S(f)) = eS(f)

eS(f) +
∑

r′ ̸=r∈R eS(f ′) (5)

In the above formula, f = (h, r, t) denotes a true triple, and f ′ = (h, r′, t) denotes a corrupted triple, that
is a randomly generated one, that we use as a proxy for a negative example (a pair of nodes that are not
connected).

Assigning numerical values to relations r, the predicted relation is then just the expected value prediction =∑
r∈R rP (h, R, t) In our application of viewers and movies, the set of relations R could be the possible

ratings that a user can give a movie. The predicted rating is then the expected value of the ratings, given
the probability distribution produced by the scoring function. S(f) refers to the scoring function in Yang
et al. (2014).

To learn a graph embedding, we follow the setting of Bose & Hamilton (2019) as follows,

L = −
∑
f∈F

log eS(f)

eS(f) +
∑

f ′∈F ′ eS(f ′) (6)

This loss function maximises the probabilities of true triples (f) and minimises the probability of triples
with corrupted triples: (f ′).
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Evaluation Metrics We use 4 metrics to evaluate our performance on the link prediction task. These are
root mean square error (RMSE,

√
1
n

∑n
i=1 (ŷi − yi)2, where ŷi is our predicted relation and yi is the true

relation), Hits@K - the probability that our target value is in the top K predictions, mean rank (MR) - the
average ranking of each prediction, and mean reciprocal rank (MRR) to evaluate our performance on the
link prediction task. These are standard metrics in the knowledge graph embedding community.

2.2 Compositionality

A property of certain embeddings that has the potential to help with the above concerns (as well as others)
is that of “compositionality”. Introduced in the domain of traditional linguistics, this property has been
extended to also cover vector representations. Traditionally it refers to how the meaning of a linguistic
expression results from its components. For example, the word “compositionality” can be viewed as the
concatenation of multiple parts “Com+pos+ition+al+ity” that modify the meaning of the initial word stem.

In the case of vector embeddings, we substitute the concatenation operation with the vector addition op-
eration, so that a vector representation is compositional if it can be regarded as the sum of a small set
of components (which can hopefully be interpreted and even manipulated). Introduced in the domain of
traditional linguistics, this property has been extended to also cover vector representations. Traditionally
it refers to how the meaning of a linguistic expression results from its components. For example, we could
imagine an embedding Φ that maps from items (tokens) to vectors in such a way that

Φ(compositionality) ≈ Φ(com) + Φ(pos) + Φ(ition) + Φ(ality)

2.2.1 Compositionality in Word Embedding

Compositionality has been the focus of research for many years. One approach is Disentangled Representation
Learning (DRL) (Bengio et al., 2013), which detects and separates attributes within data embeddings. Such
disentangled representations, which can be deconstructed into components, enhance the explicability of the
models trained. Each constituent in the latent space pertains to a discrete attribute or feature, thereby
simplifying manipulation and control of data representations.

Shwartz & Dagan (2019) undertook an examination of word representation compositionality via six tasks,
probing into the phenomena of semantic drift and implicit meaning. Andreas (2019) postulated a metric
for compositionality based on the approximation fidelity of observed representations when assembled from
inferred primitives. This paper also introduced the Tree Reconstruction Error (TRE) method, focused on
gauging compositionality through multiplication. Our work predominantly focusses on the potential for
capturing additive compositionality within learned data embeddings.

A learned representation is compositional when it can represent complex concepts or items by combining
simple attributes (Fodor & Lepore, 2002). In this paper, we focus on additive compositionality as follows.

uI =
N∑

i=1
xi

Where I is an item that has a set of N attributes. I can be represented with embedding vector uI , and the
attributes can be represented with x.

2.2.2 Compositionality in Sentence Embedding

Researchers have found that while BERT does not have explicit syntactic trees during training, the represen-
tations it learns capture significant syntactic information (Hewitt & Manning, 2019). There is an increasing
amount of research focusing on evaluating the compositionality in sentence embedding. There are two main
approaches: task-based and task-independent. Task-based methods measure the compositionality by eval-
uating the performance through specific language features, such as semantics, synonym, and polarity. The
performance on these tasks defined the compositionality of sentence embedding.
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Ettinger et al. (2016) developed a dataset to identify semantic roles in embeddings, such as whether “profes-
sor” is the agent of “recommend”. They also looked at semantic scope by altering sentence meanings without
much lexical change. Dasgupta et al. (2018) created a dataset examining word combinations in embeddings.
They modified sentences to study natural language inference relations, involving changes like word order and
addition of words like “more/less” or “not”.

These methodologies aim to uncover sentence representation’s understanding of language. Task-independent
methods, on the other hand, focus on general aspects like sentence length, content, and order.

Without needing specific labeled data, Adi et al. (2016) presented three evaluation techniques for sentence
embeddings: measuring sentence length, identifying a word in a sentence, and determining word order. In
tests, LSTM auto-encoders performed well in the latter two tasks.

