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ABSTRACT

We study logical reasoning in language models by asking whether their errors
follow established human fallacy patterns. Using the Erotetic Theory of Rea-
soning (ETR) and its open-source implementation, PyETR, we programmati-
cally generate 383 formally specified reasoning problems and evaluate 38 models.
For each response, we judge logical correctness and, when incorrect, whether it
matches an ETR-predicted fallacy. Two results stand out: (i) as a capability proxy
(Chatbot Arena Elo) increases, a larger share of a model’s incorrect answers are
ETR-predicted fallacies (p = 0.360,p = 0.0265), while overall correctness on
this dataset shows no correlation with capability; (ii) reversing premise order sig-
nificantly reduces fallacy production for many models, mirroring human order ef-
fects. Methodologically, PYETR provides an open-source pipeline for unbounded,
synthetic, contamination-resistant reasoning tests linked to a cognitive theory, en-
abling analyses that focus on error composition rather than error rate.

1 INTRODUCTION

Language models increasingly solve complex tasks [Wei et al.| (2023); [Kojima et al.| (2022). We
ask a simple question: when they err on controlled reasoning problems, do their errors align with
human fallacies? Human reasoning shows systematic, repeatable fallacies Tversky & Kahneman
(1974); [Kahneman & Tversky|(1982); Evans|(1994); Walsh & Johnson-Laird|(2004); Johnson-Laird
(2006). These are not random mistakes; they follow predictable patterns across tasks. Understanding
whether LLM errors share these patterns is useful both scientifically and for deployment in settings
that require reliable reasoning |Jacobs| (2021)); | Bommasani et al.| (2022).

To rigorously investigate this question, we leverage the Erotetic Theory of Reasoning (ETR) [Ko-
ralus| (2022); Mascarenhas & Koralus| (2017a); Koralus & Mascarenhas| (2013)), a formal cognitive
theory that precisely predicts human reasoning patterns across multiple domains. ETR posits that
human reasoning operates by maintaining disjunctive alternatives and filtering these alternatives
when taking on new information, a process that can systematically lead to error. ETR provides for-
mal specifications of both how and when humans will make specific reasoning errors, allowing us
to generate arbitrary reasoning problems with predictable failure patterns.

ETR has an open-source implementation, PyETR |Koralus et al.|(2025)). Using PyETR, we mechan-
ically generate reasoning problems predicted to elicit specific fallacies. We evaluate 38 models on a
fixed corpus of 383 such problems.

Our experimental investigation evaluates 38 language models ranging from smaller models (e.g.,
Mistral 7B Instruct v0.1) to larger systems (e.g., GPT-4.5, Claude 3.7), treating
Chatbot Arena Elo as one capability proxy |Chiang et al.| (2024). We observe that as this proxy
increases, a larger share of logically incorrect answers align with ETR-predicted human fallacies
(p = 0.360,p = 0.0265). We do not claim causality and restrict interpretation to this evaluation
setting.

While language models often improve on many benchmarks [Wei et al.|(2023); Bubeck et al.| (2023)),
our results indicate that within our task domain, the proportion of errors matching ETR-predicted
fallacies increases with Chatbot Arena Elo as a capability proxy. These findings are consistent with
overlap between LLM error patterns and human fallacy patterns and do not require commitments
about underlying cognitive mechanisms.
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We check the robustness of our result by using metrics other than Chatbot Arena Elo where available
for a subset of the 38 models. We found significant Spearman correlation with estimates of training
compute Epoch Al (2025) (p = 0.489,p = 0.0334) and significant exponential fit for mean score
on the HELM capabilities benchmark [Liang et al.|(2023) (r = 0.796, p = 0.0103).

Contributions We report a statistically significant correlation between Chatbot Arena Elo as a
capability proxy and reasoning errors predicted by ETR, an empirically grounded formal theory of
human reasoning. We also provide the first substantial application of PYETR — an open-source im-
plementation of ETR — to generate unbounded, synthetic, contamination-resistant reasoning tasks
linking model errors to theory-predicted fallacies.

The remainder of the paper is organised as follows. Section [2]introduces ETR and PyETR. Section
details methodology. Section[d]presents results. Section [5|discusses implications.

Related Work Substantial prior literature in psychology and cognitive science documents irra-
tionalities in human judgement and decision-making [Tversky & Kahneman| (1974); Kahneman &
Tversky| (1982); [Evans| (1994); Kahneman et al.|(1990). In particular, the psychology of deductive
inference reveals human propositional reasoning to be vulnerable to logically-irrelevant linguistic
effects, like co-references between premises [Walsh & Johnson-Laird| (2004). Mental model theory
provides an explanatory paradigm for these results Johnson-Laird & Byrne| (1991)), though prior
work on the Erotetic Theory of Reasoning matches and has replicated mental model predictions on
deductive inference tasks Mascarenhas & Koralus| (2015;2017b).

In the language model literature, prior studies find that while modern LLMs largely succeed at
syllogistic inference [Clark et al.| (2021)); [Eisape et al.| (2024); Bertolazzi et al.| (2024), they exhibit
human-like reasoning failures, including distractability |Shi et al.| (2023)), content effects |Lampinen
et al.| (2024), and order effects Eisape et al.| (2024); Saparov & He| (2023). Closest to our work,
the first application of the Erotetic Theory to LLMs found the predictive utility of the theory to
increase for larger model sizes |Koralus & Wang-Mascianical (2023)), though this study was limited
to OpenAI’s GPT model family Brown et al.| (2020); OpenAll (2024} 2022) and did not make use
of PyETR. Our implementation yields an endlessly regenerative and content-agnostic test of the
Erotetic Theory for LLMs in a manner more resilient to data contamination.

