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ABSTRACT

Object counting in computer vision has traditionally focused on clearly visible ob-
jects. Many real-world applications, such as crop yield estimation and fruit harvest
planning in agricultural, involve dense and indiscernible object counting (DIOC).
These objects are characterized by their small size, dense distribution, and visual
ambiguity with surroundings, which makes traditional counting methods imprac-
tical. To facilitate research in this crucial yet unexplored challenge, we introduce
DIOCblueberry, a specialized dataset that significantly surpasses existing datasets
in complexity. Compared to FSC147, the most comprehensive general counting
dataset, DIOCblueberry contains 1.9 times more objects per image with an aver-
age of 108 instances, while its box pixel ratio of 2.38‰ is 7.9 times smaller. State-
of-the-art counting methods struggle significantly on such challenging scenarios,
with high counting errors. To address these challenges, we propose MaskCount,
a two-stage multi-modal method. The first stage segments objects from complex
backgrounds using multi-modal features, while the second stage enhances feature
robustness through contrastive loss. We also design an edge-aware patch cropping
mechanism for accurate counting of dense and small objects. Extensive experi-
ments demonstrate that MaskCount achieves substantial improvements over pre-
vious state-of-the-art methods, reducing MAE and RMSE by 25.13% and 35.17%
respectively on DIOCblueberry. We will release our data, models, and code to the
public.

1 INTRODUCTION

Object counting, which aims to estimate the number of instances in an image, has been a fundamen-
tal computer vision task. It serves both as a standalone application and an auxiliary component in
complex vision systems Sun et al. (2023). As a standalone task, object counting has demonstrated
its significance in diverse domains, including surveillance Wang & Wang (2011), crowd analysis
Chan et al. (2008), wildlife monitoring Norouzzadeh et al. (2018), dietary assessment Nguyen et al.
(2022), and biomedical analysis Alam & Islam (2019). As an auxiliary component, it enhances the
performance of instance segmentation Cholakkal et al. (2019), action localization Narayan et al.
(2019), and pedestrian detection Xie et al. (2020). Recent advances in large-scale datasets Ranjan
et al. (2021); Hsieh et al. (2017); Bargoti & Underwood (2017); Wu et al. (2023) and deep learning
techniques Liu et al. (2022); ukić et al. (2023); Jiang et al. (2023); You et al. (2023); Wang et al.
(2024); Xu et al. (2024) have significantly improved object counting performance.

Current object counting mainly focuses on general counting with clear visible objects, as illus-
trated at the top and middle of Figure 1. These general counting scenarios typically involve
objects that are easily distinguishable, with average box pixel ratios ranging from 5‰ to 25‰
and moderate average object counts between 10 to 60 instances per image. However, many
real-world applications, especially in agricultural scenes, involve dense and indiscernible object
counting (DIOC), where objects are characterized by significantly smaller sizes with average box
pixel ratio less than 2.4‰. The number of objects in DIOC scenarios often exceeds hundreds
or even thousands per image, and these objects exhibit strong visual ambiguity with surround-
ings, as shown at the bottom of Figure 1. In agriculture, accurate counting is essential for crop
yield estimation, harvest planning, and resource allocation Farjon et al. (2020); Linker (2017);
Xiong et al. (2019). For instance, precise fruit counting enables farmers to optimize labor al-
location and forecast market supply, while crop quantity monitoring facilitates data-driven deci-
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sions in irrigation and fertilization Eli-Chukwu (2019); Elavarasan & Vincent (2020); Kamilaris
& Prenafeta-Boldú (2018); Van Klompenburg et al. (2020). These characteristics pose unprece-
dented challenges to traditional counting methods, which are typically designed for clearly visible
objects with distinct boundaries and sufficient inter-object spacing. Given these significant im-
plications for both production efficiency and resource utilization in smart agriculture, we propose
the DIOC task as a new research direction in computer vision, specifically addressing the chal-
lenges of counting objects that are small, dense, and visually ambiguous with their surroundings.

General Object Counting

Dense and Indiscernible Object Counting
Blueberry: 709 
Box Pixel Ratio: 0.54
Resolution: 

Sea shell: 8    
Box Pixel Ratio: 27.66
Resolution: 384×633

Car: 46    
Box Pixel Ratio:  7.13
Resolution: 720×1280

Almond: 11    
Box Pixel Ratio: 8.10
Resolution: 300×300

Tomato: 14    
Box Pixel Ratio: 23.00
Resolution:4000×6000

3072×4096

Blueberry: 1140 
Box Pixel Ratio: 0.20
Resolution: 3072×4096

‰

‰

‰

‰

‰ ‰

Figure 1: Examples of general counting datasets and our
DIOCBlueberry. Box Pixel Ratio refers to the average pixel
area of the bounding boxes relative to the total image area.
Top left: FSC147, top right: CARPK, middle left: almond
dataset, middle right: tomato detection dataset, bottom: our
DIOCBlueberry.