In this work, we decompose sentence embedding into word representations to understand whether words are
the attributes for sentence embedding. Furthermore, the word representations learned from the existing sen-
tence representations can be composed to form new sentence embeddings. We measure the compositionality
by the vector space distance between the actual sentence embedding and the inferred vector that builds from
the property vectors.

2.2.3 Compositionality in Knowledge Graph Embedding and Algorithm Bias

The possibility of bias in AI agents has become one of the most significant problems in machine learning.
One of the possible sources of bias is the way data is encoded within the agent, and in this paper we are
concerned with the possibility that data embeddings contain unwanted information that can lead to what is
known as “algorithmic bias”.

As mentioned previously in section 1, we can learn a word’s semantic content from the distribution of word
frequencies in its context. However, it has been observed that these distributions contain also information
of different nature, including associations and biases that reflect customs and practices. For example it is
known that the embeddings of color names extracted in this are not gender neutral, nor are those of job titles
or academic disciplines. For example, engineering disciplines and leadership jobs may tend to be represented
in a "more male" way than artistic disciplines or service jobs (Jonauskaite et al., 2021; Sutton et al., 2018;
Caliskan et al., 2017).

This could lead to problems that might be described as the machine equivalent of an “unconscious bias”,
and eventually to unwanted consequences, for example when filtering applicants for a job.

The presence of gender information in word embeddings was already reported in Bolukbasi et al. (2016), in
an article aptly entitled “Man is to Computer Programmer as Woman is to Homemaker?”. The same signal
was already reported in Mikolov et al. (2013b), which introduced the example involving king and queen that
we have used above. All this highlights the possibility that “compositionality” might lead to new ways of
reasoning with embeddings, for example by performing analogies.

An interesting possibility is the presence of similar biases in Knowledge Graph embedding, which would lead
both to opportunities and challenges, and which would require attention Guo et al. (2023). Recent work such
as Fisher et al. (2020) Bose & Hamilton (2019) use adversarial loss to train the model neutral to sensitive
attributes. Such a bias can also be observed in movie recommender systems whose embedding is simply
trained from a set of movie ratings. Our work discusses new ways to detect it.

3 Compositionality Detection Methods

An important consideration is that there is a difference between which information is present in a given
data representation, and which information is accessible to a specific class of functions. While it may be
difficult or impossible to prove that certain information is not present, it may be simple to prove that it
is not accessible - say - to a linear function. In practical applications this may be all that is needed. For
example, the study Jia et al. (2018) describes a method to ensure that a deep neural network does not
contain unwanted information in a form that it can be used by its final - decision making - layers.

9



Under review as submission to TMLR

The general problem is as follows. Given a knowledge graph G = (V, E), it may be the case that vertices
V have attributes that may be considered private information. For example, suppose we have a graph
representing jobs and applicants. Suppose we have vertices representing applicants, vertices representing
skills, and vertices representing jobs, with edges denoting which jobs applicants are finally offered. Some
attributes of the applicants, for example their gender or age, may be considered private information that we
do not wish to be able to elicit from the graph.

We give two methods: Correlation-based Compositionality Detection and Additive Compositionality Detec-
tion to detect the compositionality of signals in the vertices V . We take movie recommender system as a
small running example.

3.1 Correlation-based Compositionality Detection

Canonical Correlation Analysis (CCA) is used to measure the correlation information between two multi-
variate random variables (Shawe-Taylor et al., 2004). Just like the univariate correlation coefficient, it is
estimated on the basis of two aligned samples of observations.

A matrix of binary-valued attribute embeddings, denoted as A, is essentially a matrix representation where
each row corresponds to a specific attribute and each column corresponds to an individual data point (such
as a word, image, or user). The entries of the matrix can take only two values, typically 0 or 1, signifying
the absence or presence of a particular attribute. For example, in the context of textual data, an attribute
might represent whether a word is a noun or not, and the matrix would be populated with 1s (presence) and
0s (absence) accordingly.

On the other hand, a matrix of user embeddings, denoted as U, is a matrix where each row represents an
individual user, and each column represents a certain feature or dimension of the embedding space. These
embeddings are continuous-valued vectors that capture the movie preference of the users. The values in this
matrix are not constrained to binary values and can span a continuous range.

Assuming we have a vector for an individual attribute embedding, denoted as

a = (a1, a2, . . . , an)T

and a vector for an individual user embedding,

u = (u1, u2, . . . , um)T

our goal is to explore the correlation between these two vectors. To achieve this, we focus on finding
projection vectors, wa (where wak

∈ Rn) for the attribute and wu (where wuk
∈ Rm) for the user, such that

the correlation between the transformed embeddings is maximized. Mathematically, this can be expressed
as:

ρ = max
(wak

,wuk )
corr

(
wT

ak
a, wT

uk
u

)
(7)

Note there are k correlations corresponding to k components.

By extending the individual user case to all q users, we can compute the canonical correlations for the
entire user base, which provides insights into the relationship between the attribute embeddings and user
embeddings across the whole dataset.

Given two matrices, one representing binary-valued attribute embeddings and the other representing user
embeddings, we aim to find a correlation between them. Specifically, we define:

• A: An n × q matrix of binary-valued attribute embeddings, where each column represents the
attribute embeddings for a specific user, and n is the number of attributes.

