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Joint Evaluation of Fairness and Relevance in Recommender
Systems with Pareto Frontier

Anonymous Author(s)

ABSTRACT

Fairness and relevance are two important aspects of recommender

systems (RSs). Typically, they are evaluated either (i) separately

by individual measures of fairness and relevance, or (ii) jointly

using a single measure that accounts for fairness with respect to

relevance. However, approach (i) often does not provide a reliable

joint estimate of the goodness of the models, as it has two different

best models: one for fairness and another for relevance. Approach

(ii) is also problematic because these measures tend to be ad-hoc

and do not relate well to traditional relevance measures, like NDCG.

Motivated by this, we present a new approach for jointly evaluating

fairness and relevance in RSs: distance from pareto frontier (DPFR).

Given a user-item interaction dataset, we compute their Pareto

frontier for a pair of existing relevance and fairness measures, and

then use the distance from the frontier as a measure of the jointly

achievable fairness and relevance. Our approach is modular and

intuitive as it can be computed with existing measures. Experiments

with 4 RS models, 3 re-ranking strategies, and 6 datasets show that

the existing metrics have inconsistent associations with our Pareto-

optimal solution, making DPFR amore robust and theoretically well-

founded joint measure for assessing both fairness and relevance.
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1 INTRODUCTION

Relevance and fairness are important aspects of recommender sys-

tems (RSs). Relevance is typically evaluated using well-known rank-

ing measures (e.g., NDCG), while various fairness measures for

RSs exist [1, 47]. Some fairness measures integrate relevance, so

that they evaluate fairness w.r.t. relevance. The problem with these

joint measures is that they tend to be ad-hoc, unstable, and they

do not account very well for both aspects simultaneously [37]. An-

other way of evaluating relevance and fairness is to use a different

measure for each aspect. However, this does not always provide

a reliable joint estimate of the goodness of the models, as it may
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(0.766, 0.766)

PF-midpoint

(𝛼 = 0.5)

Model C

(0.5, 0.5)

Model A

(0.2, 0.9)

Model B

(0.65, 0.2)

Relevance (Rel)

F
a
i
r
n
e
s
s
(
F
a
i
r
)

Pareto Frontier (PF)

Euclidean distance

Model ↓ Dist. to PF ↑ Avg
A 0.582 0.55

B 0.578 0.425

C 0.376 0.5

Figure 1: (𝑥,𝑦) denotes the pair of relevance and fairness

score. Example: Model A is best for fairness, Model B is best

for relevance, and Model C is the closest to the Pareto Fron-

tier (PF) midpoint, when relevance and fairness are equally

weighted (𝛼 = 0.5). Averaging relevance and fairness (Avg)

leads to falsely concluding that Model A is best for both

aspects. Note that distance to PF also beats other existing

measures of fairness and relevance (see §5.4).

have two different best models: one for fairness and another for

relevance. This can be avoided by aggregating the scores of the

two measures into a single score, or by aggregating the resulting

model rankings into one using ranking fusion. These approaches

are also problematic because: (i) the scores of the two measures

may have different distributions and different scales, making them

hard to combine; (ii) the two measures may not even be computed

with the same input, making their combination hard to interpret

(relevance scores are computed for individual users and then av-

eraged, while fairness measures for individual items are typically

based on individual item recommendation frequency); and (iii) the

resulting scores are less understandable as it is unknown how close

the models are to an ideal balance of fairness and relevance.

To address the above limitations, we contribute an approach

that builds on the set of all Pareto-optimal solutions [6]. Our ap-

proach addresses issue (i) and (ii) above by avoiding direct com-

bination of measures. We directly address (iii) by computing the

distance of the model scores to a desired fairness-relevance bal-

ance. Our approach uses Pareto-optimality, a popular concept in

multi-objective optimization problems across domains, including

RSs [39]. A recommendation is Pareto-optimal if there are no other

possible recommendations with the same Rel score that achieve

better fairness.
1
In other words, given Pareto-optimal solutions, we

cannot get other recommendations that empirically perform better,

unless relevance is sacrificed. In our approach we combine existing

Fair measures and Rel measures as follows. We build a PF that

first maximises relevance, finds the best fairness achievable under

1
The opposite is also true, but in RS scenario the Rel score is usually the primary

objective, not the Fair score.

1
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the relevance constraint, and then jointly quantifies fairness and

relevance as the distance from an optimal solution, see Fig. 1.

Our approach,Distance to PF of Fairness and Relevance (DPFR) has
several strengths. First, DPFR is modular ; it can be used with well-

known existing measures of relevance and fairness. DPFR is also

tractable as one can control theweight (𝛼) of fairness w.r.t. relevance.
As the resulting score is the distance to the scores of a traditional

relevance measure and a well-known fairness measure, DPFR is

also intuitive in its interpretation. Most importantly, DPFR is a

principled way of jointly evaluating relevance and fairness based on

an empirical best solution that uses Pareto-optimality. Experiments

with different RS models, re-ranking approaches and datasets show

that there exists a noticeable gap between using current measures

of relevance and fairness and our Pareto-optimal joint evaluation

of relevance and fairness. This gap is bigger in larger datasets and

when using rank-based relevance measures (i.e., MAP, NDCG), as

opposed to set-based relevance measures (i.e., Precision, Recall).

In this work, we focus on individual item fairness. This type

of fairness is commonly defined as all items having equal exposure,

where exposure typically refers to the frequency of item appearance

in the recommendation list across all users [24, 34, 36]. Individual

item fairness is important in ensuring that each item/product in

the system has a chance to be recommended to any user [17].

2 RELATEDWORK

Evaluating fairness and relevance together is a type of multi-aspect

evaluation. However, none of the existing multi-aspect evaluation

methods [22, 23, 32] can be used in this case as these methods

require separate labels that are unavailable in RS scenarios. Specifi-

cally, it is not possible to label an item as ‘fair’, because item fair-

ness depends on other recommended items. The same item can be

a fair recommendation in one ranking, but unfair in another. In

RSs, fairness is typically defined as treating users or items without

discrimination [3]. This is often quantified as the opportunity for

having equal relevance (for users) or exposure (for items) [3, 46],

computed either individually or for groups of items/users [35, 53].

The problem of evaluating RS relevance and fairness together

is further aggravated by the fact that improved fairness is often

achieved at the expense of relevance to users [26]. We posit that this

trade-off makes multi-objective optimization a suitable solution.

Pareto optimality is a well-known objective for such optimization,

and it has been previously used in RS but only to recommend items

to users [10, 39, 49, 55]. Because the true PF is often unknown due to

the problem complexity [2, 16], previous work has used the model’s

training loss w.r.t. two different aspects [20] or scores from different

models [30, 33] to generate the PF. Our work differs from this prior

work in terms of both the purpose of using Pareto-optimal solutions,

and the nature of the PF. Specifically, we exploit Pareto-optimality

through PF as a robust evaluation method, instead of as a recom-

mendation method. In addition, our generated PF is based on the

ground truth (i.e., the test set), a common RS evaluation approach,

instead of the recommender models’ empirical performance, which

may not be optimal. Thus, our PF is also model-agnostic, as opposed

to the PF in [49]. Our approach differs also from FAIR [9] since

the PF considers the empirically achievable optimal solution based

on the dataset, while FAIR compares against the desired fairness

distribution which might not be achievable. Lastly, the approach in

[33] selects the optimal solution based on its distance to the utopia

point (the theoretical ideal scores), whereas the utopia point may

not be realistic due to dataset or measure characteristics [28, 36].

Since our PF is generated based on test data, any of its solutions is

empirically achievable.

3 DISTANCE TO PARETO FRONTIER (DPFR)

We present definitions (§3.1), and then explain DPFR in different

steps: given a Fair and a Rel measure, how to generate PF based

on the ground truth data in the test set (§3.2); how to choose a

reference point in the PF based on 𝛼 (e.g., the midpoint for 𝛼 = 0.5)

(§3.3); and how to compute the distance of the Fair and Rel scores

to the reference point with a distance measure 𝑑 (§3.3). Additionally,
we present a computationally efficient adaptation of DPFR (§3.4).

3.1 Definitions

We adapt the Pareto-optimality definition [43] to our case. Here,

the multi-objective problem is finding the optimum Fair score 𝑠𝑓 ,

and Rel score, 𝑠𝑟 from a list of possible recommendations across all

users. We define the tuple 𝑠 = (𝑠𝑟 , 𝑠𝑓 ) ∈ 𝑆 , where 𝑆 is the Cartesian

product of all possible Rel and Fair scores. The relation ≥𝐴 means

‘better or equal to’ according to an aspect 𝐴 ∈ {Rel, Fair}. The
relation >𝐴 is defined similarly.

Def. 1 (Pareto Dominance). A tuple 𝑠 = (𝑠𝑟 , 𝑠𝑓 ) dominates 𝑠′ =
(𝑠′𝑟 , 𝑠′𝑓 ) iff 𝑠 is partially better than 𝑠

′
, i.e., 𝑠𝑟 ≥Rel 𝑠′𝑟 and 𝑠𝑓 ≥Fair 𝑠′𝑓 ,

in addition to 𝑠𝑟 >Rel 𝑠
′
𝑟 or 𝑠𝑓 >Fair 𝑠

′
𝑓
.

Def. 2 (Pareto Optimality). A solution (recommendation list) that

has Rel and Fair scores of 𝑥 = (𝑥𝑟 , 𝑥 𝑓 ) ∈ 𝑆 is Pareto-optimal iff

there is no other solution with 𝑥 ′ = (𝑥 ′𝑟 , 𝑥 ′𝑓 ) ∈ 𝑆 that dominates 𝑥 .

Def. 3 (Pareto Frontier). The set of all Pareto-optimal tuples.

3.2 Pareto Frontier generation

Given user-item preference data (e.g., test set), the aim is to ex-

plore the empirical, maximum feasible fairness towards individual

items considering all items in the recommendation, that satisfies

Pareto-optimality w.r.t. fairness and an average relevance score

across users, e.g., MAP@10 = 0.9.2 This is done to measure how

far a model performance is, from these Pareto-optimal solutions.

Enumerating all possible recommendations for users and items to

find the complete set of Pareto-optimal solutions is computationally

infeasible, and there is no analytical solution either. Instead, we

contribute an algorithm that iteratively builds upon a maximally rel-

evant initial recommendation list. Our algorithm iteratively finds

Pareto-optimal recommendations by prioritising relevance over

fairness, as recommendations are usually optimised for relevance

(with or without fairness). This prioritisation is known as lexico-

graphic optimization [40]. We call our algorithm Oracle2Fair (full

technical description in App. B). Our algorithm generates the PF

of fairness and relevance in two steps: (1) initialisation of the

recommendations with an Oracle (App.B, Algorithm 1). The Oracle
generates a recommendation with the highest empirical score for

relevance, based on user interactions that are part of the test set.

2
This is how Fair and Rel measures are usually computed.

2
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This step is followed by (2) replacements to make the recommen-

dations as Fair as possible; at the end of this algorithm, the Fair

scores should reach the empirically fairest score while maintaining

as much relevance as possible. Throughout the PF generation, items

in a user’s train/val split are not recommended to the same user.

Henceforth, relevant items refers to the items in a user’s test split.

(1) Initialisation. The Oracle recommends at most 𝑘 = 10 relevant

items, from the 𝑛 items in the dataset, to each of the 𝑚 users in

the test split, one user at a time. The recommendation begins with

users having exactly 𝑘 items in the test split, as only these items can

be recommended to those users to gain the maximum relevance.

For other users, the recommendations are made maximally relevant

and fair as follows: if a user has more than 𝑘 relevant items, we

pick 𝑘 items with the least exposure among them. Item exposure

is computed based on what has been recommended to other users

who already have exactly 𝑘 items. Note that this process is not

trivial (see App. B, Algo 1, ll. 2–17). If a user has less than 𝑘 relevant

items, we recommend those items at the top (to maximise top-

weighted Rel measures) and fill the rest of their recommendation

slots with the least exposed items in the dataset (Algo 1, ll. 18–

36). This least-exposure prioritisation strategy ensures that the

solutions are Pareto-optimal.

(2) Replacements. The algorithm iteratively replaces the recom-

mended items to achieve maximum fairness, such that each re-

placement results in a fairer recommendation than the previous.

