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ABSTRACT

Due to the common content of anatomy, radiology images with their correspond-
ing reports exhibit highly similarity. Such inherent data bias can predispose au-
tomatic report generation models to learn entangled and spurious representations
resulting in misdiagnostic reports. Moreover, the lack of explainability hinders
the acceptance by radiologists in clinical practice. To tackle these, we propose a
novel CounterFactual Explanations-based framework (CoFE) for radiology report
generation. Counterfactual explanations serve as a potent tool for understanding
how decisions made by algorithms can be changed by asking “what if” scenarios.
By leveraging this concept, CoFE can learn non-spurious visual representations by
contrasting the representations between factual and counterfactual images. Specif-
ically, we derive counterfactual images by swapping a patch between positive and
negative samples until a predicted diagnosis shift occurs. Here, positive and nega-
tive samples are the most semantically similar but have different diagnosis labels.
Additionally, CoFE employs a learnable prompt to efficiently fine-tune the pre-
trained large language model, encapsulating both factual and counterfactual con-
tent to provide a more generalizable prompt representation. Extensive experiments
on two benchmarks demonstrate that leveraging the counterfactual explanations
enables CoFE to generate semantically coherent and factually complete reports
and outperform in terms of language generation and clinical efficacy metrics.

1 INTRODUCTION

Automatically generating reports can reduce the load on radiologists and potentially increase the
accuracy and consistency of interpretations. This is achieved by translating intricate radiology im-
ages into semantically coherent and clinically reliable free texts. However, in comparison to generic
captioning tasks, Radiology Report Generation (RRG) presents a significant challenge, often yield-
ing unsatisfactory performance when employing direct captioning methods Vinyals et al. (2015);
Lu et al. (2017) in the field of radiology. The difficulty arises due to the severe data bias within the
limited image-report pair data available, a challenge that has been extensively acknowledged and
discussed Liu et al. (2021a); Chen et al. (2020); Li et al. (2023); Tanida et al. (2023); Wang et al.
(2023).

Given the shared anatomical content, radiology images tend to display significant similarity to one
another, with abnormal or lesioned areas typically occupying minor portions of the images Li et al.
(2022c); Voutharoja et al. (2023). This similarity also extends to the accompanying reports, where
several sentences often describe normal tissues. However, the clinical usefulness of radiology reports
hinges on the accurate depiction of abnormalities. This intrinsic data bias tends to lead models to
learn spurious and intertwined visual features, resulting in the generation of inaccurate diagnostic
reports. To mitigate data bias, various successful concepts have been proposed by existing methods
to enhance learning representations, such as employing contrastive learning Li et al. (2023); Liu et al.
(2021b), incorporating medical knowledge Liu et al. (2021a); Yang et al. (2023b), and implementing
relational memory Chen et al. (2020) etc.

Recently, Tanida et al. Tanida et al. (2023) achieved the state-of-the-art (SOTA) performance by
detecting abnormal regions using a pre-trained detector with pseudo labels. They then utilized these
features to guide a pre-trained large language model (LLM) in generating reports. Identifying critical
regions that cover abnormalities or lesions not only enhances non-spurious visual representation
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Figure 1: A conceptual overview of our proposed counterfactual explanations is presented. Such
CEs help to construct a counterfactual image by iteratively exchanging a patch between factual
(positive) and negative images until the predicted diagnosis shift occurs. In this instance, the box in
red covering the heart is identified as the critical region that causes the diagnosis shift.

but also improves the explainability of RRG models. Ideally, the method would employ golden
annotations to train a lesion detector capable of accurately localizing abnormal regions or lesions.
However, existing RRG benchmarks lack such annotations. Relying on weakly supervised signals
from pseudo labels Tanida et al. (2023); Wang et al. (2021) can result in misalignment. Furthermore,
the limited size of available medical data may prevent the full unleashing of the potential of LLMs.