To facilitate research on DIOC, we
introduce DIOCblueberry, a special-
ized dataset focusing on blueberry
counting. We choose blueberries
as our initial research target be-
cause they represent one of the most
challenging scenarios in DIOC: their
small size makes them difficult to de-
tect, their clustered growth pattern
leads to extreme density, and their
color changes during ripening cre-
ates significant visual ambiguity with
leaves and branches. In future work,
we plan to expand our dataset to other
challenging DIOC scenarios, such as
rice panicles, coffee beans, and grape
clusters, which share similar charac-
teristics. Through careful collection
and rigorous quality control, we have
assembled 6,265 images with an av-
erage resolution of 1840×1492 pix-
els. The dataset contains 679,030
meticulously annotated center points,
requiring approximately 1,700 hu-
man hours for collection, cleaning,
and annotation. Our DIOCblueberry
demonstrates remarkable complexity
with an average of 108 instances per
image and an extremely small box
pixel ratio of 2.38‰. As illustrated in
Figure 1, these characteristics make
our dataset particularly challenging, as it combines the difficulties of minimal object size, extreme
object density, and substantial visual ambiguity with the surrounding environment.

We evaluate six state-of-the-art counting methods on DIOCblueberry. All methods show poor per-
formance with Mean Absolute Error (MAE) exceeding 50, and some methods even produce errors
close to 500. Figure 2 illustrates these significant limitations in their counting results. To address
these substantial performance gaps, we propose MaskCount, a two-stage multi-modal method that
leverages visual specialists and large language models. In the first stage, we utilize CLIP for segmen-
tation to reduce background interference, generating a background mask that simplifies the image
for subsequent counting. The second stage enhances feature robustness through contrastive loss,
maximizing the separation between objects and background features. Given that real-world applica-
tions typically involve high-resolution images, traditional cropping methods often lead to counting
inaccuracies at patch edges due to insufficient context information Wang et al. (2021). Therefore,
we design an edge-aware patch cropping mechanism that generates overlapping patches and stitches
only valid regions to produce the final density map.

We conduct extensive experiments to validate the effectiveness of MaskCount. Our experimental re-
sults demonstrate that MaskCount significantly outperforms six state-of-the-art counting methods on
DIOCblueberry, reducing MAE and RMSE by 25.13% and 35.17% respectively. Beyond DIOC sce-
narios, MaskCount also achieves superior performance on general counting datasets in agriculture,
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Pred: 9569.82 Pred: 2739.50 Pred: 902.19

Pred: 913.35 Pred: 677.69

GT: 1501.00

GT: 307.00 Pred: 0.00

CounTR CACVIT SSD

Figure 2: Examples of counting results from several
state-of-the-art counting methods. First column: orig-
inal images, second column: CounTR, third column:
CACVIT, last column: SSD.

Figure 3: Example images from the pro-
posed DIOCBlueberry. Top left: less indis-
cernible and less tiny sample, top middle:
indiscernible and less tiny sample, top right:
less indiscernible and tiny sample, bottom:
indiscernible and tiny samples (typical sam-
ples).

including the almond dataset and tomato detection dataset. Through comprehensive ablation studies,
we verify the effectiveness of each key component: the CLIP-based mask generation reduces MAE
by 6.33%, the edge-aware patch cropping mechanism further decreases MAE by 14.93%, and our
contrastive loss strategy contributes to achieving optimal MAE performance of 38.34.

In summary, the main contributions of this work are as follows:

• We propose the dense and indiscernible object counting (DIOC) task and introduce
DIOCblueberry, a specialized dataset for studying dense distribution and visual ambigu-
ity in agricultural scenes.

• We propose MaskCount, a two-stage multi-modal method that segments objects from com-
plex backgrounds using CLIP in the first stage and enhances feature robustness through
contrastive loss in the second stage, along with an edge-aware patch cropping mechanism
for accurate counting.

• We demonstrate that MaskCount significantly outperforms six state-of-the-art methods on
DIOCblueberry, reducing MAE and RMSE by 25.13% and 35.17% respectively, while also
achieving superior performance on other agricultural counting datasets.

2 DIOCBLUEBERRY

2.1 IMAGE COLLECTION

Figure 4: Annotation example, with point
and box annotations displayed in red.

We collected the images for this study using Xiaomi
13 Ultra and Huawei Mate 60 smartphones. The
images were gathered from two regions in China:
Yunnan Province and Lianyungang City, Jiangsu
Province, both known for blueberry cultivation. The
images originates from extensive fieldwork on two
large farms (500 acres each), capturing genuine agri-
cultural scenarios essential for yield prediction. Un-
like many domains, such images cannot be easily
scraped; this real-world grounding is a crucial, diffi-
cult aspect of valuable agricultural datasets.

The images were captured under various lighting
conditions, covering the full range of blueberry growth stages, from unripe to fully ripe. This en-
sures a comprehensive dataset for the DIOC task. Eight professional annotators initially collected a
large number of images, after which they carefully reviewed the dataset and removed those that were
unsatisfactory or redundant. This process took a total of 300 human hours. The final dataset consists
of 6,265 images, some of which are shown in Figure 3. Additional examples of DIOCblueberry
images can be found in Appendix A.1.1.
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2.2 IMAGE ANNOTATION AND ANALYSIS

The LabelMe tool was used for annotation. For each image, 3 objects were arbitrarily selected as
exemplars, and axis-aligned bounding boxes were drawn for these instances. The remaining objects
were annotated with point annotations. In cases of occlusion, an instance was counted and annotated
only if less than 90% of it was occluded. While crowd scenes already involve high object density,
our scenario poses even greater complexity owing to the severe indistinguishability of objects. This
results in substantially more difficult annotation, where each object demands extensive time and
multiple rounds of strict validation to achieve accuracy. Figure 4 illustrates an example of image
annotation.

