
Generating Demonstrations for In-Context Compositional
Generalization in Grounded Language Learning

Anonymous EMNLP submission

Abstract

In-Context-learning and few-shot prompt-001
ing are viable methods compositional out-002
put generation. However, these methods003
can be very sensitive to the choice of sup-004
port examples used. Retrieving good sup-005
ports from the training data for a given006
test query is already a difficult problem,007
but in some cases solving this may not008
even be enough. We consider the setting of009
grounded language learning problems where010
finding relevant supports in the same or011
similar states as the query may be diffi-012
cult. We design an agent which instead013
generates possible supports inputs and tar-014
gets current state of the world, then uses015
them in-context-learning to solve the test016
query. We show substantially improved per-017
formance on a previously unsolved compo-018
sitional generalization test without a loss of019
performance in other areas. The approach020
is general and can even scale to instructions021
expressed in natural language.022

1 Introduction023

It is thought that a compositional understanding024
of language and the world (so-called compositional025
generalization). around is something that enables026
efficient learning in both humans (Chomsky, 1957;027
Tenenbaum, 2018) and machines (Sodhani et al.,028
2021; Jang et al., 2021). However, a long line of029
work and many different datasets show that Deep030
Learning approaches do not always achieve such031
compositional generalization. Some solutions to ad-032
dress this deficiency include modular architectures,033
data augmentation, and sparsity. A recent line of034
work concerns in-context learning (ICL). Instead of035
providing a query and asking for the target directly,036
a few examples of query-target pairs (supports) are037
also provided. Recent work indicates that supports038
covering the elements of the query can help enable039
compositional generalization even if neither shows040
the desired behaviour exactly (Gupta et al., 2023).041
A follow up question is how to find examples for042
each query. Most prior work suggests retrieval from043
the training data (Pasupat et al., 2021).044

However, in the Grounded Language Learning case, 045
retrieval approaches might not be sufficient to make 046
compositional generalization by ICL work well. The 047
expected outputs are conditional not only on the 048
query, but also on the state of the world. Therefore, 049
searching for nearby examples in the input space 050
is problematic. Using the query alone means that 051
it is unlikely that state-relevant examples will be 052
retrieved. There might not be query-covering exam- 053
ples in the same state from the training data. Us- 054
ing similar states is also challenging because small 055
changes in the state can result in large changes to 056
the target sequence. Searching for nearby examples 057
in the output space (Zemlyanskiy et al., 2022) is 058
more promising, but it also relies on being able to 059
find state-relevant covering outputs. It is difficult 060
to make a retrieval-based strategy that works well 061
in all cases. 062

Instead of retrieval, we suggest that generation of 063
the supports based on the state might be a better 064
alternative. We contribute the following: 065

• We confirm that in-context learning is a use- 066
ful method for unlocking output compositional 067
generalization in the grounded language learn- 068
ing context. 069

• We show that support selection for in-context 070
learning is a crucial piece of the puzzle and that 071
retrieval from the training set is not enough to 072
get the best performance due to the challenge 073
of the query state being potentially unobserved 074
in the retrieval examples. 075

• We propose a new method, DemoGen, to 076
generate the necessary supports which show 077
different instructions and targets of which the 078
query instruction requires a composition of. 079
Our experiments on gSCAN, GSRR and ReaS- 080
CAN show that using in-context learning with 081
these supports unlocks superior compositional 082
generalization performance. 083

• We extend the gSCAN dataset to natural- 084
language like instructions to show further that 085
that DemoGen method can scale well to 086
natural-language like instructions as well. 087
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IQ = “spin and pull a small yellow cylinder"
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I1 = carefully zigzag and pull a small yellow cylinder (0.46)

I3 = spin and push a small yellow cylinder (0.46)

I5 = take a zigzagging path to a small yellow cylinder (0.35)

I6 = carefully spin and push a small yellow cylinder (0.33)

I8 = spin and nudge a small yellow cylinder (0.29)

I13 = spin and pull a big yellow cylinder (0.19)

I16 = gently pull a small yellow cylinder (0.19)

I18 = spin and carefully pull a small green cylinder (0.18)

I21 = spin and carefully pull a small red cylinder (0.16)

I22 = spin and carefully pull a small blue cylinder (0.15)
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A1 = (WALK LTURN WALK RTURN)(3)WALK(2) PULL(3)

A3 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) PUSH

A5 = (WALK LTURN WALK RTURN)(3) WALK(2)

A6 = LTURN(4) (WALK LTURN(4))(4) LTURN (WALK LTURN(4))(3) PUSH

A8 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) PUSH

A13 = LTURN(4) (WALK LTURN(4))(3) LTURN WALK

A16 = (WALK STAY)(4) LTURN (WALK STAY)(3)

A18 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) WALK PULL LTURN(3) PUSH

A21 = LTURN(5) WALK PULL LTURN(3) PUSH

A22 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) WALK PULL LTURN(3) PUSH

Figure 1: Generating demonstrations on gSCAN with DemoGen for an ICL Transformer (Figure 2). The
Instruction Generator takes as input the current state and Iq and produces similar instructions I1, ...In
likely to occur in the same state, sorted by likelihood (parens). A Bootstrap Transformer trained on
the training data generates the corresponding actions A1...An in that state. Some instructions are more
helpful than others. Instructions in green, I1,3,6,8,13,16 show both the correct object in Iq and also either
one of the verb or adverb. Instructions in yellow, I5 show the correct object, but an irrelevant verb and
adverb combination. Instructions in red, I18,21,22 show a different object to the target one. Actions in
grey A13,16,18,21,22 show an incorrect target sequence. As long as the instructions and actions in green are
included in the support set, a sufficiently powerful model can use them and ignore the other supports.

2 Background088

2.1 Compositional Generalization and089
Grounded Language Learning090

Compositional Generalization refers to the ability091
of a system to learn the rule for how solutions to092
sub-problems may be combined in some way, then093
apply the rule to unseen combinations of known094
sub-problem solutions. It can be seen in both the095
inductive and productive sense. In the inductive096
sense, the system must produce some known symbol097
in response to a unseen combination of known query098
inputs. In the productive sense, the system must099
produce some unseen combination of known output100
symbols. The capability of Deep Learning to per-101
form compositional generalization has been studied102
extensively. Early experiments showed the chal-103
lenge of doing so on both RNNs (Lake and Baroni,104
2018) and Transformers (Hupkes et al., 2020) and105
many datasets have been created to demonstrate106
the problem, both with synthetic and “realistic" nat-107
ural language data (Bastings et al., 2018; Kim and108
Linzen, 2020; Keysers et al., 2020; Li et al., 2021;109
Yin et al., 2021; Finegan-Dollak et al., 2018). As110
more datasets become available, so do approaches111
to handle the compositional generalization problem.112
Most approaches generally fall into some combina-113
tion of data augmentation (Andreas, 2020; Li and114
McClelland, 2022; Chen et al., 2022b; Qiu et al.,115
2022; Akyürek et al., 2021), neural module net-116
works (Andreas et al., 2016b; Buch et al., 2021;117
D’Amario et al., 2021; Ruis and Lake, 2022) and118
meta-learning (Lake, 2019; Conklin et al., 2021).119

The field of Grounded Language Learning is natu-120
ral fit to study the problems of both inductive and121
productive compositional generalization. We can122
test inductive generalization by placing the agent123
in a state with a novel combination of input sym-124

bols. Productive generalization can be tested by 125
giving instructions that require generating some 126
novel combination of outputs conditioned on the 127
state. While the former problem is extensively ex- 128
plored by related work, the latter has received less 129
attention and therefore the focus of this work. 130

2.2 In-context Learning 131

Meta-learning and ICL are promising approaches 132
for compositional generalization in sequence gener- 133
ation tasks. In this paradigm, a few support inputs 134
and corresponding support outputs for a given query 135
sequence are provided and the task is to predict 136
the correct target sequence (Lake, 2019; Conklin 137
et al., 2021). This has been popularized by the 138
notion of ICL in large language models, where a 139
few examples of the input-output pairs as well as a 140
query are given as part of a prompt, then the target 141
is predicted autoregressively (Brown et al., 2020; 142
Min et al., 2022a), which has been shown to enable 143
compositional generalization in sequence generation 144
(Chen et al., 2022a; Logeswaran et al., 2020). 145

2.3 Support Selection for ICL 146

ICL methods are sensitive to the choice of support 147
sets used. Mitchell et al. (2021) found that selecting 148
supports that were not relevant to the task at hand 149
degraded performance when using sequence based 150
meta-learning with SCAN. As we also show in our 151
experiments, ICL approachs with a poorly chosen 152
procedure for selecting supports may be worse on 153
all tasks compared to when no ICL is used at all. 154

Different approaches have been proposed for finding 155
good examples. Many methods try to pick good 156
examples from the training data, for example by 157
using a similarity index (Pasupat et al., 2021), or 158
with a metric that takes into account diversity and 159
local structure coverage (Levy et al., 2022; Gupta 160
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Figure 2: The model architecture for sequence-to-sequence ICL. Each support state S1, ..., Sn, support
instruction I1, ..., In and corresponding support targets A1, ..., An, as well as the query state Sq and query
instruction Iq are used as inputs to a Transformer Encoder (along with positional encoding). Right-shifted
query targets a1q, ..., a

n
q are used as inputs to a Transformer Decoder. Both the support targets and query

targets use the same random permutation on every training step.