We compute the Fair and Rel measures after each replacement

as follows. The most popular item, which is recommended most

often, is replaced with one of these item types, in decreasing order

of priority: an unexposed item, then the least popular item in the

recommendation; this increases fairness from the previous recom-

mendations. We do this one item and one user at a time, starting

with the users that have the most popular item at the bottom of

their recommendation list, to ensure that the decrease in relevance

is minimum as the replacement item is mostly not relevant to that

user. Nonetheless, the Oracle2Fair prioritises replacing the rec-

ommendations of users for whom the replacement item is relevant

(if any). As fairness increases and relevance decreases/stays the

same from the previous recommendation, the new recommenda-

tion is also Pareto-optimal. We continue the replacement until the

maximum times any item is recommended is ⌈𝑘𝑚/𝑛⌉, i.e., the up-
per bound of how many times an item can be recommended, if all

items in the dataset must appear in the recommendation as uni-

formly as possible. To ensure maximum Rel scores (especially in

top-weighted measures), each time a replacement takes place, we

rerank the recommendations based on descending relevance.

The resulting pairs of (Rel, Fair) scores corresponding to Pareto-

optimal recommendations from this process make up the PF. If there

are duplicates in the Rel value, we only keep the best Fair score

for a single value of Rel. While it cannot be verified in reasonable

time that the resulting PF exactly matches the theoretical PF, this is

one of the closest ways to build the full PF, as opposed to building

the PF from trained models scores (§2).

3.3 Distance computation

For each pair of Fair and Rel measures, we find a reference point

using a tunable parameter 𝛼 ∈ [0, 1]; 𝛼 = 0 means only relevance

is accounted for, and 𝛼 = 1 means only fairness is accounted for.

Next, we explain how to compute the reference point. We first

use the following equation to find the length of a subset 𝑇 of the

PF: 𝑙𝑒𝑛𝑃𝐹 (𝑇 ) = ∑ |𝑇 |−1
𝑡=1

𝑑𝐸 (𝑥𝑡 , 𝑥𝑡+1). Given that 𝑃 is the set of all

Pareto-optimal solutions, 𝑥𝑡 = (𝑥𝑡𝑟 , 𝑥𝑡𝑓 ) is the pair of Pareto-optimal

solutions (𝑥𝑟 , 𝑥 𝑓 ) with the 𝑡-th highest 𝑥𝑟 in 𝑃 , and 𝑑𝐸 is the Eu-

clidean distance. The overall PF length is 𝑙𝑒𝑛𝑃𝐹 (𝑃) or simply 𝑙𝑒𝑛𝑃𝐹 .

The reference point is 𝑠𝛼 = 𝑥𝑡
′
, where 𝑡 ′ is computed as fol-

lows: 𝑡 ′ = argmin𝑗∈[1,..., |𝑃 |−1]
��𝑙𝑒𝑛𝑃𝐹 (𝑇 𝑗 ) − 𝛼 · 𝑙𝑒𝑛𝑃𝐹

��
, where 𝑇 𝑗

is a subset of 𝑃 containing the 𝑗 highest 𝑥𝑟 scores. In other words,

the reference point is a point in the PF whose cumulative traversal

distance is the closest to the 𝛼-weighted PF distance travelled from

the first point in the PF. Essentially, the reference point 𝑠𝛼 is how

far the PF is traversed, from the pair with the best Rel score to the

one with the best Fair score, multiplied by 𝛼 . As the PFs may have

different density of points along the frontiers, the reference point

is not computed based on a percentile (e.g., median) to avoid bias

towards the denser part. Next, the distance between each model’s

(𝑥𝑟 , 𝑥 𝑓 ) scores and the reference point 𝑠𝛼 is computed with a dis-

tance measure 𝑑 that accommodates 2d-vectors. The model with

the closest distance is the best model in terms of both relevance and

fairness, given the weight 𝛼 . We call this Distance to Pareto frontier
of Fairness and Relevance (DPFR).

3.4 Efficient computation of Pareto Frontier

Generating the PF as in §3.2 is computationally expensive. An effi-

cient alternative is to compute a subset of the PF. We pick a fixed

amount of Pareto-optimal solutions to compute, 𝑝 (e.g, 10). However,

to reliably approximate the PF, these solutions should be spread

according to the PF distribution, as opposed to e.g. only computing

the first 𝑝 points of the PF. The spread of the points is important,

as the reference point in DPFR is computed based on the overall

estimated PF. In the estimated PF, the first point corresponds to the

measure scores of the initial recommendation given by the Oracle,

and the rest are spread evenly throughout the PF generation. To

select at which point of the Oracle2Fair algorithm the measures

should be computed, we first estimate the total number of replace-

ments needed by examining the distribution of recommended items

frequency. This is done by getting the individual frequency count

of all items in the recommendation, and subtracting the ideal upper

bound of item count ⌈𝑘𝑚/𝑛⌉ (§3.2) from each count. The number

of expected replacements is computed as the sum of the difference

between the item frequency count and the ideal upper bound of

item count in §3.2. Items with recommendation frequency counts

less than the upper bound are excluded from the summation. With

the estimated total number of replacement 𝑛𝑢𝑚𝑅𝑒𝑝 , we set to com-

pute the measures every 𝑛𝑢𝑚𝑅𝑒𝑝 div(𝑝 − 1) replacements done by

Oracle2Fair, such that the measures are computed a total of 𝑝 − 1
times + 1 time before the replacement starts. These 𝑝 points are

spread evenly in terms of distance in the PF, which is important as

DPFR is a distance-based measurement.

4 EXPERIMENTAL SETUP

We study how our joint evaluation approach, DPFR, compares to

existing single- and multi-aspect evaluation measures of relevance

3
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Table 1: Statistics of the preprocessed datasets.

dataset #users (𝑚) #items (𝑛) #interactions sparsity (%)

Lastfm [5] 1,859 2,823 71,355 98.64%

Amazon-lb [29] 1,054 791 12,397 98.51%

QK-video [50] 4,656 6,423 51,777 99.83%

Jester [12] 63,724 100 2,150,060 66.26%

ML-10M [13] 49,378 9,821 5,362,685 98.89%

ML-20M [13] 89,917 16,404 10,588,141 99.28%

and fairness. Next, we present our experimental setup.
3
The experi-

ments are run in a cluster of CPUs and GPUs (e.g., Intel(R) Xeon(R)

Silver 4214R CPU @ 2.40GHz, AMD EPYC 7413 and 7443, Titan

X/Xp/V, Titan RTX, Quadro RTX 6000, A40, A100, and H100).

Datasets.We use six real-world datasets of various sizes and do-

mains: e-commerce (Amazon Luxury Beauty, i.e., Amazon-lb [29]),

movies (ML-10M and ML-20M [13]), music (Lastfm [5], videos (QK-

video [50]), and jokes (Jester [12]). The datasets are as provided by

[54], except for QK-video, which we obtain from [50]. Statistics of

the datasets are in Tab. 1 and extended statistics are in App. A.

Preprocessing. We remove duplicate interactions (we keep the

most recent). We keep only users and items with ≥ 5 interactions.

We convert ratings equal/above the following threshold to 1 and

discard the rest: for Amazon-lb and ML-*, the threshold is 3, as their

ratings range between [1, 5] and [0.5, 5] resp.; the threshold for

Jester is 0, as the ratings range in [−10, 10]. Lastfm and QK-video

have no ratings. QK-video has several interaction types, and we

only use the ‘sharing’ interactions. For Jester, we remove users

with > 80 interactions, to provide a large enough number of item

candidates for recommendation during testing.
4

Data splits. To obtain the train/val/test sets for Amazon-lb and

ML-*, we use global temporal splits [27] with a ratio of 6:2:2 on the

preprocessed datasets. Global random splits with the same ratio

are used for the other datasets that have no timestamps. From all

splits, we remove users with < 5 interactions in the train set.

Measures. We measure relevance (Rel) with Hit Rate (HR), MRR,

Precision (P), Recall (R), MAP, and NDCG. We focus on individual

item fairness (Fair), and measure it, as per [36], with Jain Index

(Jain) [14, 56], Qualification Fairness (QF) [56], Gini Index (Gini)

[11, 24], Fraction of Satisfied Items (FSat) [34], and Entropy (Ent)

[34, 42]. We also use joint measures (Fair+Rel): Item Better-Off

(IBO) [41],
5
Mean Max Envy (MME) [41], Inequity of Amortized

Attention (IAA) [3, 4], Individual-user-to-individual-item fairness

(II-F) [8, 48], and All-users-to-individual-item fairness (AI-F) [8].

We denote by ↑/↓measures where higher/lower is better. DPFR is

computed with Euclidean distance and 𝛼 = 0.5 (PF midpoint). For

all runs, we compute the results at 𝑘 = 10.

Recommenders. We select 4 well-known collaborative filtering-

based recommenders: item-based 𝐾-nearest neighbour (ItemKNN)

[7], Bayesian Personalised Ranking (BPR) [38], Variational Autoen-

coder with multinomial likelihood (MultiVAE) [19], and Neighbour-

hood-enriched Contrastive Learning (NCL) [21], with RecBole’s

3
Our code will be made public upon acceptance.

4
Some users in Jester have interacted with almost all 100 items. If a user has 80 items

in the train/val set, there would only be 20 candidate items to recommend during test,

which makes it easier to achieve higher relevance.

5
The measure Item Worse-Off is not used as its formulation is highly similar to IBO.

implementation and hyperparameter tuning [54]. We train for 300

epochs with early stopping, and keep the configuration with the

best NDCG@10 during validation. Each user’s train/val items are

excluded from their recommendations during testing.

Fair Re-rankers. To have fairer recommendations, we reorder the

top 𝑘′ items that are pre-optimised for relevance. Ideally 𝑘′ > 𝑘 to

allow exposing items that are not in the top 𝑘 . As there are very

few relevant items per user in RS datasets,
6 𝑘′ should not be too

big (e.g., 100). So, we re-rank the top 𝑘′ = 25 items for each dataset

and each model using three methods: GS, CM, and BC (explained

below). The re-ranking is done separately per user for CM and BC,

or altogether for GS, when considering all 𝑘′𝑚 recommended items,

where𝑚 is the number of users. Other fair ranking methods exist,

but we do not use them as they apply to group or two-sided fairness

only (e.g., [34, 51, 52]), or to stochastic rankings only (e.g., [31, 48]),

or do not scale to larger datasets (e.g., [3, 41]).

1. Greedy Substitution (GS) [46] is a re-ranker for individual item
fairness. We modify the GS algorithm, to replace the most popular

items with the least popular ones, both considering howmany times

an item is at the top 𝑘′ recommendations for all users (App. C). As

such, items can be swapped across users. To determine which items

are most popular (i.e. to be replaced) and least popular (replacement

items), the parameter 𝛽 = 0.05 is used. We pair these two item types,

and for each pair, we calculate the loss of (predicted) relevance if

the items are swapped. We then replace up to 25% of the initial

recommendations, starting from item pairs with the least loss.

2. COMBMNZ (CM) [18] is a common rank fusionmethod. Two rank-

ings are fused for each user: one based on the (min-max) normalised

predicted relevance score and another based on the coverage of

each top 𝑘′ item (to approximate fairness). We calculate item cov-

erage only based on their appearance in the top 𝑘 across all users

and min-max normalise the score across all users. As favouring

items with higher coverage would boost unfairness, we generate

the ranking using 1 minus the normalised coverage. CM uses a

multiplier based on the item appearance count in the two rankings

above; this count is also only based on the top 𝑘 . The resulting

ranking is a fused ranking of fairness and relevance.

3. Borda Count (BC) is a common rank fusion method. For each user,

we combine the original recommendation list and the rankings

based on increasing item coverage, as in CM. Unlike CM, BC uses

points. Higher points are given to items placed at the top. The result

is a fused ranking of fairness and relevance.

5 EXPERIMENTAL RESULTS

We now present the evaluation scores of 16 runs (4 recommenders

x 3 re-rankers, including no reranking) (§5.1). The relevance and
fairness scores of these runs are the input to our DPFR approach.

Not all combinations of evaluation measures are suited for PF. We

explain this in §5.2. We present the generated PF (§5.3) and compare

existingmeasures to DPFR (§5.4).We compare the results of efficient

DPFR to other joint evaluation approaches (§5.5).

5.1 Groundwork runs

The scores of Rel, Fair, and Fair+Rel measures for our 16 runs

are shown in the appendix (Tab. 6–7). Two main findings emerge

6
The median number of relevant items per user across all datasets is 2–53, see App. A,
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from Tab. 6–7. First, for all six datasets, none of the best models

according toRel are also the best according to Fairmeasures.

This is similar to our toy example (Fig. 1), where one model ranks

highest for fairness and another for relevance. Second, the five

Fair+Relmeasures have no unanimous agreement on the

best model. IBO has a different best model from the others in 4/6

times, but sometimes agrees with one or more Fairmeasures. MME

and AI-F agree on the best model 5/6 times, and sometimes agree

on the best model with Fair measures. The best model according

to IAA and II-F is always the same, and 4/6 times the same as

the best model based on the Rel measures. The overall picture is

inconclusive, with some Fair+Rel measures aligning more with

Fair measures, and others aligning more with Rel measures.

