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ABSTRACT

Vision-language-action models (VLAs) have become increasingly popular in
robot manipulation for their end-to-end design and remarkable performance.
However, existing VLAs rely heavily on vision-language models (VLMs) that
only support text-based instructions, neglecting the more natural speech modality
for human-robot interaction. Traditional speech integration methods usually in-
volves a separate speech recognition system, which complicates the model and in-
troduces error propagation. Moreover, the transcription procedure would lose non-
semantic information in the raw speech, such as voiceprint, which may be crucial
for robots to successfully complete customized tasks. To overcome above chal-
lenges, we propose VLAS, a novel end-to-end VLA that integrates speech recog-
nition directly into the robot policy model. VLAS allows the robot to understand
spoken commands through inner speech-text alignment and produces correspond-
ing actions to fulfill the task. We also present two new datasets, SQA and CSI,
to support a three-stage tuning process for speech instructions, which empowers
VLAS with the ability of multimodal interaction across text, image, speech, and
robot actions. Taking a step further, a voice retrieval-augmented generation (RAG)
paradigm is designed to enable our model to effectively handle tasks that require
individual-specific knowledge. Our extensive experiments show that VLAS can
effectively accomplish robot manipulation tasks with diverse speech commands,
offering a seamless and customized interaction experience.

1 INTRODUCTION

With the advent of large vision-language models (VLMs) and the availability of extensive robotic
datasets, vision-language-action models (VLAs) (Brohan et al., 2022; 2023; Kim et al., 2024) have
become a promising approach for learning policies in robotic manipulation. These models demon-
strate enhanced generalization to novel objects and semantically diverse instructions, as well as a
range of emergent capabilities. VLAs, such as RT-2 (Brohan et al., 2023), which are fine-tuned
from foundation VLMs like PaLM-E (Driess et al., 2023) using robotic trajectory data, can take hu-
man instructions and visual observations as inputs to generate robot actions. However, these models
primarily focus on textual and visual modalities, leaving the speech modality largely unexplored.

In a scenario where robots provide daily assistance in home care, it is essential to recognize that
physical abilities and subjective preferences may vary significantly across individuals. To improve
the interaction experience, robots need to be more accessible and customizable. Speech serves as
an ideal modality for achieving this goal, enabling natural and intuitive communication. Given
these practical needs and existing technologies, a key question arises: How can we integrate vision-
language-action models with speech modality to produce a simpler and better end-user experience?

Based on the above analysis, we propose guiding a robot’s behavior through speech rather than text.
A typical approach involves leveraging an external automatic speech recognition (ASR) Radford
et al. (2023); Yu et al. (2023) system to capture speech and transcribe it into text for downstream
tasks. However, this method presents two significant issues: Firstly, such a cascading pipeline leads
to a larger and more complex robotic system, potentially expanding computational demands and
memory consumption. Secondly, the transcription process may lose auxiliary information beyond
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semantics, such as identity, emotion, and intonation, which are vital for the robot’s comprehension
of human intent. Many everyday human instructions are unstructured and can only be accurately
understood with the support of above auxiliary information from speech. For instance, as illustrated
in Figure 1 (a), when given the task “Please pick up my cup”, a traditional VLA with text instructions
or a VLA incorporating an ASR system may fail to select the correct cup. Therefore, developing a
policy model that utilizes raw speech for voice recognition can greatly improve task execution.

Failure

Textual instruction: 
“Please pick up my cup.”

Speech instruction: 
“Please pick up my cup.”

Success

    I don't know which cup you
want. 

This is Li's voice. 
He owns a green cup, pick it!

(a) (b)

Figure 1: For personalization tasks, (a) previous VLAs with
text instructions fail, while (b) our VLAS with speech in-
structions could successfully address them.

To alleviate these two problems, we
present VLAS, an innovative end-to-
end policy model that seamlessly inte-
grates speech modality for robot ma-
nipulation. Notably, VLAS is capa-
ble of directly processing both tex-
tual and speech instructions alongside
visual observations. VLAS is built
upon the widely adopted open-source
vision-language model, LLaVA (Liu
et al., 2023), and is derived from three
distinct training phases. Firstly, we
employ an established encoder to pro-
cess speech for hidden representations.
The multi-layer perceptrons (MLPs)
are fine-tuned to transform these repre-
sentations into the unified language space as LLaVA. Secondly, we fine-tune the LLaVA model and
above MLPs together with multimodal datasets, including our curated Speech Question Answer-
ing (SQA) dataset and Visual Question Answering (VQA) datasets. The resulting model, termed
VLAS-Base, can effectively generate responses to both text-image and speech-image instructions.
Finally, we further fine-tune VLAS-Base through behavior cloning (Ross et al., 2011) on our curated
CSI dataset, which encompasses image observations, speech instructions, and robot manipulation
trajectories. The voice retrieval-augmented generation (RAG) is subsequently proposed to enable
VLAS to perform personalized operations based on individual-specific knowledge. Experimental
results show that the proposed VLAS, following either textual or speech instructions, can achieve
performance comparable to traditional VLAs on the CALVIN benchmark. In addition, we created a
benchmark consisting of customization tasks, where our VLAS demonstrates improved performance
by fully leveraging the auxiliary information in speech.