2 THE EROTETIC THEORY OF REASON

Modern accounts of human reasoning highlight a duality: impressive competence and predictable
errors. The Erotetic Theory of Reasoning (ETR) explains both with one idea: we reason by man-
aging questions and candidate answers (“alternatives”) and filtering them when new information
arrives. Filtering is efficient but can drop relevant alternatives too early, producing characteristic
fallacies. ETR formalises this process and defines when conclusions stabilise against follow-up
questions (“‘erotetic equilibrium”).

At a high level (full formalism in Appendix [A), ETR has three ingredients: (1) maintain disjunctive
alternatives as candidate answers to an implicit question, (2) filter by best match with incoming
information (risking premature elimination), and (3) recover by asking questions (raising structured
alternatives) that reintroduce necessary information. This predicts a range of empirical reasoning
data across propositional and first-order logic, probability, and decision-making. Morover, it is
mathematically proved in |[Koralus| (2022)) that ETR converges to normative standards of rationality
in the limit, as the recovery step introduces enough alternatives to stabilise further reasoning steps.

Let us demonstrate ETR with a compact example (Example 49 in |Koralus| (2022)).

Premise 1 Either there is an ace in Mary’s hand and some other player has a king, or else
there is a queen in John’s hand and some other player has a jack.

Premise 2 Sally has a king.

Question Does it follow that Mary has an ace?

The correct logical answer is “not necessarily”, yet many respondents endorse “Mary has an ace”
(60% in data following Mascarenhas & Koralus|(2017a)).
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To model the problem with logic, we would first choose a representation of the basic predicates, in
this case Ace(z) for the predicate that (the card) x is an ace, and Has(y, z) for the predicate that
(player) y holds (a card) z. The same applies when using ETR, where instead of logical formulas
we have the central concept of view (see Appendix [A) for the full mathematical formalism). It will
suffice for now to use the (still precise) shorthand notation to express the premises and conclusion
as ETR views{l]

P1 {Ace(a*)Has(Mary, a)King(b*)Has(c, b), Queen(d)Has(John, d)Jack(e)Has(f,e)}
P2 {King(g*)Has(Sally, g)}
Q {Ace(h*)Has(Mary, h)}

Each view is given as a disjunctive set of alternatives, separated by a comma. Each alternative is
to be considered as a conjunctive set of atomic propositions, where for convenience we omit the
set-brackets and commas and simply juxtapose elements. Many readers will recognise these as dis-
Jjunctive normal forms, but in ETR there is no inherent ordering to the atoms in a conjunction or
alternatives in the disjunction. The individual lowercase letters can be understood are as existen-
tially quantified variables, with the scope of the quantification encompassing the entire disjunction
(‘prenex form’). A view may also carry a supposition, written as a superscript (see Table [T] for ex-
amples). Note that since any formula of first-order logic can be written in prenex disjunctive normal
form, ETR is as expressive as full first-order logic.

PyETR, an open-source software package that serves as a calculator for ETR, can parse views from
a similar text format.

from pyetr import View

pl = View.from_str("da db dc dd de df {Ace (a*)Has (Mary(),a)Has(c,b
King (b*),Has (John (), d)Has (f,e) Jack (e)Queen(d)}")

P2 View.from_str ("dg {King(g=*)Has (Sally(),g)}™")

cc = View.from_str ("Jh {Ace (h*)Has (Mary(),h)}")

I — |

Note the requirement to explicitly declare existentially quantified names (the letter E may be used
in place of ). ETR posits some default procedures for ordinary reasoning, built out of some basic
operations. The workhorse among the basic operations is Update, which update a current view with
an incoming one. We can check in PyETR that ETR does predict a fallacy here, because Update
discards the seemingly less relevant alternative where John has a queen.

>>> v = pl.update(p2); print (v)

dg 941 dm {Ace(lx)Has (Mary(),1l)Has(Sally(),qg)Has (m,qg)King(g*)}
>>> v.query (cc)

dh {Ace (h*)Has (Mary (), h) }

The actual default procedure of ETR involves a few more steps which become relevant in more
complex problems. The full version is implemented in PyETR.

>>> from pyetr.inference import default_procedure_does_it_follow
>>> default_procedure_does_it_follow ([pl,p2],cc)
True

3 METHODOLOGY

In our experiment, a reasoning problem is given by a list of views (the premises), and the problem
is to answer the question “what if anything follows?”. Our method generates reasoning problems
where the ETR-predicted answer is a logical fallacy.

' An additional aspect not present in ordinary logic is issue structure. This is notated with an asterisk on
some occurrences of terms, indicative of being ‘at issue’ for the containing atomic proposition. The issue
structure has no logical content, but plays a role in guiding ETR inferences. Determination of issue structure
from cues in natural language or context is outside the scope of ETR, but a simple heuristic in this example is
that the repetition of ‘Ace’ and ‘King’ suggests those concepts are at issue.
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3.1 DATA PROCESSING

Table 1: Original bank of reasoning problems.

Problem Symbolic representation Natural language example
Modus ponens {R(x)}{Q@)} If it rains, it’s wet.

{Q( )} It rains.

S AR(x)} Therefore, it’s wet.

Modus tollens {R(x)}{Q )} If the switch is on, then the lamp is lit.