et al., 2023; Ye et al., 2023). Such retrieval is161
potentially problematic, because getting relevant162
output supports requires that the retrieved inputs163
are evaluated in the same or a very similar state,164
which can increase the complexity of the retrieval165
problem.166

There are also generative approaches to create the167
support examples, for example subproblem decom-168
position (Yang et al., 2022), chain-of-thought (Wei169
et al., 2022), least-to-most-prompting (Zhou et al.,170
2022) asking for diverse examples (Yu et al., 2023).171
These approaches can get very impressive results172
on ungrounded compositional generalization bench-173
marks, but they have their own requirements in-174
cluding reliance on information in large language175
models or special helper prompts about the input176
structure. A hybrid of generation and retrieval177
is GandR Zemlyanskiy et al. (2022) which first178
guesses the output using a helper model and re-179
trieves examples based on output similarity. Our180
work extends on the generated-example paradigm181
with the idea of generating support instructions for182
a query state, then solving those support instruc-183
tions using a “bootstrap" model. We explain in184
Section 3.2 why this is important in the grounded185
language learning setting.186

3 Method187

In this section, we describe a method we call De-188
moGen. The method is designed to work with189
datasets where there is both an instruction and a190
state in the input.191

3.1 In-Context Learning192

ICL can be realized with a large-context encoder-193
decoder Transformer (see Figure 2). For an initial194
state Sq and instruction Iq, the model is trained195

to generate a sequence of targets A = aQ1 , ..., a
Q
m196

using a set of support inputs I1, ..., In and the cor-197
responding support outputs A1, ..., An.198

The entire set of support states S1, ..., Sn, support199
instructions I1, ..., In and corresponding support200
targets A1, ..., An, along with the query state Sq201

and query instruction Iq are passed as one big 202
sequence to the Transformer Encoder, using sine- 203
cosine positional encoding in (Vaswani et al., 2017). 204
Right-shifted query targets are used as inputs to 205
the Transformer Decoder with causal masking. 206

We do not use a pre-trained model and train only 207
on each problem’s own training set to eliminate the 208
risk of having pre-trained on the test set. To ensure 209
that we still get in-context learning from the ICL 210
Transformer, we use the technique of permuting the 211
symbol-index mapping of the support and query 212
targets on every training step (Chan et al., 2022). 213

3.2 Support Set Generation 214

Choosing the support inputs I1, ..., In and outputs 215
A1, ..., An for the ICL model is not a trivial problem. 216
DemoGen generates the support sets using two 217
models trained on the training data - an Instruc- 218
tion Generator and Bootstrap Transformer. 219

Instruction Generator Support inputs are gen- 220
erated by a BART-like masked language model 221
(Lewis et al., 2020). The model is trained to recon- 222
struct a partially masked sentence. It is trained 223
on a balanced dataset of all the instructions in the 224
training data to ensure that inputs occurring less 225
often have a reasonable chance of being sampled. 226
To generate support inputs, some percentage of the 227
tokens (including padding tokens) in the query Iq 228
(in this work, 20%) are randomly masked and then 229
the entire input is reconstructed by autoregressive 230
decoding. This process is repeated k ≥ n times, to 231
form I1, ..., Ik. We deduplicate the samples and re- 232
move Iq from I1, ..., Ik. We also filter the supports 233
by the use of a scoring model. The scoring model 234
estimates probability that a generated support is 235
in-distribution, conditioned on any relevant context. 236
The score is the length-normalized log-likelihood 237
of generated support inputs. We assume that con- 238
ditionally in-distribution supports are more likely 239
to be solveable by the Bootstrap Transformer 240
below. We take the top n by score to get I1, ..., In. 241

Bootstrap Transformer Support out- 242
puts A1, ..., An are generated from the 243
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(S1, I1), ..., (Sn, In) pairs by an Autoregres-244
sive Transformer model trained on the same245
training data. Examples of the generated support246
inputs and outputs are shown in Figure 1.247

Generating both the support inputs and outputs248
has a few interesting advantages. Compared to re-249
trieving on inputs, we can generate examples which250
we know will be relevant to the current state and251
also generate examples which might not be found252
in the training data for a given query. Compared253
to retrieving based on the predicted output, we254
can generate a greater diversity of supports which255
would be valid in the state, as opposed to fetching256
the same output over and over again in many dif-257
ferent states. The only assumption we make is that258
the model used to generate the support targets is259
capable of inductive compositional generalization,260
but not necessarily productive compositional gener-261
alization. In practice, this is already true with the262
Transformer architecture (Qiu et al., 2021; Sikarwar263
et al., 2022). One challenge with generating the264
supports is that our support generator might come265
up with support inputs that are either not relevant266
or not solvable in the current state. We show in267
the experiments that the presence of irrelevant sup-268
ports is not a problem as long as the other useful269
supports are also present.270

4 Experiments271

4.1 Dataset272

We examine which dataset would be appropri-273
ate to evaluate DemoGen on. Since we know274
that in-context learning helps specifically when it275
comes to productive compositional generalization,276
we want the dataset to test this case. We also277
limit out dataset search to the state-conditioned278
setting, where it makes sense to generate demon-279
strations conditioned on the state. To really test280
our method, we also want a dataset using instruc-281
tions in the form of natural language as well. We282
considered well-known compositional generalization283
and grounded language learning datasets. SCAN284
(Lake and Baroni, 2018), COGS (Kim and Linzen,285
2020), SMCalFlow-CS (Yin et al., 2021) test produc-286
tive generalization, but are not state-conditioned.287
RTFM (Zhong et al., 2020), ALFRED (Shridhar288
et al., 2020) and DescribeWorld (Weir et al., 2023)289
are state-conditioned but mainly test inductive gen-290
eralization. MetaWorld (Yu et al., 2019) tests pro-291
ductive generalization, but in the few-shot learning292
context where examples are already given. gSCAN293
(Ruis et al., 2020) is the only dataset which tests294
productive generalization in a state-conditioned set-295
ting, however it uses very simplistic instructions.296
Based on this criteria, we choose to evaluate on297
gSCAN, but also extend it by rewriting the instruc-298
tions using an LLM to resemble natural language,299

but we evaluate on ReaSCAN (Wu et al., 2021) and 300
GSRR (Qiu et al., 2021) as well to confirm that 301
our method works on instructions requiring more 302
complex inductive compositional reasoning. 303

gSCAN, ReaSCAN and GSRR are Minigrid-based 304
environment with a single training data set and 305
8 out-of-distribution test splits covering various 306
compositional generalization scenarios. An agent 307
receives an instruction with a target object, a verb 308
to apply to that object and an adverb which af- 309
fects both navigation and the verb. About 360,000 310
demonstrations of navigating to various objects and 311
performing some task on them with various adverbs 312
are provided as a training set. A success happens 313
when the agent performs the expected sequence of 314
actions exactly. The input and action vocabularies 315
are small and the instructions constructed using a 316
simple grammar. Typically the instructions follow 317
the form “[verb] a [size] [color] [object] [adverb]", 318
where [size], [color] and [adverb] are sometimes 319
omitted. The in-distribution split is 100% solvable 320
by deep learning. 321

More challenging are the eight out-of-distribution 322
test splits. Splits B, C, E, F in gSCAN require 323
inductive generalization, for example identifying a 324
“red square" as a goal in split C and a size-3 object 325
being “small" in relation to other objects in split E. 326
The extensions GSRR and ReaSCAN test further 327
such scenarios, for example by specifying the target 328
object as one that is relative to some other object, 329
requiring a few hops of reasoning. Further descrip- 330
tion of each test scenario is given in the appendix. 331
Splits D, G and H of gSCAN require productive 332
generalization at testing-time. Split D requires 333
navigating to an object that is south-west of the 334
agent, which in practice requires the production of 335
LTURN(2) ... LTURN1. Split H requires composing 336
a the verb “pull" with the adverb “while spinning", 337
which requires the production of novel fragments 338
LTURN(4) PULL. Split G is a few-shot learning split 339
for a new behaviour “cautiously". 340

Parses Words Zipf α RMSE
gSCAN 18 18 1.99 0.11
GSRR 234 20 1.90 0.10
ReaSCAN 1400 35 1.26 0.04
NL-gSCAN 1550 859 1.29 0.01

Table 1: Linguistic properties of the baseline
(gSCAN), extensions (GSRR and ReaSCAN) and
paraphrased datasets (NL-gSCAN)

.