To address these challenges, we introduce a novel concept: counterfactual explanations (CEs). The
concept of CEs He et al. (2022); Virgolin & Fracaros (2023) has surfaced in machine learning as
an insightful tool to comprehend how models’ decisions can be changed. CEs offer a hypothetical
alternative to the observed data, allowing for the assessment and comprehension of models through
’what if’ scenarios. This technique has been integrated into diagnostic models to not only improve
diagnostic accuracy but also enhance explainability Tanyel et al. (2023); Dai et al. (2022). For
example, Tanyel et al. Tanyel et al. (2023) propose CEs to identify the minimal feature change
and effectively demonstrate which features are more informative in differentiating two tumor types
from MRI brains. Inspired by this, we aim to make this progress further interactive and explainable
by explaining the global feature change in specific local regions. In particular, we propose CEs
as‘what if we exchange the patch between two images, will the diagnosis shift?’ to identify critical
regions within images that may cover abnormalities or lesions, providing insights into the diagnosis
process. For instance, as illustrated in Figure.1, we generate a counterfactual image by iteratively
swapping a patch between semantically similar images with different diagnosis labels until a shift in
predicted diagnosis is achieved. Due to aforementioned similarities, exchanging a patch in the same
position between two radiology images − particularly those that are semantically similar but carry
different labeled diagnoses − does not disrupt the anatomical content. Notably, previous methods
only integrate the CEs into the decision-making process, lacking the ability to convey factual or
counterfactual information effectively. In contrast, we translate our CEs into a prompt that can
present the key concept of CEs and encapsulate the factual and counterfactual content. This prompt
can yield more comprehensive instructions to LLMs and facilitate the elicitation of their knowledge.

In this paper, we propose a CounterFactual Explanations-based framework (CoFE) for radiology
report generation. CoFE is capable of learning non-spurious visual representations and effectively
leverage the capabilities of LLMs. First, we introduce a novel type of CEs for RRG tasks and pro-
pose a counterfactual generation process through contrastive learning, which constructs a counter-
factual image and a learnable prompt. Specifically, we adopt a negative sampling strategy to discover
the most semantically similar negative sample from the data bank, based on text similarity and diag-
nosis label. By iteratively exchanging patches between factual (positive) and negative samples until a
predicted diagnosis change occurs, we pinpoint the critical region and create a counterfactual image.
We then employ contrastive learning within a joint optimization framework to differentiate repre-
sentations between factual and counterfactual samples, enabling the model to learn non-spurious
visual representations. Subsequently, we employ a pretrained LLM, GPT-2 Medium Radford et al.
(2019), as a decoder to generate reports. To fine-tune the LLM efficiently, we propose a learnable
prompt that encapsulates both factual and counterfactual content. This prompt can elicit the embed-
ded knowledge within the LLM, which is helpful to generate semantically coherent and factually
complete reports.
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We evaluate our proposed method on two benchmarks, IU-Xray Demner-Fushman et al. (2016)
and MIMIC-CXR Johnson et al. (2019) respectively. Extensive experiments demonstrate that our
approach can outperform previous competitive methods in metrics that measure descriptive accuracy
and clinical correctness. It indicates that leveraging CEs to learn non-spurious representations and
prompt the generation process can improve the quality of predicted reports.

2 RELATED WORK

2.1 MEDICAL REPORT GENERATION

The pursuit of automating medical report generation through machine learning aims to alleviate the
workload on radiologists. Numerous effective concepts exist to learn non-spurious representations
to mitigate inherent data bias. Relation memory Chen et al. (2020; 2021) can prompt enhancement
by boosting interaction efficiency of cross-modal memory network. Integrating medical knowledge
is another solution, researchers utilize graph structural data Yang et al. (2022); Li et al. (2023) or
medical tags Li et al. (2022b); Jing et al. (2018) to incorporate prior knowledge into image encod-
ing. Additional models Yang et al. (2023a); Xu et al. (2023) also enhance performance by integrating
knowledge information, with strategies including multi-modal semantic alignment and multi-label
classification pre-training. To identify the abnormalities, PPKED Liu et al. (2021a) employs a unique
architecture to mimic human learning processes. Tanida et al. Tanida et al. (2023) utilize a lesion
detector pre-trained by pseudo labels to attain the non-spurious features and lead a pretrained GPT-
2 Radford et al. (2019). Due to the lack of annotations, weakly supervised signals from pseudo
labels may lead to the misalignment. Although, large pretrained models showcase the adaptability
in learning medical representations Mohsan et al. (2023), the scarcity of data may limit the poten-
tial of LLMs. In this paper, our method concentrates on learning non-spurious representations by
identifying critical regions, and employing a robust prompt to fine-tune the LLM efficiently.

