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ABSTRACT

Semantic shift detection faces a big challenge of modeling non-semantic feature
diversity while suppressing generalization to unseen semantic shifts. Existing
reconstruction-based approaches are either not constrained well to avoid over-
generalization or not general enough to model diversity-agnostic in-distribution
samples. Both may lead to feature confusion near the decision boundary and fail
to identify various semantic shifts. In this work, we propose Bi-directional Regu-
larized Diversity Modulation (BiRDM) to model restricted feature diversity for
semantic shift detection so as to address the challenging issues in reconstruction-
based detection methods. BIDRM modulates feature diversity by controlling spa-
tial transformation with learnable dynamic modulation parameters in latent space.
Smoothness Regularization (SmoReg) is introduced to avoid undesired general-
ization to semantic shift samples. Furthermore, Batch Normalization Simulation
(BNSim) coordinating with auxiliary data is leveraged to separately transform dif-
ferent semantic distributions and push potential semantic shift samples away im-
plicitly, making the feature more discriminative. Compared with previous works,
BiRDM can successfully model diversity-agnostic non-semantic pattern while al-
leviating feature confusion in latent space. Experimental results demonstrate the
effectiveness of our method.

1 INTRODUCTION

Deep neural networks (DNNs) have shown excellent performance in various computer vision appli-
cations (He et al., 2016} |Cai & Vasconcelos} 2018)). However, when facing samples beyond training
distribution, DNNs will output wrong predictions with high confidence rather than decline to pre-
dict (Hein et al.l [2019), due to the large network capacity and undesired generalization capability.
This may cause potential security risk and limit the use of DNNs in open world. For this reason,
deep learning community expects DNNs to reliably detect out-of-distribution (OOD) like humans.
Recent studies (Yang et al.l |2021) categorize generalized OOD detection into covariate shift (e.g.
industrial defect, strange behavior, etc.) detection and semantic shift (i.e. different semantic class)
detection, where this paper focuses on the lattelﬂ

Disciminative models (Hsu et al., 2020; [Hendrycks et al., [2019a}; Tack et al., [2020) detect OOD by
explicitly learning discriminative features with the aid of true labels or pseudo OOD data, whose
accessibility and quality may largely affect the detection performance. In contrast, reconstruction-
based generative methods (Deng & Li| 2022} [Floto et al., 2023} [Liu et al., |2023b) focus on unsu-
pervised in-distribution (ID) modeling, thus are more practical in real-world scenarios. The basic
assumption is that models trained on ID data only will reconstruct any IDs well while assign OODs
with high reconstruction error thus can detect them. In this paper, we follow this unsupervised
setting and focus on reconstruction-based semantic shift detection.

In real-world scenarios, however, IDs with the same semantics usually exhibit high diversity (i.e.
non-semantic diversity), while semantic shifted samples may have similar features with IDs (i.e.
near-OOD). This brings a trade-off dilemma between modeling diverse IDs and suppressing the
generalization to OODs for reconstruction-based OOD detection. To address this issue, some meth-
ods (Park et al.|, 2020} Liu et al., 2023a; [Mou et al., 2023)) propose to model ID diversity. Ideally,

"Without specification, OOD refers to semantic shift in the following text.
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diverse IDs should be well-modeled by compact high-density region and the measure should be pos-
itively correlated to the severity of semantic shift, especially for samples near the boundary between
ID and OOD. However, these methods are either not constrained well to avoid over-generalization
to semantic shift (Park et al.,2020), or designed for specific non-semantic diversity patterns (e.g. ge-
ometrical anomaly (Liu et al., [2023a)) and image-level corruption region (Mou et al., 2023))) which
may fail in front of other types semantic shifts.

To address the above limitations, inspired by the illuminating discovery (Bengio et al., 2013)) that
meaningful non-semantic diversity can be controlled by spatial transformation in latent space, we de-
sign reconstruction-oriented Bi-directional Regularized Diversity Modulation (BiRDM) to mod-
ulate diversity-agnostic non-semantic pattern bi-directionally in feature space. BiRDM firstly re-
moves non-semantic diversity by dynamic demodulation to capture semantic prototypes and then
recovers non-semantic diversity by regularized modulation at reconstruction. To guarantee the ef-
fectiveness of this method, two challenging targets should be achieved: the bi-directional modulation
cannot facilitate semantic shift samples to be well reconstructed, and the severity of semantic shift
is measurable and discriminative in the latent representation space for ID (especially diverse IDs)
and OODs (especially near-OOD).

For the first target, we assume a bounded representation space for diversity modeling and impose
smoothness regularization to ensure smoothly changing modulation. In this way, relatively large
diversity in untrained region (interval between training samples) can be avoided. And the diversity
representation space could model non-semantic diversity well. For the latter one, we design Batch
Normalization simulation branch to track prototypical feature for IDs and transform OODs sepa-
rately in contrast to global affine transformation in standard Batch Normalization. This maintains
more OOD information to be exposed to scoring function. On this basis, the additional optimization
over auxiliary data with unified reconstruction task further drives potential OODs far away from
the restricted non-semantic region and enhances discriminability to unseen samples. In this way,
OODs could be distinguished from diverse IDs with respect to both feature distance measure and
reconstruction error.

Our main contributions are as follows:

* We propose to model diversity-agnostic non-semantic feature with bi-directional regular-
ized diversity modulation which is more feasible for semantic shift detection.

* We propose smoothness regularization to shape a well-constrained representation space
for smoothly changing diversity modulation, which prevents semantic shift samples from
being reconstructed with sharp diversity.

* We leverage Batch Normalization simulation with auxiliary data to allow separate transfor-
mations of demodulated features which enhance the discriminability between non-semantic
samples and semantic samples.

2 RELATED WORK

Out-of-distribution detection. OOD detection approaches are expected to assign relatively high
scores for OODs in unseen distribution. For this purpose, two compatible strategies are mainly
studied, i.e. constructing decision boundary and modeling the potential IDs. |Hsu et al.| (2020);
Zhu et al.| (2022)) learn classifier with ID labels, benefiting from implicit centralization hypothesis
and more meaningful semantic features. Tack et al. (2020); Hendrycks et al.| (2019a); Hein et al.
(2019) additionally project real OODs or simulated pseudo OODs to a specified output for further
confirming the boundary. However, the accessibility of labels and OOD data are doubtful. Even if
they are available, ID labels or pseudo OODs may provide limited or biased information for properly
separating OOD features from diverse IDs.