Natural Language Instructions We also ex- 341
tend the gSCAN dataset such that the instructions 342
are less formulaic and more like natural language. 343

1In this work, where an action or subsequence is
repeated n times, we use the notation (ACT1 ACT2)(n)
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By prompting the openai-gpt3.5 model with 25344
different examples of paraphrases for an instruc-345
tion, we can generate paraphrases of all the other346
instructions in the dataset. To validate that the347
paraphrased dataset looks more like natural lan-348
guage, we estimate the α parameter (closer to 1.0349
meaning more natural) for a Zipf distribution using350
maximum likelihood estimation using the method351
in (Clauset et al., 2009) and also calculate the num-352
ber of unique parses with spaCy. The paraphrased353
data has an α of 1.29 vs 1.99 along with a better354
fit, and there is a greater diversity of both words355
(18 vs 859) and syntax parses (18 vs 1550). The356
target object description was retained in approxi-357
mately 99% of cases. Examples of paraphrases and358
further analysis given in Appendix L. Paraphrased359
instructions are also shown in Figure 1.360

Related Work on gSCAN Various approaches361
to gSCAN including graph networks (Gao et al.,362
2020), linguistic-assisted attention (Kuo et al.,363
2021), symbolic reasoning (Nye et al., 2021), aux-364
iliary tasks (Jiang and Bansal, 2021; Hein and365
Diepold, 2022), modular networks (Heinze-Deml366
and Bouchacourt, 2020; Ruis and Lake, 2022), logic367
programming (Yang et al., 2023) and data augmen-368
tation (Setzler et al., 2022; Ruis and Lake, 2022)369
have been proposed. These approaches tend to370
make some trade-off between performance and gen-371
eralizability. Transformers have been shown to work372
well on on the inductive category of splits (Qiu et al.,373
2021) as well as on ReaSCAN and GSRR (Sikarwar374
et al., 2022), but there is no general approach which375
works well on the productive category. In this work,376
we aim to show that an ICL approach along with a377
support generation strategy that does not assume378
too much about the problem is a feasible general379
approach for the problems we study.380

4.2 What makes for good supports?381

We first explore what sort of supports work well for382
gSCAN. These methods are based on pre-existing383
knowledge of the dataset. When we perform ex-384
periments with the ICL Transformer, we use the385
architecture described in Section 3.1 trained to386
300,000 steps with batch size 128, hidden size of387
512, 8 attention heads, 12 layers and 16 supports388
per query example. Training was run for 300,000389
iterations over 10 seeds. We perform evaluation390
every 5000 steps on a random subsample of the vali-391
dation data and the best by split-A (in-distribution)392
performance are reported. Detailed information on393
hyperparmeters is given in Appendix C394

Heuristic Select the best instructions and out-395
puts for a given state which show; 1) going to the396
same object, 2) showing the target verb in com-397
bination with other adverbs, 3) showing the tar-398
get adverb in combination with other verbs. Note399
that the generated supports might contain test-set400

input-output pairs, meaning that we assume extra 401
knowledge not available to the learning agent. The 402
heuristic can be seen as an upper bound on we could 403
expect from an optimal demonstration generator. 404

Random Instructions (RD) Support instruc- 405
tions are selected randomly, without the use of 406
the heuristic described above. Instructions can be 407
about any object in the same state, not just the 408
target one. 409

Other States (OS) We generate the same in- 410
structions as in the Heuristic approach but demon- 411
strations are in states different to the query state. 412
Such states are extracted from the training data. 413
The sampled states are also included in the supports 414
and used by the ICL Transformer. If the training 415
data does not contain a state with the same in- 416
struction as the one generated by the expert, that 417
instruction is not included in the support set. 418

Table 3 shows the coverage of the supports over 419
the query according to some hand-written met- 420
rics. Heuristic gets full coverage in every cate- 421
gory. If we demonstrate random instructions in 422
the same state (RD), only show demonstrations 423
describing the same object 16% of the time (1). 424
If we pick known good instructions for the query 425
demonstrated in different states (OS) then we often 426
describe the correct object, but the outputs look 427
very different to the query, because the starts (2) 428
or finishes (3) in a different position and the agent- 429
target distance is often different (4). This is also 430
reflected in the ICL Transformer performance in Ta- 431
ble 2, where demonstrations of relevant instructions 432
in different states show a very wide performance 433
gap and demonstrations in the same state with ran- 434
domly chosen instructions perform better, but still 435
overall worse than the Heuristic. This supports the 436
idea that our support selection procedure should 437
find demonstrations that both cover the query input 438
and also do so in the same state as the query. 439

4.3 Retrieval vs Generation 440

In the real world, we don’t have access to a heuris- 441
tic function to generate good supports. Instead we 442
have to come up with them using the data we are 443
already given. We can either try to retrieve good 444
supports from the dataset or try to generate them 445
somehow. We compare the following state-of-the- 446
art retrieval methods tested on other productive 447
compositional generalization problems and compare 448
them to DemoGen. Further details of implementa- 449
tions are given in Appendix E and D 450

Coverage Retrieval (CR, CovR) Supports are 451
retrieved using a similarity index on states and in- 452
structions, then chosen based on query coverage 453
similar to Gupta et al. (2023). Instructions are en- 454
coded with sentence-transformers and states are 455
flattened, one-hot encoded, then projected along 456
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No ICL Algorithmic Retrieval Generation
TF FT Heuristic RD OS CovR GandR DemoGen DG-NP DG-NF

gS
C

A
N

A 1.0 1.0 1.0 0.77 0.99 0.99 ± .01 0.99 ± .01 1.0 ± .01 0.94 ± .06 0.96 ± .02
B 1.0 1.0 1.0 0.62 0.0 0.98 ± .01 0.88 ± .05 1.0 ± .01 0.92 ± .05 0.92 ± .02
C 0.96 1.0 1.0 0.66 0.2 0.83 ± .30 0.92 ± .03 0.98 ± .02 0.72 ± .27 0.85 ± .03
D 0.01 0.16 0.50 0.0 0.0 0.0 ± .00 0.0 ± .00 0.03 ± .02 0.0 ± .00 0.01 ± .01
E 1.0 1.0 1.0 0.59 0.0 0.99 ± .01 0.99 ± .01 0.99 ± .01 0.92 ± .09 0.86 ± .03
F 1.0 1.0 1.0 0.75 0.99 0.99 ± .01 0.99 ± .01 0.99 ± .01 0.92 ± .08 0.95 ± .01
G 0.0 0.0 0.0 0.0 0.0 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.22 0.22 0.86 0.15 0.0 0.56 ± .10 0.17 ± .01 0.8 ± .05 0.18 ± .02 0.62 ± .2

R
ea

SC
A

N

A1 0.99 0.99 - - - 0.89 ± .03 0.86 ± .03 0.91 ± .04 0.94 ± 0.01 -
A2 0.92 0.93 - - - 0.77 ± .07 0.95 ± .01 0.89 ± .05 0.87 ± 0.01 -
B1 0.94 0.78 - - - 0.88 ± .03 0.95 ± .03 0.85 ± .04 0.81 ± 0.01 -
B2 0.88 0.51 - - - 0.89 ± .03 0.90 ± .01 0.81 ± .07 0.8 ± 0.01 -
C1 0.67 0.19 - - - 0.32 ± .02 0.25 ± .01 0.28 ± .02 0.28 ± 0.01 -
C2 0.19 0.19 - - - 0.55 ± .05 0.62 ± .04 0.66 ± .02 0.71 ± 0.0

SR

I 1.0 1.0 - - - 1.0 ± 0.0 0.99 ± 0.0 0.99 ± 0.01 0.99 ± 0.0 -
II 0.99 0.97 - - - 0.99 ± 0.0 0.99 ± 0.0 0.98 ± 0.0 0.99 ± 0.01 -
III 0.99 1.0 - - - 0.99 ± 0.0 0.98 ± 0.0 0.98 ± 0.0 0.98 ± 0.01 -
IV 1.0 1.0 - - - 0.99 ± 0.0 0.99 ± 0.0 0.98 ± 0.0 0.99 ± 0.0 -
V 0.82 0.77 - - - 0.97 ± 0.0 0.88 ± 0.0 0.93 ± 0.01 0.86 ± 0.07 -
VI 0.81 0.80 - - - 0.9 ± 0.0 0.88 ± 0.01 0.90 ± 0.13 0.69 ± 0.18 -

Table 2: Success rates on reference datasets for different splits. Numbers are ± standard deviation over 10
seeds, measured after 300,000 steps. Variances are shown only for retrieval and generation experiments
and are negligible on other experiments. Algorithmic, Retrieval and Generation all use ICL Transformer
as the architecture, with supports generated by each method. TF is a Transformer baseline and FT is the
same Transformer fine-tuned on generated demonstrations from DemoGen. Best non-oracle results bolded.

RD OS CR GR DG
(1) Desc. Obj. 0.16 1.00 0.33 0.68 0.33
(2) Agent Pos. 1.00 0.03 1.00 0.08 1.00
(3) Tgt. Pos. 0.16 0.03 0.39 0.08 0.44
(4) Same Diff. 0.16 0.02 0.39 0.09 0.44
(5) Tgt. Obj. 0.16 0.19 0.27 0.14 0.44
(6) Verb & (1) 0.16 0.43 0.88 0.15 1.00
(7) Advb & (1) 0.16 0.33 0.78 0.51 0.88
(8) (6) & (7) 0.16 0.19 0.70 0.00 0.88
(9) (4) & (8) 0.16 0.00 0.62 0.00 0.88

Table 3: Fraction of supports matching criteria from
on each generation method on Split H. Omitted is
Heuristic, which is 1.0 in every category. (6)-(8)
are calculated based on whether any support in a
query’s supports match that criteria. Other splits
are shown in Appendix F

their 320 principal components. The influence of457
the state and instructions on encoding similarity458
is balanced by multiplying instruction vectors by459
the ratio of the state vector norm to the instruc-460
tion vector norm, contatenating and renormalizing.461
For each query input and state, we find the 128462
nearest neighbours, then rank them descending by463
their one and two-gram coverage. Examples from464
the retrievals are chosen greedily such that all the465

one-grams and two-grams in the query are covered 466
maximally. 467

GandR (GR) Supports are retrieved using the 468
Generate-and-Retrieve strategy (Zemlyanskiy et al., 469
2022). In that strategy, a “helper" model trained 470
on the training data makes an initial guess for the 471
outputs of a given query in a state, even if that 472
query is out of distribution. Then examples for later 473
in-context learning are fetched by similarity of their 474
output sequence to the guessed output sequence. In 475
our implementation, similar to CovR, both query 476
instructions and outputs are vector encoded and 477
retrieved from a similarity index. 128 examples are 478
chosen and we greedily pick examples from the 128 479
nearest output neighbours covering the query input 480
to avoid picking the same (non-covering) instruction 481
many times. 482

