
Full-Step-DPO: Self-Supervised Preference Optimization with Step-wise
Rewards for Mathematical Reasoning

Anonymous ACL submission

Abstract

Direct Preference Optimization (DPO) often001
struggles with long-chain mathematical reason-002
ing. Existing approaches, such as Step-DPO,003
typically improve this by focusing on the first004
erroneous step in the reasoning chain. How-005
ever, they overlook all other steps and rely006
heavily on humans or GPT-4 to identify erro-007
neous steps. To address these issues, we pro-008
pose Full-Step-DPO, a novel DPO framework009
tailored for mathematical reasoning. Instead010
of optimizing only the first erroneous step, it011
leverages step-wise rewards from the entire rea-012
soning chain. This is achieved by training a013
self-supervised process reward model, which014
automatically scores each step, providing re-015
wards while avoiding reliance on external sig-016
nals. Furthermore, we introduce a novel step-017
wise DPO loss, which dynamically updates018
gradients based on these step-wise rewards.019
This endows stronger reasoning capabilities020
to language models. Extensive evaluations on021
both in-domain and out-of-domain mathemati-022
cal reasoning benchmarks across various base023
language models, demonstrate that Full-Step-024
DPO achieves superior performance compared025
to state-of-the-art baselines 1.026

1 Introduction027

Large Language Models (LLMs) have attracted028

massive interest due to their remarkable capabilities029

across various tasks (Kaddour et al., 2023; Song030

et al., 2023; Wang et al., 2023a; Zheng et al., 2024;031

Wang et al., 2023b). However, they commonly032

encounter difficulties when tackling complex and033

symbolic multi-step reasoning, particularly in math-034

ematical problem reasoning (Lightman et al., 2023;035

Huang et al., 2023). To improve the mathematical036

reasoning ability, some studies use Direct Prefer-037

ence Optimization (DPO) (Rafailov et al., 2024)038

with pairwise preference data at the solution level039

1Our code, data, and models are available at https://
github.com/anonymous.

DPO

Step-DPO

Full-Step-DPO low ← reward → high

��

...
�1 ��−1

��
�

��
�

��

...

...
�1

� �2
� ��

�

�1
� �2

� ��
�

Step-wise
DPO Loss

 DPO Loss

 DPO Loss

policy model

policy model

policy model

Figure 1: Comparison between DPO, Step-DPO, and
our Full-Step-DPO. DPO operates on solution-level
preference data. Step-DPO advances to step-wise data
but optimizes only a single step. Full-Step-DPO opti-
mizes all steps with a novel step-wise DPO loss, effec-
tively enhancing the model’s reasoning capability.