{R(x)} The lamp is not lit.

{Q(x)} Therefore, the switch is not on.
Quantified modus ponens ~ Va{R(z)}{Q()} All mammals have lungs.

Vo {Q(x) P @)} All dogs are mammals.

S Va{R(x)1P@)} Therefore, all dogs have lungs.
Disjunction fallacy {Q(z)R(x),S(z)T(x)}  Sheis quiet and clever, or tall and athletic.

{Q(z)
S ARG

She is quiet.
)} Therefore, she is clever.

%«w—/

We source our original bank of reasoning problems from examples presented in the Reason and
Inquiry text (Koralus|[2022)). These include basic “template” reasoning problems like modus ponens,
modus tollens, and the disjunction fallacy as originally presented in/Walsh & Johnson-Laird|(2004).
Table ] presents the complete list of original problems. Not all reasoning problems take the form of
valid syllogistic inferences; that is, not all conclusions from Erotetic Theory inference deductively
follow from the premises.

To avoid complications in the mapping to natural language, we restrict to views with only monadic
(one-place) predicates. The corresponding monadic first-order logic is known to be less expressive
than full first-order logic, but still allows for a rich set of reasoning problems. Our method could
easily be extended to include polyadic predicates.

3.2 GENERATIVE PIPELINE
We define a collection of mutation functions that give slight modifications to ETR view objects.

These functions serve to expand our bank of reasoning problems by modifying existing problems by
single premises. Table 2] presents the complete list of possible mutation rules.

Table 2: Logical Form Mutations

Mutation Type Description

Predicate Addition Introduces a new predicate symbol to the language.
Constant Addition Introduces a new constant symbol to the formal system.
Variable Addition Adds a new variable to the set of arbitrary objects.
Constant-to-Variable Substitution Replaces constants with V or 3 quantified variables.
Conjunctive Atom Insertion Conjoins new atomic formulas to existing states.
Disjunctive State Addition Disjunctively creates new states with atoms.

Atom Negation Applies or removes negation from atomic formulas.

Generating a new problem proceeds by iterative building a list of views (the premises in the prob-
lem). A new view is selected at random from the original problem bank and subjected to a random
number of random mutation rules, it is added to the list if ETR predicts the problem admits a non-
trivial answer. New views are added until all of the following stopping conditions are met. (1) The
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problem is the right size, meaning that summing the number of atoms in each view gives between 4
and 11. If 11 is exceeded, backtracking is used. (2) The ETR-predicted conclusion contains a single
alternative (no disjunctions). (3) The ETR-predicted conclusion is a logical fallacy. To mitigate
concerns about dataset-specific effects, we intentionally generated problems across diverse domains
and structures. The PyETR-based generation ensures our problems test reasoning capacities rather
than memorization of training examples.

Dataset curation We initially generated 400 problems. Pre-analysis integrity checks identified
17 items whose fallacy status did not meet the final specification, so we excluded them prior to
all analyses, yielding 383 problems. Given the modest reduction in sample size and the cost of
re-running all model evaluations, we report results on this vetted 383-set; the generation pipeline
supports regenerating larger sets for future work.

3.3 MAPPING TO NATURAL LANGUAGE

To evaluate logical reasoning in language models in a more naturalistic context, we developed a
systematic approach to convert formal logical statements into natural language prompts. We created
12 themes for natural language framings of logical problems, such as a researcher figuring out
the properties of a novel element or a newly discovered creature. For each theme, we established
consistent mappings between logical elements and thematic equivalents. The thematic conversion
process serves multiple purposes: it ensures our results are robust against content effects |Lampinen
et al.| (2024); it enables us to test whether the reasoning patterns are consistent in diverse contexts;
and it mitigates potential data contamination, a significant problem for LLM evaluation |Zhou et al.
(2023)); |Deng et al.|(2024); |L1 & Flanigan|(2024); Singh et al.| (2024) by reformulating problems in
novel scenarios unlikely to appear in training data.

Consider the following example of a disjunction fallacy problem in its formal representation:
P1 : {Q(z)R(y),S(x)T(y)},P2 : {Q(x)}. In the “alchemy” theme, logical predicates (e.g.,

LLINNT3

A(z), B(y)) were mapped to thematic attributes (e.g., “is transmuting”, “is time-bending”), while

logical variables (e.g., x, y) were mapped to imaginary thematic entities (e.g., “cosmic dust”, “vital
mercury”). Using our alchemy theme, this was transformed into:

I’'m an alchemist studying mysterious substances in my laboratory.
I need to understand their properties through logical
reasoning. Here’s what I’ve discovered:

Cosmic dust is transmuting and vital mercury is time-bending, or
cosmic dust is immortality-granting and vital mercury is
spirit—-affecting.

Also, we know that cosmic dust is immortality-granting.

What if anything follows? I do not have an intended answer in mind
, and it 1is possible that nothing follows. Please be succinct
and precise.

This is typical of the prompts sent to the LLM. It includes a thematic preamble and a natural lan-
guage prompt to reason in an open-ended fashion with: “What if anything follows?”” Each problem
maintained the same prompt structure: an introduction establishing the thematic context, followed
by the premises expressed in natural language, and concluding with a standardised question asking
what follows from the premises. The prompt explicitly stated that nothing might follow, to avoid
biasing models toward making unwarranted inferences [Saparov & He(2023)).