2.2 COUNTERFACTUAL EXPLANATIONS REASONING

The advent of counterfactual explanations (CEs) construction has driven significant innovations,
particularly in computer vision applications, enhancing both accuracy and interpretability. CEs
have the potential to relieve existing methodologies from the reliance on extensive training data
and meticulous annotations, by asking ‘what if’ scenario to explore self-supervised signals. Fang et
al. Fang et al. (2019) and Kim et al. Kim et al. (2021) have introduced systems and frameworks, such
as Counterfactual Generative Networks (CGN), designed to augment interpretability and resilience
to CEs inputs without compromising accuracy. Similarly, CPL He et al. (2022) proficiently generates
counterfactual features and has exhibited remarkable efficacy in tasks like image-text matching and
visual question answering. Ji et al. Ji et al. (2023) specifically target video relationship detection,
constructing CEs to elucidate their influence on factual scenario predictions. Further, the studies
by Yang et al. Yang et al. (2023c) on PubMedQA highlight the crucial role of CEs, generated via
ChatGPT, in learning causal features in counterfactual classifiers, demonstrating the versatility and
broad applicability of counterfactual methods across various domains. In this paper, we employ CEs
to enhance the RRG models, especially where acquiring a substantial amount of golden annotations
is prohibitively expensive.

2.3 PROMPT TUNING

Prompt tuning is a method in natural language processing (NLP) used to efficiently modify the
behavior of a pre-trained LLM, based on specific prompts or trigger phrases. This approach involves
fine-tuning the model on a set of prompts or queries and their corresponding responses, allowing the
model to respond more accurately or appropriately to those or similar prompts Shin et al. (2020);
Zhou et al. (2022b). For example, Guo et al.Guo et al. (2022) applied Q-Learning to optimize
soft prompts, while PTuning v2 Liu et al. (2021c) demonstrated that continuous prompt tuning
could match the performance of fine-tuning in various scenarios. This technique has also garnered
significant interest in the field of computer vision. CoOp Peng et al. (2021) introduced a strategy
for continuous prompt optimization to negate the need for prompt design, and CoCoOp Zhou et al.
(2022a) expanded upon this by learning an instance-conditional network to generate a unique input-
conditional token for each image. Fischer et al. Fischer et al. (2022) also prove the adaptability
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Figure 2: Illustration of our proposed CounterFactual Explanations-based framework (CoFE). CoFE
consists of two unimodal encoders, one cross-modal encoder, one language decoder and our pro-
posed counterfactual generation module that can construct a counterfactual image and a learnable
prompt, respectively. The entire framework is trained through joint optimization, mainly employing
contrastive learning paradigms for radiology report generation.

of prompt tuning in medical image segmentation tasks. However, the reliance on empirical risk
minimization presents challenges, necessitating advancements to avoid spurious representations.
In this paper, we aim to propose a generalizable prompt incorporating factual and counterfactual
content to efficiently refine the medical LLMs.

3 METHODOLOGY

In this section, we introduce the detailed implementations of our proposed CounterFactual
Explanations-based framework (CoFE). As shown in Fig.2, our CoFE mainly consists of two uni-
modal encoders, one cross-modal encoder, a language decoder, and a counterfactual generation
module with four training objectives. We first introduce the backbone of CoFE and then describe
the counterfactual generation process in detail.