To sum up, the main contributions of this work are listed as follows: 1) We propose VLAS, the
first vision-language-action model that integrates speech for robot manipulation without needing
external speech recognition systems, enabling more natural communication with robots. 2) A Voice
RAG paradigm is designed to enable VLAS to effectively address customized tasks that require
individual-specific knowledge. 3) Besides the robot policy model, we introduce VLAS-Base, which
extends the widely used vision-language model LLaVA to accept speech instructions. This model is
also valuable for other downstream tasks involving speech inputs. We also present two new datasets,
SQA and CSI for community further study.

2 RELATED WORK

Vision-Language Model Large language models (LLMs), such as FLAN-PaLM (Chung et al.,
2022), LLaMA (Touvron et al., 2023), and InstructGPT/ChatGPT (Ouyang et al., 2022), trained on
web-scale instruction-following datasets, have demonstrated exceptional effectiveness in perform-
ing few-shot and zero-shot natural language processing tasks. This approach has also been rapidly
adopted in the field of computer vision. Building on these pretrained LLMs, researchers have de-
veloped various vision-language models (VLMs), including OpenFlamingo (Awadalla et al., 2023),
BLIP-2 (Li et al., 2023), LLaMA-Adapter (Zhang et al., 2024), IDEFICS (Laurençon et al., 2023),
Prismatic (Karamcheti et al., 2024) and LLaVA (Liu et al., 2023), capable of processing inputs from
both text and image modalities simultaneously. Many VLMs tailored for video modalities have
also emerged, such as VideoLLaMA (Zhang et al., 2023), VideoLLaMA 2 (Cheng et al., 2024),
Video-LLaVA (Lin et al., 2024), and LLaVA-NeXT-Interleave (Li et al., 2024a).
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It is worth mentioning that the VLMs discussed in this work refer to models that work in a question-
answering format, as opposed to models like CLIP (Radford et al., 2021) and BLIP (Li et al., 2022),
which are specifically designed to learn joint representations of linguistic and visual information.
Among the prevalent VLMs, LLaVA stands out as a significant milestone due to its full accessibility,
reproducibility, and outstanding performance. The key to LLaVA’s success lies in its two-stage
visual instruction tuning and the utilization of a carefully curated image-text pair dataset. In the
first training stage, LLaVA fine-tunes a multilayer perceptron (MLP) on an image-captioning task,
aiming to map the output tokens from the image encoder into the language embedding space. In the
second training stage, all network components, except for the pre-trained image encoder, are updated
to optimize the model’s instruction-following capabilities. Despite its strong performance in visual
question answering (VQA), LLaVA lacks support for instructions in the form of speech. Many
studies have also explored the direct integration of audio information processing into multimodal
LLMs, such as ImageBind-LLM (Han et al., 2023) and Unified-IO 2 (Lu et al., 2024). However,
there were fewer VLMs capable of supporting raw speech understanding until the recent introduction
of GPT-4o (OpenAI, 2024), Gemini (Team et al., 2024) and VITA (Fu et al., 2024).

Vision-Language-Action Model A growing body of research has focused on applying VLMs in
robotics, aiming to transfer general intelligence from software applications to the physical world.
Specifically, two primary approaches have emerged for utilizing vision-language foundation models
in the field of robot manipulation. One category of methods employs these foundation models only
for high-level task planning, such as PaLM-E (Driess et al., 2023), SayCan (Ahn et al., 2022) and
Code as Policies (Liang et al., 2023). In such studies, robots are typically equipped with pre-trained
primitive skills, while the VLM is responsible for organizing these low-level skills to accomplish
the target task. The other approach, exemplified by models such as RT-2 (Brohan et al., 2023),
Roboflamingo (Li et al., 2024b), and OpenVLA (Kim et al., 2024), seeks to generate robot actions
directly by fine-tuning the VLM with robot manipulation data. These models are commonly re-
ferred to as vision-language-action (VLA) models. However, current VLA models typically focus
on processing only two input modalities: textual instructions and visual observations (Belkhale et al.,
2024). Some studies have also explored integrating additional input modalities, such as haptics and
depth information, to further enhance model performance (Cai et al., 2024; Zhen et al., 2024).

Nevertheless, few studies have investigated how speech modality inputs could be incorporated into
VLA models. The most common approach to enabling speech input is to convert speech to text using
an external speech recognition tool. However, this approach is not only complex but also results in
the loss of auxiliary information present in the speech. To that end, an increasing body of research
has recently started to explore the direct integration of speech into large language models in an end-
to-end manner (Fu et al., 2024). Thus, our work takes a step further by developing a VLA model
that supports speech instructions, showcasing how speech modality input enhances performance in
customized scenarios, including personalized operations tailored to individual knowledge.

3 METHOD

We present VLAS, the first VLA model to support speech instructions for robot manipulation. As
illustrated in Figure 2, we first provide an overview of the VLAS architecture (Section 3.1). Sec-
tion 3.2 introduces the curated SQA and CSI datasets, which are employed to train the VLAS model.
Finally, in Section 3.3, we detail the training paradigm for the speech instruction tuning.