3.4 DATA COLLECTION

Model Selection and Testing Conditions We evaluated 38 language models of varying
sophistication, including several specifically designed as reasoning models.  Selection in-
formally prioritized quantity, popularity of usage, and representation of a diverse range of
scores. All models were accessed via OpenRouter and tested using LLMharness. Chatbot
Arena scores were obtained from https://huggingface.co/spaces/lmarena—-ai/
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chatbot—-arena-leaderboard/resolve/main/elo_results_20250423.pkl.
Scores for the HELM Capabilities benchmark for 9 models were obtained from https:
//crfm.stanford.edu/helm/capabilities/v1.10.0/#/leaderboard Liang
et al| (2023) and estimates for training compute for 19 models were obtained from
https://epoch.ai/data/ai-models||Epoch Al (2025) (both URLs accessed 30 July
2025).

To ensure a fair comparison across architectural differences, all reasoning models were allocated
2,400 thinking tokens during evaluation. This standardization was justified given our use of the
Chatbot Arena Elo score as our primary capability metric, which already accounts for performance
differences regardless of underlying mechanisms (Chiang et al.|(2024).

Response Processing and Filtering Models provided conclusions in natural language, which we
converted to PyETR format for evaluation. To ensure fair assessment of reasoning (not formatting),
GPT-4.1-mini served as our translation layer without access to the original premises. Spot-checking
confirmed translation fidelity.

Each model was evaluated on 383 reasoning tasks generated by PyETR. During analysis, we
encountered occasional parse errors when processing model responses. To maintain data qual-
ity while preserving statistical power, models with parse error rates exceeding 20% across
the test set were excluded from analysis, which resulted in the exclusion of one model
(google_gemini-2.5-pro-preview-03-25). For the remaining models, individual re-
sponses that produced parse errors were excluded from analysis on a case-by-case basis rather than
discarding all responses from that model.

Testing Framework The full set of logical problems were framed as evals, using Eleuther’s Lan-
guage Model Evaluation Harness |Gao et al.| (2024), which handles evaling and metric collection
against a wide range of models. OpenRouter OpenRouter| (2025) was used for all models, in order
to have a unified API. This consumed less than $1,000 of compute resources. Each model was given
a token limit of 3,000 output tokens.

Key Measures We collected the following measures to evaluate both the logical correctness of
model responses and their alignment with human-like reasoning patterns, enabling our analysis of
how these patterns correlate with model sophistication. A model’s answer was considered ‘logically
correct’ if it was a logical consequence of the premises. This was tested using PySMT |Cimatti et al.
(2017) to check whether the negation of the conclusion was inconsistent with the premises. LLM
responses were classified as ‘ETR-predicted’ if ETR predicts an endorsement of that conclusion
according to PyETR’s implementation of default_procedure_does_it_follow.

Statistical Tests We selected Pearson correlation to capture linear relationships between variables
while also reporting Spearman’s rank correlation to account for potentially non-linear monotonic
relationships without assuming normality in the distribution of fallacy rates. For our premise-order
intervention analysis, we employed two-proportion z-tests to rigorously evaluate whether reversing
premise order produced statistically significant changes in fallacy rates. The z-test was specifically
chosen because it allows us to determine if the observed differences in proportions (original vs. re-
versed premise order) represent genuine effects rather than random variation, providing a reliable
measure of the significance of order effects across different model capabilities. This statistical ap-
proach enables us to quantify the extent to which models exhibit the same premise-order sensitivity
documented in human reasoning studies.

4 EXPERIMENTAL RESULTS

Our analysis reveals several notable patterns in how language models exhibit human-like reasoning
fallacies. We report the results of Pearson correlation tests, as well as Spearman tests for the de-
tection of non-parametric monotonic relationships. We consider p < 0.05 a suitable boundary for
statistical significance.

Proportion of Errors that are Fallacies We operationalise a “human-like fallacy” (or simply
“fallacy”) as a response that is both ETR-predicted and logically incorrect. This definition captures


https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard/resolve/main/elo_results_20250423.pkl
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https://crfm.stanford.edu/helm/capabilities/v1.10.0/#/leaderboard
https://crfm.stanford.edu/helm/capabilities/v1.10.0/#/leaderboard
https://epoch.ai/data/ai-models
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instances where models make the same systematic reasoning errors that ETR predicts humans would
make. Formally, for a given model m and reasoning problem p, we define:

1 if ETR-predicted(m, p) A —LogicallyCorrect(m, p)

HumanLikeFallacy(m, p) = { 0 otherwise

Our metric of interest is the fallacy rate, defined as the proportion of human-like fallacies to total
logically incorrect answers for each model:

> pe p HumanLikeFallacy(m, p)

FallacyRat =
allacyRate(m) > pep —LogicallyCorrect(m, p)

where P is the set of all reasoning problems in our evaluation set. This measure represents the
degree to which a model’s errors align with predictable human reasoning patterns rather than other
forms of logical error. We find as model strength increases, so does the proportion of logically
incorrect answers that are fallacies (Figure [I)).

Model Elo vs. Fallacy Rate
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Figure 1: Over 38 models, a direct linear fit produces a significant moderate positive correlation (r =
0.364,p = 0.0247), an exponential fit (log y-axis) displays a more confident Pearson correlation
(r = 0.407,p = 0.0113), as displayed above. As Spearman is ordinal, we have the same significant
monotonic relationship in both cases (p = 0.360, p = 0.0265).