3.1 BACKBONE

Notations. In this work, we aim to integrate counterfactual explanations into report generation
models to learn non-spurious visual representations and efficiently generate high-quality reports.
Radiology report generation tasks require a model to translate a complex radiology image I into a
generic report T = {y1, y2, . . . , yn}. We denote the target report by T̂ = {ŷ1, ŷ2, . . . , ŷn̂}. n and
n̂ represent the number of tokens in a report. In addition to corresponding reports, we also utilize
the diagnosis label C for each examination in this work. Since not all existing benchmarks provide
such annotations, we use the CheXPert labeling tool Irvin et al. (2019) to label ground truth reports
with 14 different medical terminologies. Notably, we assign the label “No Finding” when CheXPert
does not extract any terminologies.

Automatic report generation systems are typically based on encoder-decoder frameworks. The en-
coder generally aims to convert the given image I into dense visual vectors fv(I). The decoder
is usually a sequence processing network, which translates fv(I) to a report T . In this work, we
adopt the BLIP Li et al. (2022a)-based architecture as the backbone to generate desired generic and
matched reports, drawing inspiration from the successful concepts found in DCL Li et al. (2023).
Such architecture presents superior representation learning capabilities and employs three losses to
train two uni-modal encoders, one cross-modal encoder, and one language decoder.

Image encoder. Different from prior work employing CNNs, we use a pre-trained ViT Dosovitskiy
et al. (2020)-S as the image encoder fv(·). ViT enables finer semantic feature extraction by dividing
images into more patches, specifically 16×16, compared to conventional CNNs 7×7. A [CLS]
token is also prepended before input to the encoder layers. The encoder layer process, fe(·), is
defined as:

fe(x) = LN(FFN(eattn) + eattn), (1)
eattn = LN(MHA(x) + x), (2)
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where FFN and LN represent Feed Forward Network Vaswani et al. (2017) and Layer Normalization
operation Ba et al. (2016), respectively. MHA Vaswani et al. (2017) (multi-head attention) splits
attention into n heads, with each head, Att(·), defined as:

Att(x) = softmax(
Qx(Kx)⊤√

d
)Vx. (3)

with d = 384 being the embedding space dimension, and {Q,K∗,V∗} representing the correspond-
ing Query, Key, Value vectors. The resulting output, the encoded visual vectors fI , will be used for
report generation.

Text encoder. We employ a PubMedBERT Gu et al. (2020), pre-trained with abstracts and full texts
from PubMed1, as our text encoder ft(·). It extracts textual representations ft(T ) from positive and
negative reports, which will be utilized for calculating the image-report contrastive (IRC) loss to
facilitate learning robust and generalizable medical visual and textual representations. We utilize
momentum image and text encoders to extract positive and negative data representations in a batch.
Then we first calculate the softmax-normalized image-to-report similarity f i2t

m (I) and the report-to-
image similarity f t2i

m (T ) for the image I and its paired report T by f i2r
m (I) = exp s(I,Tm)/τ∑M

m=1 exp s(I,Tm)/τ
,

with τ as a learnable temperature parameter. The IRC loss can be written as:

LIRC =
1

2
(Lce(g

t2i(T ), f t2i(T )) + Lce(g
i2t(I), f i2t(I))). (4)

where g(·) denotes the ground truth of similarity.

Cross-modal encoder. The cross-modal encoder is utilized to capture the cross-modal represen-
tations given an image-report pair, which contains multiple Transformer sub-modules. Each sub-
module is composed of a bidirectional self-attention layer, a cross-attention layer and a feed-forward
neural network composition. In cross-attention layer, for each head, {Q,K∗,V∗} comes from
Q = Wq ∗ eattn, K = Wk ∗ fI , and V = Wv ∗ fI , where W∗ are the learnable parameters.
Then [Encode] vector is projected to d = 2 with a linear layer to predict the probability pitm.
Then the image-report matching (IRM) loss is conducted as following to identify whether the given
image-report pair is positive (matched) or negative (unmatched):

LIRM = Lce(g
irm, pirm). (5)

Language decoder. Acknowledging the superior capabilities of LLMs in various language genera-
tion tasks, we employ a GPT-2 Radford et al. (2019) Medium, also pre-trained from PubMed, as our
language decoder. This enables the generation of detailed and semantically coherent reports. GPT-2,
an auto-regressive model leveraging self-attention, conditions each output token in a sequence on its
previous tokens for report generation. The entire process can be represented as:

p(T |I) =
n∏

t=1

p(yt|y1, . . . , yt−1, I). (6)