• U: An m × q matrix of user embeddings, where each column represents the embedding of a different
user, and m is the dimensionality of each user embedding.

10
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To compute the correlation between these matrices, we seek projection matrices WA and WU that maximize
the correlation between the transformed A and U. Formally, the objective is:

ρ = max
(WA,WU )

corr (AWA, UWU ) (8)

These paired random variables are often different descriptions of the same object, for example genetic and
clinical information about a set of patients (Seoane et al., 2014), french and English translations of the same
document (Vinokourov et al., 2002), and even two images of the same object from different angles (Guo &
Wu, 2019).

In the example of viewers and movies, we use this method to compare two descriptions of users. One matrix
is based on demographic information, which are indicated by Boolean vectors. The other matrix is based on
their behaviour, which is computed by their movie ratings only.

Figure 3: Schematic of Correlation-based compositionality Detection

3.2 Additive Compositionality Detection

Again assuming we have a matrix of entity embeddings U with matrix of attributes A, we investigate
the possibility that the entity embeddings can be decomposed into a linear combination of embeddings
corresponding to attributes. Specifically, we investigate whether we can learn a matrix X as follows

AX = U (9)

As mentioned in Section 2, word embeddings generated from the distribution of words in text can encode
additional semantic or syntactic information. We investigate here the possibility that entity embeddings in
knowledge graphs can be decomposed into linear combinations of embeddings corresponding to attributes.
We use methods from Xu et al. (2023) to see if an entity embedding u can be decomposed into a linear
system.

In our example of viewers and movies, a set of users as U and the coefficient matrix of the components as
A. We aim to solve a linear system AX = U so that the user embedding can be decomposed into three
components (gender, age, occupation) as follows, u =

∑
i aixi. Here, u is a user embedding, i ranges over all

possible values of each private attribute, xi is an embedding corresponding to the ith attribute value, and
ai ∈ {0, 1}, denotes whether a particular attribute value is present or absent for the user. This formulation
allows us to break down each user into distinct, quantifiable components, reflecting their demographics and
interests.

3.3 Hypothesis Testing with Random Permutations

3.3.1 Methods

We aim to investigate the correlation between user attributes and their movie preferences. By measuring
a test statistic for correlation, and subsequently employing a permutation test on one of the datasets, we
assess the likelihood of observing the same degree of correlation under the null hypothesis of no association.

11
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Figure 4: Schematic of Additive Compositionality Detection: our linear decomposition system

To assess the significance of the observed correlation, a permutation test was conducted. This involved
randomizing the order of users in one of the datasets (either attributes or movie preferences) while keeping the
order in the other dataset unchanged. The test statistic for correlation was recalculated for each permutation.

Our null hypothesis is that the embedding of a vertex u and its attributes a are independent. To test whether
this is the case, we employ a non-parametric statistical test, whereby we directly estimate the p-value as
the probability that we could obtain a “good”1 value of the test statistic under the null hypothesis. If the
probability of obtaining the observed value of the test statistic is less that 1%, we reject the null hypothesis.

Specifically, we will randomly shuffle the pairing of vertices and attributes 100 times, and compute the same
test statistic. If the test statistic of the paired data is better than that of the randomly shuffled data across
all 100 random permutations, we conclude that the correctly paired data performs better to a 1% significance
level.

The test statistic for Correlation-based Compositionality Detection is the correlation ρ For the Additive
Compositionality Detection AX = U, we use the Leave One Out algorithm as shown in Algorithm 1, that
is to leave one user out and predict either the user embedding or the inverse problem of user identity. We
look at the L2 norm loss of the linear system, cosine similarity and retrieval accuracy, a metric defined in
Xu et al. (2023).

• L2 Loss of the linear system ||AX − U||2

• Cosine similarity between u and constructed embedding û

• Accuracy of retrieving identity of u with û

Algorithm 1 Leave One Out
1: for any dataset of (A, U) descriptions do ▷ (*)
2: for each user u do
3: Leave the user u out
4: Train on the remaining N − 1 users
5: Predict the user behavior Û ▷ (**)indicate the synthetic/predicted behavior withˆ
6: Measure the quality of Û ▷ (***)
7: end for
8: The Score is average quality (across all users) of artificial embeddings Û
9: end for

Notes:
(*) This includes randomly shuffled (A, U) pairs.
(**) Here, we take use as an example, the user behavior means user embedding computed by the movie
preference, it could also be word/sentence embedding computed by the context.
(***) This includes different loss functions as shown in Alogorithm 2.

1either high or low, depending on the statistic
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Figure 5: Hypothesis Testing

Algorithm 2 Compute a Loss Function

1: For a specific user, with true behavior U and predicted behavior Û
• L2 Norm between U and Û : ||AX − U||2

• Cosine between U and Û
• Identity between U and best_match_of: Û

3.3.2 Analysis

Hypothesis testing on Correlation-based Compositionality Detection In this study, we employ a
non-parametric testing approach to directly estimate the p-value as the probability of an event under the
null hypothesis. This event pertains to the chance occurrence of a high value of the test statistic, specifically
a strong correlation between two datasets. By leveraging a Monte Carlo sampling method, where random
permutations of the user list serve as the basis for our samples, we assess the likelihood of observing the given
test statistic purely by chance. If the probability of achieving the observed test statistic is less than 1%, we
lean towards rejecting the null hypothesis. However, it is important to note that this does not conclusively
affirm the alternative hypothesis (H1) but rather emphasizes the statistical significance of our findings, a
nuance that delves into the philosophical underpinnings of statistical inference.