The annotation process was divided into three stages. First, eight professional annotators were
trained to familiarize themselves with their tasks. They were trained on knowledge about blueberry
growth and well-annotated samples. They were then asked to annotate 15 images each. The annota-
tions were checked and evaluated. Once the annotator had passed the evaluation, they were allowed
to proceed to the next stage. Secondly, the images were distributed to eight annotators, with each
annotator being responsible for a portion of the dataset. Annotators were required to discuss confus-
ing cases and reach a consensus. Finally, the annotations were reviewed and refined in two rounds.
The second stage required 700 human hours, while the third stage required 350 human hours per
round. The total cost of the annotation process amounted to 1,400 human hours.

The dataset consists of 6,265 images, with an average height of 1840 pixels and an average width of
1492 pixels. The dataset contains a total of 679,030 objects, with the maximum number of objects
in a single image being 1,980.

Table 1: Statistics for existing counting datasets

Dataset Images Avg. Res. Count Statistics

Total Ave Max Avg. Box(‱)

FSC147 6,146 384 × 523 344,150 56 3,701 18.76
CARPK 1,448 720 × 1280 89,774 62 188 4.59

almond dataset 620 300 × 300 4,777 8 37 7.24
tomato detection dataset 520 3406 × 4726 9,112 18 94 14.17

DIOCblueberry (our) 6,265 1840×1492 679,030 108 1,980 2.38

Our training set consists of 3,759 images. A total of 35 high-resolution images, averaging 3391 ×
3771 pixels, were carefully selected by professional annotators to form a test set covering diverse
and challenging scenarios, as shown at the bottom of Figure 1. These images exhibit high object
density and varied spatial distributions, with an average of 297 objects per image and an average
box pixel ratio of 0.82‱. Notably, the test set includes the image with the highest object count in
the entire dataset (see Table 1), further highlighting its difficulty.

The majority of images in general counting datasets contain fewer than 100 objects. In contrast, a
significant proportion of images in our DIOCblueberry dataset contain more than 100 objects, and
some even more than 1000. The proportion of images within each object count range across different
datasets is provided in Appendix A.1.1.

We compare DIOCblueberry with four general counting datasets. FSC147 Ranjan et al. (2021)
is specifically designed for few-shot counting, containing 147 object categories and 6,135 images.
CARPK Hsieh et al. (2017) focuses on vehicle counting in parking lots, with rectangular bounding
boxes provided for each vehicle. The ACFR Orchard Fruit Dataset Bargoti & Underwood (2017),
provided by the agriculture team at the Australian Centre for Field Robotics, The University of Syd-
ney, Australia. It includes apples, mangoes, and almonds, with almond dataset being used for com-
parison. Tomato detection dataset Wu et al. (2023) contains images of miniature tomatoes, captured
under complex lighting conditions in a plant factory. A visual comparison between DIOCblueberry
and other counting datasets is provided in Appendix A.1.2.

Table 1 presents a comparison between our DIOCblueberry dataset and four general counting
datasets. DIOCblueberry contains a large number of average object annotations, with the average
box pixel ratio being much lower than in general counting datasets. This suggests that the objects
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are densely distributed and small in size. Additionally, DIOCblueberry exhibits visual ambiguity
with the background, which makes the objects harder to distinguish.

In summary, we propose the first specialized dataset for counting dense and indiscernible objects,
which is more complex than any existing general counting dataset. Consequently, the substantial hu-
man effort dedicated to the challenging on-farm data acquisition and meticulous annotation not only
underscores the dataset’s complexity, but also matches the scale of labor typically associated with
larger benchmarks—highlighting the intrinsic difficulty of curating high-quality datasets tailored for
the agricultural DIOC task.

3 PROPOSED METHOD

We propose MaskCount, a two-stage multi-modal counting method. As shown in Figure 5, the first
stage segments objects from backgrounds and generates a background mask to simplify the image
for counting. In the second stage, we introduce a contrastive loss to maximize the separation between
objects and backgrounds. Additionally, we design an edge-aware patch cropping mechanism that
generates overlapping patches to further improve counting accuracy. In the following sections, we
detail the architectures of Crop and Stitch (edge-aware patch cropping mechanism), as well as Stage
1 (CLIP-based mask generation) and Stage 2 (estimating density maps with masked images).
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 �
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Figure 5: Overview of MaskCount. A high-resolution image is cropped into overlapping patches,
which serve as the input. The input image I is matched with the background prompt T at the patch
level, activating the successfully matched patches to generate the image mask MI. The masked
image is encoded into features F. F is matched with visual exemplars to generate the response map
R̃, while the appearance features FA of the exemplars are encoded simultaneously. R̃ is decoded to
generate the density map. The valid regions of the density maps are stitched together to produce the
final density map. During training, the background feature FB is extracted from F, sampled, and
used to compute a contrastive loss with FA, aiming to maximize the distance between objects and
the background.