Here, yt is the input token at time step t. The typical objective for report generation is minimizing
cross-entropy loss between the predicted and ground truth token sequences. With ground truth report
R̂, all modules are optimized to maximize p(y|I) by minimizing:

LRG = −
n̂∑

t=1

log p(ŷt|ŷ1, · · · , ŷt−1, I). (7)

3.2 COUNTERFACTUAL GENERATION

In this section, we will explain how to generate counterfactual features, encompassing a counterfac-
tual image and a learnable prompt in detail. Counterfactual images are pivotal, allowing the model
to discern non-spurious features through contrasting representations between factual and counter-
factual images. The learnable prompt encapsulating both factual and counterfactual contents then
efficiently refine the pre-trained LLM.

1https://pubmed.ncbi.nlm.nih.gov
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Negative sampling strategy. Counterfactual features combine features derived from both factual
(positive) and negative data. We first propose a negative sampling strategy to select the negative data
from a data bank. Such negative data should have different labels and are difficult to be distinguished
from the factual data. To implement this, we first construct a data bank, denoted by D, containing
candidate data, each instance di is annotated with {Image Ii, Report Ti, Label Ci}, maintaining
balanced distribution of diagnostic labels within the data bank. Next, we select the negative data
from the data bank, as d− = argmax

i
BLEUScore(T, Ti) and C ̸= Ci. The BLEUScore func-

tion calculates the BLEU Papineni et al. (2002) score, setting the factual report as reference and
the negative data as candidate. The so-selected d− = I−, T−, C− is earmarked as negative data,
exhibiting textual semantics similar to the original data but possessing distinct labels, emphasizing
their inherent dissimilarity. The entire procedure is visually depicted in Fig. 3.

Figure 3: Illustration of negative sam-
pling strategy. The objective is to select
a negative sample that is mostly similar
in semantics but carries a different diag-
nostic label from the data bank.

Counterfactual image. After selecting the negative data
from candidates, we proceed to generate counterfactual
images combing factual and negative images, thereby en-
hancing non-spurious representations through contrastive
learning. As shown in Fig.4, a factual image, I , is pre-
sented in the form of n patches: I = p1, p2, ..., pn; its
corresponding negative image is represented as I− =
p−1 , p

−
2 , ..., p

−
n . From the 1st to the n-th patch, each patch

of the negative image replaces the patch of the factual im-
age at the corresponding position. The modified image
is denoted by I ′ = (1 − u) ∗ I + u ∗ I−, where u is a
one-hot vector to present the index of the replaced patch.
Subsequent to each replacement, the modified image is
fed into a pre-trained and frozen discriminator composed
of the image encoder and a Multilayer Perceptron (MLP)
to predict the logits for the diagnostic label C ′. The replacement process ceases once C ′ ̸= C,
culminating in the acquisition of the counterfactual image I ′. This methodology enables the iden-
tification of critical regions that prompt models to alter the predicted diagnosis. In essence, such
regions contain pivotal information pertinent to the examination. It helps to mitigate inherent data
bias and facilitate the model’s focus on these critical regions, learning non-spurious and robust visual
representations.

Figure 4: Illustration of counterfactual
generation process, including a counter-
factual image and a learnable prompt.

Learnable prompt. Another key component of our coun-
terfactual features is a learnable prompt, designed to elicit
knowledge and leash the potential of pre-trained LLMs.
Frequently used prompts in caption tasks, such as “the
caption is...” or “describe [visual tokens]”, clarify the
task but often lack comprehensive instructions. To rec-
tify this deficiency, we embed both factual and counter-
factual content within the learnable prompt to attain more
generalizable representations. As suggested by Tu et al.
(2023), our prompt incorporates detailed instructions and
is formulated by concatenating the factual visual tokens,
factual label, counterfactual label, and the index of the
patch with supplementary text. The training prompt is ar-
ticulated as “Replacing the u patch of fv(I) can lead to a
shift in the predicted diagnosis from C to C−. The diag-
nostic report, describing critical entities including tubes,
pneumothorax, pleural effusion, lung opacity, cardiac sil-
houette, hilar enlargement, and mediastinum, is”.