Hypothesis testing on Additive Compositionality Detection In this segment of the study, our
objective is to substantiate the hypothesis that the embedding of user behavior can be characterized by user
demographics. We postulate that the representation of user behavior, termed here as the “user-behavior-
embedding”, can be approximated as a summation of vectors representing user demographics. To evaluate
the accuracy of this approximation, we employ a test statistic based on the loss or distance between the
actual user behavior embedding and its demographic-based approximation. A critical inquiry that emerges
is: given the computed loss value, what is the probability that such a value could arise purely by chance
under the null hypothesis? To address this, we implement a permutation-based approach, wherein we shuffle
the data and estimate the probability of obtaining our observed test statistic under randomized conditions.

4 Experimental Study

We will examine the semantic and syntactic signals in word2vec embeddings, comparing them to WordNet
and MorphoLex benchmarks. Subsequently, we will analyze the compositionality of BERT sentence embed-
dings, hypothesizing an additive relationship between individual word and complete sentence representations.

13
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Finally, using the MovieLens dataset, we will study the relationship between user movie preferences and de-
mographic traits through behavior-based embeddings.

4.1 Word Embedding

In our investigation, we will be particularly interested in examining two distinct signals encapsulated within
the word2vec embeddings: semantic and syntactic information. To discern these signals, we employ Word-
Net embeddings as a benchmark for semantic representation, while MorphoLex serves as our reference for
syntactic structures. By comparing the word2vec embeddings against both WordNet and MorphoLex, we are
able to disentangle and analyze the semantic and syntactic nuances inherent in the word2vec representation.
This comparative approach provides a comprehensive understanding of the multifaceted linguistic properties
embedded within word2vec.

4.1.1 WordNet

WordNet (Miller, 1995) is a large lexical database of English, which consists of 40943 entities and 11 relations.
Synsets are interlinked by means of conceptual-semantic and lexical relations. WordNet is a combination of
dictionary/thesaurus with a graph structure. Nouns, verbs, adjectives, and adverbs are grouped into sets
of cognitive synonyms (synsets), each expressing a distinct concept. These synsets are interlinked using
conceptual-semantic and lexical relations.

The relations include, for instance, synonyms, antonyms, hypernyms (kind of relationship), hyponyms (part
of relationship), meronyms (member of relationship), and more. For example, searching for ‘ship’ in WordNet
might yield relationships to ‘boat’ (as a synonym), ‘cruise’ (as a verb related to ‘ship’), or ‘water’ (as a related
concept), among other things.

Mapping Freebase ID to text WordNet is constructed with Freebase ID only, an example triple could
be <00260881, hypernym, 00260622>. We follow villmow (2019) to preprocess the data and map each entity
with the text with a real meaning.

The above triple can then be processed with the real semantic meaning: <land reform, hypernym, reform>.
The Word2Vec word embedding is pretrained from a google news corpus.

4.1.2 WordNet Embedding

We want to ensure our WordNet embedding can contain the semantic relation in it. Therefore, we train the
embedding with the task of predicting the tail entity given a head entity and relation. For example, we want
to predict the hypernym of piciform bird:

< piciform bird, hypernym, ? >

We train the WordNet Embedding in the following way:

1. We split our dataset to use 90% for training, 10% for testing.

2. Triples of (head, relation, tail) are encoded as relational triples (h, r, t).

3. We randomly initialize embeddings for each hi, rj , tk and use the scoring function in Equation 4
and minimize the loss by Margin Loss.

4. We sampled 20 corrupted entities. Learning rate is set at 0.05 and training epoch at 300.

Detailed results can be found in the Table 1, which shows that our WordNet embeddings do contains the
semantic information.
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Table 1: Link prediction performance for WordNet

Hits@1 Hits@3 Hits@10 MRR
WordNet 0.39 0.41 0.43 0.40

Table 2: Suffix presence (indicated by ‘1’) for selected words from the MorphoLex dataset

Word al ic ist ity ly y
allegorically 1 1 0 0 1 0
whimsicalities 1 0 0 1 0 1
whimsicality 1 0 0 1 0 1
whimsically 1 0 0 0 1 1
voyeuristically 0 1 1 0 1 0

4.1.3 MorphoLex

MorphoLex(Sánchez-Gutiérrez et al., 2018) provides a standardized morphological database derived from
the English Lexicon Project, encompassing 68,624 words with nine novel variables for roots and affixes.
Through regression analysis on 4724 complex nouns, the dataset highlights the influence of root frequency,
suffix length, and the prevalence of frequent words in a suffix’s morphological family on lexical decision
latencies. It offers valuable insights into morphology’s role in visual word processing.