Figure 2: Pareto Frontier of fairness and relevance (in

blue) and recommender scores for Lastfm and QK-video on

exponential-like scales. Rel, Fair, Avg (mean of Rel, Fair),

and DPFR are the best model per evaluation approach.

5.2 Measure compatibility with DPFR

Which pairs of Rel and Fair measures are suitable to generate the

PF? We answer this based on the PF slope. The slope is calculated

using the two endpoints of the PF, i.e., the start and end of the

Oracle2Fair algorithm. A slope of zero means the Rel scores of

the PF vary, but the Fair scores do not. As we compute the PF

for multiple measures simultaneously, we expect a zero gradient

for cases where the initial recommendation according to a Fair

measure is already the fairest, even if other Fair scores are not. An

undefined gradient value occurs when the initial recommendation

is already the fairest and the most relevant according to a pair of

Fair and Rel measures. Thus, we posit that a PF with a gradient

value other than zero or undefined makes the corresponding pair

of measures fit for PF generation (it allows for trade-offs in both

aspects). The Rel-Fair measure pairs that are fit for DPFR based

on their gradient are: {P, MAP, R, NDCG} × {Jain, Ent, Gini}. Only

results from these pairs are shown henceforth. Next, we explain

what causes an undefined or zero gradient for some measures.

Causes of zero/undefined gradient. Generating the PF requires

a ranking of items. Any score that is based on a single relevant

item, e.g., HR and MRR, is by design not suitable. Out of the Fair

measures, QF and FSat sometimes behave inconsistently depending

on the dataset properties, as follows. A dataset with relatively few

relevant items can already be made maximally fair at the start of the

PF generation, as QF quantifies fairness with ignorance to frequency

of exposure; the score does not change as long as the same set of

items appears in the top 𝑘 recommendations of all users, no matter

how many times each. When all items in the dataset already occur

in the initial recommendations of our Oracle, nothing can be done

to improve QF. For FSat, in few cases, the score is already maximum

at the start of the PF generation. A maximum FSat score is achieved

when all items in the dataset have at least the maximum possible

exposure, if the available recommendation slots are shared equally

across all items.
7
In principle, QF and FSat can still be used for DPFR

when the initial recommendation by Oracle is not the maximum

yet. Otherwise, the interpretation would be less meaningful in joint

evaluation, as there is no trade-off between different aspects.

5.3 The generated PF

Fig. 2 shows the PF plots of the pairs of Fair and Rel measures

that are suited for DPFR, only for Lastfm and QK-video, which are

representative of the overall trends in all our datasets (see Fig. 4

in the Appendix). The scores plotted are those computed in §3.2.
The corresponding scores of our recommendation models are in

App. D. We see that, as the recommendations are made fairer, the

generated PF for all datasets is a series of monotonic scores of Fair,

specifically monotonic increasing Fair scores (except ↓Gini), and
the remaining measures are monotonic decreasing. The monotonic

property theoretically and empirically holds for the Fair measures,

as we replace an item with the most exposure by another item

with the least exposure, thereby making the recommendation fairer.

Note that some users do not have exactly 𝑘 items in the test set, so

the perfect relevance score cannot be reached for Precision@𝑘 and

7 ⌊𝑘𝑚/𝑛⌋ times (the total number of recommendation slots across users divided by

the number of items).
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Recall@𝑘 [28]. NDCG and MAP are implemented with normalisa-

tion
8
so that they can still achieve a score of 1 in this situation.

The datasets which were randomly split as they have no times-

tamps (QK-video, Jester) have relatively short, compact PF. This

happens because the random split results in a uniform distribution

of items in each split, which means that items in the test split are

quite diverse (64–100% of all unique items in the dataset). Consider-

ing that the Oracle2Fair algorithm starts by recommending items

in the test split and stops when the recommendation reaches the

fairest, there is not much room for change in Fair scores, as the

initial recommendation is already rather fair. Additionally, there are

not many relevant items per user in these datasets (i.e., the median

for both datasets is 6 or less); random non-relevant items were

chosen to make up for the remaining recommendations.
9
Thus,

the PF generation decreases relevance only marginally in 2/6 cases.

Correspondingly, we find that in QK-video and Jester, there exist

Pareto-optimal recommendations, that are close to maximally fair

and maximally relevant, with the exception of P@10. These can be

seen in the measure pairs of {MAP, R, NDCG} × {Jain, Ent, Gini},

where the PF is close to the coordinates of (1, 1), or (0, 1) for the
measure pairs with Gini. Thus, in theory, a fair recommendation

does not necessarily have to sacrifice relevance.

5.4 Agreement between measures

We study the agreement between DPFR and other evaluation ap-

proaches in ranking our 16 runs from best to worst. Low agreement

means that the other approaches have few ties to the Pareto-optimal

solutions that DPFR uses, and vice versa. We compare DPFR to (a)

existing Rel and Fair measures, (b) existing joint Fair+Rel mea-

sures (§4), and also (c) the average (arithmetic mean) of Fair and

Rel scores from the selected measure pairs that are used to generate

the PFs. To compute the average for a measure where lower values

are better (i.e., Gini), we compute 1−the Gini score instead.

5.4.1 Comparison of existing measures to DPFR. We find that for

all datasets and all measure pairs, the best model as per DPFR is

always different from the best model as per Relmeasures.

Moreover, half the time, the best model as per DPFR is dif-

ferent from the best model as per a Fair measure. Existing

Fair+Rel measures tend to have the same best model as either

Fair or Rel measures (73.3% of the time), instead of having a more

balanced evaluation of both aspects. These findings are expected

as existing joint evaluation measures use relevance in their formu-

lation differently than the Rel measures. Overall, the best model

found with DPFR is less skewed towards relevance or fairness.

5.4.2 Correlation of measures. For each dataset, we compute the

Kendall’s
10 𝜏 [15] correlations between the ranking given by DPFR

and by the joint evaluation baselines (see Fig. 3). Rankings are

considered equivalent if 𝜏 ≥ 0.9 [23, 44]. We see similar agree-

ment trends in datasets where recommenders have higher Rel

scores (Lastfm and Jester) or lower (Amazon-lb andQK-video). Over-

all, most times DPFR orders models differently (𝜏 < 0.9) than all

8
Only the first min ( |𝑅∗𝑢 |, 𝑘 ) items in a user 𝑢’s recommendations are considered,

where 𝑅∗𝑢 is the set of relevant items for user 𝑢.
9
The randomly-split Lastfm does not have a short PF because on average it has more

relevant items per user compared to QK-video and Jester (see App. A).

10
Ties are handled, unlike in Spearman’s 𝜌 .
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Figure 3: Kendall’s 𝜏 correlation heatmap between the rank

ordering of existing joint evaluation measures (including the

average of Fair and Rel scores, avg), and DPFR.
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Fair+Relmeasures except AI-F. We see similar trends between IAA

and II-F, and between MME and AI-F. IBO can have similar trends

as MME (except for Amazon-lb and QK-video). For all datasets,

IAA and II-F have overall either weak or negative 𝜏 with DPFR

(e.g., [−0.2, 0.25] for ML-10M and [−0.62,−0.35] for QK-video). A
notable exception is DPFR with {MAP, R, NDCG} × Ent for Lastfm

and Jester, where we see moderate correlations, 𝜏 ∈ [0.42, 0.68].
Ent differs from this trend because DPFR with {MAP, R, NDCG}

× {Jain, Gini} has PF gradients of greater magnitude. This only

affects Lastfm and Jester (they have higher Rel scores than the

other datasets). DPFR with P has different patterns from other Rel

measures: the raw DPFR scores of pairs involving P are lower on

average, as the scores fromOracle do not start from 1, but much less,

and therefore closer to the models’ scores (Fig. 2).) Meanwhile, IBO

has varying 𝜏 across datasets: a huge range of 𝜏 , i.e., [0.00, 0.9] for
Lastfm, weak correlations [0.01, 0.13] for Amazon-lb, and moderate

to strong correlations [0.67, 0.98] for ML-10M. These variations

might be because IBO is based on the number of items satisfying

a certain criterion, rather than an average of scores across users

and/or items, i.e., how other Fair+Rel measures are defined.

Among the joint measures, AI-F correlates the strongest with

DPFR, as both AI-F and DPFR, indirectly or directly, consider the

recommendation frequency of each item and compare it with that

of other items. However, the rank orderings given by AI-F are not

equivalent to DPFR, as 𝜏 < 0.9 for 5/6 datasets (excl. Amazon-lb).

For the same measure-pair and between datasets, the 𝜏 of AI-F and

DPFR also varies a lot. E.g., 𝜏 = 0.07 for NDCG-Ent for Lastfm, but

𝜏 = 0.9 for Amazon-lb. We thereby do not recommend using any of

the Fair+Rel measures ( none correlates with Pareto optimality).

Taking the mean of Fair and Rel scores (avg) at a glance seems

to correlate highly with DPFR. However, while it gives equivalent

rankings (𝜏 ≥ 0.9) in some cases (e.g., for Amazon-lb, most of ML-

10M and QK-video, and half of ML-20M), it only does so for (1)

datasets with lower Rel scores (Lastfm, QK-video), i.e., in cases

where all models perform poorly, we have low variance in Rel,

which leads to fairness dominating both avg and DPFR; (2) datasets

with low variance in Fair scores (ML-*). In such cases, quantifying

the evaluation jointly is challenging as one aspect dominates over

the other. In the other datasets, the rank ordering given by the

average is inconsistent: sometimes 𝜏 ≥ 0.9 for one dataset, but

not for the others. This inconsistency between datasets holds for

all measure pairs, except for P-Jain and NDCG-Gini. Due to these

inconsistencies, we discourage using the arithmetic mean.

Overall, our correlation analysis shows that existing joint Fair+Rel

evaluation measures cannot be used as a reliable proxy for DPFR.

5.4.3 Best model disagreement. We take a closer look at how DPFR

relates to computing averages, as they are similar approaches in

terms of combining scores from a measure pair. As comparing the

raw scores of DPFR and the average is invalid, we instead count

the disagreement between the best model based on DPFR and the

mean of Fair and Rel scores (Tab. 2). The aim is to study whether

one would come to the same conclusion regarding the best model,

using the two different joint evaluation approaches.

Among the 12 measure pairs that are fit for DPFR, we find that

the best model according to DPFR is not always the same

according to the average of Fair and Rel scores of the same

Table 2: The percentage of best model disagreement when

taking the mean of Fair and Rel scores as opposed to using

DPFR, separated by the Relmeasure type. P@𝑘 and R@𝑘 are

set-based, NDCG and MAP are rank-based. We only consider

the 12 measure pairs with a nonzero, defined gradient (§5.2).

Set-based Rank-based All

Lastfm 50.00 66.67 58.33

Amazon-lb 0.00 0.00 0.00

QK-video 16.67 0.00 8.33

Jester 16.67 83.33 50.00

ML-10M 0.00 66.67 33.33

ML-20M 0.00 50.00 25.00

All datasets 13.89 44.44 29.17

pair; in one case the disagreement is up to 58% of the time (i.e., for

the Lastfm dataset). The disagreement is generally much higher in

the more complex rank-based measures (0–83.33%) compared to

simpler set-based Rel measures (0–50.00%). Therefore, there are

many cases where the mean of Fair and Rel scores is not the best

case, especially for Lastfm and Jester where Rel scores are higher

and vary more. In these two datasets, more often than not, DPFR

leads to different conclusions than a simple average. Yet, sometimes

the average agrees with DPFR in the best model: for QK-video,

disagreement is low (8.33%), and there is a perfect agreement on the

best model for Amazon-lb; we posit that these are due to equally

poor and low variance in the Rel scores. This is in line with our

correlation analysis. As there is a huge range of variability across

datasets (0–58.33%), we do not recommend using a simple average

to get the same result as DPFR, as it is unreliable and inconsistent.

However, in the average is almost always better than existing joint

measures. Generally, averaging fails to reach the same conclusion as

DPFR almost half the time, especially when there is high variability

across the Rel and Fair scores.

5.5 Efficient DPFR

5.5.1 The efficiency of the PF generation. We study the efficiency of

DPFR by comparing the PF, an estimated version of PF on a subset

of points, and the Fair+Rel measures. The estimated version of PF

uses 3–12 points as per §3.4.We compute the amount of points in the

estimated PF as % of those in the PF, and the resulting computation

times. One point in the PF translates to one round of computing all

Fair and Rel measures, so fewer points means faster. For brevity,

we report the estimated PF with only 3, 6, and 12 points in Tab. 3

(see App. D, Tab. 9 for results with other number of points).