but find its benefit limited (Pal et al., 2024; Xu et al., 040

2024; Jiao et al., 2024). Recent works attribute this 041

limitation to DPO’s inability to perform process su- 042

pervision and instead builds preference data based 043

on reasoning steps rather than entire solutions (Lai 044

et al., 2024; Chen et al., 2024; Xie et al., 2024a; Lu 045

et al., 2024). For example, Step-DPO (Lai et al., 046

2024) focuses on optimizing only the first erro- 047

neous step in the reasoning chain, demonstrating 048

notable improvements. 049

However, despite their improvements, these 050

existing methods face the following limitations: 051

(1) Some focus solely on the first erroneous step 052

and ignore all other useful steps in the reasoning 053

chain (Lai et al., 2024), as shown in Figure 1. 054

As a result, they fail to fully optimize the rea- 055

1

https://github.com/anonymous
https://github.com/anonymous

soning chains, leading to suboptimal performance.056

(2) Their loss function still follow the early vanilla057

DPO at the solution level (Lu et al., 2024; Xie et al.,058

2024a). Consequently, it cannot directly leverage059

rewards at the step level for learning. (3) They060

heavily rely on costly and resource-intensive anno-061

tations from GPT-4 or humans to detect erroneous062

steps (Lai et al., 2024; Lightman et al., 2023), sig-063

nificantly limiting their practicality and scalability.064

To address the above limitations, we propose065

Full-Step-DPO, a novel DPO framework for math-066

ematical reasoning. As illustrated in Figure 1, un-067

like vanilla DPO, which operates at the solution068

level, or Step-DPO, which focuses solely on the069

first erroneous step, Full-Step-DPO utilizes each070

step in the entire reasoning chain, and optimizes071

them at step level by leveraging step-wise rewards.072

We first train a Process Reward Model (PRM)073

(Lightman et al., 2023; Wang et al., 2023c) in a074

self-supervised way, utilizing data generated by the075

model itself. This approach enables the PRM to au-076

tomatically score each step in the reasoning chain,077

eliminating the reliance on external annotations078

such as GPT-4 or humans.079

Then, we propose a novel Step-wise DPO Loss,080

which employs dynamic gradient updates to op-081

timize each step based on its corresponding re-082

ward. This approach shifts the optimization fo-083

cus from the solution level to the step level, en-084

abling the policy model to achieve superior rea-085

soning capabilities. We conduct experiments on086

both in-domain and out-of-domain mathematical087

reasoning datasets with four widely used backbone088

LLMs. Experimental results demonstrate that our089

Full-Step DPO consistently outperforms the DPO090

and Step-DPO baselines, validating its effective-091

ness in enhancing reasoning performance. Our092

contributions can be summarized as follows:093

• We propose the Full-Step-DPO framework with094

a novel step-wise DPO loss that dynamically095

adjusts each step’s gradient based on its re-096

ward, enabling step-level optimization rather than097

solution-level and enhancing reasoning ability.098

• We train a self-supervised PRM to provide step-099

wise rewards for preference learning and explore100

a more efficient approach for automatically con-101

structing PRM training data.102

• Extensive experiments on widely used mathemat-103

ical benchmarks and base language models show-104

case the remarkable effectiveness of our method.105

2 Related Work 106

Mathematical Reasoning Mathematical reason- 107

ing task is one of the most challenging tasks for 108

LLMs. Various approaches have been explored 109

to improve or elicit the mathematical reasoning 110

ability of LLMs. A number of approaches have 111

either continually pre-trained the base model on a 112

vast of datasets that are related to math problems 113

(Azerbayev et al., 2023; Shao et al., 2024) or used 114

supervised fine-tuning with substantial synthetic 115

datasets distilled from cutting-edge models (Luo 116

et al., 2023; Yu et al., 2023b; Mitra et al., 2024; 117

Xu et al., 2024). Another line of work focuses 118

on enhancing test-time computation by generat- 119

ing multiple solutions, developing separate reward 120

models at either the outcome or process level to 121

rerank these solutions (Cobbe et al., 2021a; Light- 122

man et al., 2023), or employing decoding strategies 123

guided by the reward model (Yu et al., 2023a; Xie 124

et al., 2024b; Wang et al., 2023c). In addition, Rein- 125

forcement Learning’s potential in general domains, 126

demonstrated by Achiam et al. (2023) and Touvron 127

et al. (2023), some studies have explored its use in 128

mathematical reasoning (Wang et al., 2023c; Mitra 129

et al., 2024; Pal et al., 2024). 130

Preference Learning Recently, preference learn- 131

ing (Ethayarajh et al., 2024) has attracted signifi- 132

cant attention due to its ability to align with human 133

preferences and distinguish between positive and 134

negative examples. While these methods, like DPO 135

(Rafailov et al., 2024), have proven effective in gen- 136

eral domains, it offers only marginal benefits for 137

mathematical reasoning (Pal et al., 2024). Some 138

works (Chen et al., 2024; Lai et al., 2024) suggest 139

that DPO’s focus on coarse solution-level prefer- 140

ences makes it less effective at correcting errors 141

in multi-step reasoning, hindering reasoning im- 142

provement. Therefore, Step-DPO (Lai et al., 2024) 143

was proposed, which first identifies the first erro- 144

neous step, and then optimizes only this erroneous 145

step along with the corresponding correct one. Al- 146

though this approach enhances mathematical rea- 147

soning capabilities, it totally overlooks the other 148

steps in long-chain reasoning, which also provide 149

valuable information and should not be completely 150

disregarded. Building on this consideration, we 151

propose Full-Step-DPO, which fully accounts for 152

each step by dynamically optimizing all steps in 153

the reasoning process. 154

2

Step-wise Supervision Recent findings by Light-155

man et al. (2023) suggest that step-wise supervision156

outperforms outcome-wise, due to the provision of157

more detailed feedback. However, training a PRM158

requires either costly manual annotation (Lightman159

et al., 2023) or significant computational resources160

(Khalifa et al., 2023; Wang et al., 2023c), which161

hinders the advancement and practical application162

of PRM. Therefore, in this paper, we aim to build a163

PRM for mathematical reasoning without relying164

on human annotation and with reduced computa-165

tional resources. Additionally, we explore the ef-166

fectiveness of the PRM in decoding and preference167

learning scenarios.168

3 Full-Step DPO169

In this section, we elaborate the proposed Full-170

Step DPO framework. We begin by reviewing the171

background of previous DPO and Step-DPO. Then172

we introduce the novel Step-wise DPO Loss which173

optimizes with step-wise rewards, and the Process174

Reward Model which automatically generate these175

step-wise rewards. Finally we outline the complete176

training pipeline of our Full-Step-DPO.177

3.1 Preliminary178

DPO. Direct Preference Optimization (DPO)179

(Rafailov et al., 2024) is one of the most popular180

preference optimization methods. Instead of learn-181

ing an explicit reward model, DPO directly uses182

pair-wise preference data to optimize the policy183

model with an equivalent optimization objective.184

Specifically, given an input prompt x, and a prefer-185

ence data pair (yw, yl), DPO aims to maximize the186

probability of the entire preferred solution yw and187

minimize that of the dispreferred solution yl. The188

optimization objective of DPO is:189

LDPO(θ) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(y
w | x)

πref(yw | x)
− β log

πθ(y
l | x)

πref(yl | x)

)]190

where πθ(·|x) is the policy model to be optimized,191

πref(·|x) is the reference model, (x, yw, yl) are192

preference pairs, σ is the sigmoid function, β is193

a parameter controlling the deviation from the194

reference model.195

196

Step-DPO. Although DPO performs well on chat197

benchmarks, it is less effective for long-chain rea-198

soning tasks like mathematical problems. Step-199

DPO (Lai et al., 2024) attributes this to DPO’s200

inability to consider the sequential nature of math- 201

ematical reasoning, as rejecting an entire dispre- 202

ferred solution may inadvertently penalize correct 203

preceding steps, introducing significant noise. To 204

address this, Step-DPO optimizes only the first in- 205

correct step. As shown in Figure 1, given a math 206

problem and a series of initial correct reasoning 207

steps {s1, ..., sk−1}, Step-DPO aims to maximize 208

the probability of the correct next step swk and min- 209

imize the probability of the incorrect one slk. Note 210

that swk and slk refer to single steps, not all sub- 211

sequent steps. The loss function used is still the 212

vanilla DPO loss. 213

3.2 Step-wise DPO Loss 214

We now introduce the novel Step-wise DPO loss, 215

which performs optimization at the step level us- 216

ing step-wise rewards. Although the motivation 217

behind Step-DPO is reasonable, focusing solely on 218

optimizing the first erroneous step and neglecting 219

the valuable information provided by other steps 220

may not be optimal. Additionally, we contend that 221

it is not truly a step-wise DPO, as it still relies on 222

the standard solution-level DPO loss and resembles 223

more of a data construction method. 224

To address this, we modify the vanilla DPO loss 225

to the step-wise DPO loss, dynamically weight- 226

ing the gradients of each step based on its reward, 227

thereby enabling true step-level optimization. Let’s 228

start with the gradient of the loss function LDPO. 229

The gradient with respect to the parameters θ can 230

be written as: 231

∇θL=−βE(x,yw,yl)∼D[σ
(
r̂θ(x, y

l)− r̂θ(x, y
w)

)
[∇θ log πθ(y

w | x)−∇θ log πθ(y
l | x)]]

232

where r̂θ(x, y) = β log πθ(y|x)
πref(y|x) . Intuitively, the 233

gradient indiscriminately increases the likelihood 234

of whole yw and decreases the likelihood of whole 235

yl. To achieve dynamically weighting, we break 236

∇θ log πθ(y | x) into a step-wise form and weight 237

the gradient as follows: 238

∇θL =− βE(x,yw,yl)∼D

[
σ
(
r̂θ(x, y

l)− r̂θ(x, y
w)

)
[

Kw∑
i=1

αw
i ∇θ log πθ(s

w
i | x, sw:<i)

−
Kl∑
i=1

αl
i∇θ log πθ(s

l
i | x, sl:<i)