In this paper, we specifically focus on words with one root and multiple suffixes. For the CCA experiment,
words with suffixes occurring less than 10 times are filtered out. Conversely, in the linear decomposition
experiment, we exclude rows with roots appearing fewer than 3 times.

4.1.4 Correlation-based Compositionality of Semantic and Morphology in Word2Vec

We applied Correlation-based compositionality Detection to compare two different representations of a set
of words. Word2Vec provides a vector space model that represents words in a high-dimensional space, using
the context in which words appear.

Semantic WordNet offers a structured lexical and semantic resource where words are related based on
their meanings and are organized into synonym sets. We shuffled the pairing of Word2Vec embedding and
words 100 times to break the semantic signal captured in the Word2vec embedding, the result is shown in
Figure 6a.

The correlation between two different representations is higher than the shuffled ones in the first component,
which means, the structured semantic information can be captured from the word embedding trained by its
context words.

Morphology Conversely, MorphoLEx provides a morphological resource predicated on root frequency,
suffix length, and the function of morphology. For experimental robustness, we permuted the Word2Vec
embedding on 50 separate occasions to obfuscate the morphological signals intrinsic to the Word2Vec repre-
sentation, with results delineated in Figure 6b.

The correlation coefficient observed between the two distinct representations surpasses that of the permuted
counterparts in the principal component. This suggests that morphological nuances are ascertainable from
word embeddings informed by their contextual counterparts.

4.1.5 Decomposing Word2Vec Embedding by Additive Compositionality Detection

We have chosen a collection of 278 words, where several words have common roots, and others have identical
morphological units. Having computed a set U ∈ R278×300 of embeddings as Word2Vec embeddings, we can
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(a) PCC for the true WordNet-Word2Vec pairings
and 100 permuted pairings, the first 10 components
are selected for illustration. WordNet embedding
contains the semantic information.

(b) PCC comparison for the true MorphoLex-
Word2Vec pairings and 100 permuted pairings, the
first 20 components are selected for illustration. Mor-
phoLex contains the morphological information.

Figure 6: Comparison of PCC values for WordNet-Word2Vec and MorphoLex-Word2Vec pairings. PCC is
calculated between projected A and projected U. x axis stands for the kth components, y axis gives the
value. The PCC value for real pairings is larger than for any permuted pairings, which means both semantic
and morphological information can be detected from the Word2Vec embedding.

find the unknown vectors xi, xj , and xk by solving the linear system AX = U, where A ∈ R278×45 is a
binary matrix indicating the presence or absence of each root words and morphemes, This system does not
have (in general) an exact solution, so we approximate the solution by solving a linear least squares problem,
using the pseudo-inverse method, as follows:

X = (AT · A)−1 · AT · U (10)

In our leave-one-out approach, we train the linear system without including the target word u, allowing us to
generate root words and morphemes independently of u. We test the accuracy of this method by estimating
the embedding for a new word and comparing it to its true Word2Vec embedding, using the evaluation steps
outlined in Algorithm 2.

Figure 7 delineates the efficacy of decomposing the Word2vec embedding. The results show that the
Word2Vec embedding can be bifurcated into distinct components: the root and the morphemes. These
components can subsequently be employed to predict the embedding of novel words.

When the linear system decomposes the Word2Vec embedding, it incurs a loss of 39.84. Notably, this is more
efficient than the minimum loss observed from random permutations, which stands at 44.06. Consequently,
the p-value from non-parametric testing falls below the significance threshold (α=0.01), leading us to reject
H0. This suggests that the Word2Vec embedding can be conceptualized as an amalgamation of two discrete
attributes.

Furthermore, it’s feasible to approximate the embedding of a word using solely the root and morphological
suffix components derived from the linear system. Such a reconstructed embedding, denoted as Û , can be
compared to reconstructions based on randomized (attributes, embeddings) pairs using cosine similarity as
the metric. Intriguingly, the cosine similarity between the authentic embedding and Û is 44%, surpassing
all instances from random permutations.

The efficacy of the reconstructed embedding is further underscored by its ability to retrieve the actual
embedding with a hits@10 accuracy of 33%. In contrast, embeddings composed with randomized at-
tribute/embedding pairs demonstrate a paltry retrieval success, peaking at a mere 6%.
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(a) Linear System Loss (b) Cosine Similarity (c) Retrieval Accuracy@10

Figure 7: The test statistics for Word2vec embedding decomposition. Dash line is the average performance
of B̂ learned from the Word2Vec embedding. The bars are the distribution of the results from random
permutations that run for 100 times.

4.2 Sentence Embedding

Following the decompostion for Word2Vec embeddings, we have further interests if sentence embedding
can be decomposed in a similar way. Sentences are compositional structures that are built from words.
Therefore, it is natural to ask if the learned representations reflect the compositionality. We assume that
there is an additive compositionality between words and sentences so that the sentence representation can
be decomposed in terms of

ΦBERT (Sentence) ≈ Φ(Word1) + · · · + Φ(WordN )

We leverage a linear system to decompose the sentence embedding into word representations to investigate
the compositionality in BERT sentence embedding. To do this, we generated a sentence corpus that includes
1,000 sentences. Each sentence consists of the simplest elements required for completing a sentence: subject,
verb and object.