DemoGen (DG) Our generation strategy as de- 483
scribed in Section 3.2. 2048 instructions are sam- 484
pled from the language model, deduplicated, and 485
ranked to get the top 16 instructions and corre- 486
sponding support targets for the query state. A 487
Transformer with the same architecture as given in 488
Section 3.1 is used as the Bootstrap model. 489
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4.4 Retrieval Methods vs Generation490

The main challenge for retrieval methods is that491
the supports inputs and outputs for some test splits492
may not exist in the training data. In gSCAN, we493
also found that most states don’t have close near494
neighbours. An average example’s nearest neigh-495
bour had a hamming similarity of 0.74 ± 0.107496
(i.e., 10 of 36 cells would be different in the nearest497
neighbour). Detailed similarity analysis is made in498
Appendix A.1. This is also reflected in the proper-499
ties of retrieved supports. In Table 3, the distance500
between the agent and the target object is often501
different in the query versus the supports (4) and502
there are fewer demonstrations showing the same503
exact same target object (5). They also do not504
always have both (8) the correct verb (6) and ad-505
verb (7) in the retrieved supports. On GandR the506
adverb can significantly change the outputs, so sup-507
ports with the same verb (but without the adverb)508
are not selected. For both methods there are even509
fewer cases where there is least one demonstration510
of both the correct verb and of the adverb on on511
the same path (9).512

Deficiencies in query coverage aside, these baselines513
are still stronger on Split H than many previously514
published results. CovR retrieves examples that515
are very close to the query state like and gets a516
success rate of 56% on gSCAN Split H and 44% on517
NL-gSCAN Split H with high variance, However518
on Split C, CovR loses performance compared to519
the baseline and has high variance between seeds520
on both datasets. The other inductive generaliza-521
tion splits on NL-gSCAN also have small but not522
negligible loss compared to a non-ICL Transformer523
when using CovR to retrieve the supports. For524
ReaSCAN and GSRR retrieval performance is also525
competitive and is actually a bit closer to what526
we get with support generation, possibly because527
the supports are more similar to the query (as dis-528
cussed in Appendix A.1). GandR gets 17% on529
gSCAN Split H, but retains good performance on530
the other splits. However it loses about 10 points531
on gSCAN splits B and C and 5 points on Split F532
of NL-gSCAN compared to the baseline.533

Generating the Supports How does generating534
the supports with DemoGen compare? In Table 3535
we see that the generated instructions cover the dif-536
ferent aspects of the instruction and they are made537
in the same state. This means that the agent start-538
ing position is preserved (2), the path between the539
starting the target position (between supports and540
target) is better preserved (4) and, crucially, both541
the correct verb (6) and adverb (7) are present in542
the demonstration in combination with the correct543
object. Demonstrating the right things also has544
an impact on performance. DemoGen, gets 80%545
on productive generalization Split H for gSCAN546

TF CovR GandR DemoG
A 1.0 ± .00 0.98 ± .03 0.94 ± .01 0.99 ± .00
B 0.99 ± .00 0.93 ± .08 0.92 ± .06 0.96 ± .00
C 0.99 ± .03 0.68 ± .37 0.9 ± .04 0.97 ± .00
D 0.08 ± .16 0.0 ± .00 0.0 ± .00 0.01 ± .01
E 0.98 ± .03 0.95 ± .08 0.89 ± .01 0.98 ± .00
F 1.0 ± .00 0.88 ± .11 0.94 ± .02 0.98 ± .00
G 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.19 ± .03 0.44 ± .23 0.17 ± .00 0.59 ± .06

Table 4: Success rates for a non-ICL Transformer
(TF) retrieval baselines and DemoGen on NL-
gSCAN. Best results bolded.

and even 59% for the more challenging NL-gSCAN. 547
Performance also remains good on the the inductive 548
generalization splits for both datasets. We provide 549
a summary and detailed comparison to prior work 550
on gSCAN in Appendix B. Aside from (Hein and 551
Diepold, 2022), a specialized architecture with some 552
additional supervision, ours is the best result on 553
Split H. On ReaSCAN and GSRR, ICL can get very 554
strong performance on the challenging C2 and VI 555
splits (beating the state of the art in Sikarwar et al. 556
(2022) for C2) and is competitive on other splits. 557
We also show that DemoGen generated supports 558
gets reasonable performance in other in-context 559
learning setups, for example with an image-based 560
gSCAN dataset in Appendix N and also when using 561
text-encoded states with LLaMA 3 in Appendix O. 562

On Splits D and G, performance on retrieval meth- 563
ods and DemoGen is still not good. The reason is 564
they require generation of a pattern that won’t be 565
seen in the outputs in any permutation of the labels. 566
In the case of Split D, it requires LTURN(2) WALK(n) 567
LTURN(1) WALK(n). Only 6% of the data matches 568
this pattern in any index-label permutation. In the 569
case of split G, (LTURN RTURN(3) LTURN WALK)(n) 570
is required. Only 0.0001% of training data matches 571
that up to a permutation. In contrast, Split H 572
requires (LTURN(4) PULL(n)), and there are many 573
examples from the “push a [size] [color] [object]“ set 574
of instructions matching that up to a permutation. 575

Comparing retrieval and generation, we see that re- 576
trieval is a good start for finding good supports, and 577
they can still get close to selecting supports with 578
a good heuristic in the state-conditioned setting, 579
but generating the supports usually outperforms 580
retrieval, especially in the productive setting. 581

4.5 Ablations and Further Questions 582

Support Quality Ideally, support should com- 583
prise valid support inputs (eg, tasks that are actu- 584
ally solveable in a state) and they should be correct 585
enough to facilitate ICL. We investigated this on 586
supports generated by our method and reported the 587
results in Table 5. On average, about 77% of gener- 588
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Valid Correct C & V C | V
A 0.79 0.70 0.70 0.88
B 0.73 0.64 0.64 0.88
C 0.61 0.50 0.50 0.83
D 0.65 0.24 0.24 0.36
E 0.78 0.66 0.66 0.84
F 0.73 0.63 0.63 0.87
G 0.79 0.72 0.72 0.91
H 0.79 0.56 0.56 0.71

Table 5: DemoGen supports: Fraction of valid
instructions, correct targets, correct and valid (C
& V) and correct given valid (C | V) on synthetic
data by split, according to an oracle function.

ated support inputs are valid. A support output is589
correct if it matches what an oracle generator would590
have generated for the corresponding instruction591
and state. 50% of the support pairs were both cor-592
rect and valid. The number is clearly lower on splits593
where a Transformer is not able to solve the task594
well. For example on Split H, there may be “pull595
an [object] while spinning" in the support inputs,596
where [object] is not the target object.597

Permutations Our ICL Transformer uses a dif-598
ferent symbol-index mapping on each training599
step. On gSCAN, the sequence "WALK(5) RTURN600
WALK(5)" would be translated into "RTURN(5) LTURN601
RTURN(5)" under the permutation WALK → RTURN,602
RTURN → LTURN. One concern is the possibility that603
a query target with the same symbols for pull604
... while spinning is generated after permutation605
during training, however the probability of this606
happening is very low. We measured that for a sin-607
gle pass through the training data, approximately608
3% of the generated support instructions matched609
pull ... while spinning, 0.3% of the permuted610
query outputs matched PULL actions followed by611
four LTURN instructions, and their intersection was612
0.001% of all sampled supports.613

Architectural Ablations We also compare the614
effect of various ablations on gSCAN success rate in615
Table 2. Fine-Tuning (FT) on the supports gener-616
ated by DemoGen improves performance marginally617
on Split D, but not Split H, which shows the impor-618
tance of using in-context learning for productive619
generalization. Removing the permuter block (DG-620
NP) reduces performance to a similar level of not621
using ICL at all, though it does marginally improve622
performance for the inductive split C2 on ReaS-623
CAN. Remvoing Filtering (DG-NF) reduces aver-624
age Split C and split H performance drops by about625
13 and 20 points respectively with higher variance.626
We also tried other variants of the Transformer ar-627
chitecture, including RoFormer (Su et al., 2021),628
Universal Transformer (Dehghani et al., 2019) and629
Perceiver (Jaegle et al., 2022), which all had similar630

results compared to a regular Transformer. 631

Criteria Success Rate

Remove Same Object 0.67 ± 0.17
Remove Same Adverb 0.3 ± 0.16
Remove Same Verb 0.21 ± 0.04

Table 6: DemoGen Split H success rate when 16
supports are chosen, excluding specified supports.