Reconstruction-based models (Akcay et al., 2018} Deng & Li, 2022} [Liu et al., 2023b) typify the
latter strategy, which are trained to reconstruct ID information and detect OODs with relatively
high reconstruction error. As a combination of the two strategies, (Oberdiek et al.| (2022) takes
reconstructed samples as pseudo OODs to learn the decision boundary for additional improvement.
In this paper, we propose to extend reconstruction-based method by diversity modeling to enhance
representation capacity for diverse IDs while inhibiting the generalization to unseen OODs.
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Feature transformation. Feature transformation is widely used in controllable generation tasks.
Researchers hope to edit semantic classes or non-semantic attributes along specified direction with-
out interfering the others. AEs and GANs (L1 et al., 2020; |Ge et al., [2021)) can take conditional
inputs for independent and meaningful image editing. Style transfer methods (Dumoulin et al.
2017; Karras et al., 2019;2020) introduce adaptive instance normalization to transform features in a
specific direction to edit the styles and attributes. Feature transformation also has significant effect
on latent space augmentation (Cheung & Yeung| 2021 Wang et al.,[2022), which helps to enhance
the generalization to non-semantic IDs and alleviate the limitation of image-level augmentation.

These works inspire us to perform spatial non-semantic diversity transformation in latent space,
rather than directly generating the diverse embedding (e.g. residual connection) which is difficult to
constrain. In addition, the dynamically generated transformation parameters is more feasible than
static convolutional weights for decomposing and restoring the diversity of unseen distribution.

3 METHOD

In this section, we first review reconstruction-based semantic shift detection. Then, to address the
problems of related methods, we present bi-directional regularized diversity modulation. After that,
we expatiate on how to shape a smooth diversity representation space with smoothness regular-
ization (SmoReg), and how to enhance the discriminability of unseen semantic shifts with Batch
Normalization simulation (BNSim). Finally, we summarize the training and inference process.

3.1 REVIEW OF RECONSTRUCTION-BASED SEMANTIC SHIFT DETECTION

In reconstruction-based semantic shift detection framework, the autoencoder trained with only IDs
is expected to produce high reconstruction error on OODs. Formally, for an input image « with en-
coded feature f and a decoder g(+), the reconstruction objective is L = Dis(x, g(f)), where Dis(-)
is a distance/similarity function (e.g. M SE for image-level reconstruction and CosineSimilarity
for feature-level reconstruction). To alleviate over-generalization to OOD, |Gong et al.[(2019) intro-
duces a memory module ¢(-; z) on memory embedding z and improve the objective as follows:

L = Dis(z,g(¢(f; 2))) + vR(¢), (1)

where R(¢) is the prototypical constraint to further shrink model capacity. But this formulation
makes non-typical IDs over-compressed to prototypes in memory and cannot be reconstructed well.
To deal with the trade-off dilemma, a promising way is to perform well-constrained diversity mod-
eling with ¢/ (+) and transformation function o in the reconstruction process:

L = Dis(z,9(6(f: 2)) o ¥ (x)) + 7R(¢,¥). 2)
Specifically, MNAD (Park et al.l |2020) concatenates intermediate feature without extra constraint
as the transformation function. DMAD (Liu et al.| [2023a) uses sample space deformation fields on
spatial sampling to model geometrical diversity, and imposes constraints on deformation strength
and smoothness via R(1/)+). RGI (Mou et al., 2023)) adopts learnable mask with constraint on total
mask area to indicate corruption. However, these works are designed for specific diversity (e.g.
geometrical deformation and corruption) and the transformation operators (e.g. spatial sampling
and binary mask), so they are not general enough for diversity-agnostic semantic shift detection.

3.2 BI-DIRECTIONAL REGULARIZED DIVERSITY MODULATION

The framework. To address the problems in general unsupervised semantic shift detection, we pro-
pose Bi-directional Regularized Diversity Modulation (BiRDM) with the following objectiveﬂ

L = Dis(f,9(6(f o™ (f);2) o ¥"(f))) +vR(, 0™, ¥7). 3)

The main differences from previous works lie in two aspects: (1) Instead of adopting fixed-weight
convolution for reconstruction in sample space, we model non-semantic diversity using dynami-
cally generated transformation parameters in feature space, in order to capture more complex di-
versity patterns. (2) We present bi-directional modulation, where demodulation 1)~ removes the

’In the following text, we write a shorthand form of the reconstruction distance as Dis(f, g(zprors; 7))

with compressed prototypical feature z,, ;> and modulation parameter 6.
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Figure 1: Overview of the proposed architecture. The fusion layer encodes features for prototype
learning and diversity modeling respectively. Then regularized diversity feature from SmoReg (il-
lustrated in Fig. [2)) is used to generated dynamic modulation parameters. The demodulated feature is
adapted by standard BN and BNSim (illustrated in Fig. ) respectively, and compressed by memory
network subsequently. Finally, the modulated decoder reconstructs diverse features.

non-semantic diversity to facilitate the consistency in demodulated prototypical feature, and mod-
ulation 1T then recovers the diversity during the final decoding. In this way, our framework can
optimize both non-semantic diversity modeling and prototypical learning.

Fig. [I] shows the BIRDM framework, in which some modules are explained and illustrated later.
As shown, BiRDM first fuses feature f into prototype feature zpyor, and diversity feature zgiyer
respectively. Since a semantic class may include spatially far fine-grained clusters (e.g. hairy cat
and Sphynx in class “cat”), prototypical learning from z,,.., is necessary to characterize discrete se-
mantic factors, in conjunction with continuous non-semantic diversity modeling. Then, smoothness
regularization is applied to get compact diversity feature 2%/ | from which the modulation parame-
ters are generated. After demodulation and memory compression, the feature z o> is reconstructed
by modulated decoding.

proto

Diversity demodulation and modulation. The parameters of demodulation (M) and mod-
ulation (M3, ..., M3) are dynamically generated by a mapping network Map for distribution
adaptation (Karras et all 2019; 2020) and separate heads {Hy,..., Hs} for N-stages trans-
formation operations. Denote the generation process with hes:(-), the demodulation parameters
0~ = {64,0,60,0} and modulation parameters 07 = {6, 1,0y 1,...,0, n,0 N} are expressed
as: {607,077} = hest (25,7 ). Atthe n'*(n = 0,..., N) stage, the demodulation/modulation per-
forms affine transformation on any input feature z,,:

Zgwd/dm()d = Ow,n(zn - N(zn))/a(zn) + abv”’ @)

where y(-) and o(-) are mean and standard deviation operator (Dumoulin et al., 2017 [Karras et al.,
2019; |2020) respectively. Though with the same formulation, demodulation and modulation have
different objectives: to remove non-semantic diversity in prototypical learning, or recover diversity

for the compressed prototypical feature ;7.