4.2.1 Data Generation

We constructed a sentence corpus with 30 distinct components categorized into subjects (Sbj), verbs, and
objects (Obj), which we then arranged into 10x10x10 triplet combinations of (Sbj, V erb, Obj). These triplets
form short sentences utilizing consistent prepositions and articles. For instance, the triplet (cat, sat, mat)
yields the sentence “The cat sat on the mat.” Our corpus comprises 1000 such sentences, enabling detailed
analysis of each component’s role when decomposing with a linear system.

BERT employs a subword tokenization strategy, splitting words like “bookshelf” into “book” and “shelf”. We
selected corpus words to maintain uniform token counts across sentences. Since BERT considers punctuation
as tokens, each sentence amounts to seven tokens.

To construct a sentence (I), we add the subject, verb, and object phrases with indices i, j, and k, respectively.
Thus, Ii,j,k = Sbji+V erbj +Objk. We calculate sentence embedding Ui,j,k = ΦBERT (Ii,j,k) with a fine-tuned
BERT introduced in section 2.1.2.

4.2.2 Decomposing Sentence BERT Embedding by Additive compositionality Detection

Given a set of sentence embeddings U, we determine the unknown vectors xi, xj , and xk by resolving
AX = U. Here, A is a 1000 × 30 binary matrix specifying each sentence component, X represents the
30 × 768 BERT embeddings for sentence attributes, and U is the 1000 × 768 matrix of sentence embeddings.
The solution is obtained via the pseudo-inverse method, The embedding accuracy is quantified by the loss
L, defined as:

L = ∥AX − U∥2 (11)

For our null hypothesis, sentence embeddings are randomized to disrupt the sentence-embedding association,
and loss is computed for this perturbed data over 100 iterations.
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One of the interesting challenges is if we can predict the sentence embedding u with the word representations
solved by the linear system without seeing the actual sentences. To test this, we utilise the leave one
out method to solve the linear system and reconstruct the sentence embedding by adding up the word
representations we obtained with equation 10 so that

ΦC(I) = ΦC(Sbj) + ΦC(V erb) + ΦC(Obj) (12)

Here ΦC represents the composed embedding ΦComposed. We again apply the leave-one-out strategy, ex-
cluding the target sentence I from the dataset while training the linear system. This approach ensures
word representations are formed with no foreknowledge of I. The efficacy of these elements is evaluated
by predicting a new sentence’s embedding, then measuring its likeness to the actual BERT embedding. We
assess this through two methods: first, by calculating the cosine similarity between the predicted and real
embeddings; second, by determining if the predicted embedding can identify the correct sentence among
1000 possibilities. Each round involves omitting a sentence, solving the linear system with the rest, and then
using the deduced components to estimate its embedding.

4.2.3 Results

Figure 8 illustrates the performance of decomposing BERT sentence embedding. These results show that the
BERT sentence embedding can be decomposed into three separate components: subject, verb, and object.
And those components can then be used to predict the embedding of a new sentence.

(a) Linear System Loss (b) Cosine Similarity (c) Retrieval Accuracy@1

Figure 8: The test statistics for sentence embedding decomposition. AVG_BERT is the average perfor-
mance of B̂ learned from the BERT embedding. The bars are the distribution of the results from random
permutations that run for 100 times (Xu et al., 2023).

The sentence embedding decomposition via the linear system yields a minimal loss of 100.14, significantly less
than the smallest loss from random permutations at 335.65. This results in a p-value below the significance
level α = 0.01, leading to the rejection of H0. Consequently, BERT sentence embeddings are effectively
representable by the sum of their Sbj, Verb, and Obj components.

The sentence’s embedding, denoted as Û, can be approximated using the Sbj, Verb, Obj components obtained
from the linear system. This approximated embedding Û exhibits a 98.44% cosine similarity with the BERT
embedding, surpassing all comparisons with randomized trials.

Furthermore, Û achieves a 99.5% success rate in retrieving the correct BERT embedding, whereas the best
retrieval accuracy using randomized attribute/embedding pairings does not exceed 0.4%.

4.3 Konwledge Graph Embedding

Leveraging the MovieLens dataset, we employ graph embeddings to compute user representations based on
their movie preferences. Our primary objective is to uncover demographic signals that might be implicitly
captured within these behavior-based embeddings. To achieve this, we juxtapose the computed user embed-
dings against a boolean matrix representing demographic information. By analyzing the correlation between
the embeddings and the demographic matrix, we aim to elucidate the extent to which user behavior, as
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manifested in movie preferences, aligns with or diverges from demographic characteristics. We train our
model on GeForce GTX TITAN X.