Ablations on Supports We also examine how 632
important it is to have the right demonstrations at 633
inference time. With 4 demonstrations and less, ex- 634
act match performance on all splits reduces to about 635
40%, and the best performance is found with around 636
12 demonstrations, where the results are close to 637
the reported ones. Additionally, we examine how 638
DemoGen performs on Split H when demonstra- 639
tions matching certain criteria are removed from 640
the support set. Removing those matching the 641
same object makes a 13 point impact on success 642
rate. Bigger changes come from removing those 643
matching the same adverb (50 points) or verb (59 644
points). Learning with permutations alone is not 645
enough - its also important that the supports cover 646
the types of output behaviour that are found in 647
the target. We found that on Split H there is a 648
correlation between the exact match performance 649
of examples and the mean similarity (r=0.21) of 650
the supports to the query. Diversity within the 651
supports is negatively correlated (r=-0.21), but a 652
closer examination in Appendix P shows that there 653
is an inflection point where increased sample diver- 654
sity boosts performance, then eventually decreases 655
it (because sample diversity is strongly negatively 656
correlated with sample query relevance at r=-0.91). 657

5 Conclusion 658

In-Context Learning can help improve performance 659
on challenging compositional generalization prob- 660
lems, but the choice of support examples is crucial 661
to its performance. In the grounded-language learn- 662
ing case, retrieval may not be enough to get good 663
supports. Generated supports better cover what is 664
required for productive generalization as shown in 665
our support analysis and ablation studies. 666

We proposed DemoGen, a method for sampling 667
support inputs from an autoregressive language 668
model conditioned on the query state, then and 669
solving them using a bootstrap model. When De- 670
moGen used with in-context learning, our method 671
outperforms both the best general non-retrieval ar- 672
chitectures and also other strong retrieval based 673
baselines on the challenging Split H of gSCAN, 674
while retaining good performance on other datasets. 675
Our method is general and also works well even if 676
the instructions resemble natural language. 677
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6 Limitations678

In this section, we discuss the limitations of our679
work.680

First, on the dataset and evaluation. gSCAN,681
GSRR and ReaSCAN is a synthetic and with ini-682
tially simple instructions that eventually become683
more complex. We wanted to evaluate on instruc-684
tions that were challenging like natural language,685
but we did not have the resources to crowdsource686
annotations for every data point in gSCAN. There-687
fore, we relied on commercial large language mod-688
els to generate similar instructions instead. These689
instructions aren’t a substitute for exactly human-690
generated language, but they are a good approxi-691
mation.692

In this work we decided to dive deep into evalua-693
tion on gSCAN and their derivatives. We are not694
aware of any other datasets which test the output-695
sequence level compositional behaviour generaliza-696
tion demanded by for example gSCAN Split H. The697
second reason is that gSCAN is a diagnostic dataset698
with output sequence rules which are not noisy and699
easy to understand for humans. This means that700
we can more precisely measure the properties of701
the generated supports and their effectiveness with702
respect to performance on the problem. Evaluating703
on the other gSCAN derivatives is still a limitation,704
but it does show that the method can generalize to705
quite demanding instructions, even if those instruc-706
tions are noisy.707

Another limitation of this work is that supports708
need to be generated at test time for the test set.709
In this work, we pre-generated the supports for710
the test set, though a real-time application of this711
work on unseen examples would need to run the712
generation process, which could make inference time713
much longer. There are also other methods to714
improve the performance of the support input and715
support output procedure, for example quantization716
(Dettmers et al., 2022), KV-caching, early stopping,717
etc.718

7 Ethics719

We used commercial large language models to gener-720
ate paraphrases of the inputs to test the scalability721
of our method to natural language data in Section722
4.1. These commercial large language models come723
with their own range of documented ethical issues,724
such as the capability to amplify harmful biases and725
misinformation, labour exploitation in training, en-726
ergy consumption and permission to use web-scale727
training data. There is also an economic ethical728
aspect, where the use of the large language model729
displaces humans who may have been willing to730
perform the labelling. For our usecase, it was by731
many orders of magnitude cheaper to use the large732

language model than crowd-sourced labelling at a 733
fair wage. On the other hand, we believe that there 734
are better uses of human time than paraphrasing 735
hundreds of thousands of examples of simple nav- 736
igation problems for the purpose of producing a 737
single research paper. 738

Our work covers the foundational issue of composi- 739
tional generalization in grounded language learning, 740
so we don’t expect direct applications of it to have 741
the potential to cause social harm. However, the 742
work should be adapted with care. In particular, it 743
is important that the model generating the supports 744
for ICL is actually generating supports which are 745
useful for generating the downstream problem. Gen- 746
erating outputs to a problem with generated wrong 747
input-output pairs is likely to result in even more 748
wrong outputs. Our work shouldn’t be deployed 749
in safety critical situations, but instead should be 750
seen as a step towards achieving better data-driven 751
compositional generalization. 752

8 Code and Resources 753

Our project code can be found at https:// 754
emnlp-2024-demogen-submission.s3.eu-north-1. 755
amazonaws.com/demogen_code_submission.zip. 756

The paraphrased gSCAN dataset referred 757
to in Section 4.1 can be found at https:// 758
emnlp-2024-demogen-submission.s3.eu-north-1. 759
amazonaws.com/dataset-paraphrased.txt. 760

9 Computational Resource Usage 761

and Reproducibility Requirements 762

Experiments were run on our internal GPU cluster. 763
Running a ICL experiment to 300,000 iterations 764
takes about 3 days on a MI250x GPU. For 6 differ- 765
ent experiment runs with 10 seeds each, the total 766
compute time is about 330 GPU-days, though the 767
experiments can be run in parallel. The number 768
of GPU-days we used to produce this work was 769
much higher, because of tweaks to the experimental 770
conditions, debugging, restarting failed jobs, etc. 771
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A Details of the datasets1244

Statistics on the gSCAN, GSRR and ReaSCAN dataset are reproduced in Table 7 for the reader’s1245
convenience.1246

N length ± std. (max) N length ± std. (max) N length ± std. (max)

A 19282 13.3 ± 8.9 (69) A1 22057 17.5 ± 12.6 (92) I 30492 8.2 ± 3.4 (24)
B 18718 14.0 ± 9.7 (72) A2 81349 17.6 ± 13.0 (102) II 6285 8.1 ± 3.4 (24)
C 37436 14.1 ± 9.8 (64) B1 10002 17.4 ± 12.8 (92) III 41576 7.8 ± 3.1 (21)
D 88642 18.0 ± 10.8 (74) B2 6660 17.5 ± 13.3 (94) IV 41529 8.3 ± 3.5 (24)
E 16808 13.3 ± 9.5 (54) C1 8375 17.5 ± 13.3 (94) TR 259088 8.1 ± 3.4 (24)
F 11460 16.5 ± 12.4 (74) C2 8375 17.5 ± 12.9 (92)
G 112880 33.5 ± 16.9 (104)
H 38582 43.1 ± 19.7 (104)
TR 367933 14.4 ± 10.1 (74)

Table 7: Statistics on the gSCAN, ReaSCAN and GSRR datasets and training (TR) and test splits

A brief description of each split is given below:1247

• gSCAN A: In-distribution test split of gSCAN.1248

• gSCAN B: Target object is a yellow square. Yellow squares can be the target in the training split,1249
but are not explicitly referred to as such in the instruction.1250

• gSCAN C: Target object is a red square. Red squares are never the target in the training split.1251

• gSCAN D: Target object is southwest of the agent. The agent needs to walk to the south and then to1252
the west to reach the goal object. This sequence of actions is never seen in the training data.1253

• gSCAN E: "Small circles" are of size 2, which is not seen in the training data.1254

• gSCAN F: Action is "push" and the object size is 3, meaning that the object must be pushed twice1255
as much as objects of size 1 and 2. Pushing an object twice as much is seen for object size 4, but not1256
for size 3. Pulling an object twice as much as seen for size 3.1257

• gSCAN G: Modifier is "cautiously". This is only seen one time in the entire dataset.1258

• gSCAN H: Action is "pull" and modifier is "while spinning". Agent must spin on each step and then1259
pull the object, spinning after each pull. Such a thing is seen with "push", but not "pull".1260

• GSRR I: In-distribution test split of GSRR.1261

• GSRR II: Red squares are the target object or reference object (eg, something may be northwest of a1262
red square). This is not seen in the training data.1263

• GSRR III: A green square is a target object relative to some reference blue circle (eg, a green square1264
may be southeast of a blue circle). This combination of green squares and blue circles is not seen in1265
the training data.1266

• GSRR IV: Yellow-squares are the target object, even though they are never the target in the training1267
data.1268

• GSRR V: Targets are north of the reference object. Targets that are northwest or northeast are seen1269
in the training data, but not a target that is only north.1270

• GSRR VI: Targets are south-west of the reference object.1271

• ReaSCAN A1: Yellow squares are in the instruction, which is not seen in the training data.1272

• ReaSCAN A2: Red squares are the target object, which is not seen in the training data.1273

• ReaSCAN B1: "Small red square" and "big blue square" never co-occur in the training data.1274

• ReaSCAN B2: "Same size of" and "inside of" relation co-occurrences, which never co-occur in the1275
training data.1276

• ReaSCAN C1: An additional conjugation is added to the relative clauses.1277
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• ReaSCAN C2: An additional recursive relative clause is added, for example by swapping "and" with 1278
"that is". 1279

A.1 Nearest Neighbour Similarity Distribution 1280
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Figure 3: Average state nearest neighbour similarity (between the shown split and the training split) for
each split. X-axis is log-scale. The plots show the average hamming similarity between points in a split
and their Nth nearest neighbour in the training split.