Modulation constraint. Unconstrained modulation may make the model bypass memory module
in prototypical learning, which causes shortcut learning and fails to detect semantic shift. Therefore,
to ensure non-semantic diversity as small as possible under the condition that IDs can be well recon-
structed in the bi-directional modulation process, we constrain the modulation parameters {6, 07 }
with the following loss:

N
Lmoa =Y _ ||0w.n — 1|, + |8s.n]],- (5)

n=0
3.3 SMOOTHNESS REGULARIZED DIVERSITY MODELING

With the modulation constraint L, restricting modulation amplitude, ID reconstruction quality
may be degraded together with OODs. Another more important problem exists: there are untrained
regions between training ID samples in the diversity feature space, which may generate large scale
modulation parameters, leading to undesired OOD reconstruction (i.e. fail to detect). To address the
above problems, we introduce sampling-based Smoothness Regularization (SmoReg) in diversity
representation space as illustrated in Fig. [2| This regularization constrains the diversity modulation
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Figure 2: Illustration of SmoReg and prototypical learning in BIRDM. Assume rotation is diversity
factor and shape is semantic prototype. upper: zg;e, is projected to z5' °/ in diversity representa-

diver
tion space and then sampled around. lower: z,,;% is addressed by the nearest neighbor of 257,,.

proto

to change smoothly along non-semantic ID manifold, by projecting diversity features to a more
compact representation space where IDs can be reconstructed with the modulation generated from
neighboring sampled embeddings. In this way, potentially high (low) reconstruction error for IDs
(OODs) can be alleviated.

SmoReg firstly projects diversity feature 24y, to a D-dimension bounded diversity representation
space by orthogonal matrix P € R*P to capture more compact non-semantic factors:

where a is a constant restricting the maximal feature length. All training IDs are located in the di-
versity representation space as references. We perform sampling in the unoccupied regions between
references to get more uniform feature distribution:

Ns;?ejr ~ -/\/;fr—inv (Zg;fgw 1, Tt?”)7 @)

where Ny _ino (-, -, Ter) is an inverted 74,.-truncated Gaussian distribution, i.e. swapping the prob-

abilities vertically within truncated region. Then, the sampled 27" gr is used to get modulation

parameters o+ = Pest(Zh CJT) for the corresponding reference. Finally, BIRDM additionally mod-

ulates compressed prototypical feature z,,7i? with modulation parameters 67 during decoding. The

smoothness objective can be expressed as constrained reconstruction loss:
. -~ T .
Lomo = Dis(f,9(2516:07)) + [ PTP = I, + [|zaiver — P57, ®)

proto>
where the second term is orthogonal constraint and the last term restricts diversity feature 27 gr
being allocated in finite representation space. If a is relatively small compared to sampling radius
T¢r, Minimizing Ly, with aid of enough sampled 2% (as explained in App. |C) ensures smooth

non-semantic diversity modeling (i.e. smoothly changing 8%) in the entire representation space.

Remark. SmoReg targets at smoothing
the unoccupied regions in diversity rep-
resentation space to suppress semantic
shifts without affecting the real recon-
struction of IDs. Optimizing smooth-
ness objective also encourages ID pro-
jections to uniformly distribute in finite
space to lessen the reconstruction con-
fusion, which benefits BIRDM to mine Figure 3: Disentanglement on 3DShapes.

more unoccupied regions to exclude OODs. In this way, the entire feature space can be prop-
erly modeled by smoothly changing non-semantic diversity. We also notice SmoReg associates
with learning disentangled representation implicitly in Fig. 3] i.e. BIRDM could characterize non-
semantic factors effectively.

3.4 SIMULATION OF BATCH NORMALIZATION

As shown in Fig. |1| the demodulated feature zgﬁg}gd going through convolutional network and Batch
Normalization (BN) becomes 207, = ConvBN (z<o4). Then, the compressed prototypical fea-
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Figure 4: Detailed feature flow (black arrow) Figure 5: Contribution of the proposed model to
and gradient backpropagation (red arrow) in scoring function. Triangles are prototypes and
ConvBN and BN simulation. The dash line in- gray areas indicate possible OOD score. The toy
dicates auxiliary data. experiment is shown in Fig. [

¥4

ture is learned from the memory module as [Liu et al.[ (2023a): z,0t) = arg mlnszpmto 2|,

where the distance-based addressing mechanism benefits from feature centralization via standard
BN. However, BN may incorrectly adapt OODs to training distribution with global affine transfor-
mation and decrease the feature discriminability (Zhu et al.| [2022). Besides, training on finite ID
data with prototypical consistency constraint (van den Oord et al.; 2017), the sub-network can hardly
keep necessary information for OOD detection.

To address this problem, we add a parallel branch of Batch Normalization Simulation (BNSim)
implemented by K nonlinear-Layer hg;m,(-) without standard BN, as shown in Fig. E} BNSim
should have two capabilities: Firstly, it can track standard BN outputs thus not disturb ID recon-
struction, i.e. z5i7 = hgim ([206015%]54) is close to 257, for all training samples. Note that we
use stop-gradient operator [-]s, to avoid updating related sub-network that forms a trivial solution.

Secondly, BNSim helps to enhance the discriminability between IDs and potential OODs. To this
end, we further introduce auxiliary data f,,, to train BNSim. The demodulated auxiliary features
are transformed by BNSim to 251" = h,,, (z22¢m°4). Since SmoReg constrains finite non-semantic
diversity and the prototypical memory only characterize semantic factors of training IDs, potential
OODs in auxiliary data tend to distribute far from prototypes for better representation capacity.
Without memory quantization (see App. for more details), the auxiliary data should be well

reconstructed. Therefore, the loss over BNSim is defined as:

Lsim = Dis(fau:tv ( ngae(fm ) + || prm‘o sg z;:’rg‘oug (9)

Since the highly nonlinear BNSim can better model warped transformation in contrast to global
affine transformation of BN, optimizing the above objective will make ID and OOD more separable.

Remark. Different from OE (Hendrycks et al., [2019a)), we optimize reconstruction error over aux-
iliary data, rather than explicitly learning discriminative feature to drive OOD to specified output.
This formulation alleviates potential overfitting to specific f,,., and is more feasible for contami-
nated data due to the unified optimization objective, i.e. BNSim does not need to exclude ID from
auxiliary data. During inference, as shown in the lower part of Fig. ] the output of BNSim preserves
enough semantic information for OODs, so that the distance measure between BNSim output and
prototypical memory can contribute to the scoring function for OOD detection.

3.5 TRAINING AND INFERENCE

Training phase. Following Liu et al.[(2023a), we reconstruct training samples in feature space with
VQ loss (van den Oord et al,[2017)) to avoid computationally expensive image-level reconstruction:

LTQC = Dis(.fvg('z;gglo)70+ ) + H proto sg ;gglo)HQ + BHzproto - [Z;gzﬁg]SQHQ' (10)

According to the optimization framework of BiRDM in Eq. [3] we optimize the following overall
loss with a hyperparameter ~y on the adversarial modulation constraint:

Lall = Lrec + ’YLmod + Lsmo + Lsim- (1 1)

Inference phase. Aside from reconstruction error, we also computes quantization error from BN-
Sim, projection distance to restricted diversity representation space and modulation magnitude. The
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Table 1: Semantic shift detection on CIFAR10 and FMNIST. * denotes reproduced results due to
the absence of implementation, different settings or higher score than previously reported, their hy-
perparameters are searched on testing set (better than actual results). T denotes supervised methods.