4.3.1 Datasets

This experiment was conducted on the MovieLens 1M dataset (Harper & Konstan, 2015) which consists of
a large set of movies and users, and a set of movie ratings for each individual user. It is widely used to
create and test recommender systems. Typically, the goal of a recommender system is to predict the rating
of an unrated movie for a given user, based on the rest of the data. In particular, there are 6040 users and
approximately 3900 movies. Each user-movie rating can take values in 1 to 5, 1 representing a low rating
and 5 a high rating. There are 1 million triples (out of a possible 6040 × 3900 = 23.6m), so that the vast
majority of user-movie pairs are not rated.

Users and movies each have additional attributes attached. For example, users have demographic information
such as gender, age, or occupation. Whilst this information is typically used to improve the accuracy of
recommendations, we use it to test whether the embedding of a user correlates to private attributes, such
as gender or age. We therefore compute our graph embedding based only on ratings, leaving user attributes
out. Experiments for training knowledge graph embeddings are implemented with the OpenKE (Han et al.,
2018) toolkit.

We embed the knowledge graph in the following way:

1. We split our dataset to use 90% for training, 10% for testing.

2. Triples of (user, rating, movie) are encoded as relational triples (h, r, t).

3. We randomly initialize embeddings for each hi, rj , tk and train embeddings to minimize the loss in
equation equation 6.

4. We sampled 10 corrupted entities and 4 corrupted relations. Learning rate is set at 0.01 and training
epoch at 300.

We verify the quality of the embeddings by carrying out a link prediction task on the remaining 10% test
set. We achieved a RMSE score of 0.88, Hits@1 score of 0.46 and Hits@3 as 0.92, MRR as 0.68 and MR as
1.89.

We trained our model on 90% of the available triples and predicted the remaining 10% missing ones (missing
edges or links or relations). We sampled 10 corrupted entities, and 4 corrupted relations, with setting the
learning rate as 0.01 and training epoch as 300.

Recall that we trained embeddings on the MovieLens dataset without including any user information. We
now apply our three methods for bias detection to investigate the extent to which private information can
be detected.

4.3.2 Correlation-based Compositionality Detection

We collect attribute information for all 6040 users and embed their personal attributes with Boolean indicator
vectors ai which encode the value of each attribute (gender, age, and occupation). We investigate whether
users’ private traits may be leaked from the graph embeddings by comparing two different user representations
ai, the Boolean vector of attributes, and ui, the user embedding calculated as in section 4.3.1.

We apply CCA to calculate the correlation between users and their attributes. We apply the non-parametric
statistical test described in section 3.3.1. Specifically, our null hypothesis is that users’ movie preferences are
not correlated with their attributes. We calculate Pearson’s correlation coefficient (PCC) between projected
AwA and projected UwU . We go on to calculate the PCC between 100 randomly generated pairings of
user and attribute embeddings, and find that the PCC between true pairs of attribute and user embeddings
is higher each time. We therefore reject the null hypothesis at a 1% significance level. The correlation
coefficients between real pairs and random pairs is reported in figure 9a.
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Figure 9b displays weights indicating the contribution of each component to the overall attribute composi-
tionality as determined by the correlation-based compositionality detection.

(a) Pearson’s correlation coefficient (PCC) for true user-
attribute pairings and 100 permuted pairings. PCC is
calculated between projected A and projected U. x axis
stands for the kth components, y axis gives the value.
The PCC value for real pairings is larger than for any
permuted pairings.

(b) Distribution for each attribute on the second com-
ponent of CCA

Figure 9: Comparative analysis of PCC values and attribute distribution in CCA components.

4.3.3 Additive Compositionality Detection on Gender and age

Preliminary results indicated a certain level of correlation between user attributes and movie preferences
as measured by the test statistic. Subsequent permutation tests revealed that the observed correlation was
rarely, if ever, achieved under randomized conditions.

We investigate the ability of a user embedding to be reconstructed as a linear sum of attribute embeddings
by doing the leave-one-out experiment. We then try to interpret the knowledge graph embedding with user
attributes. Similar to sentence embedding, a linear system is used to calculate the representation for each
user attribute. Note that not all of the combinations of attributes exist in the movie lens dataset. We find
that a user embedding can be reconstructed as a linear combination of its attributes by solving the linear
system described in section 3.2. We use the pseudo-inverse method to solve this system. We try to interpret
the user embedding with user attributes such as gender and age. we first group the user by age and gender
firstly and compute the mean embedding of 14 group of users. We use three test statics as mentioned in
Section 3.3.1 to test our linear system. We set a significance threshold: α = 0.01.

Same as the Correlation-based compositionality Detection setting, we permuted the pairing of users 100
times. Table 3 shows the observed p- value for three different statistics, which is the probability of seeing
that value of statistic under the null hypothesis. We first decompose the user embedding into gender and
age. Our results show the linear system is able to decompose the user embedding with a loss of 0.42 which
is lower than every loss for a random permutation (1.03-1.96). The cosine similarity is 99.8%, higher than
any permuted pairs. The identity retrieval accuracy is 0.93 which is higher than any random permuted pairs
(0.0-0.21). Therefore, the null hypothesis is rejected. This shows that a user embedding can be reconstructed
as a linear combination of gender and age.