The PF (Fig. 2) has hundreds to tens of thousands of points each,

while the estimated PF only contains 0.02–2.40% of the points, which

means reduced computational complexity for the PF generation. In

terms of actual computation time (Tab. 3), computing the PF with

Oracle2Fair take 0.56–75.77 mins to compute, but only 0.19–4.17

mins for the PFs estimated with 3 points for all datasets except

Jester. For Jester, it takes ∼14 hours and the estimation only takes

∼9 hours. However, this is expected for Jester as it has 62K users in

the test split, as opposed to the 3.5K or fewer in the other datasets

(i.e., see Tab. 4 in App. A). While computing the estimated PFs is on
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Table 3: Efficiency and effectiveness comparison between PF,

estimated PF (Est. PF), and Fair+Relmeasures: percentage

of data points in the Est. PF (% pts), computation time. The

average distance betweenmidpoints in the Est. PF andPF over

12 measure pairs is denoted as Dist. Minimum agreement

(Min 𝜏) is the Kendall’s 𝜏 correlation between DPFR with PF

and Est. PF. Both PF and Est. PF compute 11 Rel and Fair

measures simultaneously. The times for other evaluation

measures are averaged (Avg/model) and summed (All models)

over 16 model combinations.

Lastfm Amazon-lb QK-video Jester ML-10M ML-20M

#pts PF 4882 847 499 16202 2781 3783

%pts

Est. PF (12 pts) 0.25 1.42 2.40 0.07 0.43 0.32

Est. PF (6 pts) 0.12 0.71 1.20 0.04 0.22 0.16

Est. PF (3 pts) 0.06 0.35 0.60 0.02 0.11 0.08

↓
C
o
m
p
u
t
a
t
i
o
n
t
i
m
e
(
m
i
n
s
.)

PF 19.18 0.56 10.49 847.42 28.99 75.77

Est. PF (12 pts) 2.02 0.19 4.23 552.16 1.90 2.60

Est. PF (6 pts) 2.00 0.19 4.12 551.72 1.84 2.54

Est. PF (3 pts) 2.01 0.19 4.07 552.26 1.82 2.52

A
v
g
/
m
o
d
e
l

IBO <0.3s <0.3s 0.01 0.01 <0.3s 0.01

MME 2.04 0.03 19.51 0.09 15.25 89.13

IAA <0.3s <0.3s 0.01 0.02 0.01 0.02

II-F <0.3s <0.3s 0.01 0.01 0.01 0.02

AI-F <0.3s <0.3s 0.01 0.01 <0.3s 0.01

A
l
l
m
o
d
e
l
s

IBO 0.02 <0.3s 0.10 0.12 0.06 0.15

MME 32.63 0.49 312.14 1.38 244.03 1426.10

IAA 0.03 <0.3s 0.10 0.36 0.13 0.30

II-F 0.04 <0.3s 0.16 0.14 0.1 0.25

AI-F 0.03 <0.3s 0.11 0.13 0.07 0.17

↑Min 𝜏

Est. PF (12 pts) 0.95 1.00 1.00 0.98 0.98 0.97

Est. PF (6 pts) 0.90 0.97 1.00 0.98 0.95 0.92

Est. PF (3 pts) 0.78 0.98 1.00 1.00 0.97 0.75

↓ Dist.
Est. PF (12 pts) 0.01 0.02 0.00 0.00 0.01 0.01

Est. PF (6 pts) 0.03 0.05 0.00 0.00 0.02 0.02

Est. PF (3 pts) 0.03 0.05 0.00 0.00 0.03 0.05

average slower than computing the joint measures IBO, IAA, II-F,

and AI-F, it is expected as the (estimated) PFs compute 11 measures

simultaneously. Yet, in most cases (except Amazon-lb and Jester),

the estimated PFs is still faster to compute than the time to compute

MME for one model per dataset, let alone to compute MME for all

models. For ML-20M, computing the estimated PF is even up to 35

times faster than computing MME of one model.

5.5.2 The effectiveness of efficient DPFR. We study to what extent

the DPFR from the efficiently generated PF (estimated PF) is a

reasonable proxy for fairness-relevance joint evaluation using the

PF, in terms of giving a similar ordering of models. We compare the

DPFR from the PF and estimated PF using Kendall’s 𝜏 correlations.

Further, as DPFR is computed based on a 𝛼-based reference point

lying on the PF, to quantify possible accuracy loss of the estimated

PF, in Tab. 3 we also report the error of themidpoint estimation. This

error is computed as the Euclidean distance between the reference

point in the PF and estimated PF (i.e., the midpoint in our case),

following the idea from [45].

We first analyse the error of the midpoint estimation. Across

the 12 measure pairs and 6 datasets, the midpoint coordinates on

average do not move much, i.e., the distance is 0.00–0.05, even

when the PF is only estimated with 3 points. Ergo, the correlations

between the rank ordering of models given by the DPFR of PF and

its estimation, are still equivalent (𝜏 ≥ 0.9) when estimated with 6

or 12 points [23, 44]. Even the 3-point estimation maintains high

agreement (𝜏 ∈ [0.75, 1]), with only 5 cases having 𝜏 < 0.9 across

6 datasets and 12 measure-pairs. Therefore, it is possible to only

compute a small number of points in the PF, e.g., 6 or 12 points,

and still make a reliable PF estimation, evidenced by the small shift

of the PF midpoint and the rank ordering of the models remaining

equivalent (𝜏 ≥ 0.9), if not identical (𝜏 = 1) for all measure pairs

and datasets.

6 DISCUSSION AND CONCLUSIONS

Recommendation system (RS) evaluation has long been based on

measures that quantify only relevance, e.g., NDCG, AP. Recently,

the focus of evaluation has shifted to include fairness, for instance

measured as the equal opportunity of items to be exposed to users.

However, there exists no de-facto, robust approach that can con-

sistently quantify these two aspects. We have proposed a novel

approach (DPFR) that incorporates fairness and relevance measures

under a joint evaluation scheme for RSs.

DPFR can compute the empirical best possible recommendation,

jointly accounting for a given pair of relevance and fairness mea-

sures, in a principled way according to Pareto-optimality. DPFR is

modular, tractable, and intuitively understandable. It can be used

with several existing measures for relevance and fairness, and in

principle allows different trade-offs of relevance and fairness to be

incorporated into the measurement. We empirically show that exist-

ing evaluation measures of fairness w.r.t. relevance [3, 4, 8, 41, 48]

behave inconsistently: they disagree with optimal solutions based

on DPFR computed on more robust and well understood measures

of relevance, such as NDCG, and fairness, such as Gini. We uncover

someweaknesses of these measures, but more research is warranted

to properly study their behaviour. Admittedly, the existing joint

measures are not originally defined to be aligned with existing rele-

vance and fairness measures [11, 14, 24, 25, 34, 56]. Therefore, it is

not surprising that they have different results from DPFR. However,

existing measures show varying performance also from each other

and from well-understood relevance and fairness measures. Thus,

DPFR can provide a viable alternative for robust, interpretable, and

provenly optimal evaluation strategy in offline scenarios. We also

show that DPFR can be computed fast while reaching equivalent

conclusion. Overall, DPFR demonstrates distinct benefits in mitigat-

ing false conclusions by up to 50% compared to basic aggregation

methods like averaging. Surprisingly, simple averaging aligns more

with our Pareto-optimal based DPFR, than existing joint measures.

We recommend combining either Ent-MAP or Ent-NDCG, as of-

ten, the conclusions are distinguishable from simply averaging, or

taking the best model based on fairness or relevance measures.

Our experiments are conducted with a wide range of fairness

and relevance metrics across several datasets. Nonetheless, it is still

possible that there may be other metrics for which our approach is

not suitable. For instance, using relevance measures like hit rate or

MRR, which rely on single-item relevance, may necessitate adjust-

ments to our approach. Further, our experiments were carried out

with a balanced tradeoff between relevance and fairness, a setup

that may not align with the evaluation requirements of all scenarios.

It is easy to anticipate situations where either fairness or relevance

might warrant a greater emphasis. These scenarios require further

experimentation. In the future, by modifying the algorithm for PF

generation, DPFR could also be extended for other fairness types.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Joint Evaluation of Fairness and Relevance in Recommender Systems with Pareto Frontier Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Enrique Amigó, Yashar Deldjoo, StefanoMizzaro, and Alejandro Bellogín. 2023. A

unifying and general account of fairness measurement in recommender systems.

Information Processing & Management 60, 1 (1 2023), 103115. https://doi.org/10.

1016/J.IPM.2022.103115

[2] Charles Audet, Jean Bigeon, Dominique Cartier, Sébastien Le Digabel, and

Ludovic Salomon. 2020. Performance indicators in multiobjective optimiza-

tion. European Journal of Operational Research 292, 2 (2020), 397–422. https:

//doi.org/10.1016/j.ejor.2020.11.016

[3] Asia J. Biega, Krishna P. Gummadi, and Gerhard Weikum. 2018. Equity of

attention: Amortizing individual fairness in rankings. 41st International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
2018 18 (6 2018), 405–414. https://doi.org/10.1145/3209978.3210063

[4] Rodrigo Borges and Kostas Stefanidis. 2019. Enhancing Long Term Fairness

in Recommendations with Variational Autoencoders. In Proceedings of the 11th
International Conference on Management of Digital EcoSystems. ACM, New York,

NY, USA, 95–102. https://doi.org/10.1145/3297662

[5] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. 2nd Workshop on

Information Heterogeneity and Fusion in Recommender Systems (HetRec 2011).

In Proceedings of the 5th ACM conference on Recommender systems (RecSys 2011).
ACM, New York, NY, USA.

[6] Yair Censor. 1977. Pareto optimality in multiobjective problems. Applied Mathe-
matics & Optimization 4, 1 (3 1977), 41–59. https://doi.org/10.1007/BF01442131/

METRICS

[7] Mukund Deshpande and George Karypis. 2004. Item-based top-N recommenda-

tion algorithms. ACM Transactions on Information Systems 22, 1 (1 2004), 143–177.
https://doi.org/10.1145/963770.963776

[8] Fernando Diaz, Bhaskar Mitra, Michael D Ekstrand, Asia J Biega, and Ben

Carterette. 2020. Evaluating Stochastic Rankings with Expected Exposure. In

Proceedings of the 29th ACM International Conference on Information & Knowl-
edge Management. ACM, New York, NY, USA, 275–284. https://doi.org/10.1145/

3340531

[9] Ruoyuan Gao, Yingqiang Ge, and Chirag Shah. 2022. FAIR: Fairness-aware

information retrieval evaluation. Journal of the Association for Information Science
and Technology 73, 10 (10 2022), 1461–1473. https://doi.org/10.1002/ASI.24648

[10] Yingqiang Ge, Xiaoting Zhao, Lucia Yu, Saurabh Paul, Diane Hu, Chu Cheng

Hsieh, and Yongfeng Zhang. 2022. Toward pareto efficient fairness-utility trade-

off in recommendation through reinforcement learning. InWSDM 2022 - Proceed-
ings of the 15th ACM International Conference on Web Search and Data Mining.
Association for Computing Machinery, Inc, Virtual Event, AZ, USA, 316–324.

https://doi.org/10.1145/3488560.3498487

[11] C. Gini. 1912. Variabilità e mutabilità. Tipogr. di P. Cuppini, Rome.

[12] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. 2001. Eigentaste:

A Constant Time Collaborative Filtering Algorithm. Information Retrieval 4, 2 (7
2001), 133–151. https://doi.org/10.1023/A:1011419012209/METRICS

[13] F Maxwell Harper and Joseph A Konstan. 2015. The MovieLens datasets: History

and context. ACM Trans. Interact. Intell. Syst. 5, 4 (2015), 1–19. https://doi.org/

10.1145/2827872

[14] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, and others. 1998. A

Quantitative Measure Of Fairness And Discrimination For Resource Allocation

In Shared Computer Systems. http://arxiv.org/abs/cs/9809099

[15] M. G. Kendall. 1945. The Treatment of Ties in Ranking Problems. Biometrika 33,
3 (11 1945), 239–251. https://doi.org/10.1093/BIOMET/33.3.239

[16] Maciej Laszczyk and Paweł B. Myszkowski. 2019. Survey of quality measures

for multi-objective optimization: Construction of complementary set of multi-

objective quality measures. Swarm and Evolutionary Computation 48 (8 2019),

109–133. https://doi.org/10.1016/J.SWEVO.2019.04.001

[17] Tomo Lazovich, Luca Belli, Aaron Gonzales, Amanda Bower, Uthaipon Tantipong-

pipat, Kristian Lum, Ferenc Huszár, and Rumman Chowdhury. 2022. Measuring

disparate outcomes of content recommendation algorithms with distributional

inequality metrics. Patterns 3, 8 (8 2022). https://doi.org/10.1016/j.patter.2022.