Overall Correctness and other measures Surprisingly, model strength as measured by LLM Elo
score does not appear to have any correlation (r = 0.004, p = 0.981), (p = —0.04,p = 0.777) with
the model’s ability to produce correct answers on our dataset: see Table[3] Furthermore, exploratory
analysis did not reveal any other statistically significant evidence of model Elo correlating or enjoy-
ing a monotonic ordinal relationship with absolute proportion of fallacies produced, whether exactly
predicted by ETR or taking logical equivalences.

Table 3: Percentage of model responses which are logically correct

Mean o min  9(0.25) ©Q(0.5) ©Q(0.75) max
40.6% 16.7% 18.6%  31.0% 37.5% 448%  91.7%
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Intervention study: Reversing Premise Order

While in classical logic the order in which
premises are presented has no effect on normatively correct logical conclusions, an order-effect
is commonly observed in human reasoners (Girotto et al.| (1997)), where presenting premises in dif-
ferent orders elicits logically different responses. In addition to being a proxy measure for the non-
classicality of human reasoners, this non-commutativity effect often blocks fallacies. We observe
strong evidence that LLMs are similar in this regard: presenting the same questions with reversed

premise order significantly blocks fallacy production. Table @] reports a significant fallacy-blocking

effect from reversing premises on a majority of models.

Table 4: 38 models selected for testing, listed by Chatbot Arena Score (general). The right-most
column reports the percentage of fallacies per-model blocked (answer becomes logically correct) by
reversing premise order, along with the results of a two-proportion z-test for each model to gauge

the significance of the blocking effect.

Provider Model Elo Fallacies blocked by reversal

OpenAl chatgpt-4o-latest 1408 46.15%, (z=3.24, p = 1.18e-03)
OpenAl gpt-4.5-preview 1398  68.00%, (z = 3.03, p = 2.44e-03)
Google gemini-2.5-flash-preview 1393 37.27%, (z=3.52, p =4.27e-04)
DeepSeek deepseek-chat-v3-0324 1373 38.78%, (z =2.28, p =2.27e-02)
Google gemma-3-27b-it 1342 20.39%, (z=1.77, p = 7.60e-02)
OpenAl ol-mini 1304  50.00%, (z =0.58, p = 5.63e-01)
Anthropic claude-3.7-sonnet 1292 50.00%, (z = 4.23, p = 2.35e-05)
xAI grok-2-1212 1288  22.68%, (z=1.91, p =5.58¢-02)
Anthropic claude-3.5-sonnet 1283  65.08%, (z =4.74, p = 2.09¢-06)
OpenAl gpt-40-mini-2024-07-18 1272 36.36%, (z =2.00, p = 4.59e-02)
Google gemini-flash-1.5 1271 29.69%, (z = 1.98, p = 4.78e-02)
Mistral mistral-large-2407 1251  37.60%, (z = 3.85, p = 1.18e-04)
Meta Ilama-3.1-70b-instruct 1248  24.32%, (z = 1.74, p = 8.14e-02)
Anthropic claude-3-opus 1247  32.63%, (z=2.79, p = 5.20e-03)
Mistral mistral-small-24b-instruct-2501 1217  34.53%, (z =3.81, p = 1.40e-04)
Microsoft phi-4 1205 44.68%, (z =3.91, p = 9.34e-05)
Anthropic claude-3-sonnet 1201  53.49%, (z = 3.04, p = 2.40e-03)
Google gemma-2-9b-it 1192 55.17%, (z =2.55, p = 1.07e-02)
Cohere command-r-plus-04-2024 1190  37.25%, (z =2.22, p = 2.64e-02)
OpenAl gpt-4-0314 1186 41.67%, (z=2.07, p = 3.81e-02)
Anthropic claude-3-haiku 1179  56.67%, (z=3.91, p = 9.20e-05)
OpenAl gpt-4 1163 54.05%, (z = 2.85, p = 4.43e-03)
Meta Ilama-3-8b-instruct 1152 23.81%, (z=1.55,p=1.21e-01)
Mistral mistral-medium 1148  43.90%, (z =2.38, p = 1.75e-02)
Mistral mixtral-8x22b-instruct 1148  42.86%, (z =2.12, p = 3.43e-02)
Anthropic claude-2.0 1132 32.81%, (z = 3.40, p = 6.65e-04)
Anthropic claude-2.1 1118  54.79%, (z = 4.28, p = 1.91e-05)
Mistral mixtral-8x7b-instruct 1114 37.50%, (z =1.49, p = 1.36e-01)
OpenAl gpt-3.5-turbo-0125 1106  39.42%, (z =3.61, p = 3.06e-04)
Meta llama-3.2-3b-instruct 1103 20.00%, (z=0.77, p =4.41e-01)
Nous Research  nous-hermes-2-mixtral-8x7b-dpo 1084  66.67%, (z =2.91, p = 3.63e-03)
DeepSeek deepseek-chat 1077  35.00%, (z =2.29, p = 2.19¢-02)
Mistral mistral-7b-instruct-v0.2 1072 38.46%, (z=1.11, p = 2.66e-01)
OpenAl gpt-3.5-turbo-1106 1068 88.46%, (z = 4.36, p = 1.33e-05)
Meta Ilama-3.2-1b-instruct 1054  32.43%, (z=1.60, p=1.10e-01)
Microsoft phi-3-mini-128k-instruct 1037  38.16%, (z =2.88, p = 3.96e-03)
AllenAl olmo-7b-instruct 1015  45.45%, (z=1.23,p =2.18e-01)
Mistral mistral-7b-instruct-v0.1 1008 66.67%, (z=1.42, p=1.55e-01)
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5 CONCLUSION AND DISCUSSION

Interpretation of Key Findings Our results reveal a statistically significant correlational trend in er-
ror composition: as language models advance in capability (proxied by Chatbot Arena Elo), a larger
share of logically incorrect answers align with human errors predicted by ETR. While stronger
language models demonstrate improved capabilities across many benchmarks, we do not observe
increased overall correctness in this dataset. Moreover, we demonstrate order-effects for LLM rea-
soning analogous to those observed in humans. This indicates overlap between LLM error patterns
and established human fallacy patterns on these tasks.