We visualize the average nth training-data nearest neighbour similarity distribution for each dataset split in 1281
Figure 3. We created the figure by taking 8000 random examples from each splits, then finding their 8192 1282
nearest neighbours using a inner-product index over normalized one-hot encoded state representations. 1283

In most cases, even the closest nearest neighbour state has quite many differences and these differences 1284
grow as we pick nearest neighbours further away from a training data point. This means that it is hard to 1285
find an example in the training set containing different instructions in the exact same environment layout. 1286
The biggest difference can be found in ReaSCAN, where even the 256th nearest neighbour can be quite a 1287
similar layout to the initial point. The reason is likely in how the dataset was generated, with a focus not 1288
so much on having many different states, but instead on having many different relational instructions in 1289
each state. 1290

B Additional Comparisons 1291

In this section of the appendix, we describe in more detail other related work on gSCAN and provide the 1292
results reported by those works in Table 9 for easier comparison with our experimental results. 1293

Modular A recent work by Ruis and Lake (2022). It uses a specialized decomposition into Perception, 1294
Interaction, Navigation and Transformation Modules, each of which are trained independently with their 1295
own training outputs, then connected together at test time. The modular decomposition gives a prior on 1296
how the problem should be solved (for example by decomposition into egocentric and allocentric plans). 1297
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1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
gSCAN
A 0.74 0.74 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.69 0.69 0.68 0.67 0.67
B 0.75 0.74 0.74 0.74 0.73 0.73 0.72 0.71 0.70 0.70 0.69 0.68 0.67 0.67
C 0.76 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.73 0.71 0.70 0.70 0.69 0.69
D 0.75 0.75 0.75 0.75 0.74 0.74 0.74 0.73 0.72 0.71 0.70 0.70 0.70 0.69
E 0.67 0.67 0.67 0.67 0.67 0.66 0.66 0.65 0.64 0.63 0.62 0.62 0.61 0.61
F 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.73 0.72 0.70 0.69 0.69 0.68 0.68
G 0.77 0.77 0.76 0.76 0.76 0.75 0.75 0.74 0.73 0.72 0.71 0.71 0.70 0.69
H 0.77 0.77 0.76 0.76 0.76 0.75 0.75 0.74 0.73 0.72 0.71 0.71 0.70 0.69
TR 1.00 0.77 0.76 0.76 0.76 0.75 0.74 0.74 0.73 0.72 0.71 0.71 0.70 0.69

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
GSRR
I 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.52
II 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.52
dev 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.59 0.58 0.57 0.56 0.55 0.54 0.52
III 0.63 0.63 0.62 0.61 0.61 0.60 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.52
IV 0.64 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53
V 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.58 0.58 0.57 0.56 0.55 0.53 0.52
VI 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.52
TR 1.00 0.64 0.62 0.61 0.61 0.60 0.59 0.58 0.58 0.57 0.56 0.55 0.53 0.52

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
ReaSCAN
A1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.97 0.97 0.97 0.97
A2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.97 0.97 0.97 0.97
B1 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.97 0.96 0.96 0.96 0.96 0.96
B2 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.94 0.94 0.94 0.94 0.94
C1 0.98 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.96 0.95 0.95 0.95 0.94 0.94
C2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.97 0.97 0.97 0.97
TR 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.96 0.96 0.96 0.96 0.96

Table 8: Average state nearest neighbour similarity (between the shown split and the training split) for
each split on gSCAN, GSRR and ReaSCAN. X-axis is log-scale. The plots show the average hamming
similarity between points in a split and their Nth nearest neighbour in the training split.

The work also describes how data augmentation can be used to improve the model, but we show the1298
results coming from use of the modular architecture alone. This approach can get good performance on1299
Splits G and H. Performance on other splits is either slightly improved or comparable to the baseline in1300
Ruis et al. (2020), which is likely due to the use of a similar underlying architecture of RNNs and CNNs1301
as feature encoders.1302

Role-Guided (Kuo et al., 2021) This approach uses linguistic priors to decompose the parsing problem1303
and specify how sub-parsers are connected. It can achieve some level of performance on Split D and1304
comparable performance on Split H to the Transformer.1305

ViLBERT is an adaptation of the ViLBERT model for gSCAN by Qiu et al. (2021) and extended on1306
by Sikarwar et al. (2022). The state is first one-hot encoded, a few 2D convolution layers are applied to it.1307
The state is then flattened and the channel values for each pixel are treated as vectors for each location in1308
the state. Afterwards, there are several layers of cross-attention between the instruction tokens and the1309
state tokens. The cross-attented representations are concatenated together and used as input to a causal1310
Transformer decoder to decode the outputs.1311

GECA Also known as “Good Enough Compositional Augmentation" (Andreas (2020)), applied to1312
gSCAN by Ruis et al. (2020). GECA is an augmentation method which recognizes template fragments in1313
text, then realizes those templates with other possible substitutions. Following the example in that work,1314
if a dataset contains “she picks the wug up in Fresno“ and “she puts the wug down in Tempe", then the1315
augmentation method generates samples of puts down substituted into sentences containing picks up. For1316
example the sentence “Pat picks cats up" can be augmented to “Pat puts cats down". GECA relies on1317
being able to identify templates containing discontiguous fragments which contain at least two tokens.1318
In the case of SCAN, GECA might identify the fragment “jump ... JUMP ... JUMP ... JUMP" from the1319
concatenated instruction-action pair “jump thrice JUMP JUMP JUMP" and substitute it into “walk around1320
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seq2seq GECA FiLM RelNet LCGN ViLBERT
(Ruis et al., 2020) (Ruis et al., 2020) (Qiu et al., 2021) (Qiu et al., 2021) (Gao et al., 2020) (Qiu et al., 2021)

A 97.15 ± .46 87.6 ± 1.19 98.83 ± .32 97.38 ± .33 98.6 ± .9 99.95 ± .02
B 30.05 ± 26.76 34.92 ± 39.30 94.04 ± 7.41 49.44 ± 8.19 99.08 ± .69 99.90 ± .06
C 29.79 ± 17.70 78.77 ± 6.63 60.12 ± 8.81 19.92 ± 9.84 80.31 ± 24.51 99.25 ± .91
D 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.16 ± .12 0.00 ± .00
E 37.25 ± 2.85 33.19 ± 3.69 31.64 ± 1.04 42.17 ± 6.22 87.32 ± 27.38 99.02 ± 1.16
F 94.16 ± 1.25 85.99 ± .85 86.45 ± 6.67 96.59 ± .94 99.33 ± .46 99.98 ± .01
H 19.04 ± 4.08 11.83 ± .31 11.71 ± 2.34 18.26 ± 1.24 33.6 ± 20.81 22.16 ± .01
I 86.48 ± 0.64 88.5 ± 0.82 85.17 ± 3.81 - 94.66 ± 0.24 -
II 40.10 ± 0.83 50.68 ± 0.32 38.59 ± 0.74 - 64.41 ± 4.52 -
III 86.08 ± 0.73 88.81 ± 1.42 85.66 ± 4.35 - 94.89 ± 0.20 -
IV 5.47 ± 0.09 10.78 ± 3.47 4.85 ± 0.86 - 49.58 ± 3.47 -
V 81.41 ± 1.03 76.20 ± 2.64 79.86 ± 3.16 - 59.29 ± 5.63 -
VI 81.84 ± 1.38 75.05 ± 3.63 80.93 ± 2.76 - 49.50 ± 6.49 -
A1 50.36 ± 4.03 - - 99.25 ± 0.77 - -
A2 14.64 ± 0.55 - - 42.05 ± 4.55 - -
B1 52.17 ± 1.63 - - 69.74 ± 0.30 - -
B2 39.41 ± 1.53 - - 52.80 ± 2.75 - -
C1 49.68 ± 2.73 - - 57.01 ± 7.99 - -
C2 25.74 ± 1.36 - - 22.07 ± 2.66 - -

GroCoT Planning RD Random/RL Modular CMA-ES Role-Guided
(Sikarwar et al., 2022) 2020 (Setzler et al., 2022) (Ruis and Lake, 2022) (Hein and Diepold, 2022) (Kuo et al., 2021)

A 99.9 94.19 ± .71 98.39 ± .17 96.34 ± .28 99.7 ± .1 96.73 ± .58
B 99.9 87.31 ± 4.38 62.19 ± 24.08 59.66 ± 23.76 73.5 ± 25.4 94.91 ± 1.30
C 99.9 81.07 ± 10.12 56.52 ± 29.70 32.09 ± 9.79 99.4 ± .4 67.72 ± 10.83
D 0.0 - 43.60 ± 6.05 0.00 ± .00 2.2 ± 1.5 11.52 ± 8.18
E 99.8 52.8 ± 9.96 53.89 ± 5.39 49.34 ± 11.60 97.4 ± 2.0 76.83 ± 2.32
F 99.9 - 95.74 ± .75 94.16 ± 1.25 99.1 ± .6 98.67 ± .05
H 22.9 - 21.95 ± .03 76.84 ± 26.94 98.4 ± 1.1 20.98 ± 1.98
I 99.8 - - - - -
II 98.6 - - - - -
III 99.9 - - - - -
IV 99.7 - - - - -
V 99.5 - - - - -
VI 96.5 - - - - -
A1 99.6 - - - - -
A2 93.1 - - - - -
B1 93.9 - - - - -
B2 86.0 - - - - -
C1 76.3 - - - - -
C2 27.3 - - - - -

Table 9: Additional related work comparisons on gSCAN, GSRR and ReaSCAN Splits G and I are not
included.