3.1 Crop AND Stitch: EDGE-AWARE PATCH CROPPING MECHANISM

General cropping methods result in low counting accuracy at the edges of cropped image patches
and noticeable stitching artifacts in the final density map. This is due to the lack of contextual infor-
mation in edge regions. To address this, we propose an edge-aware patch cropping mechanism that
uses a sliding window to generate overlapping image patches. During stitching, only the effective
parts of the predicted density maps from image patches are used.

As shown in Figure 5, the high-resolution image size is (H,W ). To ensure completeness of the final
predicted density map, we add black padding of size p around the high-resolution image, resulting
in a padded image of size (H + 2p,W + 2p). The padded image is cropped into m × n patches
using a sliding window of size (h+2p, w+2p), where H = h×m and W = w×n. The horizontal
stride of the window is w, and the vertical stride is h. In other words, overlapping image patches
of size (h+ 2p, w + 2p) are obtained, with the central region (h,w) being effective. Predictions in
the edge regions, with a width of p, are discarded, eliminating edge influence and ensuring counting
accuracy.
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3.2 Stage 1: CLIP-BASED MASK GENERATION

The primary challenges in DIOC arise from objects being small in size, densely distributed, and ex-
hibiting visual ambiguity with their surroundings. Many real-world applications, such as crop yield
estimation, face challenges from highly cluttered backgrounds. These backgrounds include non-
object instances like leaves and bushes. Objects with similar colors to backgrounds also contribute
to visual ambiguity. Additionally, the small size and dense distribution of the objects complicate sub-
sequent counting tasks. To mitigate these issues, we segment objects from complex backgrounds,
thereby reducing the impact of background complexity and easing subsequent counting tasks.

For each high-resolution image, we utilize the large vision-language model Qwen2.5-VL-72B to
generate a list of background descriptive words. Specifically, we calculate the similarity between
the image and each candidate text. The candidate texts are sorted by similarity, and the top-ranked
text is selected as the final background prompt.

As shown in Figure 5, the input image I and background prompt T are encoded into patch embed-
dings εp and text embedding εt, respectively. The image and text belong to different modalities,
requiring alignment to establish a relationship between them. The cosine similarity map between
patch embeddings and the text embedding is calculated to measure the matching degree between
image patches and text. Bilinear interpolation is applied to the cosine similarity map, resizing the
result to match the input image size, yielding the image mask MI.

We use InfoNCE loss function He et al. (2020). Minimizing the InfoNCE loss brings positive patch
embeddings closer to the text embedding while pushing negative patch embeddings further apart.

Lstage1 = − log

∑m
i=0 exp(sim(εip+

, εt)/τ)∑m+n
j=0 exp(sim(εjp, εt)/τ)

(1)

where {ε0p+
, ε1p+

, ε2p+
, . . . } is the set of positive patch embeddings, m is the number of positive patch

embeddings, {ε0p, ε1p, ε2p, . . . } is the set of all patch embeddings, n is the number of negative patch
embeddings, εt is the text embedding, sim(εip, εt) denotes the computation of the cosine similarity
matrix between εip and εt, and τ is a temperature hyper-parameter per.

3.3 Stage 2: ESTIMATING DENSITY MAP WITH MASKED IMAGE

As shown in Figure 5, the masked image is encoded into a feature map. The appearance feature FA

of visual exemplars is extracted using RoI Pooling. The shape feature FS of visual exemplars is ex-
tracted using MLP. The feature map, appearance feature, and shape feature undergo cross-attention
blocks to extract exemplar prototypes. The process of the cross-attention blocks is described as
follows:

Q′
ℓ = MHA

(
LN (Qℓ−1) ,F

A,FA
)
+Qℓ−1 (2)

Q′′
ℓ = MHA(LN (Q′

ℓ) ,F,F) +Q′
ℓ (3)

Qℓ = FFN (LN (Q′′
ℓ )) +Q′′

ℓ (4)

where the inputs at ℓ = 0 are initialized by the shape feature Q0 = FS , MHA is the standard
multi-head attention, LN is layer normalization and FFN is a small feed-forward network. Such a
cross-attention blocks structure we used three to get the exemplar prototypes.

The response map R̃ is obtained by matching the exemplar prototypes with the feature map. Then,
the density map is derived by decoding the response map.

To further increase the separation between the objects and the backgrounds, we apply a contrastive
loss. Minimizing the contrastive loss between the background feature FB and the appearance feature
FA increases the separation between objects and backgrounds. The background feature in the feature
map is extracted using the image mask. FB is sampled uniformly to match the number of appearance
features FA, preserving spatial distribution characteristics. The contrastive loss is shown as follows:

Lcon = − 1

N

∑
i,j

log

(
1− σ(

FA
i (F

B
j )

T

τ
) + ϵ

)
(5)
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where FA
i (F

B
j )

T is the dot product (similarity) of appearance feature and background feature. τ is
a temperature hyper-parameter per. σ(·) is a sigmoid function. ϵ = 10−6 is a numerical stability
term. N is the number of all possible appearance-background pairs.

We use LMSE loss function, which measures the l2 difference between the predicted and ground
truth density maps. Each cross-attention block generates a density map. The density map produced
by the final cross-attention block serves as the output of our model.