Methodological Considerations and Limitations While traditional ablation studies might seem
appropriate for investigating this phenomenon, they face significant limitations in the current land-
scape of language models: the diversity of modern architectures, training approaches such as distil-
lation |Gou et al.|(2021);|Gupta & Agrawal|(2022); Xu et al.| (2024), and reasoning capabilities with
test-time scaling \DeepSeek-All (2025); El-Kishky et al.| (2024); [Xu et al.| (2025) means that simple
parameters like model size may no longer serve as reliable proxies for model capability. Our use
of Chatbot Arena scores provides a performance-based metric that naturally incorporates a diverse
range of models, reflecting real-world ability rather than architectural specifics, similar to/Ruan et al.
(2024).

Though the correlation strength (p = 0.360) may appear moderate, it is robust across diverse model
architectures and training paradigms, suggesting a fundamental relationship rather than artifact. The
statistical significance (p = 0.0265) exceeds conventional thresholds despite our conservative ana-
lytic approach.

While our results demonstrate correlation between model capability and human-like errors, we ac-
knowledge limitations in attributing causality. Alternative explanations include the possibility that
stronger models are increasingly trained on human-produced reasoning traces that themselves con-
tain these fallacies. The absence of improved logical accuracy with model capability may reflect
ceiling effects in our test set or fundamental limitations in current training paradigms.

Theoretical Implications These findings challenge the assumption that scaling alone leads to more
normatively correct reasoning systems. Instead, within our evaluation setting we observe greater
overlap between model error patterns and characteristic human fallacies. This does not by itself
imply shared internal processes; it highlights an evaluation axis (error composition) complementary
to overall accuracy.

Our results provide a foundation for several research directions. For benchmark development, our
approach offers a systematic method for generating reasoning problems where human-like falla-
cies are predicted, creating evaluation sets that could complement existing reasoning benchmarks.
For capabilities, the identified fallacy patterns could serve as targeted training examples to fortify
models against human-like reasoning errors while maintaining their general capabilities. As a tool
for assessing engineering choices, our methodology provides a quantitative framework for evalu-
ating the effectiveness of various interventions aimed at improving model reasoning, from prompt
engineering to architectural modifications.

Broader Implications This observed trade-off in error composition has implications for Al align-
ment. As models become more capable, anticipating and mitigating human-like reasoning errors be-
comes increasingly important, especially in high-stakes contexts requiring reliable reasoning, such
as medical diagnosis, legal analysis, or decision support|Jacobs|(2021)); Bommasani et al.| (2022).

We see these results as opening new avenues for understanding both artificial and human reasoning.
As language models continue to advance, this work provides a foundation for developing systems
that combine human-like understanding with more robust reasoning capabilities: systems that can
successfully reason as we do while avoiding the pitfalls that characterise human cognition.

Author use of Al tools During manuscript preparation, we used Al assistance for prose shortening
and copy-editing, and as coding support for scaffolding evaluation scripts and refactoring utilities.
All analysis code, evaluation protocols, and results were designed, implemented, and verified by the
authors.
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A A FORMAL PRESENTATION OF THE EROTETIC THEORY

ETR is formulated in |[Koralus| (2022) in a set-theoretic language, and we reproduce the full defini-
tions here, with the explicit permission of the authors. We remark that Definitions [T] and [T contain
the parameters of the theory, i.e. the basic atomic propositions, the constants and function symbols,
and a set logical and extralogical axioms. The central definition is that of a View, Definition 9] Fol-
lowing that are definitions of the basic operations of ETR, in particular Update (Definition 23)) and
Query (Definition whose use in PyETR were demonstrated in Section

Definition 1 (Basic objects).

Let A,F {7}, PT, P be pairwise disjoint countable sets.

(F arity) o : F — N. Write f € F as f* when a(f) = k.
(Constants) Jwer a(w) = 0.
(P polarity) Let N : PT — P be a bijection. Write P for N(Pcpr).
LetP =PT UPL
(P arity) o' : P — N. Write P as P* for o/ (P) = k. o/(P) = o/ (P).
(Identity) =2 € P.
Definition 2 (Terms T).
ACT. IffO€F, then (fO) e T.If f* € FA{t1...tx} C T, then (f* {t1...t;)) € T.
Definition 3 (Atoms A).
IfPF € Pand7 = (t1...t) fort; € T, then (P*,7) € A (abbrv. PT). |7| = {t1 ...ty }.

Definition 4 (States S).
S = P(A). Abbreviate ‘{ }" as ‘0.
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Definition S (Dependency relations R).
LetT' € P(S). Let UUE C A(T)and D C Ex U = {{e,u) : e € EANu € U}. Define
(U,E,D) € Rr iff

(Bipartite) UNE =0AND C E x U, and
(Matryoshka) For all u,u’ € U {e € E : (e,u) € D} C {e € E : {e,u) € D}
or{ec E:{(e,u') e D} C{e€ E:{e,u) € D}.