100568

[18] Joon Ho Lee. 1997. Analyses of multiple evidence combination. In SIGIR ’97:
Proceedings of the 20th annual international ACM SIGIR conference on Research
and development in information retrieval. Association for Computing Machinery

(ACM), Philadelphia, 267–276. https://doi.org/10.1145/258525.258587

[19] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.

Variational autoencoders for collaborative filtering. The Web Conference 2018 -
Proceedings of the World Wide Web Conference, WWW 2018 10 (4 2018), 689–698.
https://doi.org/10.1145/3178876.3186150

[20] Xiao Lin, Hongjie Chen, Changhua Pei, Fei Sun, Xuanji Xiao, Hanxiao Sun,

Yongfeng Zhang, Wenwu Ou, and Peng Jiang. 2019. A pareto-eficient algorithm

for multiple objective optimization in e-commerce recommendation. In RecSys
2019 - 13th ACM Conference on Recommender Systems. Association for Computing

Machinery, Inc, Copenhagen, Denmark, 20–28. https://doi.org/10.1145/3298689.

3346998

[21] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving

Graph Collaborative Filteringwith Neighborhood-enriched Contrastive Learning.

In WWW 2022 - Proceedings of the ACM Web Conference 2022. Association for

Computing Machinery, Inc, Virtual Event, Lyon, France, 2320–2329. https:

//doi.org/10.1145/3485447.3512104

[22] Christina Lioma, Jakob Grue Simonsen, and Birger Larsen. 2017. Evaluation

measures for relevance and credibility in ranked lists. In ICTIR 2017 - Proceedings
of the 2017 ACM SIGIR International Conference on the Theory of Information Re-
trieval. Association for Computing Machinery, Inc, Amsterdam, The Netherlands,

91–98. https://doi.org/10.1145/3121050.3121072

[23] Maria Maistro, Lucas Chaves Lima, Jakob Grue Simonsen, and Christina Lioma.

2021. Principled Multi-Aspect Evaluation Measures of Rankings. In International
Conference on Information and Knowledge Management, Proceedings. Association
for Computing Machinery, Virtual Event, Queensland, Australia, 1232–1242.

https://doi.org/10.1145/3459637.3482287

[24] Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad

Mobasher, and Robin Burke. 2020. FairMatch: A Graph-based Approach for

Improving Aggregate Diversity in Recommender Systems. UMAP 2020 - Proceed-
ings of the 28th ACM Conference on User Modeling, Adaptation and Personalization
20 (7 2020), 154–162. https://doi.org/10.1145/3340631.3394860

[25] Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad

Mobasher, and Robin Burke. 2021. A Graph-Based Approach for Mitigating

Multi-Sided Exposure Bias in Recommender Systems. ACM Transactions on
Information Systems (TOIS) 40, 2 (11 2021), 32. https://doi.org/10.1145/3470948

[26] Rishabh Mehrotra, James McInerney, Hugues Bouchard, Mounia Lalmas, and

Fernando Diaz. 2018. Towards a fair marketplace: Counterfactual evaluation

of the trade-off between relevance, fairness & satisfaction in recommendation

systems. International Conference on Information and Knowledge Management,
Proceedings 18 (10 2018), 2243–2252. https://doi.org/10.1145/3269206.3272027

[27] Zaiqiao Meng, Richard McCreadie, Craig MacDonald, and Iadh Ounis. 2020.

Exploring Data Splitting Strategies for the Evaluation of Recommendation Mod-

els. In RecSys 2020 - 14th ACM Conference on Recommender Systems. Associ-
ation for Computing Machinery, Inc, Virtual Event, Brazil, 681–686. https:

//doi.org/10.1145/3383313.3418479

[28] Alistair Moffat. 2013. Seven Numeric Properties of Effectiveness Metrics. In

Information Retrieval Technology, Rafael E Banchs, Fabrizio Silvestri, Tie-Yan Liu,

Min Zhang, Sheng Gao, and Jun Lang (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 1–12.

[29] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations

using Distantly-Labeled Reviews and Fine-Grained Aspects. In EMNLP-IJCNLP
2019 - 2019 Conference on Empirical Methods in Natural Language Processing and
9th International Joint Conference on Natural Language Processing, Proceedings of
the Conference. Association for Computational Linguistics, Hong Kong, China,

188–197. https://doi.org/10.18653/V1/D19-1018

[30] Vahid Partovi Nia, Alireza Ghaffari, Mahdi Zolnouri, and Yvon Savaria. 2022.

Rethinking pareto frontier for performance evaluation of deep neural networks.

[31] Harrie Oosterhuis. 2021. Computationally Efficient Optimization of Plackett-

Luce Ranking Models for Relevance and Fairness. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’21). Association for Computing Machinery, New York, NY, USA,

1023–1032. https://doi.org/10.1145/3404835.3462830

[32] Joao Palotti, Guido Zuccon, and Allan Hanbury. 2018. MM: A new framework

for multidimensional evaluation of search engines. In International Conference on
Information and Knowledge Management, Proceedings. Association for Computing

Machinery, Torino, Italy, 1699–1702. https://doi.org/10.1145/3269206.3269261

[33] Vincenzo Paparella, Vito Walter Anelli, Franco Maria Nardini, Raffaele Perego,

and Tommaso Di Noia. 2023. Post-hoc Selection of Pareto-Optimal Solutions

in Search and Recommendation. International Conference on Information and
Knowledge Management, Proceedings (10 2023), 2013–2023. https://doi.org/10.

1145/3583780.3615010

[34] Gourab K. Patro, Arpita Biswas, Niloy Ganguly, Krishna P. Gummadi, and Abhij-

nan Chakraborty. 2020. FairRec: Two-Sided Fairness for Personalized Recommen-

dations in Two-Sided Platforms. In The Web Conference 2020 - Proceedings of the
World Wide Web Conference, WWW 2020. Association for Computing Machinery,

Inc, Taipei, Taiwan, 1194–1204. https://doi.org/10.1145/3366423.3380196

[35] Amifa Raj and Michael D. Ekstrand. 2022. Measuring Fairness in Ranked Results.

In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, New York, NY, USA, 726–736. https:

//doi.org/10.1145/3477495.3532018

[36] Theresia Veronika Rampisela, Maria Maistro, Tuukka Ruotsalo, and Christina

Lioma. 2023. Evaluation Measures of Individual Item Fairness for Recommender

Systems: A Critical Study. ACM Trans. Recomm. Syst. (11 2023). https://doi.org/

10.1145/3631943

[37] Theresia Veronika Rampisela, Tuukka Ruotsalo, Maria Maistro, and Christina

Lioma. 2024. Can We Trust Recommender System Fairness Evaluation? The

Role of Fairness and Relevance. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’24). Association for Computing Machinery, New York, NY, USA, 271–281. https:

//doi.org/10.1145/3626772.3657832

9

https://doi.org/10.1016/J.IPM.2022.103115
https://doi.org/10.1016/J.IPM.2022.103115
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1145/3209978.3210063
https://doi.org/10.1145/3297662
https://doi.org/10.1007/BF01442131/METRICS
https://doi.org/10.1007/BF01442131/METRICS
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/3340531
https://doi.org/10.1145/3340531
https://doi.org/10.1002/ASI.24648
https://doi.org/10.1145/3488560.3498487
https://doi.org/10.1023/A:1011419012209/METRICS
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
http://arxiv.org/abs/cs/9809099
https://doi.org/10.1093/BIOMET/33.3.239
https://doi.org/10.1016/J.SWEVO.2019.04.001
https://doi.org/10.1016/j.patter.2022.100568
https://doi.org/10.1016/j.patter.2022.100568
https://doi.org/10.1145/258525.258587
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3298689.3346998
https://doi.org/10.1145/3298689.3346998
https://doi.org/10.1145/3485447.3512104
https://doi.org/10.1145/3485447.3512104
https://doi.org/10.1145/3121050.3121072
https://doi.org/10.1145/3459637.3482287
https://doi.org/10.1145/3340631.3394860
https://doi.org/10.1145/3470948
https://doi.org/10.1145/3269206.3272027
https://doi.org/10.1145/3383313.3418479
https://doi.org/10.1145/3383313.3418479
https://doi.org/10.18653/V1/D19-1018
https://doi.org/10.1145/3404835.3462830
https://doi.org/10.1145/3269206.3269261
https://doi.org/10.1145/3583780.3615010
https://doi.org/10.1145/3583780.3615010
https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/3477495.3532018
https://doi.org/10.1145/3477495.3532018
https://doi.org/10.1145/3631943
https://doi.org/10.1145/3631943
https://doi.org/10.1145/3626772.3657832
https://doi.org/10.1145/3626772.3657832


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[38] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback.

In UAI ’09: Proceedings of the Twenty-Fifth Conference on Uncertainty in Ar-
tificial Intelligence. AUAI Press, Montreal, Quebec, Canada, 452–461. https:

//doi.org/10.5555/1795114.1795167

[39] Marco Tulio Ribeiro, Nivio Ziviani, Edleno Silva De Moura, Itamar Hata, Anisio

Lacerda, and Adriano Veloso. 2015. Multiobjective Pareto-Efficient Approaches

for Recommender Systems. ACM Trans. Intell. Syst. Technol. 5, 4 (12 2015), 1–20.
https://doi.org/10.1145/2629350

[40] Namhee Ryu and Seungjae Min. 2018. Multi-objective Optimization with an

AdaptiveWeight Determination Scheme Using the Concept of Hyperplane: Multi-

objective Optimization with an Adaptive Weight. Internat. J. Numer. Methods
Engrg. 118 (10 2018), 303–319. https://doi.org/10.1002/nme.6013

[41] Yuta Saito and Thorsten Joachims. 2022. Fair Ranking as Fair Division: Impact-

Based Individual Fairness in Ranking. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’22), August 14-18,
2022, Washington, DC, USA, Vol. 1. ACM, Washington, DC, USA, 1514–1524.

https://doi.org/10.1145/3534678.3539353

[42] C E Shannon. 1948. A Mathematical Theory of Communication. The Bell System
Technical Journal 27 (1948), 623–656.

[43] David A van Veldhuizen. 1999. Multiobjective evolutionary algorithms: classifica-
tions, analyses, and new innovations. Ph. D. Dissertation. Air Force Institute of
Technology. https://api.semanticscholar.org/CorpusID:61080988

[44] Ellen M Voorhees. 2001. Evaluation by Highly Relevant Documents. In Pro-
ceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’01). Association for Computing

Machinery, New York, NY, USA, 74–82. https://doi.org/10.1145/383952.383963

[45] Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen. 2016. A Practical

Guide to Select Quality Indicators for Assessing Pareto-Based Search Algorithms

in Search-Based Software Engineering. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). Association for Computing Ma-

chinery, New York, NY, USA, 631–642. https://doi.org/10.1145/2884781.2884880

[46] Xiuling Wang and Wendy Hui Wang. 2022. Providing Item-side Individual Fair-

ness for Deep Recommender Systems. ACM International Conference Proceeding
Series 22 (6 2022), 117–127. https://doi.org/10.1145/3531146.3533079

[47] YifanWang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. 2023. A Survey

on the Fairness of Recommender Systems. ACM Trans. Inf. Syst. 41, 3 (2 2023),
1–43. https://doi.org/10.1145/3547333

[48] Haolun Wu, Bhaskar Mitra, Chen Ma, Fernando Diaz, and Xue Liu. 2022. Joint

Multisided Exposure Fairness for Recommendation. In SIGIR 2022 - Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. Association for Computing Machinery, Inc, Madrid, Spain,

703–714. https://doi.org/10.1145/3477495.3532007

[49] Chen Xu, Sirui Chen, Jun Xu, Weiran Shen, Xiao Zhang, Gang Wang, and Zhen-

huaDong. 2023. P-MMF: ProviderMax-min Fairness Re-ranking in Recommender

System. ACM Web Conference 2023 - Proceedings of the World Wide Web Confer-
ence, WWW 2023 (4 2023), 3701–3711. https://doi.org/10.1145/3543507.3583296

[50] Guanghu Yuan, Fajie Yuan, Yudong Li, Beibei Kong, Shujie Li, Lei Chen, Min

Yang, Chenyun YU, Bo Hu, Zang Li, Yu Xu, and Xiaohu Qie. 2022. Tenrec:

A Large-scale Multipurpose Benchmark Dataset for Recommender Systems.

Advances in Neural Information Processing Systems 35 (12 2022), 11480–11493.
https://www.tencent.com/en-us/

[51] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Mega-

hed, and Ricardo Baeza-Yates. 2017. FA*IR: A fair top-k ranking algorithm.