(a) Per-class results on CIFAR10.
Method ‘ 0 1 2 3 4 5 6 7 8 9 ‘ Avg.

GN 935 608 59.1 582 724 622 88.6 560 760 68.1 | 69.5
OCGAN 75.7 531 640 62.0 723 620 723 575 820 554 | 656
RD* 894 894 768 656 806 780 822 856 914 848 | 824

RD++* [ 900 909 779 703 80.6 83.1 844 868 91.7 863 | 84.2
Tilted* | 879 89.7 78.1 682 847 827 90.5 851 914 90.0 | 848
vQ* 907 93.1 81.1 669 882 782 899 895 934 888 | 86.0
DMAD* | 89.1 919 775 767 859 81.6 892 897 918 852 | 859
BiRDM | 920 967 859 813 89.9 899 952 929 961 93.7 | 913

(b) Per-class results on FashionMNIST.
Method ‘ 0 1 2 3 4 5 6 7 8 9 ‘ Avg.

GN 803 83.0 759 872 714 927 810 883 693 803 | 809
AR 927 993 89.1 93.6 90.8 93.1 850 984 978 984 | 939
RD* 925 995 914 945 920 959 813 995 949 985 | 94.0

RD++* | 920 995 917 947 926 960 81.1 994 941 989 | 940
Tilted* | 939 994 940 940 944 978 843 993 983 99.6 | 955

vQ* 943 995 937 947 949 965 841 993 973 994 | 954
DMAD | 947 994 941 951 940 974 863 99.1 969 99.6 | 95.7
BiRDM | 956 99.6 944 966 951 98.0 877 995 98.1 993 | 96.4

(c) Multi-classes results on unlabeled CIFAR10. OOD datasets are processed by fixed resize.
ID OOD  |GOAD Rot*'GODIN*'LMD | RD* RD++*/Tilted* VQ* DMAD*BiRDM

LSUN (Fix) | 788 79.7 81.7 - 771 80.6 754 837 69.7 89.5
-5 ImageNet (Fix)| 83.3 83.2 78.7 - 70.5 729 738 794 70.7 855
CIFAR100 | 772 791 760 60.7 | 659 645 744 749 695 778

C10

final score used for semantic shift detection is computed as:

S = Dis(f,g(zprun;07)) + on ||z, — zpomib ||, + 02| Zdiver — P25 ||, + @3 Limoa- (12)

proto’ proto ~ “proto

With diversity modeling, IDs will be perfectly reconstructed from memory (low term 1) and the
demodulated feature after BNSim will be very similar to prototypes (low term 2). Meanwhile, OODs
are projected far from prototypes (high term 2) and the reconstruction from discretely quantified
ID embeddings has low quality (high term 1). For the last two terms, IDs are trained to allocate
in the diversity representation space with compact modulation parameters, while OODs are more
likely to distribute in the nullspace or out of the finite boundary with large modulation amplitude.
Therefore, OODs will have high score S and can be discriminated from low score IDs. For better
understanding, Fig. [5]illustrates the contribution of the proposed model for detection scoring. Fig.
[6] visualizes experimental results on toy data.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We evaluate BIRDM on both one class and multiple classes semantic shift detection. BiRDM is
based on reverse distillation (Deng & Lil 2022)) and StyleConv (Karras et al.l 2020). The encoder is
ResNet18 for all reproduced approaches to ensure fairness. We employ 32 memory items with spher-
ical initialization (see App. [A]for details) for uniformly addressing. We also use position embedding
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Table 2: Ablation study and hyperparameters of BIRDM. Parameters in red are selected.
(a) Ablation study of proposed module and loss on one-class CIFAR10.

(Us ~| Vv v Vv v v VIV v VIV v v vV VY
U RON v v Vv v v VIV v VIV v vV v
Linod | v v v v Y v IV
smo | = v v v v v VY
P g v v |V v Vv vV
BN v VIV v Y v v v V|V
AAUC|0.0[1.7 0.0 02 2.0 09 14 12 21|23 30 20|09 33 1.7 38 3.6|53

(b) Bi-directional modeling (best/mean/std) (c) Memory quantity (d) Sampling quantity (e) Sampling strategy

tz | ¢t-only YT iz | AUC zhrel | AUC 7, inw | AUC

1 99.2/99.1/0.5 99.7/99.6/0.0  Const | 73.2 0 75.2 Qonly 75.2

10 199.4/99.2/0.2 99.6/99.6/0.0 23 73.1 1 76.0 Ooniy 78.0

100 {99.6/99.3/0.2 99.6/99.5/0.1 94 80.0 15 80.5 -3dB x | 79.3

200 199.7/99.0/0.7 99.8/99.5/0.2 25 81.3 25 81.3 -10dB v | 78.8

1000 |99.6/99.1/0.5 99.6/99.5/0.0 26 83.1 40 81.6 -3dB v | 81.3
to 2,010 and a linear layer to adjust the decoded statistic to match modulation. Disjoint auxiliary

data includes Tiny ImageNet and CIFAR100 is optimized every 5 batches for efficiency. We set
B =0.25,~ € {0.1,1} depending on how diverse the training distribution is, and pseudo positives
for validation can be obtained by rotation, blurring, etc. The optimizer is AdamW (Loshchilov &
Hutter, |2017a) with CosineAnnealingL.R (Loshchilov & Hutter, 2017b) whose learning rate is 3e-3
initially. We adopt 200 epochs for CIFAR10 and 40 for FashionMNIST on 1 GPU with the batch
size of 8. We then evaluate area under receiver operating characteristics curve.

4.2 MAIN RESULTS

Tab. [I] provides comparative results with SOTA reconstruction-based models, where CIFAR10 is
widely compared and not simpler than large-scale dataset as Yang et al.| (2022) discussed (see App.
[C| for more quantitative and qualitative results). All dataset are processed by fixed resize operation
(Tack et al., |2020) which is more difficult for detection. GN (Akcay et al.l 2018) and OCGAN
(Perera et al., 2019) are GAN-based reconstruction works, and LMD |Liu et al.| (2023b) use Diffusion
instead. RD (Deng & Li| 2022) is the baseline of the second group due to the same architecture.
RD++ (Tien et al., 2023) optimizes OT for compactness (we create large-batch supervised variant
to avoid collapse). Tilted denotes tilted-Gaussian (Floto et al., 2023)) extension of RD. VQ denotes
discretely quantified RD (Liu et al., 2023a)), like prototype learning in DMAD and BiRDM. Note
that reconstructing auxiliary data causing lower performance for these methods due to the undesired
generalization. The other results are borrowed from |Ye et al.| (2022) and Tack et al.[(2020).