3.1 ARCHITECTURE OF VLAS

Overall Framework VLAS take human speech instructions s and visual observations O as inputs to
directly generate robot actions a. The image input and speech instruction represented as frequency
features, are each converted into a sequence of embedding tokens through their corresponding en-
coders. During the inference phase, the output RAG(s) of the voice retrieval-augmented generation
module is also tokenized into a sequence of embedding tokens. Both visual and speech tokens are
transferred to seperate MLPs to map them into the same language space. Subsequently, all the
embedding tokens are concatenated and used as the input to the LLM backbone. Formally:

Emb(s,O) = concat(MLPs(Embs(s)),Tokl(RAG(s)),MLPv(Embv(O))), (1)

3
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VLAS

Vision
Encoder

Speech
Encoder

LLaMA

Voice
RAG

MLP MLP Tokenizer

ΔT = [-0.9, 0.3, 0.1]
ΔR = [2°, 18°, -9°]
ΔGripper

De-Tokenize Deploy

Personal 
Knowledge

123 89 5 42 185 113 77

"lift my block" Speaker
Identification

Voice 1

...

Voice 2

Voice 3

Voice N

Voice 2 Knowledge

2. I keep things
in drawers.

...

1. I have a blue
block.

I own the 
blue one

I own the 
red one

Figure 2: Overall Framework of VLAS. VLAS encodes visual and speech inputs via encoders
and MLP layers to obtain respective embeddings. The Voice RAG module retrieves personalized
knowledge based on speaker identification and converts it into embeddings using a text tokenizer.
All embeddings are then processed by LLaMA to generate action tokens, which are subsequently
detokenized into continuous values to control the robot’s movements.

where Embs, and Embv denotes speech and vision encoder, respectively; MLPs and MLPv means
respective projector; Tokl is the text tokenizer. This concatenated embedding is then fed into the
LLM backbone to produce the predicted actions in an autoregressive manner as:

p (a | Emb(s,O)) =

N∏
i=1

p (ai | Emb(s,O), a<i) (2)

whereN denotes the number of dimensions for a single action, and a is the discretized action tokens,
which require a detokenizer to be converted into continuous values.

Network Backbone VLAS is built upon the vision-language model LLaVA, as illustrated in Fig-
ure 2. In addition to the LLaMA LLM backbone, the key components of LLaVA are the Vision
Transformer (ViT) (Dosovitskiy et al., 2021), which converts input image patches into a sequence of
embedding tokens, and MLPs that map these tokens to the same semantic space as the LLM. When
the vision tokens and text tokens are fed in together, the LLM can correlate these inputs and generate
a corresponding response. In particular, we use the CLIP (Radford et al., 2021) model as the visual
encoder and Vicuna (Chiang et al., 2023), a fine-tuned variant of LLaMA, as the foundation model.

Speech Encoder To equip our model with the ability to process speech modality input, we employ
the Whisper (Radford et al., 2022) encoder Embs to convert a speech instruction s into a sequence of
hidden states Embs(s), similar to the visual tokens. Before being fed into the Whisper encoder, the
speech signal is first transformed into an 80-bin mel-spectrogram using short-time Fourier transform
(STFT) and then padded to a fixed length of 3000 frames. The speech encoder processes this mel-
spectrogram and produces a sequence of 1500 hidden representations. Given that a long sequence of
speech tokens may impose a significant computational burden when directly input into the LLM, we
apply a simple reshape operation along the time dimension, using a reduction factor of 5. An MLP
is used to project the speech tokens into the semantic space shared with the text and vision tokens.

Voice RAG Retrieval-Augmented Generation (RAG) (Zhao et al., 2024) is a highly effective method
for equipping large language models with the capability to efficiently process dynamic and up-to-
date information. Human-spoken instructions frequently exhibit informality and lack of structure,
resulting in inadequate semantic content for task completion. To address this issue, we propose a
novel Voice RAG framework to bolster model performance on tasks that require extensive personal
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Is the bus driving down the street ...?
What is the cat doing in the image?
What is the color of the toilet in ...?

...

SQA

TTS model trained on
LibriTTS

185K Image-Text Pairs 185K Image-Audio Pairs over 1152
Different Voices

23K Episodes 
with 389 Text Instructions

23K Episodes with 194K Audio
Instructions over 500 Different Voices

slide the pink block to the right.
grasp the blue block in the drawer.
 move the door all the way to the right.

...

TTS model trained on
LibriTTS

CSI

Figure 3: Data collection process for the SQA and CSI datasets.

knowledge. The Voice RAG module allows our model to access additional customized knowledge
beyond the initial instruction content. As illustrated in Figure 2, the raw speech command is pro-
cessed by the speaker identification module to extract a voiceprint. This voiceprint serves as a key
to query an external database, retrieving relevant information. The retrieved data is then integrated
as background knowledge and passed to the LLM, in conjunction with visual and speech tokens. To
streamline this process, we utilize a pre-trained voiceprint extraction module, avoiding the need for
from-scratch training. The integration of the Voice RAG significantly enhances the model’s ability
to comprehend and execute complex spoken commands by supplementing the instruction content
with additional contextual information.

Action Tokenization We discretize a continuous action value into 256 uniformly spaced bins and
represent them as integer indices. Specifically, we reutilize the 256 least frequently used tokens
in the LLM vocabulary to serve as action tokens. Then, the robot action tokens across all motion
dimensions can be concatenated with a space character to form a textual string, which serves as the
training label. Consequently, a 7-dimensional action value is formatted as:

[x, y, z, ϕ, θ, ψ, g], (3)

where x, y, z represent the Cartesian coordinates of the end effector’s position, ϕ, θ, ψ denote the
rotation angles of the end effector along each axis, and g is the gripper state.