]]
239

where si represents the i-th reasoning step of the 240

solution y, s:<i denotes all reasoning steps preced- 241

ing si , K is the total number of steps, and αi is 242

3

the weight coefficient of si, calculated based on the243

reward of si as shown below:244

αi =


eγrsi∑
j e

γrsj
, si ∈ yw

e−γrsi∑
j e

−γrsj
, si ∈ yl

245

where rsi is the reward of the step si, which will246

be introduced in the next subsection, and γ is the247

temperature of the Softmax operation. It is im-248

portant to note that the calculation of αi differs249

between the preferred solution yw and the dispre-250

ferred solution yl. For preferred solutions, a higher251

reward indicates a greater likelihood of correct rea-252

soning in that step, so the model should perform253

gradient ascent with greater intensity. Conversely,254

for dispreferred solutions, a lower reward suggests255

a higher chance of incorrect reasoning, and the256

model should apply gradient descent with greater257

intensity accordingly. This approach allows us to258

leverage all steps and adaptively adjust the weight259

of each step based on its probability of correctness,260

achieving true step-wise optimization.261

Compared to Step-DPO methods that focus262

solely on a single step, our method optimizes all263

steps simultaneously, enabling better global opti-264

mization. Noted that as γ→0, all steps will have265

equal weights, making Full-Step-DPO equivalent266

to vanilla DPO.267

3.3 Process Reward Models268

To obtain step-wise rewards, we train a Process269

Reward Model (PRM). The biggest challenge270

in training a PRM is constructing a process271

supervision dataset. Previous studies (Uesato272

et al., 2022; Lightman et al., 2023) utilize human273

annotators to obtain step-wise labels, which274

requires advanced annotator skills and is quite275

costly. Later, MathShepherd (Wang et al., 2023c)276

proposes using Monte Carlo Tree Search (MCTS)277

(Coulom, 2006) to automatically gather step-wise278

supervision, but it remained computationally279

expensive. In this section, we first delve into the280

principles behind using MCTS to construct PRMs281

training data, then we introduce our solution,282

which simplifies the MCTS-based method to283

improve the efficiency of data construction.284

285

MCTS-based data construction. This approach286

assumes that the gold label ysi of a step si can287

be defined as the probability to deduce the cor-288

rect answer a∗, and it includes both sampling289

and simulation phase. Specifically, given a math 290

problem, it first randomly samples M solutions, 291

with each solution consisting of K reasoning steps 292

{s1, s2, . . . , sK}, and a represents the decoded an- 293

swer from the last step sK . Then, to estimate the 294

quality of reasoning step si in a given solution, it 295

simulates N subsequent reasoning processes from 296

this step: {(si+1,j , . . . , sK,j)}Nj=1. The golden la- 297

bel for si is calculated as follows: 298

ysi =

∑N
j=1 I(aj = a∗)

N
299

where aj is the decoded answer for the j-th 300

simulated solution, and I is the indicator function 301

that returns 1 if aj = a∗ and 0 otherwise. This 302

two-stage approach is highly time-consuming, as it 303

requires N simulations for each of K step across 304

all M solutions, resulting in a time complexity of 305

O(KNM). 306

307

Our efficient approach. It is important to note 308

that, in MCTS-based mehtod, there is a trade-off 309

between the sampling number M and the simula- 310

tion number N when computational resources are 311

limited. A larger M can provide more data for 312

training the PRM, while a larger N can result in 313

higher accuracy of the labels yi. In this paper, we 314

found that the trained PRM performs reasonably 315

well even with N = 1 when M is large, such as 32. 316

This is likely because a larger M introduces more 317

diversity into the training data, making the PRM 318

more tolerant to slight reductions in data precision 319

caused by the limited simulation number. This set- 320

ting simplifies the PRM data construction by requir- 321

ing only the sampling of M solutions without the 322

need for simulation, significantly reducing compu- 323

tational resources and lowering the time complexity 324

to O(M). As a result, the gold label for step si can 325

be simplified as follows: 326

ysi =

{
1 if a = a∗

0 otherwise
327

then the PRM could be trained as shown below: 328

LPRM = −
K∑
i=1

ysi log rsi + (1− ysi) log(1− rsi) 329

where ysi is the golden label for si, rsi is the sig- 330

moid score assigned by the PRM. With the above 331

PRM, we can automatically score each step in the 332

reasoning chain, providing reward signals for the 333

step-wise DPO loss and enabling step-level opti- 334

mization. 335

4

...

...
sample train

PRMmath problem

Step 1. PRM Training

step-wise
preferences

score filter

Step 2. Preference Building

Step 3. Preference Learning

train

policy model
Step-wise DPO Lossstep-wise

preferences

PRM

...

0.8 0.6 0.9

0.6 0.4 0.1

1 1 1

0 0 0

...

Figure 2: The overall framework of Full-Step-DPO
consists of three steps: (1) Training the PRM using the
model itself and generated solutions. (2) Using the PRM
to score and filter solutions to form preference data with
step-wise rewards. (3) Training the policy model with
the proposed step-wise DPO loss.