Tab. [I(a)] shows BiRDM significantly outperforms comparative reconstruction-based works on CI-
FAR10 whose non-sematic diversity is rich enough and hard to capture. Although most FashionM-
NIST data can be modeled by geometrical diversity only, Tab. shows diversity-agnostic BIRDM
outperforms previous works and geometric-specified diversity modeling in DMAD, demonstrating
BiRDM can capture these geometrical diversity implicitly (see App. [B] and [C] for more discus-
sion about DMAD and FashionMNIST). BiRDM also can discover the discrete semantic factors for
multi-class ID and achieve great improvement on the detection performance as shown in Tab.

4.3 ABLATION STUDY AND ANALYSIS

Bi-directional modulation. We evaluate the capability of removing diversity by dynamically gen-
erated transformation parameter instead of static CNN on CIFARI10 and Ped2. As shown in Tabs.
[2(a)] and 2(b)} bi-directional dynamic modeling is more stable to eliminate diversity and has higher
performance than static CNN. We use average quantization distance (AQD) between demodulated
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Figure 6: T-SNE visualization on dSprite. Semantic and co-
variate shift are about shapes and position respectively. AUC is
calculated by term 2 in Eq. [I2] See App. [C]for more details.

Figure 7: Illustration of average
quantization distance and detection
result w.r.t. training epoch in Ped?2.

feature and memory embedding as measure of non-semantic diversity. Fig. [7]shows our framework
always has lower and smoother AQD, as well as faster convergence than the original one.

Proposed components. Tab. [2(a)| shows the ablation of proposed components. Feature space mod-
ulation 1" () restores non-semantic diversity from prototypes to reconstruct high-quality features
and the reverse process ¢~ (-) benefits prototypical learning to capture invariant prototypes. More
importantly, SmoReg L., creates a smooth representation space for non-semantic diversity which
suppresses the transmission of semantic information. There is extra gain by using projection P to
compress redundant diversity information in high dimensionality and perform sampling efficiently.
The modulation constraint L,,,,q further limits the intra-class scatter of modulated representation
and improves the distribution compactness. Finally, BNSim maintains more discriminative features
and makes the distance between demodulated feature and memory embedding more reliable.

SmoReg and BNSim. Comparing column 5 with 6-8 in Tab. although L,,,4, Lsmo and P al-
leviate the undesired OOD reconstruction, they force encoder to discard discriminative information
about unseen OODs for further compression. Fortunately, the adverse effect is offset by BNSim in
column 10-12. However, comparing column 5 with 9, we find BNSim alone brings limited improve-
ment without SmoReg and the combinations always outperform others. Visualization on dSprites
also shows the separation qualitatively in Fig. [f] These results verify the assumption in Sec. [3.4]that
SmoReg and BNSim are interdependent.

Hyperparameters. As shown in Tab. we use 32 memory items in all experiments for sim-
plicity. Const input (static learnable embedding z € R2%2xC (Karras et al., [2019% 2020)) is also
insufficient, though it is better than position-agnostic VQ-Layer with the same memory quantity due
to the implicit positional information.

Tab. [2(d)] confirms the efficacy of smoothness sampling. As the sampling times increase, diversity
representation space is more completely covered and semantic shift samples are better pushed away
from the distribution. Limited by the computational cost, we only perform 25x samplings.

Tab. shows there may not be enough pressure for using real samples 8 only to cover gaps
between untrained region smoothly due to the absence of sampling-based regularization or reverse
operation w/o-inv. And using sampled embedding 8 only may be biased without enough sampling
quantity. Truncation technique 7, further alleviates the problem that embedding drawn from the
low-density region of sampling distribution is hard to reconstruct the corresponding reference.

5 CONCLUSION

In this paper, we propose a diversity-agnostic modeling framework, BiRDM, for reconstruction-
based semantic shift detection. BIRDM enhances the representation capacity to non-semantic pat-
terns without semantic shifts. To this end, we apply smoothness regularization to perform smoothly
changing modulation for ID diversity in latent space, which essentially exclude potential OOD re-
construction with large diversity. Batch Normalization simulation further separates and pushes un-
seen semantic feature away without disturbing ID representation and enhances the feature discrim-
inability. In semantic shift detection experiments, BIRDM shows effectiveness and outperforms
existing diversity-specific modeling approaches. In future work, we will enhance the disentangle-
ment of BIRDM, so that more complete non-semantic factors could be excluded from semantic shift
detection during inference.
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A MORE IMPLEMENTATION DETAILS

Detailed architectures. The architectures of all approaches we reproduced follow the settings of
RD (Deng & Li, [2022)), which contain three stages of different scales. The fusion layers F'use and
Fuse’ exactly match the one-class bottleneck embedding, whose dimensions are {64, 128,256} —
{256, 256,256} — {256}. The only difference is that prototype branch outputs by Batch Normal-
ization to adapt to similarity-based memory mechanism, while diversity branch adopts convolutional
layer instead. Besides, the position embedding and scale adapter are implemented by 1 x 1 Coord-
Conv (L1u et al., 2018). We use scaled ResNet decoder to adapt to modulation scales, i.e. perform
scale normalization implicitly basing on estimated statistics of features (Karras et al., 2020). Then
extra IV output heads without scaling are employed to reconstruct original features.

Detailed implementation of BNSim. As shown in the main paper Fig. [ there are three different

inputs obtained by demodulation, namely training data zg;?g;gd, auxiliary data 29¢™°? used in train-

ing phase and the testing data zg;%gggd. For each kind of input, we have a standard ConvBN branch

(upper) and BNSim branch without BN operation (lower).

 Training data: The standard ConvBN branch is trained with V'@ loss (van den Oord et al.,
2017) and reconstruction loss (Deng & Li,2022), whose gradient flow is same as VQ-VAE.
Meanwhile, BNSim parallelly simulates the output of standard BN in the upper branch,
constraining by M SE loss (shown as the square mark L-). Note that this part of gradient
flow is only applied in BNSim branch without updating standard ConvBN branch or the
previous network.

* Auxiliary data: The standard BN branch is omitted and the output of BNSim is used for
decoding in case of overwriting the prototypical memory with auxiliary data. In this stage,
we do not stop the gradient flow from final reconstruction loss, which forces the encoder
to project potential OODs far away from high-density region to optimize reconstruction
loss over auxiliary data. Because the region near demodulated prototypical feature and
diversity representation space is fully occupied by non-semantic IDs and hard to reconstruct
auxiliary data.

* Testing data: In inference phase, the standard ConvBN branch is used for reconstruction
and obtaining reconstruction error. Because OOD features are expected to be discarded by
memory module, their reconstruction error will be high. Furthermore, we use the output
of BNSim to compute a distance-based metric (term 2 in Eq. shown as the square
mark Lo). The highly nonlinear BNSim can model warped transformation in contrast to
the global affine transformation of standard BN branch, which make the separation of ID
and OOD possible. In other words, discriminative OOD features could be kept in BNSim
and significantly different from the prototypical memory.