The final loss is a weighted sum of the two components, with the contrastive loss weight λcon

controlling their relative contributions. The final loss function is defined as follows:

Lstage2 = LMSE + λconLcon (6)

More details about our method are provided in Appendix A.2.

4 EXPERIMENTAL RESULTS

In this section, we conduct experiments evaluating our proposed method, MaskCount. We first
introduce the evaluation metrics and implementation details, then compare our method with several
state-of-the-art methods across different datasets. Finally, we conduct ablation studies to assess the
impact of our key designs.

4.1 METRICS

We evaluate performance using two commonly used regression metrics: Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE), which quantify the difference between predicted
and ground truth values. MAE reflects the estimation accuracy, while RMSE captures its stability.

4.2 IMPLEMENTATION DETAILS

All experiments are conducted on 4 NVIDIA H100 GPUs. Performance is evaluated by calculating
MAE and RMSE between the model predictions and ground truth values.

In the first stage, we use the pre-trained CLIP Radford et al. (2021) model with ViT-B/16 Dosovitskiy
(2020) as the backbone. The backbone parameters are frozen, while all other parameters are trained
on DIOCblueberry training set. We train for 200 epochs using InfoNCE loss, with a batch size of
128 and the AdamW optimizer with a learning rate of 1 × 10−4. The entire training process takes
approximately 3 hours on 4 NVIDIA H100 GPUs.

In the second stage, the model utilizes the SwAV pre-trained ResNet50 He et al. (2016) as the
backbone. The backbone network parameters are frozen. All other parameters are trained for 60
epochs using the AdamW optimizer, with a learning rate of 1×10−4 and a weight decay of 1×10−4.
The contrastive loss weight in Eq. (6) is set to λcon = 1 × e−2. We train for approximately 1.5
hours on 4 NVIDIA H100 GPUs with a batch size of 2.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 2 presents a comparison of our method with several state-of-the-art methods on DIOCblue-
berry and two general counting datasets. As shown in the table, our method outperforms previous
counting methods on the challenging DIOCblueberry dataset and achieves state-of-the-art perfor-
mance on both almond dataset and tomato detection dataset. Additionally, for high-resolution inputs
(avg. 3391 × 3771), our inference speed is 10.95 FPS on an RTX 3090Ti.

Due to the small size of blueberry fruits, the two-stage method CounTR Liu et al. (2022) strug-
gles to count objects effectively on DIOCblueberry. In contrast, our two-stage multi-modal method,
MaskCount, drastically improves performance, reducing MAE from 491.35 to 38.34 and RMSE
from 993.91 to 55.32. When compared to the multi-modal method CLIP-Count Jiang et al.
(2023), MaskCount achieves a notable reduction in MAE by 54.85% and RMSE by 61.66%.
Additionally, MaskCount surpasses ViT-based CACVIT Wang et al. (2024) and ResNet-based
models: LOCA ukić et al. (2023), SAFECount You et al. (2023), and SSD Xu et al. (2024).
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Table 2: Performance comparison between our method and state-of-the-art methods on different
datasets

Method Year almond dataset tomato detection dataset DIOCblueberry (ours)
MAE RMSE MAE RMSE MAE RMSE

CounTR 2022 5.26 6.86 4.97 6.48 491.35 993.91
LOCA 2022 2.56 3.42 2.34 3.18 51.21 85.33

SAFECount 2022 2.66 4.01 2.63 3.75 59.78 109.61
CLIP-Count 2023 5.63 6.87 7.53 9.15 84.91 144.29

CACVIT 2023 5.76 7.03 5.23 6.87 72.32 121.29
SSD 2024 3.95 5.57 3.53 4.96 106.01 270.00

ours 2025 2.03 3.02 1.91 2.71 38.34 55.32

Table 3: Comparison of our method with crowd
counting and indiscernible object counting methods

Method DIOCblueberry

MAE RMSE

P2PNet 53.23 75.01
IOCFormer 66.86 107.63

MaskCount(ours) 38.34 55.32

We also conduct experiments of the crowd
counting method P2PNet and the indis-
cernible object counting method IOCFormer
on DIOCblueberry. Table 3 compares the
counting performance of our method with
IOCFormer and P2PNet on DIOCblueberry.
IOCFormer represents the state-of-the-art on
IOCfish5K—the largest existing dataset for
indiscernible object counting. While P2PNet
is a representative crowd counting method.
Despite the strong baselines, our method con-
sistently achieves the best performance, further highlighting its robustness and effectiveness. These
results also underscore the inherent difficulty of our agricultural DIOC scenario, which poses sig-
nificant challenges beyond those in existing datasets.

4.4 ABLATION STUDY

We conduct a comprehensive ablation study to illustrate the contributions of our design components:
CLIP-based mask generation, the edge-aware patch cropping mechanism, and the contrastive loss.

The results presented in Table 4 demonstrate that each component of our design contributes to per-
formance improvement, confirming the effectiveness of every design. Specifically, Mask leads to
performance improvements, with MAE and RMSE decreasing by approximately 6.33% and 11.56%,
respectively.