3.4 Training Pipeline336

Following previous methods (Wang et al., 2023c;337

Shao et al., 2024), we adopt a standard training338

pipeline illustrated in Figure 2: (1) We begin by339

training a PRM with self-generated data, where340

higher reward values indicate a stronger likelihood341

of correct reasoning, while lower values suggest po-342

tential errors. (2) The trained PRM is then used to343

construct preference pairs with step-wise rewards.344

Specifically, we generate M solutions for each345

math problem, score each step of these solutions346

with the PRM to produce a reward sequence, and347

calculate the average reward across all steps as the348

overall reward for each solution. We select the349

top T correct solutions with the highest rewards350

and the bottom T incorrect solutions with the low-351

est rewards to form T 2 step-wise preference pairs.352

(3) Finally, we update the policy model using the353

proposed step-wise DPO loss and the step-wise354

preference pairs, as described in Section 3.2.355

During the inference, a well-trained PRM can356

guide the decoding process and enhance the357

model’s performance. Therefore, in addition to the358

standard greedy decoding, we explore three alterna-359

tive decoding methods: (1) Self-Consistency (SC)360

(Wang et al., 2022): given a problem in the test set,361

we sample K candidate solutions from the policy362

model. Instead of relying on the first decoded solu- 363

tion, we select the final answer based on majority 364

voting over the answers provided by all sampled 365

solutions. SC is a simple yet highly effective verifi- 366

cation strategy. (2) Best-of-N (BoN): we similarly 367

sample K candidate solutions, score them using 368

the reward model, and select the highest-scoring so- 369

lution as the final answer. Following previous work 370

(Lightman et al., 2023; Wang et al., 2023c), we 371

use the minimum score across all steps as the final 372

score assigned to a solution by the PRM. (3) Step- 373

wise Beam Search (SBS) (Yu et al., 2023a): the 374

PRM provides feedback at each step, offering more 375

fine-grained guidance. Specifically, for each step, 376

we first sample b1 candidate subsequent steps, then 377

score them using the PRM. The top b2 steps are 378

retained, and decoding continues until b2 final so- 379

lutions are reached. The detailed algorithm is pro- 380

vided in Appendix A. 381

4 Experiments 382

4.1 Experimental Setup 383

Backbones. To comprehensively validate the 384

effectiveness of our proposed method, we adopt 385

four popular open-source LLMs as the back- 386

bone models: MetaMath-Mistral-7B (Yu et al., 387

2023b), Llama-3-8B (Touvron et al., 2023), 388

DeepSeekMath-Base-7B (Shao et al., 2024) and 389

Qwen2-7B (Bai et al., 2023). To improve these 390

backbones’ reasoning ability, Step-DPO (Lai 391

et al., 2024) finetunes DeepSeekMath-Base-7B 392

and Qwen2-7B on two open-source synthetic math 393

datasets, MetaMath (Yu et al., 2023b) and MMIQC 394

(Liu and Yao, 2024), resulting in DeepSeekMath- 395

Base-SFT 2 and Qwen2-7B-SFT 3, which greatly 396

outperform their previous versions. Following 397

Step-DPO, we further finetune Llama3-8B to 398

produce Llama3-8B-SFT. MetaMath-Mistral-7B 399

has already been finetuned on MetaMath, so no 400

additional finetuning was performed. 401

402

Baselines. For closed-source baselines, we com- 403

pare our approach with OpenAI’s GPT-3.5 and 404

GPT-4 (Achiam et al., 2023). We also bench- 405

marked our method against recent high-performing 406

mathematical LLMs, including WizardMath (Luo 407

et al., 2023), MetaMath (Yu et al., 2023b), 408

InternLM-Math-7B (Ying et al., 2024), Qwen2-7B- 409

2https://huggingface.co/xinlai/
DeepSeekMath-Base-SFT

3https://huggingface.co/xinlai/Qwen2-7B-SFT

5

https://huggingface.co/xinlai/DeepSeekMath-Base-SFT
https://huggingface.co/xinlai/DeepSeekMath-Base-SFT
https://huggingface.co/xinlai/Qwen2-7B-SFT