Reverse operation in sampling. We show the result without reverse operation -inv in Tab. 2(e)
in the main paper, where the performance decreases (AUC: 81.3% — 79.3%) with poor distribution
uniformity. Actually, the reverse operation encourages stronger exploration to hard samples, which
helps to aggressively shape the potential boundaries. This is similar to a relatively high a = (3 in
Beta(a, ) distribution for Mixup (Zhang et al., 2018)) to perform augmentation (another alternative
is the Tilted Gaussian distribution). With the reconstruction of additional reference samples, the
overall distribution is more uniform and the bias caused by insufficient samples will be alleviated.

Spherical memory initialization. As shown in Fig. |8| the uniform memory initialization (van den
Oord et al.,|2017) may cause BN centralized prototypes be addressed unevenly and updated unsta-
blely. And different prototypes belonging to the same semantic class cannot share the diversity
representation space. As a solution, we perform spherical memory initialization which normalizes
the isotropic Gaussian distribution to make the memory items distributed on a hypersphere thus
being addressed more uniformly:

z

z=r——— z~N(0,1). (13)

[E2IP
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B COMPARISON WITH DIVERSITY MEASURABLE METHOD

Different target scenarios. Despite the promising framework in DMAD, the precondition about
positive correlated measurement may be too strong in the face of diversity-agnostic semantic shift.
It is difficult to find a diversity-measurable implementation beyond geometrical diversity to meet the
condition of positive correlation, i.e. DMAD with deformation estimation is diversity-specific and
works well on semantic shift only if they mainly involve geometrical diversity. However, diversity
of natural images is determined by extremely complex generative factors, and we cannot find such
a group of diversity like diformation to model. As a result, DMAD outperforms VQ on FashionM-
NIST and MNIST, but fails in the more diverse CIFAR dataset (one-class: VQRD 86.0% vs DMAD
85.9%; multi-class: VQRD 83.7%/79.4%/74.9% vs DMAD 69.7%/70.7%/69.5%).

BiRDM provides a relaxed version of the three conditions described in DMAD and shapes the latent
space in an essentially different way. SmoReg constrains a more linear smooth space for this purpose
and expand the discrete prototypes to non-semantic representation space for diversity modeling. It
is naturally to assume that the smooth margin at the boundary of high-density region ensures the
separation of semantic shifted features and OODs will incur significant spatial difference. This
diversity-agnostic modeling capacity is more important in generalized semantic shift detection for
natural images.

Different learning frameworks. In DMAD, the revere process of deformation estimation in
PPDM version is proposed to restore original information as cycle-consistency constraint. However,
prototype learning is not well-separated from diversity modeling process. As a result, the redundant
diversity information attached to semantic features may lead to unstable prototypical learning. On
the contrary, BIRDM adopts bi-directional modulation framework where the demodulation is op-
timized by prototype learning almost being separated from reconstruction to remove non-semantic
diversity and obtain demodulated prototypical features. Thus the prototype learning will be more
robust.

Different measurement. As shown in Fig. 9] DMAD provide reliable anomaly score for relatively
typical diversity, i.e. projection close to prototypical appearance, but fails to cover the entire non-
semantic space with diversity modeling (middle subfigure). For highly diverse ID class, DMAD can
cover ID region by using more prototypes but the high-score region may still distribute among IDs
(bottom subfigure). Unlike DMAD, BiRDM takes each training sample as reference to construct
smooth ID region with low OOD score. Therefore, the gaps between ID reference are much more
slight and the discriminative region is located at the boundary between diverse IDs and OODs (upper
subfigure).

DMAD is a special case of BIRDM. Actually, surface defects and behavioral anomaly could be
mainly characterized by the deformation amplitude. The geometrical-specific diversity modeling ap-
proaches satisfy the positive correlation (Liu et al.||2023a)) between the measurement and the severity
of shift. In this case, the smoothness constraint penalizes spatial gradient of geometrical transforma-
tion, which prevents the excessively warped deformation from reconstructing anomalies. In another
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Table 3: Ablation study on the number of modulation stages.

§ modulation stages | 0 1 2 3 4
AUC ‘57.6 97.5 99.0 99.9 100.0

word, relatively small deformation naturally occupies a compact and smooth representation space
in image-level and has effect similar to SmoReg locally. This is the reason why the implementation
in DMAD is specifically designed, i.e. there is inductive bias for designing geometrical-specific
structure without accessing or transforming deep features.

C MORE EXPERIMENTAL DETAILS

C.1 DATASETS

We evaluate our method on CIFAR, FashionMNIST and ImageNet, with the fixed-version OOD
dataset (Tack et al.| [2020).

CIFAR10. CIFARI10 (Krizhevsky & Hinton, [2009)) is 32x32 resolution natural image dataset with
10 classes (e.g. airplane, cat, bird, etc), containing 50,000 training data and 10,000 testing data.
Though small and simple, CIFAR10 is more challenging than ImageNet surprisingly (Yang et al.,
2022) due to the diverse appearance and low resolution.

FashionMNIST. FashionMNIST (Xiao et al.,|2017) includes 10-class fashion products (e.g. dress,
coat, bag, etc). They are in 28 x 28 resolution and contain 60,000 training data and 10,000 testing
data. Although this dataset could be used for semantic shift detection, some classes, e.g. T-shirt/top,
pullover, coat and shirt, are more similar to covariate shift in fact. It may be difficulty for semantic
shift detection as they have similar semantic features.

ImageNet30. ImageNet30 (Hendrycks et al., 2019b) is a subset of ImageNet, which contains
39,000 training images within 30 semantic categories and 3,000 images for ID testing data.

OOD dataset. LSUN and ImageNet excluding the overlapped classes with the training CIFAR10
are used as OOD dataset. And CUB200 (Wah et al., 2011), Places365 (Zhou et al., 2018) and
Caltech256 (Griffin et al.l 2007) are used for ImageNet30. As in|Tack et al.|(2020), we apply fixed
resize operation to get hard OODs, otherwise they are easily recognized due to resizing noise.

Auxiliary dataset. We use CIFAR100 and Tiny ImageNet without overlapping with the test
classes as the auxiliary dataset in all experiments, i.e. we use TinylmageNet if OOD dataset in-
cludes CIFAR100 to ensure fairness. Note that it is not necessary to make the auxiliary dataset to
simulate near-OOD in test dataset or manually exclude IDs, as our purpose is to maintain necessary
discriminative information with a unified reconstruction objective.

Ped2. Ped2 (Mahadevan et al.,|2010) is a fixed-view surveillance videos for anomaly (including
both semantic and covarate shift) detection, include driving, cycling, etc. as anomalies.

Toy dataset. We show the effect of BIRDM by toy experiments on dSperite (Higgins et al., [2017)

and 3DShape (Kim & Mnih| 2018), which are widely used in representation learning due to the
controllable generative factors.

C.2 PARAMETER SETTING

As discussed in Sec. 3.4 and 4.1 in the main paper, the hyperparameters are selected according to
previous works or validation set. Here we explain the effect of these parameters intuitively.