Table 4: Ablation experiments with different com-
binations of our key designs. VM: vanilla model.
Mask: CLIP-based mask generation. Crop: our
edge-aware patch cropping mechanism. Con: our
contrastive loss

Model DIOCblueberry

MAE RMSE

VM 51.21 85.33
VM+Mask 47.97 75.47

VM+Mask+Crop 40.81 58.27
VM+Mask+Crop+Con 38.34 55.32

Figure 6: Visualization results of our CLIP-
based mask generation to segment foreground
and background. Top left: original image, top
right: mask, bottom: predicted density map.

We compare the effects of using CLIP and SLIP Mu et al. (2022) for object and background segmen-
tation on counting performance. As shown in Table 5, the model achieves optimal counting perfor-
mance when using the pre-trained CLIP model with ViT-B/16 Dosovitskiy (2020) as the backbone.
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Figure 6 presents the visual results of our CLIP-based mask generation. In addition, we compare the
counting performance under different prompts in Appendix A.3.

Figure 7: Final counting results visualization of
general cropping compared to ours. Left: general
cropping method, right: our edge-aware patch crop-
ping mechanism. The red circle marks a blueberry
located in the edges of the cropped image patches.

Table 5: Comparison of different backbones

Model Backbone DIOCblueberry

MAE RMSE

SLIP ViT-B/16 41.78 60.55
CLIP ViT-B/32 46.62 62.90
CLIP ViT-B/16 38.34 55.32

In Table 6, our edge-aware patch cropping mechanism improves performance, reducing MAE and
RMSE by approximately 6.10% and 14.44%, respectively. Furthermore, our edge-aware patch crop-
ping mechanism outperforms the general cropping method by reducing MAE from 41.81 to 38.34
and RMSE from 58.80 to 55.32. Details on the selection of padding size for our crop are provided
in Appendix A.3.

As shown in Figure 7, the image on the left shows the counting results using general cropping. The
blueberry in the red circle is located at the edge of the cropped image patch and is counted twice. On
the right, the counting results using our edge-aware patch cropping mechanism are shown, where
the same blueberry is counted only once. These results demonstrate that our method effectively
eliminates stitching artifacts by disregarding edge predictions.

As shown in Table 7, we compare the performance of different contrastive losses. Our contrastive
loss leads to a reduction in MAE by approximately 6.05% and RMSE by nearly 5.06%.

Table 6: Comparison of different cropping methods

Method DIOCblueberry

MAE RMSE

Resize 40.83 64.66
General crop 41.81 58.80

Our crop 38.34 55.32

Table 7: Comparison of different contrastive
losses

Loss DIOCblueberry

MAE RMSE

No Loss 40.81 58.27
InfoNCE Loss 41.64 60.04

Our contrastive loss 38.34 55.32

More visual results are provided in Appendix A.4. In addition, the analysis of our limitations is
provided in Appendix A.5.

5 CONCLUSION

In this paper, we introduce a novel task called dense and indiscernible object counting (DIOC),
which presents significant challenges due to the small size, dense distribution, and visual ambiguity
of the objects. To facilitate research on DIOC task, we use blueberries as our initial target. We
introduce a specialized dataset, DIOCblueberry, which surpasses any general counting dataset in
complexity. To address these challenges, we propose MaskCount, a two-stage multi-modal method.
In the first stage, MaskCount segments objects from complex backgrounds to simplify the images
for counting. In the second stage, we apply a novel contrastive loss to enhance the separation
between the objects and the background. Given the high resolution of real-world images, we propose
an edge-aware patch cropping mechanism that generates overlapping patches to improve counting
accuracy and mitigate edge artifacts caused by traditional cropping methods. Extensive experiments
demonstrate the superiority of proposed method MaskCount and the effectiveness of our designs.
In future work, we plan to expand our DIOCblueberry to other DIOC scenarios and further explore
DIOC task.
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6 ETHICS STATEMENT

This work focuses on a novel task termed dense and indiscernible object counting (DIOC), for which
we construct a specialized dataset, DIOCblueberry, and design a method to achieve better counting
accuracy. To facilitate research on DIOC, we introduce the DIOCblueberry dataset. The dataset was
collected and constructed by the authors. To address its challenges, we propose MaskCount, a two-
stage multi-modal approach. Upon acceptance, we will release the full package—including all code,
datasets, evaluation benchmarks, and model checkpoints—under the CC BY 4.0 license to ensure
maximum reusability. This practice adheres to the principles of open science while maintaining
proper attribution and respect for licensing terms. Our work does not involve human subjects or
sensitive information; both the models and datasets are solely intended to advance education and
scientific discovery.

7 REPRODUCIBILITV STATEMENT

We have undertaken several measures to ensure the reproducibility of our work. The details of
the model architecture and evaluation protocols are provided in Section 3 and Section 4, while
additional implementation details, training configurations, and hyperparameter settings are included
in Appendix A. Our dataset was collected and constructed by the authors, with the data acquisition
and dataset construction procedures described in Section 2. Upon acceptance, we will release all
code, datasets, evaluation benchmarks, and model checkpoints under the CC BY 4.0 license to
maximize transparency and reusability.
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Andreas Kamilaris and Francesc X Prenafeta-Boldú. Deep learning in agriculture: A survey. Com-
puters and electronics in agriculture, 147:70–90, 2018.