International Conference on Information and Knowledge Management, Proceedings
Part F131841 (11 2017), 1569–1578. https://doi.org/10.1145/3132847.3132938

[52] Meike Zehlike and Carlos Castillo. 2020. Reducing Disparate Exposure in Rank-

ing: A Learning To Rank Approach. In Proceedings of The Web Conference 2020
(WWW ’20). Association for Computing Machinery, New York, NY, USA, 2849–

2855. https://doi.org/10.1145/3366424.3380048

[53] Meike Zehlike, Ke Yang, and Julia Stoyanovich. 2022. Fairness in Ranking, Part

II: Learning-to-Rank and Recommender Systems. ACM Comput. Surv. 55, 6 (12
2022), 1–41. https://doi.org/10.1145/3533380

[54] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan,

Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, Yingqian Min, Zhichao Feng,

Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang, and

Ji Rong Wen. 2021. RecBole: Towards a Unified, Comprehensive and Efficient

Framework for Recommendation Algorithms. In International Conference on
Information and Knowledge Management, Proceedings. ACM, New York, NY, USA,

4653–4664. https://doi.org/10.1145/3459637.3482016

[55] Yong Zheng and David (Xuejun) Wang. 2022. A survey of recommender systems

with multi-objective optimization. Neurocomputing 474 (2022), 141–153. https:

//doi.org/10.1016/j.neucom.2021.11.041

[56] Qiliang Zhu, Qibo Sun, Zengxiang Li, and Shangguang Wang. 2020. FARM: A

Fairness-Aware Recommendation Method for High Visibility and Low Visibility

Mobile APPs. IEEE Access 8 (2020), 122747–122756. https://doi.org/10.1109/

ACCESS.2020.3007617

10

https://doi.org/10.5555/1795114.1795167
https://doi.org/10.5555/1795114.1795167
https://doi.org/10.1145/2629350
https://doi.org/10.1002/nme.6013
https://doi.org/10.1145/3534678.3539353
https://api.semanticscholar.org/CorpusID:61080988
https://doi.org/10.1145/383952.383963
https://doi.org/10.1145/2884781.2884880
https://doi.org/10.1145/3531146.3533079
https://doi.org/10.1145/3547333
https://doi.org/10.1145/3477495.3532007
https://doi.org/10.1145/3543507.3583296
https://www.tencent.com/en-us/
https://doi.org/10.1145/3132847.3132938
https://doi.org/10.1145/3366424.3380048
https://doi.org/10.1145/3533380
https://doi.org/10.1145/3459637.3482016
https://doi.org/10.1016/j.neucom.2021.11.041
https://doi.org/10.1016/j.neucom.2021.11.041
https://doi.org/10.1109/ACCESS.2020.3007617
https://doi.org/10.1109/ACCESS.2020.3007617


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Joint Evaluation of Fairness and Relevance in Recommender Systems with Pareto Frontier Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A EXTENDED DATASET STATISTICS

Tab. 4 presents the statistics of each dataset split. For several datasets

(e.g., Amazon-lb and ML-*), the number of users in the test split is

significantly less than the number of users in the train split. Tab. 5

presents the statistics of items in the test split, per user.

Table 4: Number of [users, items, and interactions] in the

train, validation, and test split after preprocessing.

train val test

Lastfm [1842, 2821, 42758] [1831, 2448, 14248] [1836, 2476, 14237]

Amazon-lb [1054, 552, 8860] [470, 204, 1811] [437, 209, 1726]

QK-video [4656, 6245, 34345] [3470, 4095, 8726] [3514, 4101, 8706]

Jester [63724, 100, 1294511] [62137, 100, 427623] [62167, 100, 427926]

ML-10M [49378, 6838, 4944064] [2695, 7828, 296914] [1523, 7880, 121707]

ML-20M [89917, 8719, 9882504] [4987, 10742, 472243] [2178, 13935, 233394]

Table 5: Statistics of items in the test split, per user, i.e., the

number of relevant items per user

mean min median max

Lastfm 7.75 1 8 19

Amazon-lb 3.95 1 3 16

QK-video 2.48 1 2 16

Jester 6.88 1 6 29

ML-10M 79.91 1 46 1632

ML-20M 107.16 1 53 2266

B ALGORITHMS FOR GENERATING PARETO

FRONTIER

We present the pseudocodes of the algorithms for generating the

Pareto Frontier: the Oracle (Algorithm 1) and Oracle2Fair (Algo-

rithm 2).

C MODIFICATIONS TO THE GS ALGORITHM

The original GS algorithm [46] increases individual item fairness

within clusters of similar items. The item similarity is determined

based on the item embedding. As our experiments and the Fair

measures do not deal with the additional constraint of item simi-

larity, we consider all items as similar. Therefore, we only have a

single cluster of items.

On top of that, we also modify GS to increase computational

efficiency. In the original GS algorithm, for each pair of candidate

items for replacement 𝑖 and candidate items to be replaced 𝑖′, the
algorithm finds all users that have 𝑖 in the original recommendation

list. The algorithm then computes the loss in relevance (computed

using predicted relevance value) if item 𝑖 is replaced by 𝑖′. Until
this point, our modified algorithm does the same. The difference is

that we save each 𝑖, 𝑖′, 𝑢, and the loss associated, while the original

algorithm only saves the information for the one user 𝑢∗, whose
recommendation list will suffer the least loss whenwe replace 𝑖 with

𝑖′. The original GS then proceeds to make the replacement, update

the pool of candidate items for replacement and to be replaced, and

go through the entire process again. Initially, we found that with

the GS algorithm, around 20% of the initial recommendations are

replaced during the process, meaning that for Amazon-lb, there are

at least 437 × 10 × 0.2 ≥ 800 iterations of the process (Tab. 4). The

number of iterations is much bigger for ML-10M, which has more

than three times the number of recommendation slots as Amazon-

lb, and therefore it is extremely costly to use the GS algorithm as

is.

Our modified GS utilises the saved information earlier. After go-

ing through all pairs of (𝑖, 𝑖′), we sort the saved list from the smallest

to the largest loss, and (attempt to) perform the replacement using

the first 𝑃 pairs, where 𝑃 is 25% of the number of recommendation

slots. During the replacement process, if the item that is supposed

to be replaced no longer exists in the user’s recommendation list,

we simply skip the replacement.

D EXTENDED RESULTS

We present the actual scores of the recommender models in Tab. 6–7.

In Tab. 8, we present the gradient values of the PF, used in deter-

mining which pair of measures are suitable for DPFR. In Fig. 4 we

present the Pareto Frontier (PF) of fairness and relevance together

with recommender model scores in Tab. 6–7 for Amazon-lb, Jester,

and ML-*. In Tab. 9 we present the Kendall’s 𝜏 correlation scores of

the DPFR from estimated PF and the PF.
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Algorithm 1: Oracle

Create recommendations with the highest relevance

Data:

𝐼 : all items in the dataset;

𝐻𝑢 : items in train-val split for each user 𝑢 ∈ 𝑈 ;

𝑅∗𝑢 : items in test split (relevant items) for each user 𝑢 ∈ 𝑈 ;

𝑘 : number of recommended items

Result:

𝑟𝑒𝑐: most relevant recommendation

𝑟𝑒𝑠𝑢𝑙𝑡 : a list of relevance and fairness scores

𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐: items that are not in the recommendation

/* Handle users with exactly |𝑅∗𝑢 | = 𝑘 */

1 foreach 𝑢 ∈ 𝑈 where |𝑅∗𝑢 | = 𝑘 do 𝑟𝑒𝑐 [𝑢] ← 𝑅∗𝑢 ;
/* Handle users with |𝑅∗𝑢 | > 𝑘 */

2 for 𝐾 = 𝑘 + 1 to𝑚𝑎𝑥 ( |𝑅∗𝑢 |) do
3 𝑢𝑠𝑒𝑟𝑊 𝑖𝑡ℎ𝐾 ← get users where |𝑅∗𝑢 | = 𝐾
4 foreach 𝑢 ∈ 𝑢𝑠𝑒𝑟𝑊 𝑖𝑡ℎ𝐾 do

5 𝑡𝑎𝑘𝑒𝑛𝐼𝑡𝑒𝑚[𝑢] ← 𝑅∗𝑢 \ 𝑟𝑒𝑐
6 𝑤𝑒𝑖𝑔ℎ𝑡 [𝑢] ← 𝑠𝑢𝑚(𝑐𝑜𝑢𝑛𝑡𝐼𝑛𝑅𝑒𝑐 (𝑡𝑎𝑘𝑒𝑛𝐼𝑡𝑒𝑚[𝑢]))
7 end

8 𝑠𝑜𝑟𝑡𝑈𝑠𝑒𝑟𝑊 𝑖𝑡ℎ𝐾 ← sort 𝑢𝑠𝑒𝑟𝑊 𝑖𝑡ℎ𝐾 by the least weight

9 𝑡𝑒𝑚𝑝𝑅𝑒𝑐 [𝑢] ← 𝑅∗𝑢 \ 𝑡𝑎𝑘𝑒𝑛𝐼𝑡𝑒𝑚[𝑢]
10 keep only max 𝑘 items in 𝑡𝑒𝑚𝑝𝑅𝑒𝑐 [𝑢]
11 foreach 𝑢 ∈ 𝑠𝑜𝑟𝑡𝑈𝑠𝑒𝑟𝑊 𝑖𝑡ℎ𝐾 do

12 𝑟𝑒𝑐 [𝑢] ← 𝑡𝑒𝑚𝑝𝑅𝑒𝑐 [𝑢]
13 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑇𝑜𝐴𝑑𝑑 ← 𝑘 − |𝑡𝑒𝑚𝑝𝑅𝑒𝑐 [𝑢] |
14 sort 𝑡𝑎𝑘𝑒𝑛𝐼𝑡𝑒𝑚[𝑢] by the least item count

15 𝑟𝑒𝑐 [𝑢] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑎𝑘𝑒𝑛𝐼𝑡𝑒𝑚[𝑢] [: 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑇𝑜𝐴𝑑𝑑])
16 end

17 end

/* Handle users with |𝑅∗𝑢 | < 𝑘 */

18 𝑟𝑒𝑚𝑎𝑖𝑛𝑈𝑠𝑒𝑟 ← get users where |𝑅∗𝑢 | < 𝑘
19 foreach 𝑢 ∈ 𝑟𝑒𝑚𝑎𝑖𝑛𝑈𝑠𝑒𝑟 do 𝑟𝑒𝑐 [𝑢] ← |𝑅∗𝑢 |;
20 𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐 ← 𝐼 \ 𝑟𝑒𝑐
21 foreach 𝑢 ∈ 𝑟𝑒𝑚𝑎𝑖𝑛𝑈𝑠𝑒𝑟 do
22 while |𝑟𝑒𝑐 [𝑢] | < 𝑘 and 𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐 ≠ ∅ do
23 for 𝑖𝑡𝑒𝑚 ∈ 𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐 do
24 if 𝑖𝑡𝑒𝑚 ∉ 𝐻𝑢 then

25 𝑟𝑒𝑐 [𝑢] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑡𝑒𝑚)
26 𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐 ← 𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐 \ {𝑖𝑡𝑒𝑚}
27 end

28 end

29 end

30 if ∃𝑢 where |𝑟𝑒𝑐 [𝑢] | < 𝑘 then

31 while |𝑟𝑒𝑐 [𝑢] | < 𝑘 do

32 𝑐𝑎𝑛𝑑𝐼𝑡𝑒𝑚 ← least popular item in 𝑟𝑒𝑐 that is not in 𝐻𝑢 ∪ 𝑅∗𝑢 ∪ 𝑟𝑒𝑐 [𝑢]
33 𝑟𝑒𝑐 [𝑢] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑎𝑛𝑑𝐼𝑡𝑒𝑚)
34 end

35 end

36 end

37 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒𝑠 (𝑟𝑒𝑐)
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Algorithm 2: Oracle2Fair

After recommending maximally relevant items, iteratively change the recommendation list to increase fairness until maximum

fairness is reached

Data: 𝐻𝑢 , 𝑅
∗
𝑢 , 𝐼 , 𝑘

Result:

𝑟𝑒𝑐: most fair possible recommendation;

𝑟𝑒𝑠𝑢𝑙𝑡 : a list of relevance and fairness scores

1 𝑟𝑒𝑐, 𝑟𝑒𝑠𝑢𝑙𝑡, 𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐 ← 𝑂𝑟𝑎𝑐𝑙𝑒 (𝐼 , 𝐻𝑢 , 𝑅∗𝑢 )
/* Get the most popular item in the recommendations and its frequency count */