Instruct(Bai et al., 2023), DeepSeekMath-Instruct410

(Shao et al., 2024), InternLM-Math-20B (Ying411

et al., 2024), and Llama-3-70B-Instruct (Touvron412

et al., 2023).413

Additionally, we compare it against DPO414

(Rafailov et al., 2024) and Step-DPO (Lai et al.,415

2024). Among these, Lai et al. (2024) publicly416

release DeepSeekMath-Base-SFT-Step-DPO 4417

and Qwen2-7B-SFT-Step-DPO 5, which we418

directly used for evaluation. Additionally, we419

trained MetaMath-Mistral-7B-Step-DPO and420

Llama-3-8B-SFT-Step-DPO using their publicly421

available code and dataset.422

423

Datasets. To ensure a fair comparison, we use the424

same training dataset 6 provided by Step-DPO (Lai425

et al., 2024), which is synthesized from the training426

set of GSM8K (Cobbe et al., 2021b) and MATH427

(Hendrycks et al., 2021). Noted that we only use428

the problem prompts in this dataset and do not use429

the step labels marked by GPT-4.430

For in-domain evaluation, we conduct our431

experiments on GSM8K and MATH, which432

contain 1,319 and 5,000 test problems, respectively.433

We also evaluate on two out-of-domain (OOD)434

test sets OCWCourses (OCW) (Lewkowycz et al.,435

2022) and GaoKao2023 (GK2023) (Liao et al.,436

2024). OCW contains of 272 undergraduate-level437

STEM problems requiring multi-step reasoning438

for most questions, while GK2023 includes 385439

mathematics problems from the 2023 Chinese440

higher education entrance exam, translated into441

English. The two OOD datasets are even more442

challenging than MATH. Accuracy is used as the443

evaluation metric for all datasets.444

445

Implementation Details. During PRM training,446

we first randomly sample M = 32 solutions for447

each math problem using Qwen2-7B-SFT and then448

label them as described in Section 3.3, resulting in449

the PRM training set. Then, we add a classification-450

head to Qwen2-7B-SFT and train it on the PRM451

training set for one epoch. The batch size is 256,452

and the learning rate is 5e-7.453

To build preference learning datasets, we first454

sample M = 32 solutions for each math problem.455

4https://huggingface.co/xinlai/
DeepSeekMath-Base-SFT-Step-DPO

5https://huggingface.co/xinlai/
Qwen2-7B-SFT-Step-DPO

6https://huggingface.co/datasets/xinlai/
Math-Step-DPO-10K

The trained PRM then scores each solution, and 456

we select T = 4 solutions with the highest average 457

rewards and T = 4 with the lowest average rewards 458

to randomly form 16 preference pairs. 459

During preference learning, the batch size is 64, 460

the learning rate is 5e-7, β is 0.05, and the re- 461

ward temperature γ is 0.5. We use the AdamW 462

(Loshchilov and Hutter, 2017) optimizer with a lin- 463

ear decay learning rate scheduler and only train one 464

epoch. The warm-up ratio is 0.05. 465

During the decoding phase, we conduct exper- 466

iments with two settings for SC and BoN, using 467

K = 5 and K = 15. For Step-wise Beam Search, 468

to ensure fair comparison, we test two configura- 469

tions: b1 = 5, b2 = 1 (corresponding to K = 5) 470

and b1 = 5, b2 = 3 (corresponding to K = 15). 471

The sampling temperature is set to 0.8. 472

All the experiments are conducted on a server 473

equipped with 8 NVIDIA A100-80GB GPUs and 474

512GB of system RAM. The implementation 475

frameworks are PyTorch (Paszke et al., 2017), 476

DeepSpeed (Rasley et al., 2020), and Huggingface 477

(Wolf et al., 2019). 478

4.2 Main Results 479

Table 1 provides a comprehensive comparison of 480

various models on both MATH and GSM8K, in- 481

cluding open-source and closed-source LLMs. We 482

find that: (1) Consistent with previous studies 483

(Pal et al., 2024), DPO exhibits notable instabil- 484

ity. Its performance shows slight degradation on 485

MetaMath-Mistral-7B and MetaMath-Mistral-7B- 486

SFT backbones, while the accuracy drops sharply 487

to around 20% on Qwen2-7B-SFT. It achieves a 488

slight performance improvement only when ap- 489

plied to the DeepSeekMath-Base-SFT. (2) Step- 490

DPO achieves only minimal improvements across 491

all backbones, with gains generally around 1% and, 492

in some settings, even slight performance drops. 493

We evaluate the publicly released Step-DPO model 494

using its official script, and the results may dif- 495

fer slightly from those reported in the Step-DPO 496

paper. Similar issues have also been observed by 497

other researchers 7. (3) Our Full-Step-DPO consis- 498

tently outperforms Step-DPO across all backbones. 499

Specifically, when applied to MetaMath-Mistral- 500

7B and Llama-3-8B-SFT, our model achieves im- 501

provements of approximately 2.3% to 3.7%, while 502

applied to the stronger backbones, DeepSeekMath- 503

Base-SFT and Qwen2-7B-SFT, our method still 504

7https://github.com/dvlab-research/Step-DPO/
issues/2

6

https://huggingface.co/xinlai/DeepSeekMath-Base-SFT-Step-DPO
https://huggingface.co/xinlai/DeepSeekMath-Base-SFT-Step-DPO
https://huggingface.co/xinlai/Qwen2-7B-SFT-Step-DPO
https://huggingface.co/xinlai/Qwen2-7B-SFT-Step-DPO
https://huggingface.co/datasets/xinlai/Math-Step-DPO-10K
https://huggingface.co/datasets/xinlai/Math-Step-DPO-10K
https://github.com/dvlab-research/Step-DPO/issues/2
https://github.com/dvlab-research/Step-DPO/issues/2

Model MATH (%) GSM8K (%)

GPT-3.5 34.1 80.8
GPT-4 53.6 93.6

WizardMath 10.7 54.9
MetaMath 19.8 66.5
InternLM-Math-7B 34.6 78.1
Qwen2-7B-Instruct 49.6 82.3
DeepSeekMath-Instruct 46.8 82.9
InternLM-Math-20B 37.7 82.6
Llama-3-70B-Instruct 50.4 93.0

MetaMath-Mistral-7B 28.2 77.7
+ DPO 24.8 -3.4 70.7 -7.0

+ Step-DPO 28.9 +0.7 79.6 +1.9

+ Full-Step-DPO 30.5 +2.3 81.4 +3.7

Llama-3-8B-SFT 32.6 78.5
+ DPO 23.4 -9.2 62.3 -16.2

+ Step-DPO 31.8 -0.8 80.1 +1.6

+ Full-Step-DPO 35.0 +2.4 82.0 +3.5

DeepSeekMath-Base-SFT 51.7 86.4
+ DPO 51.7 -0 87.3 +0.9

+ Step-DPO 52.9 +1.2 86.6 +0.2

+ Full-Step-DPO 53.2 +1.5 87.9 +1.5

Qwen2-7B-SFT 53.9 88.3
+ DPO 20.0 -23.9 27.3 -61.0

+ Step-DPO 54.9 +1.0 88.4 +0.1

+ Full-Step-DPO 55.4 +1.5 89.3 +1.0

Table 1: Performance comparison of various models on
MATH and GSM8K with greedy decoding.

delivers gains exceeding 1%. These results clearly505

demonstrate the effectiveness of our proposed ap-506

proach, which considers all steps in the reasoning507

process rather than focusing on solution-level pref-508

erences or only a single step.509

4.3 Results on OOD Datasets510

To further demonstrate the superiority of Full-Step-511

DPO, we evaluate the models on out-of-domain512

datasets GK2023 and OCW, as shown in Table 2.513

On these competition-level math problems, DPO514

and Step-DPO often exhibit performance degrada-515

tion under various settings, while our Full-Step-516

DPO consistently achieves performance improve-517

ments. The only exception occurs on the OCW518

dataset with MetaMath-Mistral-7B, where Full-519

Step-DPO shows a slight 0.8% drop in accuracy.520

However, this drop is notably smaller than 3.0%521

with DPO and the 3.7% with Step-DPO. These522

results demonstrate the superior stability and re-523

silience of Full-Step-DPO, particularly in handling524

challenging mathematical reasoning tasks.525

Model GK2023 (%) OCW (%)

MetaMath-Mistral-7B 15.8 10.7
+ DPO 15.8 -0 7.7 -3.0

+ Step-DPO 15.1 -0.7 7.0 -3.7

+ Full-Step-DPO 20.5 +4.7 9.9 -0.8

Llama-3-8B-SFT 20.5 12.5
+ DPO 11.7 -8.8 9.9 -2.6

+ Step-DPO 19.7 -0.8 13.6 +1.1

+ Full-Step-DPO 22.1 +1.6 15.1 +2.6

DeepSeekMath-Base-SFT 30.4 19.1
+ DPO 31.2 +0.8 18.4 -0.7

+ Step-DPO 31.2 +0.8 18.0 -1.1

+ Full-Step-DPO 31.7 +1.3 20.2 +1.1

Qwen2-7B-SFT 33.0 15.8
+ DPO 8.8 -24.2 8.1 -7.7

+ Step-DPO 32.5 -0.5 15.8 -0

+ Full-Step-DPO 33.5 +0.5 18.4 +2.6

Table 2: Performance comparison on out-of-domain
math problems.