3.2 DATA COLLECTION FOR VLAS

Since traditional datasets used for fine-tuning VLM or VLA models do not include speech instruc-
tions, we constructed two new datasets to train our proposed model.

Speech Question Answering (SQA) Dataset The original visual instruction tuning dataset used
for LLaVA contains extensive image-text question answering pairs, covering conversations, detailed
descriptions, and complex reasoning tasks. Among the three aforementioned task types, the con-
versation subset follows a multi-turn format, whereas the others are single-turn. To construct the
SQA dataset, we randomly sampled one round of dialogue from the multi-turn conversation subset
and converted the textual questions into corresponding speech as shown in Figure3. These speech
instructions, paired with associated images and textual answers, form the SQA dataset. We used the
text-to-speech (TTS) tool ESPnet Hayashi et al. (2020) to generate the speech, specifically employ-
ing the pre-trained VITS TTS model Kim et al. (2021) trained on the LibriTTS dataset Zen et al.
(2019), which supports over 2,000 distinct voices. During the conversion of textual questions to
speech, the speaker’s voice was randomly selected. In total, 185K SQA samples were generated,
featuring over 1,152 different voices.

CALVIN with Speech Instructions (CSI) Dataset Given that conventional robot manipulation
datasets contain only textual task instructions, we utilized the aforementioned TTS model to gen-
erate the corresponding speech instructions. For the CALVIN dataset, which contains 389 textual
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Vision 
Encoder

MLP

Large Language Model

Speech 
Encoder

MLP

Stage I: Speech Alignment

MLP

Large Language Model

MLP MLP

Large Language Model

MLP

Stage II: Speech Question 
Answering

Stage III: Robot Manipulation 
Fine-tuning

Where is the child sitting?

Answer: [ΔT, ΔR, ΔGripper]Answer: fridgeAnswer: arms

Put in the drawerPush the button

Vision 
Encoder

Speech 
Encoder

Vision 
Encoder

Speech 
Encoder

Figure 4: Training paradigm of VLAS. The training process of VLAS is divided into three stages.
Stage I: Speech Alignment, where the model aligns speech with text through MLP fine-tuning. Stage
II: Speech Question Answering, where the model is trained on both speech and visual question
answering tasks to facilitate comprehension of multimodal inputs. Stage III: Robot Manipulation
Fine-tuning, where the model is further fine-tuned to execute robot manipulation tasks using both
speech and text instructions.

instructions, we employed 500 different voices to convert each instruction into speech, resulting in
approximately 194K audio samples. In the training process, the raw robot manipulation datasets
are structured as pairs of ((Imaget, Instructiontext), Actiont). To enable the robot policy model to
support both text and speech instructions, we randomly replaced half of the training samples with
the synthesized speech instructions.

3.3 TRAINING PARADIGM OF VLAS

The training process of VLAS consists of three stages, as depicted in Figure 4. The details of each
stage are outlined below.

Stage I: Speech Alignment The first stage focuses on coarse-grained modality alignment between
speech and text, achieved by fine-tuning the model using the LibriSpeech-360 speech recognition
dataset Panayotov et al. (2015). During this phase, only the MLP layer between the speech encoder
and the LLM backbone is updated to fulfill speech recognition tasks. It is worth mentioning that the
speaker identification module for voiceprint extraction can be co-trained during this stage. However,
this is optional, as we may directly employ a pre-trained speaker identification model.

Stage II: Speech Question Answering Fine-tuning The second stage focuses on further enhancing
the model’s capability to process information from multiple input modalities. At this stage, the model
is fine-tuned using both our curated speech question answering (SQA) dataset and the original visual
question answering (VQA) datasets from LLaVA, as well as the LibriSpeech-100 speech recognition
dataset Panayotov et al. (2015). Throughout this phase, all network components are updated, with
the exception of the pre-trained image and speech encoders. Notably, after this stage, we obtain
the foundation model, referred to as VLAS-Base, for the subsequent robot manipulation task. The
VLAS-Base model can also serve as a valuable resource for the research community in advancing
studies on multimodal large language models.

Stage III: Robot Manipulation Fine-tuning In the final training stage, the model is fine-tuned
on the CSI robot manipulation dataset in a manner similar to that of stage 2. Each sample in this
dataset contains a complete motion trajectory, represented as a sequence of robot actions, along with
visual observations from two distinct views and corresponding human instructions in either textual
or speech form. For simplicity, the two images at each time step are concatenated.
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4 EXPERIMENTS AND RESULTS

In this section, we conduct a series of experiments to assess the effectiveness of the proposed method
from multiple perspectives. Section 4.1 first provides a quantitative evaluation of the performance of
our VLAS model on the CALVIN benchmark. In Section 4.2, we then constructed a new benchmark
consisting of various customized tasks to further assess our method. Finally, in Section 4.4, to verify
whether our foundation model for robot manipulation truly understands speech instructions with-
out compromising LLaVA’s original performance, we evaluate VLAS-Base on general multimodal
benchmarks, as well as two benchmarks for speech understanding.