For R € R write R = (Ug, Er, DRr). For (0,0, 0) write Ox.

Definition 6 (Open terms T;and atoms A ).

?€ Tyand (f*, (t1,... 1)) € Ty whenever f* € F and for some 1 <i <k, t; € Ty andt; € T
forj #i. (P* (t1,...,tx)) € Ay, whenever P* € P and for some 1 <i <k, t; € T forall j # i
andt; € T.

Definition 7 (Issue structures I).

I € Ir iff I consists of pairs (t,z), s.t. x € Ay and z[t/?] € A(T).

Definition 8 (Issue matches M ;).
For 1,J € Iy, define,

My = {<t17t2> : 3(E(<t17$> elA (<t2,.’li> eJvV <t27£f> S J))}

where, for x = (P* (t1,... ), & = (P* (t;, ... t;)).
Definition 9 (Views V).

For T, © finite subsets of S, R € Rrye, I € lrye,
(I',O,R,I) € V (abbreviated I‘%I ev).

Write T for {0}[{)1}@ and L for @éi}@.

Definition 10 (Commitments C).

ForCCV,GeV, (C,G)eC.

Definition 11 (Primitive absurd states K).
Let Kcs contain, Vt,t_.Vpec AV e a,, at least:

(LNC) {p,p},
(Aristotle) {F#tt},
(Leibniz) {=tt', x[t/?], Z[t'/?]}.
Definition 12 (R Restriction).
[R]X = <UR NX,ErnNX,DrN ((ER ﬂX) X (UR ﬁX))>
[R]r = [R]a()-
Given (I, ©, R, I), we allow ourselves to write (I, ©, [R], I) for (', ©, [R]rue, I).
Definition 13 (I Restriction).
Within a quadruple (T, ©, R, [I]), let
[I]={{t,x) : {t,z) e I Nz[t/?] € ATUO)}
Definition 14 (R Algebra).
Let Rx S = (UgpUUs,Er UEg,DgrUDgU Eg x Ug) and let
Or <1 0r = 0g.
Let
R S = (U, Eo, 0) % ([R]a(r) - (5o000) > [S]a(s)—(Eout))
where Ey = {ecg,uEs : Vu.{e,u) ¢ DrU Dg} and
Uy = {ueURUUS : Ve ¢ E0.<e,u> ¢ (ER x Ugr — DR) U (ES x Ug — Ds)}
Definition 15 (Product).
e
@AY = ({ver Udea : Wew (v € 1)} U{ver : ~Few (¥ C7)})
T® A){O} =T11{0} g A{0}
Ricp A = {0} @A @ @AY
I'g @7 A, = (T° © AY) (Toarysa(Tsas)][1U]
f, o A, =1, a% AL,
®i€P Alg:.]z =T ®T Algfzh ®T e ®T A"%:Jn

14
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Definition 16 (Sum).
T

g o" AG, =(TU A)ﬁTNR)M(TMS)][IUJ]
F%I & A;)J =Ty a'" Ag){p "
Dicp Al =00 g @ Aig 07 8T Ang, g,
Definition 17 (A Answer potential).
TIAMP = [AT) N A(A)]
Definition 18 (Answer).

0

PRIAG" = (g max A{{p} s p € U
¥

Definition 19 (Negation).
[CEIN = (01 @ ([M]V) 1) gyv v
[F]N = ®7€F ,A)/{O}
¥ = {{P} Pev}
p=F7ifp=F7p=F7ifp=F7
[RIN = (Eg,Ug, {{a,b) € Ur x Eg : (b;a) ¢ Dr})
(N =Tu{(t,z): (t,x) € I}
Definition 20 (Novelty). a € A is novel during an inference step (C,G)[D]° if a ¢

A(G) U

A (D) and a has not yet appeared in the computation of the conclusion of the step. A function
v:X — A, where X C A is finite, is novel during an inference step if each v(x) is novel and v
is injective, and then [V]x denotes the simultaneous substitution [v(a1)/aq,...,v(a)/ax], where

X ={ay,...,a}. Let (—)*X) stand for (—)[v]x where v : X — A is novel.

Definition 21 (Substitution). Let Z(T,a) = {u € Ur : u<pa} U{e € Er : e Sr a} — {a} =

{ai,...,ax}. For A(T)NA(©) =1,

Subf, oy TP) = (T z(r0)[t/a], ©, [T x ([T z(r.0) 1] z1.0)): Iv1) 2.0 [t/ a]),

where vy : Z(T,a) — A is novel.
Definition 22 (Merge).
For either A(R) N A(S) = 0 or [R]auw = S,
R4S R4S 0

I [AM = G%?} {7}, @ AL, @8 ®(tDZ)EM /(y) Sub fﬁl‘f(A{J }) )
where M7 ;(v) = {(t,u) € My :u € Us A Fpew(¥[t/u] Sy A L)}
Definition 23 (Update).
For D € C, but with all arbitrary objects novelised,
(C.T9)DI° = (C.T%, D)V [DIF[DJA[D]Y)
Definition 24 (Universal product).
For A(T') N A(O) = 0 and either A(R) N A(S) =0 or [R]a = S,

0 RS 0
PRIALNY = {0}8; @™ @ iear;, Subliny (T}, where
Mj ;= {{u,t) : (u, t>€M[‘]/\U€UR* A©)}#0
Definition 25 (Reorient).
For Ag{, € (CU{r%,})and J' € lauy,
(C.TR)IAG /) = (C.AG))
Definition 26 (Existential sum).
Let the following conditions be met:

(1) A(T)N A(O) = 0 and either A(R) N A(S) =0 or [R]a = S.
(2) My, ={{e,t): (e,t) e MigNe€ Er — A(OUA) A—3z((e,x) € Dr)} # 0.
Then,
PRIALN® = TR 0" @ ew,

s | Unu{{ee, e¢ Al)}us:

vE€{ver:e€A(v)}

se @ Uah{Enoga})

z€B(v,1e)
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where fore € Eg andy € T, let B(vy,1I,e) = {z[e/?] € v: (e,x) € [}.
Definition 27 (Division).