3.3 JOINT OPTIMIZATION
In addition to the image-report matching loss, image-report contrastive loss, and report generation
loss, we introduce a novel contrastive loss aimed at amplifying the proficiency of visual represen-
tation learning. Specifically, the factual image feature fv(I), text feature ft(T ), and counterfactual
image feature fv(I

′) are employed to compute the counterfactual loss, Lcf , thereby extending the
divergence between the counterfactual features and the features of the original data. This can be
represented as:
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LCF = − log
e

fv(I)@ft(T )
τ

e
fv(I)@ft(T )

τ + e
fv(I′)@ft(T )

τ

(8)

Here, @ denotes cosine similarity. The total training loss is written as:

L = LIRC + λrgLRG + LIRM + λcfLCF (9)

where λcf and λrg denote the loss weights, we assign a value of 2 to λcf and 5 to λrg based on
performance on the validation set.

4 EXPERIMENTS

4.1 DATASETS, EVALUATION METRICS AND SETTINGS

Datasets. We validate the efficacy of our proposed CoFE using the IU-Xray Demner-Fushman et al.
(2016) and MIMIC-CXR Johnson et al. (2019) benchmarks. The settings adopted by Chen et al.
(2020) are utilized to uniformly split and preprocess the datasets and reports, ensuring a fair compar-
ison. IU-XrayDemner-Fushman et al. (2016), a prevalent benchmark for evaluating RRG systems,
comprises 3,955 reports and 7,470 images. After excluding cases with only one image as per Chen
et al. (2020); Li et al. (2019), 2069/296/590 cases are allocated for training/validation/testing re-
spectively. We utilize CheXPert to extract terminologies from reports and assign labels to each
examination. MIMIC-CXRJohnson et al. (2019), the most extensive radiology dataset publicly-
available, includes 368,960 images and 222,758 reports. It has officially segmented subsets and has
spurred the development of structurally explorative child datasets like RadGraph Jain et al. (2021).

Metrics. We employ two types of metrics to evaluate the quality of our predicted reports. First, nat-
ural language generation (NLG) are employed to assess the descriptive precision of the predicted
reports, with CIDEr Vedantam et al. (2015) and BLEU Papineni et al. (2002) being primary. BLEU
is primarily designed for machine translation, evaluating word n-gram overlap between reference
and candidate, repeating frequent sentences can also achieve high scores. Conversely, CIDEr, devel-
oped for captioning systems, rewards topic terms and penalizes frequent ones, thus is more fitting
for evaluating reports in RRG tasks. Additionally, ROUGE-L Lin (2004) and METEOR Banerjee &
Lavie (2005) are also considered for comprehensive comparison. Lastly, clinical efficacy metrics,
a more recent innovation, ascertain the clinical accuracy of reports by using the CheXPert labeling
tool to annotate predicted reports. Subsequent classification measurements like F1-Score, Precision,
and Recall assess the aptness of the generated reports in describing abnormalities.

Experimental settings. For both datasets, we only utilize the front view examinations. We first pre-
train the ViT-S for 10 epochs using diagnosis labels. Given the distinct domain difference between
medical and general texts, a pretrained PubMedBert Gu et al. (2020) is utilized as both a tokenizer
and a text encoder. The training is conducted on 4 NVIDIA 2080 Ti GPUs, spanning 50 epochs with
batch sizes of 8. The model checkpoint achieving the highest CIEDr metric is selected for testing.
An Adam optimizer, with a learning rate of 1e-4 and a weight decay of 0.02, is applied. We set the
size of data bank to 1,380. Note that all encoded vectors are projected by a linear transformation
layer into a dimension of d = 384.