4.1 ROBOT MANIPULATION WITH SPEECH INSTRUCTIONS

To quantitatively assess the performance of our proposed model for robot manipulation tasks, we
conduct experiments on the CALVIN benchmark, which comprises 1,000 long-horizon tasks. Each
long-horizon task consists of a sequence of five successive sub-tasks, accompanied by a correspond-
ing human command. We trained a traditional VLA model with the same configurations by directly
fine-tuning the LLaVA backbone, without support for speech instructions, as the baseline.
Table 1: Performance of different robot policy models on the CALVIN benchmark. +: Evaluated
with the ground truth textual instructions. *: Evaluated with the speech instructions. On this bench-
mark, the Voice RAG module is not utilized by VLAS to acquire any customized knowledge.

Models Splits LH-1 LH-2 LH-3 LH-4 LH-5 Len
MCIL+ ABCD/D 37.3% 2.7% 0.2% 0.0% 0.0% 0.40
HULC+ ABCD/D 89.2% 70.1% 54.8% 42.0% 33.5% 2.90
RT-1+ ABCD/D 84.4% 61.7% 43.8% 32.3% 22.7% 2.45
VLA+ ABCD/D 95.5% 85.0% 74.9% 66.8% 58.2% 3.80
VLAS+ ABCD/D 94.5% 84.4% 73.6% 64.6% 56.6% 3.74
Roboflamingo*+ASR ABCD/D 89.8% 78.6% 68.2% 56.5% 48.3% 3.41
VLA*+ASR ABCD/D 88.7% 74.1% 61.0% 49.2% 40.2% 3.13
VLAS* ABCD/D 94.2% 84.0% 73.2% 64.3% 54.6% 3.70
VLAS*(Real) ABCD/D 93.6% 82.8% 71.6% 61.4% 51.3% 3.61

As shown in Table 1, our VLAS, with either textual or speech instructions, significantly outper-
forms the official MCIL Lynch* & Sermanet* (2021) model and other prevalent models such as
HULC Mees et al. (2022) and RT-1 Brohan et al. (2022). Specifically, VLAS with textual instruc-
tions also achieves performance comparable to the baseline VLA model. Moreover, our VLAS
is compared for speech modality input with the baseline VLA model and another powerful VLA
model, Roboflamingo, both similarly derived from the VLM. Since traditional robot policy models
do not directly support speech instructions, we employ an external ASR model to transcribe the
speech instructions into text. The most powerful ASR model, Whisper large-v2, released by Ope-
nAI is used in the experiments. To generate the speech instructions for evaluation, the previously
discussed TTS model is employed with 39 novel voices not included in the SQA and CSI datasets.
For each instruction, a corresponding voice is randomly sampled. In addition, we have included
real speech instructions recorded from 10 individuals for evaluation. As can be observed, even with
real speech instructions, our VLAS still achieves strong performance, only slightly behind the VLA
baseline with a gap of 0.19.

We found that VLAS significantly outperforms the other two methods that utilize a cascading
pipeline for speech understanding. We attribute this to the higher accuracy of our method in recog-
nizing speech instructions for robot manipulation, as the model has been fine-tuned on a specialized
dataset. Conversely, the external ASR model is less sensitive to controlling commands for the robot,
leading to amplified propagation errors. It is important to highlight our method is orthogonal to
other VLA models, and thus, can be combined with them to achieve superior performance.
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Table 2: Performance of three types of customized tasks for robot manipulation. +: Evaluated with
the ground truth textual instructions. *: Evaluated with the speech instructions. On this benchmark,
the Voice RAG module is utilized by VLAS to acquire customized knowledge.

Models Ownership Preference Compound Compound-Multistage Avg.
Stage-1 Stage-2

VLA+ 17.9% 30.8% 23.1% 35.9% 5.1% 19.2%
VLAS* 94.7% 84.6% 100.0% 100.0% 66.7% 86.5%
VLAS*(Real) 89.5% 70.0% 100.0% 90.0% 55.0% 78.6%
VLAS*−RAG 15.4% 12.8% 25.6% 33.3% 10.3% 16.0%
VLA++RAG 97.4% 84.6% 97.4% 82.1% 48.7% 82.0%

4.2 ROBOT MANIPULATION FOR CUSTOMIZED TASKS

To evaluate our model’s capability in executing personalized tasks, we developed a new benchmark
comprising diverse, unstructured spoken instructions within the simulation environment. All these
tasks require the robot to utilize personal knowledge beyond superficial semantic content. Particu-
larly, this benchmark includes three task categories: (1) Object Ownership Tasks: The robot must
interact with the appropriate objects according to their ownership. When given a spoken instruc-
tion, the robot needs to identify the person’s intention and use the correct object belonging to them.
(2) User Preference Tasks: These tasks necessitate the robot to comprehend the user’s preferences.
Given the identical command, the robot is expected to perform different actions depending on the
specific user’s preferences. (3) Compound Tasks: Tasks in this category require the robot not only
to select appropriate objects, but also to perform actions that align with the user’s preferences. In
particular, this category includes multistage tasks where the robot is required to respond to two suc-
cessive human instructions. Since the outcome of the previous task can easily impact the execution
of the subsequent task, these multistage tasks pose a greater challenge. For each task category, there
are a total of 39 unseen voices beyond training datasets.