Number of modulation stages: As shown in Tab. |3] we test our model on dSprite and find BIRDM
is not sensitive to the number of modulation stages as long as it is not too limited.
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Table 4: Ablation study on the weight v of modulation constraint L, 4.

~y | Baseline (VQ*) | 0.1 025 05 075 1 |{0.1,1}
CIFAR10-OC 86.0 90.4 90.7 90.7 90.8 909 | 913
FMNIST-OC 95.4 964 963 964 963 962 | 96.4

Table 5: Multi-classes results on unlabeled large-scale ImageNet. * denotes reproduced results.
denotes supervised methods. [] denotes method could be improved by “flipping labels”.

ID ImageNet30 ImageNet100
OOD | CUB PlacesCaltech Dogs Pets Flower Food DTD [Naturalist SUN Places DTD

RD* | 62.6 643 546 672 680 874 654 85| 850 603 568 81.9
RD++*1| 574 613 506 703 730 910 666 855 | 835 [49.9] 528 804
Tilted* | 669 61.8 580 788 814 004 678 796 | 734 761 723 764
VQ* | 67.0 661 664 803 819 877 679 825| 607 645 586 765
DMAD*| 677 637 622 742 763 878 793 739 | 902 649 587 817
BiRDM | 820 655 70.1 848 872 937 860 899 | 868 856 80.7 859

~v: We only make adjustment via ~y for the modulation constraint L,,,q during training, because it
is the only term that directly restricts diversity and fights against reconstruction target as discussed
in Sec. 3.3 Therefore, we use relatively large (1) ~y for reconstructing IDs with limited diversity
and small one (0.1) for allowing to capture more diverse variations in a single non-semantic latent
variable. Neverthless, we find -y is not sensitive as shown in Tab. E[

a1 & ag: The quantization error weighted by «; and the projection distance weighted by aq
represent the severity of semantic shift from the perspective of semantic factors and non-semantic
diversity factors respectively. For typical semantic shift detection, the quantization error is suffi-
ciently discriminative that a;; could achieve to 1. Besides, when BiRDM is used to detect covariate
shift (with similar semantics but diverse non-semantic information), c;; and «z may be reduced to
0, to avoid confusion between OODs and diverse IDs.

ag: The modulation constraint L,,,q could make modulation after imposing SomReg more com-
pact. So that this term will be discriminative if the sampling in SmoReg is insufficient to cover entire
diversity space for natural images or OODs are unexpectedly included between extremely diverse
ID projections as discussed later. That is L,,,q essentially identify data beyond training distribution
with covariate shift or near-OOD.

C.3 MORE EXPERIMENT

Large-scale dataset. Although CIFARI1O0 is hard enough as discussed in|Yang et al.| (2022) with
sufficient non-sematic diversity shift, for example, the class ’bird” contains different species (bird /
ostrich / peacock), size (distant / close-shot image), background (sky / grass / tree, ...), color, pos-
ture, etc. We additionally include a large-scale benchmark (unlabeled ImageNet30 vs CUB / Places
/ Caltech / Dogs / Pets / Flowers / Food / DTD) (we do not mix OOD datasets or perform balanced
sampling as in previous works to ensure the fairness) and a more challenging one (unlabeled Ima-
geNet100 vs iNaturalist / SUN / Places / DTD) in Tab. [5} Furthermore, all resize operation used in
is the fixed one as described in|Tack et al.| (2020) and we use grid search for model selection. The
experimental results basically support our observation in main paper Tab. [T}

Model architecture and capacity. As reported in previous works, Transformer features are dis-
criminative for classification-based approaches (Fort et all) [2021). We use features from vision
Transformer family (PVTv2-B0, PVTv2-B1, PVTv2-B2 (Wang et al., [2021)), where PVTv2-B1 is a
pyramid vision transformer with similar parameters like ResNet18) and ResNet family (ResNet50,
WideResNet50) as our distillation target. Note that the decoder is still ResNet rather than ViT-based
model, because LayerNormalization may destroy the style-based modulation. Interestingly, it is
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Table 6: Ablation study of model architecture on multi-class and one-class CIFAR10.

Model | Encoder Decoder | LSUN (Fix) ImageNet (Fix)
BiRDM | PVT-V2-BO  ResNetl8 1 8.8 195
BiRDM | PVT-V2-Bl ResNet18 1 0.6 128
BiRDM | PVT-V2-B2  ResNetl8 +4.3 149

vQ* PVT-V2-B1 ResNet18 1 0.1 13.5
BiRDM ResNet50 ResNet50 1 3.1 12.1
vVQ* ResNet50 ResNet50 12.0 12.9
BiRDM | WResNet50 WResNet50 CIFAR10-OC: | 0.2
BiRDM | PVT-V2-Bl ResNet18 CIFAR10-OC: | 3.9
Train Test
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Figure 10: Data splits of dSprites used in Fig. [q

hard to reproduce the same observations as |Fort et al.[(2021)) in reverse distillation (reconstruction-
based) methods as shown in Tab. [§] Larger capacity in a single model family does not mean better
OOD detection performance, since only data from the same domain benefits from larger pre-trained
models.

According to these results, we have following conjectures: 1. Using more diverse data to train a
model will benefit OOD detection by maintaining more unseen semantic features (see discussion
about BNSim and auxiliary data in main paper Secs. 3.4 and [£.3); 2. Model architecture has influ-
ence on reconstruction-based OOD detection, but larger model capacity does not always bring better
performance. (The performance gap in anomaly detection caused by different model architectures
is also reported by [Heckler et al. (2023)); 3. We need a network with comparable scale to per-
form distillation/reconstruction, rather than using small networks for richer features; 4. Transformer
features are effective in classification-based methods but may fail in reconstruction-based ones; 5.
Pre-trained networks with larger scale always perform better on OOD dataset within the same do-
main; 6. Transformer backbone cooperating with CNN decoder may lead to training instability even
with comparable scale (PVT-V2-B1+ResNetl8: std = 2.2AUC%).

Toy experiment in Figure [§] Inspired by [Montero et al] (2022), we create a toy experiment to
visualize how BiRDM shapes the latent space. Based on dSprites dataset, the data splits are shown
in Fig. [I0} 1. Training data is composed of ellipses located away from the centric region, i.e.
coordinates (PosX and PosY) to center > 7; 2. Auxiliary data contains hearts at all locations;
3. Testing data contains ellipses at the centric region (IDs), and squares (OODs) at all locations;
The three BIRDM models are: BIRDM without SmoReg and BNSim; BiRDM with SmoReg only;
full-components BIRDM.

Demodulation with different memory quantity. We also show average quantization distance for
different memory quantity setting in Fig. [IT} which supports the ablation study in main paper Sec.
@3] Although more memory capacity means more stable convergence, the bi-directional modeling
is always better than the original one.

Computational cost. We test models on Intel 7700k and Nvidia GTX1080ti. The model param-
eters and speeds are shown in Tab. [/| BIRDM has similar parameters as the compared approaches,
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Table 7: Computational cost on CIFAR10.