right thrice WALK RTURN WALK RTURN WALK RTURN" such that it is augmented into “jump around right thrice 1321
JUMP RTURN JUMP RTURN JUMP RTURN". As noted by Andreas (2020), the time and space complexity of 1322
GECA can be quite large and scales with the number of recognized templates and fragments. The results 1323
reported by Ruis et al. (2020) when using GECA in Table 9 are possibly out of date, since they were 1324
generated using an RNN architecture as opposed to a Transformer, where better performance on Splits 1325
B, C, E and F has been observed. Also, GECA was only applied to the instructions and state and not 1326
to the target commands. Possibly the reason for this is that the computational and memory complexity 1327
of GECA makes it difficult to apply the joint space of the state, instruction and target commands as in 1328
gSCAN. 1329

CMA-ES uses sparse hard attention with CMA-ES as the optimization algorithm as opposed to a 1330
gradient-based optimizer. The model architecture consists only of a multi-layer perceptron, predicting the 1331
next token with attention over the generated output sequence. The method requires some supervision 1332
on what the goal object is, in contrast with other approaches. Its strengths are that convergence can 1333
happen very quickly and optimization can be run on lighter hardware. The method also gets very good 1334
performance on Split H, however, as of the time of writing, the authors have not yet published their code 1335
and did not provide any analysis in their paper as to why the measured Split H performance was so good, 1336
so it is not possible to make a detailed comparison with our work. 1337

C Experimental Details 1338

We ran experiments to determine the performance of our approach. The Transformer blocks use an 1339
embedding size (dmodel) of 512 units and fully-connected layer size (dFF) of 2048 units is used. We use 12 1340
layers for each of the encoder and decoder of the encoder-decoder transformer. The learning rate is 10−5, 1341
we have an effective batch size of 128, and training iteration count of 300,000. During training, dropout is 1342
not used and weight decay is set to 10−3 with the AdamW optimizer. Beta values are left at their defaults, 1343
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ViLBERT Modular Role-guided Transformer (ours) ICL Transformer
(Qiu et al., 2021) (Ruis and Lake, 2022) (Kuo et al., 2021) Ours Ours

Learning Rate 0.0015 0.001 0.001 0.0001 0.0001
Embedding Dim 128 128 128 512 512
Dropout 0.1 - - 0.1 0.1
Batch Size 128 200 200 128 128
Steps 114.96K 73K 150K 300K 300K
#params 3M 88.3M 88.3M

Table 10: Hyperparameters used in our experiments and the related work

β1 = 0.9 and β2 = 0.999. Learning rate warmup is used up to step 30,000 to a peak learning rate of 10−5,1344
then decayed on a log-linear schedule from steps 30,000 to 300,000 to 10−6. Gradient norms are clipped1345
at 0.2 to improve training stability. We use 16-bit precision during training and make use of gradient1346
accumulation in order to simulate large batch sizes where memory is limited.1347

D Implementation of GandR for grounded language datasets1348

We make small adaptations to GandR (Zemlyanskiy et al., 2022) to adapt it to the grounded setting.1349
The baseline transformer model makes an initial prediction for the query input, then the query input1350
and prediction are vector-encoded (the instruction using the sentence-transformers package and the1351
actions using TF-IDF) and used to find other similar query-output pairs using the index, which become1352
the support inputs and outputs used for ICL. States are encoded using a PCA projection of their sparse1353
representations. Compared to the original, we keep the α trade-off between input and target components1354
fixed as opposed to varying it. There is also nothing to ensure that a diversity of different instructions is1355
sampled - only the near neighbours are sampled, even if they all correspond to a single instruction.1356

E Implementation of CovR for grounded language datasets1357

We implement the main idea behind Set-BSR (Gupta et al., 2023) for the grounded setting. States1358
are vector-encoded and projected using PCA into 320 dimensions. Instructions are encoded using the1359
sentence-transformers package. Both are concatenated with each other to make a vector representation1360
of an example. The instruction component of the vector is weighted with α = 0.125. The training-set1361
vectors are placed into an inner-product index. For performance reasons, we use a Voronoi index with 5121362
cells and 10 cell probes per search. For each vector in a split, we search the index for the 128 nearest1363
neighbours, sort the neighbours in descending order according to the number of matching two-grams,1364
one-grams and the cosine similarity to the query state. Then we pick the top k = 16 examples as the1365
support set.1366

F Properties of Generated Demonstrations, other splits1367

Properties of Generated Demonstrations for the other splits are shown in tables below.1368

G Heuristic Function1369

The Heuristic function generates relevant instructions by the use of a templating mechanism, which1370
replaces verbs and adverbs in the sentence with other verbs and adverbs, such that the whole combination1371
is still in distribution, but not the same as the query instruction. The rules of the system are:1372

• Replace “pull" with “push" and “walk to"1373

• Replace “walk to" with “push" and “pull" (but not if “while spinning" is the adverb)1374

• Replace “push" with “walk to" and “pull" (but not if “while spinning" is the adverb)1375

• Replace “while zigzagging" with “hesitantly", nothing and “while spinning" (but not if “push" is the1376
verb)1377

• Replace “hesitantly" with “while zigzagging", nothing and “while spinning" (but not if “push" is the1378
verb)1379

• Replace “while spinning" with “hesitantly", “while zigzagging" and nothing1380

Examples of what the oracle function generates for a given query instruction and environment can be1381
found in Figure 11. Actions are generated by using the same procedure provided in Ruis et al. (2020). The1382
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Split A
DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.32 0.83 0.15 1.00 1.00 0.07
(2) Agent Pos. 1.00 0.07 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.37 0.08 0.27 1.00 0.03 0.07
(4) Same Diff. 0.37 0.31 0.27 1.00 0.02 0.07
(5) Tgt. Obj. 0.37 0.26 0.22 1.00 0.25 0.07
(6) Verb & (5) 1.00 0.93 0.91 1.00 0.50 0.07
(7) Advb & (5) 0.75 0.93 0.77 1.00 0.38 0.07
(8) (6) & (7) 0.75 0.93 0.73 1.00 0.23 0.07
(9) (4) & (8) 0.75 0.57 0.65 1.00 0.00 0.07

Split B

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.26 0.00 0.00 1.00 0.00 0.00
(2) Agent Pos. 1.00 0.13 1.00 1.00 0.00 1.00
(3) Tgt. Pos. 0.32 0.15 0.29 1.00 0.00 0.00
(4) Same Diff. 0.32 0.44 0.29 1.00 0.00 0.00
(5) Tgt. Obj. 0.32 0.03 0.18 1.00 0.00 0.00
(6) Verb & (5) 1.00 0.30 0.85 1.00 0.00 0.00
(7) Advb & (5) 0.66 0.30 0.71 1.00 0.00 0.00
(8) (6) & (7) 0.66 0.30 0.69 1.00 0.00 0.00
(9) (4) & (8) 0.66 0.24 0.63 1.00 0.00 0.00

Split C

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.16 0.47 0.15 1.00 1.00 0.15
(2) Agent Pos. 1.00 0.12 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.19 0.13 0.18 1.00 0.03 0.15
(4) Same Diff. 0.19 0.44 0.18 1.00 0.02 0.15
(5) Tgt. Obj. 0.19 0.00 0.00 1.00 0.00 0.15
(6) Verb & (5) 0.79 0.00 0.00 1.00 0.00 0.15
(7) Advb & (5) 0.41 0.00 0.00 1.00 0.00 0.15
(8) (6) & (7) 0.40 0.00 0.00 1.00 0.00 0.15
(9) (4) & (8) 0.40 0.00 0.00 1.00 0.00 0.15

Split D

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.19 0.83 0.18 1.00 1.00 0.16
(2) Agent Pos. 1.00 0.03 1.00 1.00 0.02 1.00
(3) Tgt. Pos. 0.33 0.03 0.00 1.00 0.02 0.16
(4) Same Diff. 0.33 0.00 0.00 1.00 0.00 0.16
(5) Tgt. Obj. 0.33 0.20 0.05 1.00 0.10 0.16
(6) Verb & (5) 0.99 0.89 0.42 1.00 0.25 0.16
(7) Advb & (5) 0.89 0.88 0.25 1.00 0.17 0.16
(8) (6) & (7) 0.89 0.88 0.20 1.00 0.06 0.16
(9) (4) & (8) 0.89 0.00 0.00 1.00 0.00 0.16

Split E

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.22 0.89 0.07 1.00 0.00 0.00
(2) Agent Pos. 1.00 0.11 1.00 1.00 0.00 1.00
(3) Tgt. Pos. 0.27 0.12 0.22 1.00 0.00 0.00
(4) Same Diff. 0.27 0.35 0.22 1.00 0.00 0.00
(5) Tgt. Obj. 0.27 0.03 0.14 1.00 0.00 0.00
(6) Verb & (5) 0.96 0.20 0.81 1.00 0.00 0.00
(7) Advb & (5) 0.50 0.20 0.63 1.00 0.00 0.00
(8) (6) & (7) 0.50 0.20 0.60 1.00 0.00 0.00
(9) (4) & (8) 0.50 0.14 0.50 1.00 0.00 0.00

Split F

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.26 0.81 0.23 1.00 1.00 0.15
(2) Agent Pos. 1.00 0.12 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.33 0.15 0.26 1.00 0.03 0.15
(4) Same Diff. 0.33 0.37 0.26 1.00 0.02 0.15
(5) Tgt. Obj. 0.33 0.00 0.10 1.00 0.07 0.15
(6) Verb & (5) 0.96 0.00 0.00 1.00 0.00 0.15
(7) Advb & (5) 0.60 0.00 0.62 1.00 0.29 0.15
(8) (6) & (7) 0.58 0.00 0.00 1.00 0.00 0.15
(9) (4) & (8) 0.58 0.00 0.00 1.00 0.00 0.15