Raphael Linker. A procedure for estimating the number of green mature apples in night-time orchard
images using light distribution and its application to yield estimation. Precision Agriculture, 18
(1):59–75, 2017.

Chang Liu, Yujie Zhong, Andrew Zisserman, and Weidi Xie. Countr: Transformer-based gener-
alised visual counting. arXiv preprint arXiv:2208.13721, 2022.

Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision meets
language-image pre-training. In European conference on computer vision, pp. 529–544. Springer,
2022.

Sanath Narayan, Hisham Cholakkal, Fahad Shahbaz Khan, and Ling Shao. 3c-net: Category count
and center loss for weakly-supervised action localization. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 8679–8687, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Huu-Thanh Nguyen, Chong-Wah Ngo, and Wing-Kwong Chan. Sibnet: Food instance counting and
segmentation. Pattern Recognition, 124:108470, 2022.

Mohammad Sadegh Norouzzadeh, Anh Nguyen, Margaret Kosmala, Alexandra Swanson, Mered-
ith S Palmer, Craig Packer, and Jeff Clune. Automatically identifying, counting, and describing
wild animals in camera-trap images with deep learning. Proceedings of the National Academy of
Sciences, 115(25):E5716–E5725, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh Hoai. Learning to count everything. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3394–
3403, 2021.

Guolei Sun, Zhaochong An, Yun Liu, Ce Liu, Christos Sakaridis, Deng-Ping Fan, and Luc Van Gool.
Indiscernible object counting in underwater scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13791–13801, 2023.
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A APPENDIX

A.1 DATASET

A.1.1 DIOCBLUEBERRY

Figure 8 illustrates the proportion of images within each object count range across different datasets.
The results indicate that the majority of images in general counting datasets contain fewer than 100
objects. In contrast, a significant proportion of images in our DIOCblueberry dataset contain more
than 100 objects, and some even more than 1000.
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Figure 8: Histogram of images distribution
across various count ranges.

(a) Less dense samples

(b) Dense samples

Figure 9: More examples of our DIOCBlueberry.

Figure 9 shows more examples of DIOCblueberry, with (a) depicting less dense images and (b) de-
picting dense images. From left to right in (a), the object count ranges are ≤20, 20–50, and 50–100.
While in (b), the object count ranges are 100–500, 500–1000, and >1000. This demonstrates that
our DIOCblueberry includes a diverse set of images, covering varying densities of objects from
sparse to dense. It effectively showcases the diversity in object distribution and is capable of han-
dling counting tasks across different object densities. This demonstrates the generalization ability
of our method.

A.1.2 COMPARISON WITH OTHER DATASETS

Figure 10 presents a visual comparison between DIOCblueberry and general counting datasets.
Compared to all these datasets, our scenes are significantly more complex, featuring indiscernible
objects and higher object densities. These characteristics make the counting task in DIOC consider-
ably more challenging and representative of real-world deployment scenarios.

Figure 11 provides a visual comparison between DIOCblueberry and IOCfish5K, the largest indis-
cernible object counting dataset. While IOCfish5K contains visually ambiguous objects, DIOCblue-
berry introduces additional challenges. The objects exhibit high visual similarity to the background,
scenes are significantly more cluttered, and occlusions are more severe. These factors collectively
make DIOCblueberry a more complex and demanding benchmark for evaluating counting perfor-
mance in real-world scenarios.

As shown especially in the bottom row, although IOCfish5K also contains a large number of objects,
they are densely clustered in localized regions. In contrast, our objects are more widely dispersed
across the scene, making the counting task in our scenes more challenging.
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Figure 10: Visual comparison between DIOCblueberry and general counting datasets. The first col-
umn: our DIOCBlueberry, the second column: tomato detection dataset, the third column: almond
dataset, the fourth column: FSC147, the fifth column: CARPK.

Figure 11: Visual comparison between DIOCblueberry and IOCfish5K. Top: our DIOCBlueberry,
middle and bottom: IOCfish5K.

A.2 IMPLEMENTATION DETAILS

As our DIOCBlueberry employs point and box annotations, we should transform these discrete
points into continuous density maps. For density map generation, images and point annotations
are first rescaled to the target resolution, and a sparse impulse map is initialized at the rescaled
point locations. Gaussian filtering is then applied to diffuse the discrete points into a continuous
distribution: when reference boxes are available, the kernel size is adaptively determined by the
average box scale; otherwise, a fixed kernel is used. This process preserves the spatial distribution
of annotations while producing smooth and scale-consistent density representations that serve as
continuous supervisory signals for model training.

In our implementation, we employ the large vision-language model Qwen2.5-VL-72B to generate
a list of background descriptive words, with the input prompt specified as “Please summarize the
background area of this image that excludes all regions related to the specified target class blueberry,
covering as much non-class area as possible. Use a list of single words (within 10 words, primarily
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nouns) and output only the words list, with different words separated by commas, without any
additional text”.

For the contrastive loss Lstage1 1, taking the derivative with respect to the similarity score sk =

sim(εkp, εt)/τ yields: for a positive sample k, ∂L
∂sk

= −pposk + pallk , where pposk = esk∑
i∈P esi and

pallk = esk∑
j∈P∪N esj

. For a negative sample k, ∂L
∂sk

= pallk .