4.3.4 Additive Compositionality Detection on Gender, Age and Occupation

We afterwards group the user by gender, age and occupation and compute the mean embedding of 241 group
of users.
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(a) Linear System Loss (b) Cosine Similarity (c) Retrieval Accuracy@1

Figure 10: The test statistics for user embedding decomposition. Dash line is the average performance of B̂
learned from the user embedding. The bars are the distribution of the results from random permutations
that run for 100 times.

Table 3: p-value for hypothesis test. Note that * indicates better than random baseline to significance level
α = 0.01. In our case, we are estimating directly the p-value, as the probability of an event, that we could
have a high (low) value of the test-statistic by chance under the null-hypothesis

L2 Norm Cosine Similarity Retrieval Acc. p-value
Gender, Age Real Pair 0.42* 99.8% 0.93* <0.01
Gender, Age Permuted 1.03-1.96* 97.3%-99.2% 0.00-0.21* <0.01
Gender, Age, Occ Real Pair 17.54* 97.6% 0.23* <0.01
Gender, Age, Occ Permuted 18.42-19.13* 96.8%-97.3% 0.00-0.07* <0.01

When decomposing the embedding into gender, age and occupation, the L2 norm is 17.54 which is lower
than every loss for a random permutation (18.42-19.13). As for identity retrieval accuracy, although the
value is only 0.23 which is not a good result, it is still higher than any random permuted pairs (0.00-0.07).
Therefore, the null hypothesis is rejected. Detailed information is shown in Figure 11.

(a) Linear System Loss (b) Cosine Similarity (c) Retrieval Accuracy@10

Figure 11: The test statistics for user embedding decomposition. Dash line is the average performance of B̂
learned from the user embedding. The bars are the distribution of the results from random permutations
that run for 100 times.

5 Discussion

We have presented two methods for signals of compositionality detection in three different data types, word
embedding, sentence embedding and graph embedding.

Word Embedding Word2Vec’s ability to capture deep semantic meanings becomes evident when com-
pared with structured resources like WordNet. Even though Word2Vec operates in a continuous vector
space, it surprisingly aligns well with these semantically organized databases. But its capabilities don’t stop
at semantics. When analyzed alongside tools like MorphoLex, it’s clear that Word2Vec also grasps the subtle
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details of word formation, from roots to suffixes. These observations emphasize the depth of information
embedded within word contexts — they don’t just convey basic meaning, but also carry detailed linguistic
information, including morphology. This richness within Word2Vec offers opportunities for in-depth analyses
and insights into the multiple signals it derives from word context.

The diverse signals captured by Word2Vec lend it a structural richness that facilitates its decomposition.
This has transformative implications. By segregating embeddings into distinct components, such as roots
and suffixes, we can not only predict embeddings for novel words but also attain a granular understand-
ing of the internal vector makeup. This dissection reaffirms that word contexts during training weave a
multidimensional tapestry, intertwining semantics with morphology and more.

Sentence Embedding To examine the properties of sentence embedding, we have generated an SVO
sentence corpus and embedded it with BERT. By applying a linear system, it has shown that the
BERT sentence embedding can be decomposed into word representation with a linear system so that
ΦBERT (Ii,j,k) ≈ ΦLINEAR(Sbji) + ΦLINEAR(V ebj) + ΦLINEAR(Objk). This allows for inference of a sen-
tence embedding with simple linear algebra. The inference can have 77% cosine similarity compared to the
BERT sentence embedding. The learned word representation can also predict the embedding without seeing
the sentence and achieve 64% similarity. The results have shown that the BERT sentence embedding is
compositional. However, it contains more properties than words and needs further analysis in future work.

Graph Embedding we found that certain dimensions of user embeddings that relate to specific informa-
tion should correlate with certain patterns of demographic information corresponding to the same meaning,
across all users. Using the private attributes representation obtained in this way we first demonstrate that
the correlations detected between the two versions of the user representation are significantly higher than
random, and hence that a representation based on such features does capture statistical patterns that reflect
private attribute information.

As for the linear system, we assume that user-behaviour-embedding is (approximated by) a sum of user-
demographic vectors, showing that user embeddings can be decomposed into a weighted sum of attribute
embeddings. This refers to the compositionality of the user embedding, for example, the embedding of a “50
year old female” can be computed by the sum of the embedding of “50” and “female”. We can detect private
attributes from both user embeddings in the movie system.

6 Conclusions

Three different types of data, word embedding, sentence embedding and knowledge graph embedding, present
some compositionality, that is some of the information contained in them can be explained in terms of known
attributes. This creates the possibility to manipulate those representations, for the purpose of removing bias,
or to explain the decisions of the algorithm using them, or to answer analogical or counterfactual questions.

In the case of word embedding, both the semantic and morphological information signals are detected from
the context-based embedding. Sentence embedding, produced by BERT, presents some compositionality
in terms of subject, verb, and object. In the case of movie recommender system, computed by the movie
preference only, user embedding presents some compositionality of their private attributes such as age, gender
and occupation. This creates the possibility to manipulate those representations, for the purpose of removing
bias, or to explain the decisions of the algorithm using them, or to answer analogical or counterfactual
questions.
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