4.2 MAIN RESULTS

Descriptive Accuracy. We compare our CoFE with several competitive RRG methods on two
benchmarks. R2Gen Chen et al. (2020) and CMN Chen et al. (2021) are two widely-used base-
line models implementing relation memory. KERP Li et al. (2019), PPKED Liu et al. (2021a),
MKG Zhang et al. (2020) and MGSK Yang et al. (2022) are proposed to integrate medical knowl-
edge with typical RRG backbones. CMCL Liu et al. (2022) and DCL Li et al. (2023) employ
contrastive learning to further improve performance. As presented in Table.1, our method notably
outperforms all competing approaches, attaining the highest figures across almost all the metrics,
with a CIDEr score of 0.766 and BLEU-4 score of 0.170 on IU-xray. Similarly, our method demon-
strates competitive performance on the MIMIC-CXR dataset, achieving the highest ROUGE-L score
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Table 1: The performance in NLG metrics of our proposed method compared to other competitive
methods on the IU-Xray and MIMIC-CXR datasets. The highest figures in each column are high-
lighted in bold.

IU-Xray MIMIC-CXR

Methods CIDEr BLEU-4 ROUGE-L METEOR Methods CIDEr BLEU-4 ROUGE-L METEOR

R2Gen 0.398 0.165 0.371 0.187 R2Gen 0.253 0.103 0.277 0.142
KERP 0.280 0.162 0.339 - CMN - 0.106 0.278 0.142
HRGP 0.343 0.151 0.322 - TopDown 0.073 0.092 0.267 0.129
MKG 0.304 0.147 0.367 - PPKED 0.237 0.106 0.284 0.149
PPKED 0.351 0.168 0.376 0.190 RGRG 0.495 0.126 0.264 0.168
MGSK 0.382 0.178 0.381 - MGSK 0.203 0.115 0.284 -
CMCL - 0.162 0.378 0.186 CMCL - 0.097 0.281 0.133
DCL 0.586 0.163 0.383 0.193 DCL 0.281 0.109 0.284 0.150

CoFE 0.766 0.170 0.524 0.206 CoFE 0.454 0.121 0.296 0.171

of 0.296 and METEOR score of 0.171. These results showcase the superior capability of our method
in generating matched and semantically similar reports.

Clinical Correctness. We also evaluate our method by Clinical Efficacy (CE) metrics on the
MIMIC-CXR dataset to evaluate the clinical correctness of our predicted reports. In Table. 2, we
compare the performance against several baseline models, DCL, R2Gen and MKSG, respectively.
Most notably, our CoFE achieves the SOTA performance across all the clinical efficacy metrics,
with a Precision of 0.486, Recall of 0.369, and F1-score of 0.402. This performance-boosting un-
derscores effectiveness of integrating counterfactual explanations, enabling the model to generate
more clinically correct and relevant reports.

4.3 ANALYSIS

In this section, we conduct ablation studies and a case study on IU-Xray and MIMIC-CXR datasets
to investigate the proficiency of each key component in CoFE. Specifically, Table. 3 presents the
quantitative analysis of CoFE on IU-Xray measuring descriptive accuracy. And clinical correctness
evaluation is reported in Table. 2. We employ a vanilla BLIP as our base model.

Effect of pre-trained LLMs. Compared with the base model in setting (a), illustrated in Table 3 ,
where we utilize a pre-trained PubMedBert and a 355M-parameter GPT-2 Meduium as the text en-
coder and language decoder, there is a significant enhancement in all metrics, with CIDEr improving
from 0.366 to 0.517, emphasizing the impactful role of LLMs in enhancing the report generation
performance. Specifically, PubMedBert can encode the reports into better textual representations,
while GPT-2 has the capability to generate semantically-coherent and logically-consistent reports.

Table 2: The comparison of the
clinical efficacy metrics on MIMIC-
CXR dataset.