Table 2 presents a detailed comparison between the VLA baseline and VLAS. Because the VLA
baseline relies solely on text instructions and lacks access to background knowledge, its performance
is severely limited, with an average success rate of below 20%. Such a model can only perform tasks
through random attempts or by drawing inferences from contextual information. However, VLAS,
which directly receives raw speech input, leverages the Voice RAG to access individual-specific
knowledge, allowing it to perform customized operations more effectively. As a result, our model
demonstrates much better performance on this benchmark, achieving an average success rate of over
86%. Figure 5 and Figure 6 present several concrete case studies showing how the proposed method
performs customized operations for different users.

We introduce real speech instructions for evaluation, which also demonstrates acceptable perfor-
mance. Ablation studies are conducted to further validate the effectiveness of our proposed Voice
RAG module. It can be seen from Table 2 that when the RAG module is removed, the performance
of VLAS significantly degrades on the customized benchmark. Meanwhile, when our RAG module
is integrated with the VLA, its performance significantly improves. Both of the ablation studies
above demonstrate the effectiveness of the Voice RAG module.

4.3 EXPERIMENTS WITH A REAL-WORLD UR5 ROBOT ARM

We fine-tune our VLAS-Base by utilizing both the Berkeley UR5 demonstration dataset and our own
cup-picking dataset. This results in a VLAS model that can be deployed on real-world robots. As
shown in Figure 7, our model can respond to different actions according to the personal information
of the speaker, like picking up the specific cup considering the ownership.

4.4 ANALYSIS FOR THE VLAS-BASE FOUNDATION MODEL

The multimodal understanding capability of the VLAS-Base is critical when fine-tuning it with robot
trajectories to develop the proposed VLAS. Therefore, we quantitatively assess the performance of
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Speaker id: 237 
Meta: I have a {red} block.

lift my block from the sliding cabinet.

Speaker id: 3729 
Meta: I have a {pink} block.

grasp and lift my block. grasp and lift my block.

Speaker id: 5683 
Meta: I have a {blue} block.

Speaker id: 4507 
Meta: I prefer {right} side.

go push the red block.

Speaker id: 1089 
Meta: I prefer {left} side.

go push the red block.

Speaker id: 5105 
Meta: I prefer {left} side.

go push the red block.

Ownership Ownership Ownership

Preference Preference Preference

Figure 5: Demonstration of object ownership tasks (top row) and user preference tasks (bottom row)
for customized robot manipulation.

Speaker id: 260 
Meta: I have a {pink} block, I prefer store it in {cabinet}.

Speaker id: 7127 
Meta: I have a {pink} block, I prefer rotate it {right} side.

Compound - One Stage

take my block and rotate it.

Speaker id: 1995 
Meta: I have a {pink} block, I prefer store it in {drawer}.

1. grasp and lift my block.
2. store the grasped block.

Compound - Two Stages

Speaker id: 6829 
Meta: I have a {blue} block, I prefer rotate it {right} side.

Compound - One Stage

take my block and rotate it.

Compound - Two Stages

1. grasp and lift my block.
2. store the grasped block.

Figure 6: Demonstration of compound tasks for customized robot manipulation.

our VLAS-Base from two perspectives. First, the VLAS-Base is expected to achieve performance
comparable to the original LLaVA model, as the ability to comprehend visual and language infor-
mation serves as the foundation for intelligent robot manipulation.

Table 3 provides a detailed comparison between the VLAS-Base and other prevalent VLMs across
general multimodal benchmarks. As can be observed, VLAS-Base obtains nearly the same perfor-
mance to LLaVA, while significantly outperforming other VLMs. These results indicate that the
introduction of the speech modality does not degrade the performance of the foundation model.

Second, the VLAS-Base model is also expected to have a strong understanding of speech modality
input. For this purpose, we conduct experiments on the LibriSpeech automatic speech recognition
benchmark and our self-constructed speech question answering benchmark, SGQA. Given the lack
of Q&A evaluation benchmarks for image-speech pairs, we converted all textual questions in the
GQA benchmark for visual question answering into speech format with an external TTS model,
resulting in the SGQA benchmark. For the speech recognition benchmark, we employ the state-of-
the-art Whisper large-v2 model as the baseline. For the speech question answering benchmark, since
prevalent VLMs typically do not support speech input, we use LLaVA and BLIP-2 with ground-truth
textual instructions as baselines.

In Table 4, VLAS-Base achieves comparable performance to Whisper large-v2 on the LibriSpeech
test set. Considering that a reduction factor is applied to downsample the speech spectrum for
VLAS-Base, its performance could potentially be improved by optimizing this factor or by employ-
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Pick
up
my
cup

Speaker Id: 1089 Meta: I have a {green} cup

Speaker Id: 6829 Meta: I have a {red} cup

Figure 7: Demonstration of success cases of VLAS on the real-world UR5 robot arm.

Table 3: Performance comparison between state-of-the-art VLMs to VLAS-Base across diverse
multimodal evaluation benchmarks.