This indicates that the loss encourages the entire positive set to dominate the softmax distribution,
with the intra-positive distribution serving as the ideal target. Compared to the conventional single-
positive InfoNCE, this formulation distributes gradients across multiple positives, reducing training
variance and instability. Additionally, it robustly aggregates intra-class diversity and mitigates the
effect of false negatives. And it imposes consistency constraints over the whole positive set, thereby
learning more compact and discriminative feature representations.

A.3 ABLATION STUDY

Table 8: Ablation experiments with different background
prompts of our CLIP in the first stage. Top 1: the most sim-
ilar text selected from the candidate texts, top 3: top three
most similar texts selected from the the candidate texts

Prompt type Prompt DIOCblueberry

MAE RMSE

foreground “blueberry” 47.49 91.18

background
“leaf” 39.74 59.52

top1 (ours) 38.34 55.32
top3 41.51 58.44

Table 8 shows the counting results
corresponding to CLIP-based mask
generation using different prompts
in first stage. We conduct exper-
iment using class name as prompt
to identify foreground objects for
counting. However, results show
that this approach underperforms us-
ing background-descriptive prompt
to mask out irrelevant regions before
counting. This highlights the effec-
tiveness of background suppression
over foreground guidance in DIOC
scenes.

Table 9 shows the results of our edge-
aware patch cropping mechanism with different padding sizes, indicating that a padding size of 32
leads to a lower counting MAE and RMSE. This suggests that using a padding size of 32 effectively
minimizes the interference from edge effects, improving the accuracy of bounding box positioning.
As a result, our model is able to make more accurate predictions of object counts.

The experiments on background prompt selection demonstrate that using the highest-ranked prompt
performs better than using just “leaf” or the top three prompts. These results indicate that selecting
the most relevant background prompt for mask generation can significantly improve counting accu-
racy. By choosing the most relevant prompt, we can more effectively separate the objects from the
background, thereby enhancing the overall performance of DIOC task.

A.4 SUBJECTIVE PERFORMANCES

Table 9: Ablation experiments with different
padding sizes of our edge-aware patch cropping
mechanism on DIOCblueberry

Padding size DIOCblueberry

MAE RMSE

16 45.26 65.56
32 (ours) 38.34 55.32

64 44.09 69.75

Our CLIP-based mask generation alleviates the
counting challenges posed by complex back-
grounds. It segments the objects and back-
ground, which improves the quality of the final
density maps and leads to better object counting
performance. The heatmaps and the segmen-
tation results of our CLIP-based mask genera-
tion are shown in Figure 12, in the heatmaps,
the background areas are activated. In the vi-
sualization images, the background areas are
masked. In the first four rows, we visualize
the mask results for four different object densi-
ties in DIOCblueberry, showing that our CLIP-
based mask generation can accurately segment the objects and background, whether the objects are
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sparse or dense. As shown in the last two rows in Figure 12, we display the visualized counting
results for two general counting datasets: the almond dataset and tomato detection dataset. The
results demonstrates that our CLIP-based mask generation performs effectively on general counting
datasets as well. Our CLIP-based mask generation effectively segments the objects and background,
reducing the background complexity and lowering the difficulty of the subsequent object counting
task.

Figure 12: Visualization results of our CLIP-based mask generation to segment foreground and
background. The fist four rows: our DIOCBlueberry, the fifth row: the almond datast, the last row:
tomato detection dataset.

The results of CounTR Liu et al. (2022), LOCA ukić et al. (2023), SAFECount You et al. (2023),
CLIP-Count Jiang et al. (2023), CACVITWang et al. (2024), SSD Xu et al. (2024) and ours on
our DIOCBlueberry, almond dataset, and tomato detection dataset are shown in Figure 13. In our
DIOCblueberry, the object count per image ranges from 10 to 2000. In the first four columns, we
visualize the counting results of four different images with ground truth counts ranging from 10 to
around 2000. The results demonstrate that our method, MaskCount, can handle both sparse and
dense counting scenarios. As shown in the last two rows in Figure 13, our method is able to count
the objects that are small in size, dense distribution, and visual ambiguity with their surroundings
in complex backgrounds. It demonstrates superior performance on DIOCBlueberry compared to
state-of-the-art methods. The last two columns of Figure 13 show the visualized counting results on
general counting datasets: the almond dataset and tomato detection dataset. These results show that
our MaskCount also performs excellently on general counting datasets, demonstrating the versatility
of our method.
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A.5 LIMITATION ANALYSIS

While MaskCount achieves significant improvements in counting accuracy, its inference speed and
computational cost are higher compared to one-stage methods such as LOCA and SSD. This sug-
gests a trade-off between accuracy and efficiency. However, this limitation is not fundamental and
can be addressed. As a promising direction for future work, we plan to distill MaskCount into a
lightweight, end-to-end model to better meet the demands of real-world deployment scenarios.
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Figure 13: Qualitative results on our DIOCBlueberry, almond dataset, and tomato detection dataset.
The first four columns: our DIOCBlueberry, the fifth column: almond dataset, the sixth column:
tomato detection dataset (bottom).
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