2 𝑛𝑒𝑤𝑀𝑜𝑠𝑡𝑃𝑜𝑝 ←𝑚𝑜𝑠𝑡𝑃𝑜𝑝 ← 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑃𝑜𝑝𝐼𝑡𝑒𝑚(𝑟𝑒𝑐)
3 𝑛𝑒𝑤𝐶𝑛𝑡𝑃𝑜𝑝 ← 𝑐𝑛𝑡𝑃𝑜𝑝 ← 𝑐𝑛𝑡 (𝑚𝑜𝑠𝑡𝑃𝑜𝑝, 𝑟𝑒𝑐)
4 𝑢𝑊𝑖𝑡ℎ𝑀𝑜𝑠𝑡𝑃𝑜𝑝 ← all users with𝑚𝑜𝑠𝑡𝑃𝑜𝑝 ∈ 𝑟𝑒𝑐 [𝑢]
5 sort 𝑢𝑊𝑖𝑡ℎ𝑀𝑜𝑠𝑡𝑃𝑜𝑝 by largest index of𝑚𝑜𝑠𝑡𝑃𝑜𝑝 in 𝑟𝑒𝑐 [𝑢]
6 for 𝑖 ∈ 𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐 do
7 if 𝑐𝑛𝑡𝑃𝑜𝑝 = 1 then break;

8 if 𝑛𝑒𝑤𝑀𝑜𝑠𝑡𝑃𝑜𝑝 ≠𝑚𝑜𝑠𝑡𝑃𝑜𝑝 then

9 𝑚𝑜𝑠𝑡𝑃𝑜𝑝 ← 𝑛𝑒𝑤𝑀𝑜𝑠𝑡𝑃𝑜𝑝

10 update 𝑢𝑊𝑖𝑡ℎ𝑀𝑜𝑠𝑡𝑃𝑜𝑝 following𝑚𝑜𝑠𝑡𝑃𝑜𝑝

11 end

12 if 𝑛𝑒𝑤𝑀𝑜𝑠𝑡𝑃𝑜𝑝 =𝑚𝑜𝑠𝑡𝑃𝑜𝑝 then

13 𝑐𝑎𝑛𝑑𝑈 ← all 𝑢 in 𝑢𝑊𝑖𝑡ℎ𝑀𝑜𝑠𝑡𝑃𝑜𝑝 where 𝑖 ∉ 𝐻𝑢

14 if ∃𝑢 ∈ 𝑐𝑎𝑛𝑑𝑈 with 𝑖 ∈ 𝑅∗𝑢 then

15 recommend 𝑖 to the top 𝑢 with 𝑖 ∈ 𝑅∗𝑢
16 end

17 else recommend 𝑖 to the top 𝑢 from 𝑐𝑎𝑛𝑑𝑈 ;

18 reorder 𝑟𝑒𝑐 [𝑢] so all relevant items are at the top

19 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒𝑠 (𝑟𝑒𝑐))
20 𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐 ← 𝑖𝑡𝑒𝑚𝑁𝑜𝑡𝐼𝑛𝑅𝑒𝑐 \ {𝑖}
21 𝑛𝑒𝑤𝑀𝑜𝑠𝑡𝑃𝑜𝑝 ← 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑃𝑜𝑝𝐼𝑡𝑒𝑚(𝑟𝑒𝑐)
22 𝑛𝑒𝑤𝐶𝑛𝑡𝑃𝑜𝑝 ← 𝑐𝑛𝑡 (𝑚𝑜𝑠𝑡𝑃𝑜𝑝, 𝑟𝑒𝑐)
23 end

24 end

25 else

26 do lines 2–5

27 𝑖 ← 𝑙𝑒𝑎𝑠𝑡𝑃𝑜𝑝 ← 𝑔𝑒𝑡𝐿𝑒𝑎𝑠𝑡𝑃𝑜𝑝𝐼𝑡𝑒𝑚(𝑟𝑒𝑐)
28 𝑚,𝑛 ← |𝑈 |, |𝐼 |
29 while 𝑐𝑛𝑡𝑃𝑜𝑝 > ⌈𝑘𝑚/𝑛⌉ do
30 if 𝑛𝑒𝑤𝑀𝑜𝑠𝑡𝑃𝑜𝑝 ≠𝑚𝑜𝑠𝑡𝑃𝑜𝑝 then do lines 9–10;

31 if 𝑛𝑒𝑤𝑀𝑜𝑠𝑡𝑃𝑜𝑝 =𝑚𝑜𝑠𝑡𝑃𝑜𝑝 then

32 𝑐𝑎𝑛𝑑𝑈 ← all 𝑢 in 𝑢𝑊𝑖𝑡ℎ𝑀𝑜𝑠𝑡𝑃𝑜𝑝 where 𝑖 ∉ 𝐻𝑢 ∪ 𝑟𝑒𝑐 [𝑢]
33 do lines 14–19

34 do lines 26–27

35 end

36 end

37 end
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Table 6: Relevance (Rel), fairness (Fair), and joint fairness and relevance (Fair+Rel) scores at 𝑘 = 10 of the recommender

models for Lastfm, Amazon-lb, and QK-video, without and with re-ranking the the top 𝑘′ = 25 items using Borda Count (BC),

COMBMNZ (CM), and Greedy Substitution (GS) evaluated at 𝑘 = 10. The most relevant or most fair score per measure is in bold.

↑means the higher the better, ↓ the lower the better.

model ItemKNN BPR MultiVAE NCL

reranking - BC CM GS - BC CM GS - BC CM GS - BC CM GS

L
a
s
t
f
m

R
e
l

↑ HR 0.765 0.742 0.581 0.750 0.773 0.729 0.587 0.751 0.778 0.693 0.523 0.734 0.793 0.726 0.571 0.765

↑MRR 0.484 0.333 0.270 0.481 0.492 0.323 0.280 0.488 0.476 0.285 0.232 0.470 0.503 0.311 0.260 0.499

↑ P 0.172 0.147 0.089 0.167 0.178 0.140 0.092 0.169 0.176 0.129 0.076 0.161 0.184 0.141 0.087 0.173

↑MAP 0.137 0.085 0.053 0.135 0.141 0.080 0.058 0.138 0.138 0.070 0.045 0.132 0.148 0.079 0.050 0.144

↑ R 0.218 0.186 0.114 0.211 0.224 0.180 0.119 0.211 0.224 0.163 0.098 0.205 0.234 0.180 0.110 0.220

↑ NDCG 0.245 0.181 0.119 0.241 0.252 0.173 0.126 0.244 0.247 0.155 0.102 0.235 0.261 0.170 0.115 0.252

F
a
i
r

↑ Jain 0.042 0.101 0.094 0.046 0.058 0.151 0.140 0.067 0.097 0.236 0.222 0.115 0.082 0.216 0.215 0.095

↑ QF 0.474 0.642 0.679 0.533 0.362 0.491 0.528 0.402 0.517 0.658 0.678 0.554 0.453 0.622 0.657 0.502

↑ Ent 0.589 0.727 0.735 0.622 0.610 0.736 0.740 0.646 0.707 0.820 0.826 0.740 0.671 0.801 0.810 0.705

↑ FSat 0.129 0.197 0.216 0.152 0.147 0.211 0.228 0.177 0.202 0.293 0.321 0.249 0.178 0.269 0.286 0.221

↓ Gini 0.904 0.810 0.790 0.879 0.910 0.827 0.818 0.887 0.839 0.715 0.696 0.803 0.872 0.748 0.728 0.840

F
a
i
r
+
R
e
l

↑ IBO 0.209 0.270 0.256 0.227 0.208 0.263 0.253 0.228 0.261 0.314 0.278 0.281 0.242 0.308 0.292 0.265

↓MME 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.001

↓ IAA 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

↓ II-F 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001

↓ AI-F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A
m
a
z
o
n
-
l
b

R
e
l

↑ HR 0.046 0.021 0.016 0.043 0.011 0.014 0.021 0.011 0.039 0.007 0.014 0.046 0.034 0.021 0.011 0.034

↑MRR 0.020 0.011 0.011 0.020 0.003 0.005 0.007 0.003 0.023 0.003 0.004 0.024 0.022 0.006 0.003 0.022

↑ P 0.005 0.002 0.002 0.005 0.001 0.001 0.002 0.001 0.004 0.001 0.002 0.005 0.004 0.002 0.001 0.004

↑MAP 0.006 0.004 0.004 0.006 0.002 0.003 0.004 0.002 0.006 0.002 0.003 0.006 0.006 0.002 0.001 0.006

↑ R 0.013 0.007 0.005 0.013 0.005 0.008 0.010 0.005 0.010 0.005 0.008 0.012 0.012 0.007 0.003 0.011

↑ NDCG 0.011 0.006 0.005 0.011 0.003 0.005 0.006 0.003 0.010 0.003 0.004 0.011 0.011 0.004 0.002 0.011

F
a
i
r

↑ Jain 0.271 0.547 0.431 0.324 0.223 0.432 0.359 0.259 0.035 0.123 0.097 0.043 0.026 0.098 0.080 0.031

↑ QF 0.650 0.679 0.612 0.663 0.549 0.630 0.594 0.571 0.222 0.294 0.286 0.254 0.229 0.315 0.310 0.265

↑ Ent 0.802 0.882 0.839 0.829 0.747 0.839 0.809 0.776 0.418 0.587 0.558 0.469 0.371 0.560 0.534 0.426

↑ FSat 0.370 0.538 0.438 0.435 0.314 0.410 0.376 0.364 0.114 0.159 0.152 0.138 0.091 0.146 0.138 0.115

↓ Gini 0.665 0.492 0.598 0.613 0.747 0.601 0.660 0.703 0.949 0.882 0.899 0.930 0.959 0.898 0.910 0.943

F
a
i
r
+
R
e
l

↑ IBO 0.062 0.038 0.029 0.067 0.019 0.029 0.038 0.019 0.029 0.019 0.029 0.033 0.038 0.033 0.024 0.033

↓MME 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.003 0.004 0.001 0.001 0.004

↓ IAA 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

↓ II-F 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

↓ AI-F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.000 0.000 0.002

Q
K
-
v
i
d
e
o

R
e
l

↑ HR 0.040 0.046 0.047 0.038 0.099 0.063 0.045 0.089 0.109 0.089 0.061 0.103 0.130 0.102 0.077 0.124

↑MRR 0.013 0.014 0.013 0.013 0.039 0.018 0.015 0.038 0.039 0.028 0.021 0.038 0.048 0.030 0.024 0.047

↑ P 0.004 0.005 0.005 0.004 0.011 0.007 0.005 0.010 0.012 0.009 0.006 0.011 0.014 0.011 0.008 0.013

↑MAP 0.005 0.005 0.005 0.005 0.017 0.008 0.006 0.016 0.018 0.012 0.009 0.017 0.022 0.013 0.010 0.021

↑ R 0.014 0.018 0.019 0.014 0.043 0.028 0.019 0.039 0.051 0.039 0.027 0.047 0.061 0.045 0.033 0.058

↑ NDCG 0.009 0.011 0.010 0.009 0.029 0.015 0.011 0.027 0.031 0.022 0.016 0.030 0.038 0.025 0.019 0.037

F
a
i
r

↑ Jain 0.483 0.815 0.589 0.567 0.081 0.333 0.379 0.101 0.012 0.038 0.032 0.014 0.020 0.076 0.071 0.023

↑ QF 0.901 0.956 0.790 0.924 0.625 0.809 0.823 0.678 0.100 0.155 0.163 0.127 0.201 0.331 0.365 0.253

↑ Ent 0.933 0.979 0.937 0.950 0.755 0.888 0.903 0.792 0.420 0.557 0.547 0.458 0.507 0.667 0.674 0.549

↑ FSat 0.443 0.659 0.547 0.522 0.212 0.346 0.382 0.259 0.052 0.089 0.090 0.070 0.077 0.140 0.150 0.104

↓ Gini 0.472 0.235 0.442 0.397 0.807 0.613 0.570 0.761 0.982 0.957 0.959 0.976 0.966 0.909 0.902 0.952

F
a
i
r
+
R
e
l

↑ IBO 0.033 0.038 0.038 0.035 0.054 0.050 0.036 0.052 0.031 0.042 0.036 0.033 0.043 0.060 0.054 0.047

↓MME 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

↓ IAA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

↓ II-F 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

↓ AI-F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 7: Relevance (Rel), fairness (Fair), and joint fairness and relevance (Fair+Rel) scores at 𝑘 = 10 of the recommender

models for Jester and ML-*, without and with re-ranking the the top 𝑘′ = 25 items using Borda Count (BC), COMBMNZ (CM),

and Greedy Substitution (GS) evaluated at 𝑘 = 10. The most relevant or most fair score per measure is in bold. ↑means the

higher the better, ↓ the lower the better.