Model LLM VQAv2 VizWiz SQAI VQAT POPE GQA
BLIP-2 Vicuna-13B 65.0 19.6 61.0 42.5 85.3 41.0
InstructBLIP Vicuna-13B - 33.4 63.1 50.7 78.9 49.5
Qwen-VL Qwen-7B 78.8 35.2 67.1 63.8 - 59.3
LLaVA v1.5 Vicuna-7B 78.8 50.0 66.8 58.2 85.9 62.0
VLAS-Base Vicuna-7B 78.7 51.1 72.2 58.1 85.5 62.0

ing a more advanced downsampling module. Moreover, although VLAS-Base falls behind LLaVA
with ground-truth textual instructions on the SGQA benchmark, it still surpasses BLIP-2.
Table 4: Performance comparison on LibriSpeech and SGQA benchmark, using word error rate
(WER) and accuracy as evaluation metrics. LLaVA and BLIP-2 employ the ground truth textual
insturctions on SGQA.

Model LibriSpeech (WER) SGQA
LLaVA v1.5 N/A 62.0
BLIP-2 N/A 41.0
Whisper 2.7% N/A
VLAS-Base 2.79% 50.8

These results indicate that our foundation model, used for developing VLAS, can effectively process
diverse speech instructions. We can even utilize co-training with robot trajectories and speech ques-
tion answering data to further improve VLAS’s capacity to handle more complex human commands.

5 CONCLUSION

This paper presents an end-to-end VLA model for robot manipulation that is capable of understand-
ing speech instructions without relying on an external speech recognition system. As the raw speech
is directly taken as the model’s input, auxiliary information in the speech, such as voiceprint, can
be fully utilized to more effectively complete the given task. In particular, we introduce a Voice
RAG method for our model to improve its performance in following spoken instructions that require
extensive individual-specific knowledge. Consequently, the integration of speech modality data in
VLAS not only simplifies the overall pipeline for robot control but also enables the robot to handle
a wide range of customized tasks. Our future work may focus on exploring other auxiliary informa-
tion in human speech or environmental sounds to enable the robot to better understand and complete
complex tasks.
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A TRAINING DETAILS

We perform fine-tuning in Stage I on the train-clean-100 split of the LibriSpeech dataset for 5
epochs, using a learning rate of 1e-3 and a batch size of 16. Subsequently, the fine-tuning in Stage
II is conducted on our SQA dataset, along with the released LLaVA 665K instruction-following
dataset and the train-clean-360 split of LibriSpeech, for 1 epoch using a learning rate of 2e-5 and a
batch size of 16. Finally, we fine-tune the model on the CSI robot manipulation dataset for 1 epoch,
with a learning rate of 2e-5 and a batch size of 16. Specifically, we combined actions from 5 time
steps into a single training label to increase the operating frequency of the robot policy model. The
Adam optimizer without weight decay and a cosine learning rate schedule with a 3% warmup ratio
are used throughout the experiments. Flash Attention 2, BF16, and TF32 are enabled to achieve a
balance between training speed and precision.

All models are trained using 8× A100 GPUs, except for the fine-tuning in Stage I. We empirically
found that employing a single GPU for coarse-grained speech alignment yields better performance.
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Speaker id: 8224 
Meta: I prefer {right} side.

go push the red block.

Speaker id: 8230 
Meta: I prefer {right} side.

go push the red block. go push the red block.

Speaker id: 8463 
Meta: I prefer {right} side.

Speaker id: 7176 
Meta: I have a {red} block, I prefer store it in {cabinet}.

1. grasp and lift my block.
2. store the grasped block.

Speaker id: 7729 
Meta: I have a {red} block, I prefer store it in {cabinet}.

1. grasp and lift my block.
2. store the grasped block.

Preference Preference Preference

Compound - 2th stage Compound - 2th stage

Figure 8: Demonstration of failure cases of VLAS on the customization benchmark.

Speaker id: 7021 
Meta: I have a {pink} block.

lift my block from the sliding cabinet.

Speaker id: 7127 
Meta: I prefer {right} side.

go push the red block.

store the grasped block.

Speaker id: 8455 
Meta: I prefer store it in {drawer}.

Speaker id: 7729 
Meta: I have a {pink} block, I prefer rotate it {left} side.

take my block and rotate it.

Speaker id: 7176 
Meta: I have a {red} block.

Ownership Preference

Compound - 2th stageCompound

Compound - 1th stage

grasp and lift my block.

Figure 9: Demonstration of failure cases of VLA on the customization benchmark.

B EXTENDED EXPERIMENTAL RESULTS

B.1 FAILURE CASES OF VLAS AND VLA ON THE CUSTOMIZATION BENCHMARK

We conducted additional analysis on the failure cases of VLAS and VLA on the customization
benchmark to better identify the underlying reasons. As observed in the Figure 8, failure cases
of the VLAS model mainly occur in the preference task and the second phase of the compound
task. The error pattern is more consistent, suggesting that the model understands the instructions
but fails to execute the actions successfully. We conjecture this issue can be addressed by refining
the policy model’s architecture and training process. On the contrary, the VLA model exhibits a
diverse range of error patterns, as illustrated in Figure 9. Since the VLA model has access only to
superficial semantic information from human instructions, it relies on random attempts to complete
these personalized tasks, leading to numerous failures.