4.4 Results on Various Verification Strategies 526

Figure 3 presents the performance of different veri- 527

fication strategies on GSM8K under two settings: 528

K = 5 and K = 15. We find that: (1) SC serves 529

as a simple yet powerful validation method that 530

significantly improves performance across all mod- 531

els. Even for the high-performing Qwen2-7B-SFT, 532

which achieves an accuracy of 89.3% with greedy 533

decoding, SC further improves the accuracy to 534

93% when the sampling size K = 15. This re- 535

sult is already comparable to GPT-4’s accuracy of 536

93.6%. (2) Compared to SC, BoN often achieves 537

further improvements on MetaMath-Mistral-7B 538

and Llama-3-8B-SFT. However, on the highly capa- 539

ble DeepSeekMath-Base-SFT and Qwen2-7B-SFT, 540

BoN underperforms SC, indicating that the benefits 541

of the reward model diminish for very strong base- 542

line models. (3) SBS performs worse than both 543

SC and BoN across most settings, yet consistently 544

surpasses Greedy decoding, aligning with findings 545

from previous studies (Yu et al., 2023a; Khalifa 546

et al., 2023). This may be because, during the early 547

stages of inference, the reward model struggles to 548

effectively distinguish the correctness of steps. 549

4.5 Analysis of PRMs 550

As discussed in Section 3.3, the quality of the PRM 551

may be influenced by the sampling number M and 552

the simulation number N . To asses this, we con- 553

duct a controlled experiment where M is fixed at 554

32, and the PRM was trained with varying N . The 555

7

81.4 82

87.9
89.3

85.3

89.5

92.3 93

86.1
87.9 88.8

90

85.3
86.6

90.6 91.2

70

75

80

85

90

95

MetaMath-Mistral-7B Llama-3-8B-SFT DeepSeekMath-Base-SFT Qwen2-7B-SFT

Ac
cu

ra
cy

Greedy SC BoN SBS

K
=
5

81.4 82

87.9
89.3

83.2

85.7

90 91

85.4
86.7

88.8
90.1

82.5 82.1

88.3
89.9

72

77

82

87

92

MetaMath-Mistral-7B Llama-3-8B-SFT DeepSeekMath-Base-SFT Qwen2-7B-SFT

Ac
cu

ra
cy

Greedy SC BoN SBS
K
=
15

Figure 3: Performance comparison of various verifi-
cations on GSM8K, with all models trained using our
Full-Step-DPO.

trained PRM is then used as a verifier to guide the556

decoding process of MetaMath-Mistral-7B-Full-557

Step-DPO using the BoN decoding strategy with558

K = 15. As shown in Figure 4, while the ac-559

curacy generally shows an upward trend as N in-560

creases, the overall fluctuation remains within ap-561

proximately 1%. Notably, even when N = 1, the562

model achieves reasonable accuracy, with 85.3%563

on GSM8K and 34.2% on MATH. We hypothe-564

size that the larger sampling number M = 32 in-565

troduces greater diversity into the training data,566

enabling the PRM to be more tolerant of minor567

reductions in data precision caused by the limited568

number of simulations. Given the linear increase in569

computation time associated with a higher N , the570

performance gains appear relatively modest. Nev-571

ertheless, training a highly robust PRM requires572

further investigation, as recent studies have started573

exploring this direction (Wang et al., 2024; Ankner574

et al., 2024), which we leave for future work.575

4.6 Sensitivity of Hyperparameters576

In step-wise DPO loss, the reward temperature577

γ reflects the level of trust in the PRM. As γ578

increases, the PRM model has a greater impact579

on the gradients. When γ → 0, it indicates580

complete distrust in the PRM model, assigning581

equal weight coefficient to all steps, degrading582

in vanilla DPO. Conversely, when γ → ∞, the583

loss function optimizes only the single step with584

the maximum or minimum reward in the solution,585

similar to Step-DPO. Figure 5 presents the586

85.3
84.6

86.2 85.9

34.2 33.8
34.5 34.8

30

32

34

36

38

40

80

82

84

86

88

90

1 2 4 8

M
AT

H

G
SM

8K

Simulation Number N

GSM8K MATH

Figure 4: Accuracy of MetaMath-Mistral-7B-Full-Step-
DPO using BoN decoding with K = 15. The PRM uses
a fixed sampling number M = 32, while the simulation
number N varies.

70.7

78.5

81.4
80.4

78.6

24.8
27.6

30.5
29.3

28.4

22

24

26

28

30

32

68

72

76

80

84

0 0.25 0.5 0.75 1

M
AT

H

G
SM

8K

Reward Temperature γ

GSM8K MATH

Figure 5: Accuracy of MetaMath-Mistral-7B-Full-Step-
DPO with different reward temperature γ.

accuracy of MetaMath-Mistral-7B-Full-Step-DPO 587

with different γ values. The experimental results 588

indicate that introducing a PRM to weight the 589

gradients indeed effectively enhances optimization 590

efficiency and improves performance. Additionally, 591

this experiment demonstrates that there is a sweet 592

spot for the reward temperature γ; excessively 593

high or low γ will reduce accuracy. 594

595

5 Conclusion 596

In this work, we propose Full-Step-DPO, a novel 597

framework for mathematical reasoning that opti- 598

mizes each step in the entire reasoning chain us- 599

ing step-wise rewards. To achieve this, we train a 600

self-supervised Process Reward Model to automat- 601

ically score reasoning steps, eliminating reliance 602

on external annotations. We also propose a novel 603

Step-Wise DPO Loss that dynamically updates gra- 604

dients based on the rewards for individual steps, 605

enabling step-level optimization and enhancing the 606

reasoning ability of policy models. Experimental 607

results on various benchmarks validate the effec- 608

tiveness of Full-Step-DPO, paving the way for its 609

application to other reasoning-intensive tasks. 610

8

Limitations611

While we have conducted comprehensive exper-612

iments to demonstrate the effectiveness of Full-613

Step-DPO, several limitations remain. First, recent614

advancements suggest that generative reward mod-615

els outperform the discriminative reward model616

used in this work. Exploring how generative re-617

ward models can further enhance mathematical618

reasoning capabilities would be a valuable direc-619

tion for future research. Second, during preference620

data construction, the current strategy of select-621

ing samples based on average reward is relatively622

simple. Investigating more advanced sample selec-623

tion strategies may lead to further improvements.624

Finally, the step-level DPO loss proposed in this625

paper is highly adaptable to other reasoning tasks,626

such as code generation. Conducting experiments627

on a broader range of tasks would provide addi-628

tional evidence of the advantages of our method.629

References630

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama631
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,632
Diogo Almeida, Janko Altenschmidt, Sam Altman,633
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.634
arXiv preprint arXiv:2303.08774.635

Zachary Ankner, Mansheej Paul, Brandon Cui,636
Jonathan D Chang, and Prithviraj Ammanabrolu.637
2024. Critique-out-loud reward models. arXiv638
preprint arXiv:2408.11791.639

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,640
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,641
Jia Deng, Stella Biderman, and Sean Welleck. 2023.642
Llemma: An open language model for mathematics.643
arXiv preprint arXiv:2310.10631.644

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,645
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei646
Huang, et al. 2023. Qwen technical report. arXiv647
preprint arXiv:2309.16609.648