model ItemKNN BPR MultiVAE NCL

reranking - BC CM GS - BC CM GS - BC CM GS - BC CM GS

J
e
s
t
e
r

R
e
l

↑ HR 0.933 0.888 0.652 0.932 0.929 0.876 0.742 0.928 0.944 0.899 0.818 0.944 0.939 0.893 0.804 0.939

↑MRR 0.632 0.443 0.307 0.632 0.635 0.455 0.322 0.635 0.661 0.465 0.370 0.661 0.651 0.479 0.349 0.651

↑ P 0.334 0.250 0.144 0.333 0.330 0.243 0.163 0.329 0.351 0.262 0.194 0.351 0.342 0.257 0.185 0.341

↑MAP 0.352 0.198 0.101 0.352 0.348 0.195 0.112 0.348 0.379 0.208 0.145 0.379 0.367 0.211 0.133 0.367

↑ R 0.529 0.393 0.197 0.529 0.524 0.377 0.255 0.523 0.555 0.405 0.324 0.555 0.543 0.400 0.305 0.542

↑ NDCG 0.496 0.336 0.189 0.496 0.493 0.331 0.216 0.492 0.525 0.350 0.265 0.524 0.512 0.352 0.249 0.511

F
a
i
r

↑ Jain 0.343 0.556 0.445 0.345 0.377 0.583 0.547 0.380 0.295 0.544 0.509 0.297 0.351 0.504 0.534 0.354

↑ QF∗ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.967 1.000 1.000 1.000 1.000 1.000 1.000 1.000

↑ Ent 0.702 0.854 0.784 0.705 0.754 0.875 0.857 0.757 0.648 0.852 0.839 0.651 0.722 0.838 0.855 0.725

↑ FSat 0.267 0.378 0.289 0.267 0.244 0.344 0.333 0.244 0.256 0.344 0.300 0.256 0.222 0.344 0.311 0.222

↓ Gini 0.687 0.502 0.595 0.685 0.632 0.467 0.495 0.629 0.738 0.506 0.520 0.735 0.668 0.528 0.502 0.665

F
a
i
r
+
R
e
l

↑ IBO 0.600 0.930 0.740 0.600 0.840 0.910 0.780 0.840 0.500 0.870 0.810 0.500 0.740 0.920 0.780 0.740

↓MME 0.003 0.003 0.006 0.003 0.004 0.002 0.005 0.004 0.008 0.003 0.004 0.008 0.004 0.003 0.006 0.004

↓ IAA 0.081 0.093 0.104 0.081 0.081 0.094 0.103 0.081 0.078 0.092 0.100 0.078 0.079 0.092 0.101 0.079

↓ II-F 0.028 0.035 0.040 0.028 0.029 0.035 0.040 0.029 0.027 0.035 0.038 0.027 0.028 0.034 0.038 0.028

↓ AI-F 0.002 0.002 0.003 0.002 0.002 0.001 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002

M
L
-
1
0
M

R
e
l

↑ HR 0.487 0.480 0.443 0.481 0.512 0.462 0.386 0.485 0.417 0.438 0.387 0.410 0.521 0.473 0.402 0.513

↑MRR 0.282 0.242 0.225 0.279 0.299 0.208 0.185 0.295 0.237 0.231 0.191 0.235 0.302 0.216 0.203 0.301

↑ P 0.137 0.128 0.105 0.133 0.146 0.114 0.088 0.132 0.107 0.111 0.096 0.105 0.154 0.123 0.094 0.149

↑MAP 0.089 0.074 0.060 0.086 0.095 0.061 0.047 0.088 0.067 0.067 0.054 0.066 0.101 0.067 0.052 0.099

↑ R 0.022 0.022 0.018 0.022 0.025 0.019 0.012 0.023 0.020 0.021 0.016 0.021 0.026 0.020 0.013 0.026

↑ NDCG 0.150 0.133 0.113 0.147 0.160 0.115 0.092 0.150 0.119 0.121 0.100 0.118 0.167 0.123 0.100 0.164

F
a
i
r

↑ Jain 0.011 0.026 0.027 0.012 0.037 0.100 0.115 0.044 0.003 0.005 0.006 0.004 0.024 0.063 0.069 0.027

↑ QF 0.044 0.062 0.068 0.047 0.145 0.199 0.216 0.160 0.014 0.021 0.025 0.016 0.086 0.123 0.132 0.094

↑ Ent 0.407 0.503 0.514 0.418 0.596 0.697 0.716 0.624 0.238 0.302 0.324 0.258 0.519 0.625 0.638 0.544

↑ FSat 0.044 0.062 0.068 0.047 0.145 0.199 0.216 0.160 0.014 0.021 0.025 0.016 0.086 0.123 0.132 0.094

↓ Gini 0.987 0.973 0.971 0.985 0.945 0.895 0.879 0.932 0.997 0.994 0.993 0.996 0.969 0.936 0.930 0.963

F
a
i
r
+
R
e
l

↑ IBO 0.031 0.043 0.046 0.034 0.069 0.089 0.091 0.076 0.012 0.016 0.018 0.014 0.054 0.073 0.074 0.058

↓MME 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.002 0.001 0.002 0.001 0.001 0.001 0.001

↓ IAA 0.008 0.009 0.009 0.008 0.008 0.009 0.009 0.008 0.009 0.009 0.009 0.009 0.008 0.009 0.009 0.008

↓ II-F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

↓ AI-F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M
L
-
2
0
M

R
e
l

↑ HR 0.488 0.473 0.420 0.483 0.505 0.444 0.392 0.483 0.489 0.432 0.391 0.465 0.505 0.453 0.388 0.493

↑MRR 0.280 0.237 0.213 0.278 0.293 0.205 0.190 0.290 0.259 0.193 0.180 0.256 0.293 0.206 0.193 0.292

↑ P 0.142 0.131 0.106 0.139 0.145 0.116 0.094 0.136 0.141 0.112 0.091 0.128 0.150 0.121 0.094 0.141

↑MAP 0.092 0.077 0.061 0.090 0.096 0.063 0.052 0.092 0.089 0.060 0.049 0.082 0.100 0.068 0.053 0.095

↑ R 0.019 0.017 0.014 0.019 0.019 0.014 0.012 0.018 0.019 0.014 0.011 0.018 0.020 0.016 0.011 0.020

↑ NDCG 0.154 0.135 0.112 0.151 0.158 0.116 0.098 0.152 0.148 0.111 0.093 0.139 0.163 0.121 0.099 0.157

F
a
i
r

↑ Jain 0.008 0.017 0.018 0.009 0.028 0.068 0.081 0.033 0.029 0.070 0.074 0.034 0.018 0.044 0.049 0.021

↑ QF 0.035 0.047 0.051 0.037 0.114 0.154 0.165 0.125 0.117 0.146 0.154 0.126 0.074 0.103 0.112 0.082

↑ Ent 0.399 0.483 0.491 0.411 0.581 0.670 0.690 0.606 0.591 0.669 0.680 0.615 0.517 0.608 0.624 0.541

↑ FSat 0.035 0.047 0.051 0.037 0.114 0.154 0.165 0.125 0.117 0.146 0.154 0.126 0.074 0.103 0.112 0.082

↓ Gini 0.991 0.982 0.981 0.990 0.960 0.926 0.914 0.951 0.957 0.927 0.920 0.948 0.976 0.953 0.947 0.971

F
a
i
r
+
R
e
l

↑ IBO 0.021 0.031 0.033 0.022 0.049 0.064 0.067 0.054 0.052 0.064 0.065 0.056 0.039 0.051 0.054 0.042

↓MME 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001

↓ IAA 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

↓ II-F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

↓ AI-F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

*QF = 1 means that all items in the dataset appear in the recommendation across all users.

†
The scores of QF are the same as FSat for ML-*, as QF is computed based on the percentage of items in the dataset that are recommended, which in this dataset

is equivalent to FSat: the percentage of items in the dataset that are recommended at least

⌊
𝑘𝑚
𝑛

⌋
= 1 time.
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Table 8: The gradient values of the PF, based on the extreme points (starting and ending points). We consider a gradient to be

‘good’ if it is not zero or undefined (-).

Lastfm Amazon-lb QK-video Jester ML-10M ML-20M # good conclusion

HR-Ent -97.57 -1.86 -0.31 - -14.74 -6.95 5 inconsistent

HR-FSat -1439.17 -19.92 0.00 - -30.48 -18.97 4 inconsistent

HR-Gini 561.63 6.23 3.71 - 117.19 43.44 5 inconsistent

HR-Jain -979.86 -18.77 -5.80 - -157.73 -78.22 5 inconsistent

HR-QF 0.00 0.00 0.00 - -30.48 -18.97 2 inconsistent

MAP-Ent -0.17 -0.17 -0.03 -0.07 -0.14 -0.18 6 always good

MAP-FSat -2.46 -1.81 0.00 -44.47 -0.29 -0.48 5 inconsistent

MAP-Gini 0.96 0.56 0.34 1.42 1.12 1.10 6 always good

MAP-Jain -1.68 -1.70 -0.54 -0.37 -1.51 -1.98 6 always good

MAP-QF 0.00 0.00 0.00 0.0 -0.29 -0.48 2 inconsistent

MRR-Ent -97.57 -1.86 -0.31 - -14.74 -6.95 5 inconsistent

MRR-FSat -1439.17 -19.92 0.00 - -30.48 -18.97 4 inconsistent

MRR-Gini 561.63 6.23 3.71 - 117.19 43.44 5 inconsistent

MRR-Jain -979.86 -18.77 -5.80 - -157.73 -78.22 5 inconsistent

MRR-QF 0.00 0.00 0.00 - -30.48 -18.97 2 inconsistent

NDCG-Ent -0.24 -0.22 -0.04 -0.1 -0.20 -0.25 6 always good

NDCG-FSat -3.50 -2.32 0.00 -68.56 -0.42 -0.68 5 inconsistent

NDCG-Gini 1.37 0.73 0.47 2.2 1.62 1.55 6 always good

NDCG-Jain -2.38 -2.19 -0.73 -0.57 -2.18 -2.79 6 always good

NDCG-QF 0.00 0.00 0.00 0.0 -0.42 -0.68 2 inconsistent

P-Ent -0.20 -0.33 -0.07 -0.08 -0.16 -0.20 6 always good

P-FSat -2.95 -3.53 0.00 -51.41 -0.33 -0.55 5 inconsistent

P-Gini 1.15 1.10 0.89 1.65 1.26 1.26 6 always good

P-Jain -2.01 -3.33 -1.40 -0.43 -1.70 -2.27 6 always good

P-QF 0.00 0.00 0.00 0.0 -0.33 -0.55 2 inconsistent

R-Ent -0.17 -0.17 -0.03 -0.07 -0.26 -0.30 6 always good

R-FSat -2.57 -1.83 0.00 -48.04 -0.53 -0.82 5 inconsistent

R-Gini 1.00 0.57 0.34 1.54 2.04 1.88 6 always good

R-Jain -1.75 -1.73 -0.54 -0.4 -2.75 -3.39 6 always good

R-QF 0.00 0.00 0.00 0.0 -0.53 -0.82 2 inconsistent

Table 9: Range of agreement 𝜏 between estimated PF and PF across 12 measure pairs, using the estimated PF with 3–12 points.

#pts Lastfm Amazon-lb QK-video Jester ML-10M ML-20M

3 0.78–1.00 0.98–1.00 1.00–1.00 1.00–1.00 0.97–1.00 0.75–1.00

4 0.88–1.00 0.98–1.00 0.98–1.00 0.98–1.00 0.98–1.00 0.93–1.00

5 0.78–1.00 0.98–1.00 1.00–1.00 1.00–1.00 0.97–1.00 0.92–1.00

6 0.90–1.00 0.97–1.00 1.00–1.00 0.98–1.00 0.95–1.00 0.92–1.00

7 0.88–1.00 1.00–1.00 1.00–1.00 1.00–1.00 0.98–1.00 0.93–1.00

8 0.90–1.00 0.98–1.00 1.00–1.00 0.98–1.00 1.00–1.00 0.95–1.00

9 0.98–1.00 1.00–1.00 1.00–1.00 1.00–1.00 0.97–1.00 0.98–1.00

10 0.88–1.00 1.00–1.00 1.00–1.00 0.98–1.00 1.00–1.00 0.95–1.00

11 0.92–1.00 1.00–1.00 1.00–1.00 1.00–1.00 0.98–1.00 0.97–1.00

12 0.95–1.00 1.00–1.00 1.00–1.00 0.98–1.00 0.98–1.00 0.97–1.00
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Figure 4: Pareto Frontier of fairness and relevance (in blue), together with recommender model scores for Amazon-lb, Jester, and

ML-*. Fairmeasures are on the 𝑦-axis and Relmeasures are on the 𝑥-axis. We implement exponential-like scales to enhance

the visibility of the model plots. The Rel, Fair, Avg, and DPFR denote the best model based on each evaluation approach.
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