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Abstract

Turbulent flows are characterized by intense generation of turbulent kinetic energy1

through nonlinear physical processes which cascade from the large- to small-scale2

structures in a forward energy cascade, which is chaotic in nature, and statisti-3

cally intermittent. Using a recently developed extreme variational autoencoder4

(XVAE), the turbulent flow fields are replicated to a high order of accuracy. In5

this extended abstract, we demonstrate XVAE as a powerful alternative to the6

classical Proper Orthogonal Decomposition (POD) technique for reconstructing7

large-eddy-simulation (LES) data for scalar temperatures from a buoyant turbu-8

lent field at a high Reynolds number of 1010.9
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1 Introduction11

Simulating turbulent flows numerically becomes computationally prohibitive as the Reynolds num-12

ber increases. Proper Orthogonal Decomposition (POD) has been the most successful statistical13

method, extracting dominant energetic structures from turbulent flow fields as eigenfunctions of the14

two-point correlation tensor [Berkooz et al., 1993]. However, POD neglects the intermittency and15

also extreme turbulence events in the flow. This limitation leads to inaccuracies and information loss16

in the emulation process.17

Variational autoencoders [VAEs; Kingma and Welling, 2013] offer an alternative, encoding data18

inputs as latent variables for generating new output realizations. However, traditional VAEs use19

Gaussian distributions and do not naturally account for extremes. We introduce a novel framework20

that incorporates dependent extremes within a VAE engine, allowing for flexible modeling of ex-21

tremal dependence and efficient uncertainty quantification (UQ). Specifically, we develop a flexible22

max-infinitely divisible (max-id) process embedded in the VAE’s structure (XVAE), enabling a ro-23

bust emulation of complex turbulent flow systems [Zhang et al., 2023].24

In this study, we apply both POD and XVAE to emulate turbulence flow from a high-resolution25

large-eddy simulation (LES) at the x-z plane of a fixed y level. We also extend the XVAE to allow26

for the emulation of 3D indexed data so we can model and emulate the evolution of turbulent plumes27

in all three different directions. We evaluate the methods based on their ability to emulate full data28

and joint tail behavior, with XVAE showing particular strength in UQ for extreme events.29

2 Large-Eddy-Simulation of a Turbulent Plume30

A modified version of the Advanced Research Weather Research and Forecast Model (WRF-ARW31

v4.1) [hereafter WRF; Skamarock et al., 2008] was used to simulate a turbulent buoyant plume32
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Figure 1: The left panel shows the log scale of marginally-transformed LES simulation of the
Mosquito wildland fire at the 50th time; see Equation (1). The right panel shows the centerline
data in the x-z plane at y = 4 km. See Figure 2 for the corresponding emulation results.

via LES with active scalar transport equations, validated for buoyant plumes [Bhaganagar and33

Bhimireddy, 2020, Bhimireddy and Bhaganagar, 2021].34

The simulation involved a heated, axisymmetric source with diameter D in a quiescent environment.35

The LES model solves the compressible Euler equations in flux formulation, conserving mass, mo-36

mentum, and energy; see Bhaganagar and Bhimireddy [2020] for details of the LES methodology37

and the validation. In this study, the LES coupled with WRF is used to simulate the Mosquito wild-38

land fire (California, September 2022) using realistic boundary conditions from NOAA’s HRRR39

model. The plume is released from a 400m diameter circular source at (39.006◦ N, 120.745◦ W).40

The background atmospheric velocity profile, temperature profile and surface heat flux, were ob-41

tained from the WRF-LES simulations initiated at 11am on September 09.42

The LES domain measured 8 km × 8 km × 5 km with a uniform Cartesian grid (198 × 198 × 50043

nodes). Periodic boundary conditions were set on the sides, and constant-pressure at the top. At the44

center of the bottom boundary, the plume source had a prescribed buoyancy flux of 1.07104m4s3,45

with no initial momentum, driven purely by buoyancy. Simulations ran for 50 minutes with data46

recorded every 30 seconds (i.e., 100 times in total). Planar data were extracted from the x-z plane47

at y = 99 grid location (i.e., 4 km), the centerline of the plume.48

3 VAE with spatial extremes49

The turbulent buoyant plume exhibits high spatial irregularity, temporal volatility, and significant50

spatial clustering of extremes with anisotropy. Accurate spatio-temporal modeling is challenging51

due to its high-resolution grid. Therefore, we need to carefully model the tail of the joint distri-52

bution while ensuring computational efficiency. Zhang et al. [2023] extended the max-id process,53

and developed a model to allow for both short-range asymptotic dependence along with mid-range54

asymptotic independence, and long-range exact independence. They were able to emulate the ex-55

treme values in Red Sea sea surface temperature in very high dimensions for the first time.56

Denote the observed turbulent plume at t by {ut(s) : s ∈ S}, in which S may either be the 3D57

domain of 8 km × 8 km × 5 km or the 2D centerline; see Figure 1. In our study, we marginally58

transform the data so the input data conform to the max-id model assumptions59

Xt(s) = 1− ut(s)× 105. (1)

Then {Xt(s) : s ∈ S, t = 1, . . . , 100} are modeled as follows:60

Xt(s) = εt(s)Yt(s), s ∈ S, (2)

where εt(s) is a noise process with independent Fréchet(µ, τ, 1/α0) marginal distributions, where61

x > 0, τ > 0 and α0 > 0. Then, Yt(s) is constructed using a low-rank representation:62