Ifg’deAEhéeq,Elvep(é - z/\ ) C ’y)é then
PRI®ASJ:{’Y®FA ’yéf}[RHI]

yor AY =7 —15(6 € ANG Sy A Few (¥ C 7))
Definition 28 (Factor).
For Ag’J #+ 1,
PR[Ag,)" = ([AY] iy e F}[@R][I] where
YAY)E = (yor AY)Y N N{y or (AY[t/a]) : (t,a) € M;; Aa € Us}, and where we let
YN =+
For Ag; = 1,
e
LR ={yel: =30 € K6 S}y
Definition 29 (Matryoshka level ordering).
For existentials, we have e Sg €' iff V(e/,u) € Dgr({e,u) € Dg). For both existentials and
universals, let the relation < be the transitive closure of the relation made up by the ordered pairs
in Dr U (ER x Ugr — DR)°P, where op reverses the order of pairs in a set of pairs.

Definition 30 (Query).
ForUg CUgrand Mj; = {(t,e) € My : e € Eg\ER}, we define
F%I[Ag.]]Q =

({0: —30eay.®(7,8)} U {5 € A : Fyer-®(v,0)}) [roa(un, B\ B, Do Y][70J]

where ®(7,6) <> IpewInzoI(t1,e1), ..., (tn, en)enrr; Vi, j

(YUti/er, ..., tnfen] CyYNe;, =€ — 1 =7j);
and Dgr = D1 U Dy U D3 U Dy U Ds U Dg is constructed by taking: original dependencies from
the internal argument

Dy = [Ds]|a/Ex>
extra dependencies for multiple terms substituted with same e
Dy = {(em,u) : ImIm’' € M} (e = €ms At # tmr) Au € Ur},
dependencies resulting from complex terms being substituted
D3 = {{em,u) : (tm,em) € Mi; Au € Ug(tm)},
Dy ={(em,u) : (tm,em) € M1; Ne € Eg(tm) A {(e,u) € R},
D5 = {{em,u) : (tm,em) € Mi; ANu € Ug A vu,eUR(DguD4)(Ul drpu)},

additional dependencies necessary to preserve the dependency order of existentials in S

Dg ={{e,u) :e,e’ € Es — EgrANe<geA

(Vm,m' € My (em =€ Nep =€) =ty =tm) A€ ,u) € Dy UDyU D3 U DygU D5}
Definition 31 (Wh-Query). Provided that Ug C Ug,
9, [AY W = ({o i3y € T=30ca B(v,0)}U{d € A ayer.m(%g)});[l]7 where U (v, €) iff

IpewInsoI(t1,e1), ..., (tn, en>€M;JE|5€A.
(guw CyNnE=d[t1/er,... tn/en]
AVi,j.(e; =e; —i=7j)).
Definition 32 (Inquire).
(O)IFATUBG)NAAUY) =0AA(A)NA(Y) =0, then
LRAL) =Tgr® (Ag] ® ({O}EI:?][J] ® NOU([A{O}WS]N][J]N))) [L]7,
where Nov() uniformly replaces all arbitrary objects in its scope by novel ones.
(DIfFAAUY) C A(T'UO), then
TRIAS) =TR @ (Ag, s ® (Al a) ") L.
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Definition 33 (Suppose).
(O)IFA(TUOG)NA(AUTD) ={, then
F%I [AgJ]S = F%IXIR’][IUI’] [AgJ]U[AgJ]E[AgJ]A[AgJ]M’ where
o'l =0k} @ Nov(aly,[1P),
where Nov() uniformly replaces all arbitrary objects in its scope by novel ones.
(DIfA(A) CAT U®O)and [Rla =S,
0 0 0 0 0
then TR, [AG}]° = TRPA ALV AL 1P AL AT
Definition 34 (Depose).
IR [T]7 = T @ (O)V)1, R, [V U I)).
Definition 35 (Commit).
(C, F%IHT]C =(CU {F%I}7F%I>

Definition 36 (Inference). An inference 7 is a finite sequence of inference steps defined as follows,
relative to an inference state consisting of a commitment (C,G) € C. If E € V and

O € {[D]°, D)%, D)%, [D]¥, D)%, [D]!, [D)P, [D]¥, D]V, D]}, then O is an inference step
applicable to (C,G), whose result is an inference state in C. We write C' Fgrr E if and only if
there is an erotetic theory inference I s.t. (C, T)ZT = (C',E'), where E' is identical to E up to
uniform replacement of A objects.

17



	Introduction
	The Erotetic Theory of Reason
	Methodology
	Data processing
	Generative pipeline
	Mapping to natural language
	Data Collection

	Experimental Results
	Conclusion and Discussion
	A formal presentation of the Erotetic Theory