Methods Precision Recall F1-score

DCL 0.471 0.352 0.373
R2Gen 0.333 0.273 0.276
MKSG 0.458 0.348 0.371

Base 0.328 0.275 0.279
+ LLMs 0.394 0.321 0.314
+ prompt 0.462 0.350 0.364
+ LCF (full) 0.486 0.369 0.402

Non-spurious Representation Learning. The primary mo-
tivation for integrating counterfactual explanations is to en-
hance non-spurious visual representations by contrasting the
representations between factual and counterfactual images.
When comparing setting (c) to Setting (a) and the full model
to setting (b), a significant performance boost is observable
across all metrics. For instance, CIDEr elevates from 0.517
to 0.680 and from 0.706 to 0.766, respectively. Addition-
ally, BLEU-4 metrics reach 0.170, achieving the SOTA per-
formances. These notable elevations highlight the importance
of non-spurious representation learning capabilities in radiol-
ogy report generation tasks.

Effect of Prompt Tuning. To fully elicit pre-trained knowl-
edge and unleash the potential of LLMs, we propose a learnable prompt that encapsulates both
factual and counterfactual content to refine the LLMs. Observing setting (a) vs (b) and (c) vs the full
model, it is evident that our proposed prompt can further augment performance, especially evident
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Table 3: Quantitative analysis of our proposed method on the IU-Xray dataset. We employ a vanilla
BLIP without loading pre-trained parameters as the base model.

Settings LLMs Prompt LCF Random Sampling CIDEr BLEU-4 ROUGE-L METEOR

Base 0.366 0.130 0.259 0.157

(a) ✓ 0.517 0.148 0.392 0.184
(b) ✓ ✓ 0.706 0.157 0.472 0.189
(c) ✓ ✓ 0.680 0.155 0.490 0.198
(d) ✓ ✓ ✓ 0.659 0.158 0.474 0.190
(e) ✓ ✓ ✓ ✓ 0.702 0.163 0.481 0.204

CoFE ✓ ✓ ✓ 0.766 0.170 0.524 0.206

Figure 5: Illustration of reports generated by R2Gen, DCL and our CoFE. The text in blue demon-
strates the ground truth diagnosis labels. The red text represent the accurately matched abnormali-
ties.

in ROUGE-L, which elevates from 0.392 to 0.472 and from 0.490 to 0.524, respectively. This incre-
ment underscores the effectiveness of our prompt in refining the model’s natural language generation
capability. Furthermore, as shown in Table.2, this prompt can also increase the clinical correctness
of the predicted reports.

Negative Sampling Strategy. The key point to construct counterfactual image is selecting negative
data which have different labels and are difficult to be distinguished from the factual data. To verify
this, we employ a random sampling strategy in which candidate data are indiscriminately selected
as the negative sample. The incorporation of this random sampling strategy in settings (d) and (e)
results in a discernible degeneration in the model’s capability to generate high-quality reports. This
slight decline across almost all performance metrics elucidates the influential role of our negative
sampling strategy in pinpointing the most suitable negative data.

A case study. In Figure.5, we present two samples from MIMIC-CXR and corresponding reports
generated by R2Gen, DCL and our CoFE. R2Gen seems to lack specificity and detailed insights,
providing a more generalized statement about the conditions and missing several key abnormalities
mentioned in the ground truth, such as pulmonary nodules and pleural effusion. The DCL model
is somewhat more aligned with the ground truth, acknowledging the unchanged appearance of the
cardiac silhouette and the presence of extensive bilateral parenchymal opacities. However, it fails
to mention the presence of pulmonary nodules and the pleural effusion in the right middle fissure
specifically. In contrast, CoFE addresses pleural effusion, atelectasis, and the absence of pneumonia
and pneumothorax, making it more in alignment with certain elements of the ground truth. These
observations prove that our CoFE is capable of generating factual complete and consistent reports.

5 CONCLUSION

In this paper, we present a novel framework, Counterfactual Explanations-based Framework (CoFE),
designed for radiology report generation. To address the inherent data bias, we introduce a novel
counterfactual concept, allowing CoFE to identify critical regions and construct a counterfactual
image during training. By contrasting the representations between factual and counterfactual fea-
tures, CoFE is adept at learning non-spurious visual representations. Subsequently, we summarize
the counterfactual generation process into a learnable prompt, enabling the efficient fine-tuning of
a pre-trained LLM. Experiments on two widely-recognized benchmarks verify the efficacy of our
approach in generating factual, comprehensive, and coherent reports.
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