Yt(s) =

{
K∑

k=1

ωk(s)Zkt

}α0

, (3)
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Figure 2: The left panel shows the emulation of the marginally-transformed LES simulation using
the 3D XVAE and the right panel shows the emulation of cross section of y = 4 km using the 2D
XVAE. See Figure 1 for the original turbulent plume input.

where α ∈ (0, 1), {ωk(s) : s ∈ S, k = 1, . . . ,K} are a set of basis functions, and {Zkt : k =63

1, . . . ,K} are independent exponentially-tilted positive-stable (expPS) variables, controlled by a64

rate parameter αt ∈ (0, 1) and a tilting parameter θkt ≥ 0. See Section B.1 in Zhang et al. [2023]65

for more specific forms of an expPS(α, θk) distribution.66

The hierarchical construct of our model (2)–(3) allows the embedding of the latent variables Zkt, k =67

1, . . . , K in encoded space of a VAE so we can encode and decode the turbulent plume fields68

while minimizing reconstruction error. The encoder and decoder are multilayer perceptron (MLP)69

neural networks that optimize parameters to retain maximum information and replicate the joint tail70

properties of the original field (i.e., to minimize the evidence lower bound). We refer to this VAE,71

integrated with the max-id process, as XVAE.72

Once the XVAE is trained and its weights and biases are optimized, posterior simulation of new73

latent variables Zt for the observations Xt at time t can be performed efficiently. Synthetic data X∗
t74

can then be generated rapidly by passing these latent variables through the decoder and sampling75

from the model specified by (2)–(3). To transform X∗
t back to the original scale of the turbulence76

plume, we apply an inverse marginal transformation: u∗
t = (1 −X∗

t )/10
5, yielding the final emu-77

lated output. Refer to Zhang et al. [2023] for an explicit architecture of the XVAE.78

4 Results79

For both the 2D and 3D emulation tasks, we pre-specify a dense grid of K knots {s01, . . . , s0K}80

in the domain S ∈ R2 or R3. The kth basis function is the Gaussian radial basis function, i.e.,81

ωk(s) ∝ exp{−||s − s0k||2/c} for s ∈ S , k = 1, . . . ,K. We follow Algorithm 1 in Zhang et al.82

[2023] to choose the best number of knots K and shape parameter c,83

Figure 2 displays emulation results at time 50 using the XVAE for both 2D and 3D LES. Generally,84

XVAE closely replicate the spatial patterns of turbulence across all times. More importantly, multi-85

ple model evaluation metrics, such as the tail RMSE and the spatially-pooled QQ-plot, show good86

performance in fitting and emulating both the full range of data and the joint tail behavior.87

In addition, we conduct a comparative study in the 2D case to evaluate the emulation performance88

of XVAE against POD, commonly used to capture dominant structures in 2D turbulent flows. We89

compute an extremal dependence measure from spatial extremes literature:90

χij(p) = Pr{Fj(uj) > p | Fi(ui) > p} =
Pr{Fj(uj) > p, Fi(ui) > p}

Pr{Fi(ui) > p}
∈ [0, 1], (4)

in which p ∈ (0, 1) and Fi and Fj are the marginal distribution functions for ui and uj , respectively.91

Assuming stationarity and isotropy, we simplify χij(u) to χd(u), with d = ||si − sj || denoting the92

distance. The metric χd(p) is then empirically estimated for each data set (observed or emulated).93

Figure 3 compares empirical measure χ̂d(p) for p ∈ (0.9, 0.9999) at d = 4.24 and d = 8.49 for94

the observed turbulent buoyant plume and the emulations from POD (50 modes) and XVAE. The95
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Figure 3: The empirically-estimated χd(p) at d = 4.24 (left) and d = 8.49 (right) based on plume
observations (red), POD reconstructed data using 50 modes (green) and XVAE emulated data (blue).

XVAE aligns closely with observed data at both distances, while POD tends to overestimate extremal96

dependence at sub-asymptotic levels (p ∈ (0.93, 0.99)), likely due to oversmoothing.97

To investigate how the marginal distributions at different locations evolve over time, we generate98

1,000 emulated samples of {Xt : t = 1, . . . , nt} using XVAE. For each location and time point, we99

thus obtain 1,000 replicates to assess variational Bayes-based marginal uncertainty. Figure 4 shows100

the marginal distributions of log(Xit) for i = 500, 3861, 17323, 80017, 83014 at t = 1 and 100.101

The plots reveal how the density shapes change over time at each location, offering sensible UQ for102

understanding the range and likelihood of turbulence intensity at specific locations and times.103

5 Conclusion104

The proposed XVAE method improves the emulation of turbulent buoyant plumes, especially in105

capturing joint extremal behavior. This approach has significant potential for enhancing predictive106

models of extreme events. Moreover, the XVAE allows for parameter estimation and UQ within a107

variational Bayesian framework. This helps in assessing how sensitive the LES is to changes in input108

parameters and in evaluating the probability of extreme clusters, such as those involving the transport109

of hazardous or contaminant gases in the atmosphere, essential for improved risk management and110

more robust decision-making.
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Figure 4: The left panels show the log scale of X1 and X100. The right panels show the histograms
based on 1,000 samples from the emulation. We present density histograms individually for 5 spe-
cific sites (marked in the left panels) at the two times.
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