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai649
Fan. 2024. Step-level value preference optimiza-650
tion for mathematical reasoning. arXiv preprint651
arXiv:2406.10858.652

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,653
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias654
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro655
Nakano, et al. 2021a. Training verifiers to solve math656
word problems. arXiv preprint arXiv:2110.14168.657

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,658
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias659
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro660
Nakano, et al. 2021b. Training verifiers to solve math661
word problems. arXiv preprint arXiv:2110.14168.662

Rémi Coulom. 2006. Efficient selectivity and backup 663
operators in monte-carlo tree search. In International 664
conference on computers and games, pages 72–83. 665
Springer. 666

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, 667
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model 668
alignment as prospect theoretic optimization. arXiv 669
preprint arXiv:2402.01306. 670

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 671
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 672
cob Steinhardt. 2021. Measuring mathematical prob- 673
lem solving with the math dataset. arXiv preprint 674
arXiv:2103.03874. 675

Jie Huang, Xinyun Chen, Swaroop Mishra, 676
Huaixiu Steven Zheng, Adams Wei Yu, Xiny- 677
ing Song, and Denny Zhou. 2023. Large language 678
models cannot self-correct reasoning yet. arXiv 679
preprint arXiv:2310.01798. 680

Fangkai Jiao, Chengwei Qin, Zhengyuan Liu, Nancy F 681
Chen, and Shafiq Joty. 2024. Learning planning- 682
based reasoning by trajectories collection and 683
process reward synthesizing. arXiv preprint 684
arXiv:2402.00658. 685

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her- 686
bie Bradley, Roberta Raileanu, and Robert McHardy. 687
2023. Challenges and applications of large language 688
models. arXiv preprint arXiv:2307.10169. 689

Muhammad Khalifa, Lajanugen Logeswaran, Moon- 690
tae Lee, Honglak Lee, and Lu Wang. 2023. Grace: 691
Discriminator-guided chain-of-thought reasoning. In 692
Findings of the Association for Computational Lin- 693
guistics: EMNLP 2023, pages 15299–15328. 694

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi- 695
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise 696
preference optimization for long-chain reasoning of 697
llms. arXiv preprint arXiv:2406.18629. 698

Aitor Lewkowycz, Anders Andreassen, David Dohan, 699
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 700
Ambrose Slone, Cem Anil, Imanol Schlag, Theo 701
Gutman-Solo, et al. 2022. Solving quantitative rea- 702
soning problems with language models. Advances 703
in Neural Information Processing Systems, 35:3843– 704
3857. 705

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and 706
Kai Fan. 2024. Mario: Math reasoning with code 707
interpreter output–a reproducible pipeline. arXiv 708
preprint arXiv:2401.08190. 709

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 710
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 711
John Schulman, Ilya Sutskever, and Karl Cobbe. 712
2023. Let’s verify step by step. arXiv preprint 713
arXiv:2305.20050. 714

Haoxiong Liu and Andrew Chi-Chih Yao. 2024. Aug- 715
menting math word problems via iterative question 716
composing. arXiv preprint arXiv:2401.09003. 717

9

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2408.11791
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2406.10858
https://arxiv.org/abs/2406.10858
https://arxiv.org/abs/2406.10858
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://www.semanticscholar.org/paper/Efficient-Selectivity-and-Backup-Operators-in-Tree-Coulom/02cc6a5944d57d2353a55639c7b77336b94f29b6
https://www.semanticscholar.org/paper/Efficient-Selectivity-and-Backup-Operators-in-Tree-Coulom/02cc6a5944d57d2353a55639c7b77336b94f29b6
https://www.semanticscholar.org/paper/Efficient-Selectivity-and-Backup-Operators-in-Tree-Coulom/02cc6a5944d57d2353a55639c7b77336b94f29b6
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2402.00658
https://arxiv.org/abs/2402.00658
https://arxiv.org/abs/2402.00658
https://arxiv.org/abs/2402.00658
https://arxiv.org/abs/2402.00658
https://arxiv.org/abs/2307.10169
https://arxiv.org/abs/2307.10169
https://arxiv.org/abs/2307.10169
https://arxiv.org/abs/2305.14934
https://arxiv.org/abs/2305.14934
https://arxiv.org/abs/2305.14934
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2401.09003

Ilya Loshchilov and Frank Hutter. 2017. Decou-718
pled weight decay regularization. arXiv preprint719
arXiv:1711.05101.720

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren,721
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-722
sheng Li. 2024. Step-controlled dpo: Leveraging723
stepwise error for enhanced mathematical reasoning.724
arXiv preprint arXiv:2407.00782.725

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-726
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei727
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-728
ardmath: Empowering mathematical reasoning for729
large language models via reinforced evol-instruct.730
arXiv preprint arXiv:2308.09583.731

Arindam Mitra, Hamed Khanpour, Corby Rosset, and732
Ahmed Awadallah. 2024. Orca-math: Unlocking733
the potential of slms in grade school math. arXiv734
preprint arXiv:2402.14830.735

Arka Pal, Deep Karkhanis, Samuel Dooley, Man-736
ley Roberts, Siddartha Naidu, and Colin White.737
2024. Smaug: Fixing failure modes of prefer-738
ence optimisation with dpo-positive. arXiv preprint739
arXiv:2402.13228.740

Adam Paszke, Sam Gross, Soumith Chintala, Gregory741
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,742
Alban Desmaison, Luca Antiga, and Adam Lerer.743
2017. Automatic differentiation in pytorch. NIPS744
2017 Workshop Autodiff Submission.745

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-746
pher D Manning, Stefano Ermon, and Chelsea Finn.747
2024. Direct preference optimization: Your language748
model is secretly a reward model. Advances in Neu-749
ral Information Processing Systems, 36.750

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and751
Yuxiong He. 2020. Deepspeed: System optimiza-752
tions enable training deep learning models with over753
100 billion parameters. In Proceedings of the 26th754
ACM SIGKDD International Conference on Knowl-755
edge Discovery & Data Mining, pages 3505–3506.756

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,757
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and758
Daya Guo. 2024. Deepseekmath: Pushing the limits759
of mathematical reasoning in open language models.760
arXiv preprint arXiv:2402.03300.761

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li,762
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest-763
gpt: Connecting large language models with real-764
world applications via restful apis. arXiv preprint765
arXiv:2306.06624.766