Model | RD* RD++*  Tilted* vQ* DMAD* BiRDM
Params (M) 24 25 22 24 21 25
Training Speed (min/epoch) 5 100 6 5 9 12
Testing Speed (FPS) 129 117 131 137 76 72

uantization Distance (AQD) &
UROC w.r.t. Epochs (#Mem=10)

Quantization Distance (AQD) &
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Figure 11: Illustration of average quantization distance and detection result w.r.t. training epochs
and the memory quantity in Ped2.

and the difference is caused by StyleConv and MappingNetwork. Besides, multiple sampling is
required, which is involved in the decoding process in training phase but omitted in inference phase.

C.4 MORE DISCUSSION

Explanation about modulation constraint. Ideally, SmoReg is sufficient to constrain the diver-
sity representation changing smoothly, the cooperating modulation parameters should be compact
consequently whose effect is similar to the role of modulation constraint. However, it is diffi-
cult to sample the entire diversity representation space to make SmoReg effective in natural im-
age, so we add the compatible modulation constraints. In some special cases, OOD images may
be included in the latent interpolation path between relatively diverse ID projections, even if the
changing is smooth. For example, class ”Shirt” in FashionMNIST is sufficiently diverse, which
may contain other classes belonging to apparently similar tops (without modulation constraints:
87.7% — 84.4%).

Explanation about sampling-based reconstruction. We explain the behavior of sampling-based
SmoReg in two main aspects. Firstly, the optimization of reconstruction objective means neighbor-
ing embedding should modulate ID projection within the sampling radius 74,.. If IDs are projected
compactly, the corresponding sampled region will overlap each other seriously, and the reconstruc-
tion targets in Eq. [§] are ambiguous. This provides enough pressure to drive ID projections far
away from each other to alleviate the confusing reconstruction naturally. With the sampling radius
increasing in the bounded representation space, uniform distribution of ID projections are optimal
distribution to ensure the minimum overlap, which encourages SmoReg to sample more untrained
region.

Secondly, the diversity space bounded with proper scale a further extends the local smoothness
to global smoothness on the premise that sampling possibility in the entire representation space is
guaranteed. That is, the above overlap is necessary to bring about. With the aid of enough sampling
to cover untrained region, we can smooth non-semantic modulation for IDs. Even if the sampling
region are not exactly concatenate with each other (i.e. with more overlapped region), it is just
equivalent to force model to learning from noisy data (i.e. with limited confusion on the sampling
boundary) without detriment to the suppression of OODs.

Explanation about BN features adaptation. The adaptation of BN somewhat increases the dis-
criminative ability based on reconstruction error, which promotes model to discard OOD features.
However, reconstruction error alone may be disturbed by factors including background, texture, etc.
Therefore, quantization error [|z5:7, ) — 277" ||2 is used to enhance the discriminative ability. To
this end, BNSim is introduced to preserve semantic information of OODs so that they distribute far

away from prototypes.
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Explanation about FashionMNIST results. To better understand the results on FashionMNIST,
we recommend reviewing how DMAD works and the main limitations. Since fashion items within
only one class have limited styles (here we mean the standard shape combined with limited color
and texture), DMAD (Liu et al.l [2023a)) naturally stores all prototypical styles to generate standard
reconstruction. Then the pyramid deformation module transforms the standard reconstruction with
a deformation field to match the real position, size and relative deformation of inputs. Theoretically,
all non-semantic diversity can be characterized as geometrical deformation as long as the proto-
typical memory is sufficient to cover different styles of the given class. And DMAD should solve
one-class problems perfectly in FashionMNIST. As reported in|Liu et al.|(2023a), DMAD achieves
96.3% AUC with grid search. The main reason of performance drop is manually created pseudo
OODs are highly associated with geometrical diversity, making DMAD tends to use geometrical
measure without reconstruction error and feature distance for scoring function. In that case, BIRDM
has 96.6% AU C' and still outperforms DMAD, demonstrating BIRDM can model diversity-agnostic
non-semantic ID without diversity-specific geometrical inductive bias.

C.5 VISUALIZATION

Disentanglement in Figure B} As sampling-based SmoReg may be a feasible way to promote
feature disentanglement, we use 3dShapes dataset (Kim & Mnih|[2018) to qualitative show this abil-
ity. BIRDM is trained with pixel-level reconstruction loss and the one-factor-changed sampling is
performed in diversity representation space for the reconstruction results. As shown in Fig. [3 all
continuous non-semantic factors are disentangled and the interpolation between gaps of generative
factors can also be reconstructed. Since there is no untrained region to forming warped distribu-
tion, smoothness forces an efficient representation in bounded diversity space and approximately
disentangled linear representation is a solution.

Non-semantic bias. We visualize the samples of Top-100 smallest OOD scores on CIFAR10
“bird” to qualitatively show some preferences (bias) of the compared reconstruction-based methods.
As shown in Figs. @and@ RD and Tilted (Floto et al.|[2023) seem to learn to identify OOD based
on low-level statistical similarity (i.e. the spuriously associated background). Although RD++ in
Fig. [T4try to align in-batch foreground, the complex distribution in natural images is hard to be
estimated correctly by the MultiProjectionLayer, and the optimal transmission optimization may
cause difficulties for the learning discriminative features. This issue can be alleviated by explicitly
introducing memory modules to compress prototypical features (van den Oord et al.,2017)) as shown
in Fig. [T3] However, due to the lack of diversity modeling, VQ may miss non-typical diverse
ID. Predictably, DMAD prefers geometrical cues to identify OOD, which make some OOD with
“average shape” have a low score (e.g. a lying cat and the back of a deer may be similar to the
body of a bird / ostrich in Fig. [T6). Besides, geometrical deformation cannot represent many other
non-semantic diversity which makes DMAD fail in natural images. In contrast, BIRDM in Fig.
includes minimum background bias and encodes birds with similar shape, pose and species into a
more compact distribution, implying that small spatial transformation in latent space corresponds to
smoothly changing appearance.
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Figure 12: Samples of T'op-100 smallest OOD scores by RD on CIFAR10 “bird”. 43 false negatives
are indicated by red boxes.

Figure 13: Samples of T'op-100 smallest OOD scores by Tilted on CIFAR10 “bird”. 42 false nega-
tives are indicated by red boxes.
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Figure 14: Samples of T'op-100 smallest OOD scores by RD++ on CIFARI10 “bird”. 39 false
negatives are indicated by red boxes.

Figure 15: Samples of T'op-100 smallest OOD scores by VQ on CIFAR10 “bird”. 25 false negatives
are indicated by red boxes.
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Figure 16: Samples of T'op-100 smallest OOD scores by DMAD on CIFARI0 “bird”. 19 false
negatives are indicated by red boxes.

Figure 17: Samples of T'op-100 smallest OOD scores by BIRDM on CIFAR10 “bird”. 10 false
negatives are indicated by red boxes.
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