B.2 COMPARISON WITH ROBOFLAMINGO ON THE CALVIN BENCHMARK

RoboFlamingo is another prominent VLA model reported on the CALVIN Benchmark. Table pro-
vides a comparison between VLAS and RoboFlamingo on the CALVIN Benchmark using textual
instructions. It can be seen that VLAS performs slightly behind RoboFlamingo mainly due to lack
of historical information when predicting actions. When the historical information, i.e. the LSTM
policy head, is removed, the performance of RoboFlamingo significantly deteriorates. Thus, we can
leverage similar approaches to further enhance the performance of our model, as these two methods
are completely orthogonal.
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Table 5: Comparison with RoboFlamingo on the CALVIN Benchmark. The performance of
RoboFlamingo without historical information is derived from results presented in their original
paper. +: Evaluated with the ground truth textual instructions. *: Evaluated with the speech in-
structions.

Models Splits LH-1 LH-2 LH-3 LH-4 LH-5 Len
Roboflamingo+ ABCD/D 96.4% 89.6% 82.4% 74.0% 66.0% 4.09
Roboflamingo+(w/o Hist) ABCD/D ∼60% ∼20% ∼20% ∼20% ∼20% ∼1.0
VLAS+ ABCD/D 94.5% 84.4% 73.6% 64.6% 56.6% 3.74

B.3 EXPERIMENTAL EVALUATION ON THE CALVIN BENCHMARK USING ABC/D SPLITS

To better evaluate our model’s generalization capability to novel scenes, we conducted experiments
in which the model was trained on ABC splits and tested on the D split. It can be observed that,
despite all models experiencing performance degradation due to the domain gap, our VLAS achieved
performance comparable to RoboFlamingo while outperforming the other models.
Table 6: Performance of different robot policy models on the CALVIN benchmark. +: Evaluated
with the ground truth textual instructions. *: Evaluated with the speech instructions. On this bench-
mark, the Voice RAG module is not utilized by VLAS to acquire any customized knowledge.

Models Splits LH-1 LH-2 LH-3 LH-4 LH-5 Len
MCIL+ ABC/D 30.4% 1.3% 0.2% 0.0% 0.0% 0.31
HULC+ ABC/D 41.8% 16.5% 5.7% 1.9% 1.1% 0.67
RT-1+ ABC/D 53.3% 22.2% 9.4% 3.8% 1.3% 0.9
VLA+ ABC/D 83.1% 58.4% 34.7% 23.1% 15.1% 2.14
Roboflamingo+ ABC/D 82.4% 61.9% 46.6% 33.1% 23.5% 2.48
VLAS+ ABC/D 85.9% 59.2% 38.5% 25.9% 17.6% 2.27
VLA*+ASR ABC/D 74.7% 54.1% 38.4% 24.1% 16.5% 2.04
VLAS* ABC/D 87.2% 64.2% 40.9% 28.1% 19.6% 2.40

Moreover, we conducted similar experiments on our personalization benchmark. The results demon-
strate that our model is capable of handling novel scenes.
Table 7: Performance of three types of customized tasks for robot manipulation. +: Evaluated with
the ground truth textual instructions. *: Evaluated with the speech instructions. On this benchmark,
the Voice RAG module is utilized by VLAS to acquire customized knowledge.

Models Ownership Preference Compound Compound-Multistage Avg.
Stage-1 Stage-2

VLA+ 20.5% 5.1% 0.0% 10.3% 0.0% 6.4%
VLAS* 64.1% 61.5% 87.2% 74.4% 7.7% 55.1%
VLAS*−RAG 15.4% 23.1% 0.0% 12.8% 0.0% 9.6%
VLA++RAG 82.1% 71.8% 84.6% 82.1% 10.3% 62.2%

B.4 INFERENCE EFFICIENCY ANALYSIS

This paper employs two key optimizations to enhance the inference speed of VLAS: downsampling
the speech spectrogram and implementing an action update strategy with multi-step prediction and
execution. Speech spectrogram downsampling is a widely used strategy to accelerate speech signal
processing, where adjacent x-frame spectrograms are aggregated into a single-frame feature through
a reshaping operation, effectively reducing the time dimension length. In our experiments, we used
the x = 5. Since the effectiveness of this approach has been validated in numerous speech recognition
and generation tasks, we did not perform additional related analyses. Given that the state of the
environment typically does not change significantly over a short period, our work adopts a simple yet
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effective multi-step prediction and execution policy. Specifically, we set the number of steps for both
VLA and VLAS to r=5. As shown in Table 8, when r=5 , both the VLA and VLAS models achieve
significant speedups while also demonstrating improved performance on the CALVIN benchmark.
Table 8: Inference efficiency of different models and their average performance on the CALVIN
benchmark. +: Evaluated with the ground truth textual instructions. *: Evaluated with the speech
instructions.

Models Actions / Sec (Hz) Len
VLA+(r=1) 1.89 2.30
VLAS*(r=1) 1.17 2.02
VLA+(r=5) 3.60 3.80
VLAS*(r=5) 2.50 3.70

Table 9: Inference efficiency of different models and their average performance on the CALVIN
benchmark. +: Evaluated with the ground truth textual instructions. *: Evaluated with the speech
instructions.

Models Actions / Sec (Hz) Len
VLAS*(r=1) 1.17 2.02
VLAS*(r=5) 2.50 3.70
VLAS*(r=12) 2.88 3.35
VLAS*(r=20) 3.80 0.70

We supplemented our results with an analysis of the inference speed and performance of VLAS
across different values of r. The table indicates that r=5 achieves an optimal balance between infer-
ence efficiency and manipulation performance.
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