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier767
Martinet, Marie-Anne Lachaux, Timothée Lacroix,768
Baptiste Rozière, Naman Goyal, Eric Hambro,769
Faisal Azhar, et al. 2023. Llama: Open and effi-770
cient foundation language models. arXiv preprint771
arXiv:2302.13971.772

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran- 773
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell, 774
Geoffrey Irving, and Irina Higgins. 2022. Solv- 775
ing math word problems with process-and outcome- 776
based feedback. arXiv preprint arXiv:2211.14275. 777

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 778
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An- 779
ima Anandkumar. 2023a. Voyager: An open-ended 780
embodied agent with large language models. arXiv 781
preprint arXiv:2305.16291. 782

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai 783
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui. 784
2023b. Large language models are not fair evaluators. 785
arXiv preprint arXiv:2305.17926. 786

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai 787
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui. 788
2023c. Math-shepherd: Verify and reinforce llms 789
step-by-step without human annotations. CoRR, 790
abs/2312.08935. 791

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, 792
Weizhe Yuan, Jane Dwivedi-Yu, Richard Yuanzhe 793
Pang, Maryam Fazel-Zarandi, Jason Weston, and 794
Xian Li. 2024. Self-taught evaluators. arXiv preprint 795
arXiv:2408.02666. 796

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 797
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 798
Denny Zhou. 2022. Self-consistency improves chain 799
of thought reasoning in language models. 800

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 801
Chaumond, Clement Delangue, Anthony Moi, Pier- 802
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 803
et al. 2019. Huggingface’s transformers: State-of- 804
the-art natural language processing. arXiv preprint 805
arXiv:1910.03771. 806

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen 807
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and 808
Michael Shieh. 2024a. Monte carlo tree search 809
boosts reasoning via iterative preference learning. 810
arXiv preprint arXiv:2405.00451. 811

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu 812
Zhao, Min-Yen Kan, Junxian He, and Michael Xie. 813
2024b. Self-evaluation guided beam search for rea- 814
soning. Advances in Neural Information Processing 815
Systems, 36. 816

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan 817
Li, Xiaohan Zhang, Zihan Wang, Aohan Zeng, 818
Zhengxiao Du, Wenyi Zhao, et al. 2024. Chatglm- 819
math: Improving math problem-solving in large lan- 820
guage models with a self-critique pipeline. arXiv 821
preprint arXiv:2404.02893. 822

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, 823
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong, 824
Kuikun Liu, Ziyi Wang, et al. 2024. Internlm-math: 825
Open math large language models toward verifiable 826
reasoning. arXiv preprint arXiv:2402.06332. 827

10

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2407.00782
https://arxiv.org/abs/2407.00782
https://arxiv.org/abs/2407.00782
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2402.13228
https://www.semanticscholar.org/paper/Automatic-differentiation-in-PyTorch-Paszke-Gross/b36a5bb1707bb9c70025294b3a310138aae8327a
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.17926
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2408.02666
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2305.00633
https://arxiv.org/abs/2305.00633
https://arxiv.org/abs/2305.00633
https://arxiv.org/abs/2404.02893
https://arxiv.org/abs/2404.02893
https://arxiv.org/abs/2404.02893
https://arxiv.org/abs/2404.02893
https://arxiv.org/abs/2404.02893
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023a.828
Outcome-supervised verifiers for planning in mathe-829
matical reasoning. arXiv preprint arXiv:2311.09724.830

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,831
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-832
guo Li, Adrian Weller, and Weiyang Liu. 2023b.833
Metamath: Bootstrap your own mathematical ques-834
tions for large language models. arXiv preprint835
arXiv:2309.12284.836

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan837
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,838
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.839
Judging llm-as-a-judge with mt-bench and chatbot840
arena. Advances in Neural Information Processing841
Systems, 36.842

11

https://arxiv.org/abs/2311.09724
https://arxiv.org/abs/2311.09724
https://arxiv.org/abs/2311.09724
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Step-wise Beam Search843

Unlike conventional beam search, which relies on844

token-level probabilities, our method integrates the845

reward model with an associated reranking crite-846

rion. This enables for step-wise beam search (SBS)847

(Yu et al., 2023a; Chen et al., 2024), effectively848

selecting the preferred solution path in mathemat-849

ical reasoning, while incurring a lower computa-850

tional cost compared to Monte Carlo Tree Search.851

Specifically, for each step t, suppose the sampling852

size is b1, the policy model πθ produces a set of853

candidate steps S(1:t+1) = {S(1:t+1)
i }b1i=1, where854

S(1:t+1)
i =

[
s1i , ..., s

t+1
i

]
is the i-th partial solu-855

tion up to step t + 1. Given the PRM πr that can856

score each step, we select the top-scoring steps857

with beam size b2. The algorithm is detailed in858

Algorithm 1. By focusing on the quality of each859

reasoning step rather than just the final solution, our860

method enhances the overall reasoning capabilities861

of the model.862

Algorithm 1 Step-wise Beam Search

1: Input: Math problem q, Sampling size b1,
Beam size b2, Maximum step C

2: Output: Best solution for q
3: Models: Policy model πθ and PRM πr
4: function STEPLEVELBEAM-

SEARCH(q, b1, b2,C)
5: Initialize step sequences S← {}
6: Use πθ to sample initial steps {s11, . . . , s1b1}
7: Use πr to score all initial steps
{r11, . . . , r1b1}

8: Select top-b1 steps and add to S
9: Set current step counter t← 1

10: while t < C do
11: if All sequences in S are complete then
12: Break
13: end if
14: Snew ← {}
15: R← {};
16: for each solution S(1:t) in S do
17: for i = 1 to b1 do
18: S(1:t+1)

i = πθ(S(1:t); q)
19: r

(1:t+1)
i = πr(S(1:t+1)

i ; q)

20: Snew ← Snew + {S(1:t+1)
i }

21: R← R+ {r(1:t+1)
i }

22: end for
23: end for
24: Snew ← top-b2 rewarded solutions in

(Snew,R)
25: S← Snew
26: t← t+ 1;
27: end while
28: return solution with highest final reward

in S
29: end function

12

	Introduction
	Related Work
	Full-Step DPO
	Preliminary
	Step-wise DPO Loss
	Process Reward Models
	Training Pipeline

	Experiments
	Experimental Setup
	Main Results
	Results on OOD Datasets
	Results on Various Verification Strategies
	Analysis of PRMs
	Sensitivity of Hyperparameters

	Conclusion
	Step-wise Beam Search