Split G

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.39 0.91 0.31 1.00 1.00 0.20
(2) Agent Pos. 1.00 0.14 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.50 0.16 0.37 1.00 0.03 0.20
(4) Same Diff. 0.50 0.35 0.37 1.00 0.02 0.20
(5) Tgt. Obj. 0.50 0.22 0.24 1.00 0.20 0.20
(6) Verb & (5) 1.00 0.91 0.93 1.00 0.51 0.20
(7) Advb & (5) 0.00 0.01 0.00 1.00 0.00 0.20
(8) (6) & (7) 0.00 0.01 0.00 1.00 0.00 0.20
(9) (4) & (8) 0.00 0.00 0.00 1.00 0.00 0.20

Split H

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.33 0.68 0.33 1.00 1.00 0.16
(2) Agent Pos. 1.00 0.08 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.44 0.08 0.39 1.00 0.03 0.16
(4) Same Diff. 0.44 0.09 0.39 1.00 0.02 0.16
(5) Tgt. Obj. 0.44 0.14 0.27 1.00 0.19 0.16
(6) Verb & (5) 1.00 0.15 0.88 1.00 0.43 0.16
(7) Advb & (5) 0.88 0.51 0.78 1.00 0.33 0.16
(8) (6) & (7) 0.88 0.00 0.70 1.00 0.19 0.16
(9) (4) & (8) 0.88 0.00 0.62 1.00 0.00 0.16

instruction generated by the oracle is given to the demonstration generation procedure and a demonstration 1383
is generated by that. A demonstration can also be generated by providing the oracle-generated instruction 1384
and current state representation as input to a Transformer model trained on the provided training set. 1385

H Permuter Blocks 1386

The permuter block shuffles the indices mapping words to symbols in the dictionary given in Table 11. 1387
Table 12 gives an example of how the permuted sequences might look to the encoders. Essentially the 1388
individual symbols no longer hold any special meaning without reference to the demonstrations, only 1389
conditional autoregressive probabilities up to a permutation hold meaning. 1390

I Natural-ish Language gSCAN Dataset 1391

The dataset is generated by extracting all of the input sentences from gSCAN and its derivatives, then 1392
using the commercial gpt3.5-turbo model from OpenAI2 to generate additional paraphrases of the 1393
input sentence. The paraphrases are generated by creating four dataset specific prompts, each with an 1394
10 examples of how one instruction in the dataset may be paraphrased, then requesting 25 additional 1395
paraphrases for a different instruction in the same dataset to be completed by the language model. The 1396
prompts are given in Appendix J. The prompts modes are described as follows: 1397

Simple Paraphrases of “Push a red square" 1398

2As of 5 May 2023
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Word Symbol Action Symbol
‘a’ 0 PULL 0

‘big’ 1 PUSH 1
‘blue’ 2 STAY 2

‘cautiously’ 3 LTURN 3
‘circle’ 4 RTURN 4

‘cylinder‘ 5 WALK 5
‘green’ 6

‘hesitantly’ 7
‘pull’ 8
‘push 9
‘red’ 10

‘small’ 11
‘square’ 12

‘to’ 13
‘walk’ 14

‘while spinning’ 15
‘while zigzagging‘ 16

Table 11: Default mapping of words and actions to symbols

Adverb Paraphrases of “Push a red square cautiously"1399

Relational Paraphrases of “Push a red circle that is south east of a blue circle"1400

ReaSCAN Paraphrases of “Pull the yellow square that is inside of a big red box and in the same row1401
as a small red circle and in the same column as a small cylinder while spinning"1402

The 10 paraphrase examples were written by ourselves - the idea is that they show how adverbs and1403
actions can be replaced by synonyms, and also show examples of the same instruction in a different1404
sentence ordering. For example, “push a red square" can be paraphrased as “shove the red square" or1405
“Walk to a red square and push it". The paraphrases can also include additional verbs adverbs which are1406
distractors, for example “grasp a red square and move it along".1407

We generate paraphrases of instructions in gSCAN, GSRR and ReaSCAN. The default generation mode1408
creates paraphrases for each unique instruction individually. However for GSRR and ReaSCAN, the1409
number of unique instructions is very large, which would mean that generation would come at both a1410
high time and monetary cost. The reason for this is the combinatorial explosion of factors; in GSRR1411
the instructions are given as target objects with positions relative to other objects. To address this1412
problem, we also have a "template" generation mode, which replaces the object descriptions (size, color,1413
shape) with a template placeholder, generates paraphrases for the templates, then generates “realised"1414
paraphrases from those templates for each of the corresponding object descriptions. This reduces the1415
number of requests to the model from hundreds of thousands to thousands.1416

J Prompts used for GPT3.51417

J.1 gSCAN Simple Prompt1418

Here are 10 similar statements to “push a red square"1419

1. Push the red square1420

2. Move a red square1421

3. Shove the red square1422

4. Go to the red square and shove it1423

5. Go to the red square and push it1424

6. Walk to the red square and push it1425

7. Find a red square and push it1426

8. Locate a red square and push it1427

20



Original actions Permutation Encoded actions Permuted encoding
WALK(5) RTURN WALK(5) PULL(0) → 0, PUSH(1) → 5, STAY(2) →

2, LTURN(3) → 1, RTURN(4) → 3,
WALK(5) → 4,

5(5) 4 5(5) 4(5) 3 4(5)

RTURN WALK(3) PULL(0) → 0, PUSH(1) → 2, STAY(2) →
3, LTURN(3) → 5, RTURN(4) → 4,
WALK(5) → 1,

4 5(3) 4 1(3)

LTURN(4) WALK LTURN(4)
WALK LTURN(5) WALK
LTURN(4) WALK LTURN(4)
WALK LTURN(4) WALK
LTURN(4) WALK

PULL(0) → 4, PUSH(1) → 5, STAY(2) →
0, LTURN(3) → 2, RTURN(4) → 3,
WALK(5) → 1,

3(4) 5 3(4) 5 3(5) 5
3(4) 5 3(4) 5 3(4) 5
3(4) 5

2(4) 1 2(4) 1 2(5) 1
2(4) 1 2(4) 1 2(4) 1
2(4) 1

LTURN WALK STAY WALK
STAY WALK STAY WALK
STAY

PULL(0) → 3, PUSH(1) → 0, STAY(2) →
2, LTURN(3) → 5, RTURN(4) → 4,
WALK(5) → 1,

3 5 2 5 2 5 2 5 2 5 1 2 1 2 1 2 1 2

LTURN WALK STAY WALK
STAY

PULL(0) → 0, PUSH(1) → 3, STAY(2) →
4, LTURN(3) → 5, RTURN(4) → 2,
WALK(5) → 1,

3 5 2 5 2 5 1 4 1 4

LTURN(4) WALK LTURN(4)
WALK LTURN(4) WALK
LTURN(4) RTURN WALK
LTURN(4) WALK LTURN(4)
WALK LTURN(4) WALK
LTURN(4) WALK

PULL(0) → 0, PUSH(1) → 4, STAY(2) →
5, LTURN(3) → 1, RTURN(4) → 3,
WALK(5) → 2,

3(4) 5 3(4) 5 3(4) 5
3(4) 4 5 3(4) 5 3(4)
5 3(4) 5 3(4) 5

1(4) 2 1(4) 2 1(4) 2
1(4) 3 2 1(4) 2 1(4)
2 1(4) 2 1(4) 2

LTURN WALK(2) PUSH PULL(0) → 1, PUSH(1) → 0, STAY(2) →
5, LTURN(3) → 3, RTURN(4) → 4,
WALK(5) → 2,

3 5(2) 1 3 2(2) 0

Table 12: Actions and possible mapping permutations generated by the permuter block.

gSCAN RS ReaSCAN
Uniq. Instrs. 430 31799 4381
Uniq. Tmpls. - 21 658
Gen. Instrs. 12778 731377 99698
Gen. Tmpls. - 483 14683
Prompt Simple Relational ReaSCAN

Table 13: Generation properties and configuration for each of the datasets

9. Get to the red square and move it along 1428

10. Walk up to the red square and then really push it 1429

Can you generate 25 similar statements for “{{QUERY}}” in English? 1430

K Examples of Generated Paraphrases 1431

Examples: 367933 Unique Instructions: 430 Templates: 828 Sample Responses: 1432

Original walk to a yellow small cylinder hesitantly 1433

1. Walk hesitantly to a small yellow cylinder 1434

2. Approach a small yellow cylinder with hesitation 1435

3. Take cautious steps towards a small yellow cylinder 1436

4. Walk slowly towards a small yellow cylinder 1437

5. Move towards a small yellow cylinder with caution 1438

6. Walk towards a small yellow cylinder carefully 1439

7. Take hesitant steps towards a small yellow cylinder 1440

8. Approach a small yellow cylinder slowly and hesitantly 1441

9. Walk towards a small yellow cylinder with apprehension 1442

10. Move towards a small yellow cylinder hesitantly 1443
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11. Walk to a small yellow cylinder with reluctance1444

12. Take tentative steps towards a small yellow cylinder1445

13. Walk towards a small yellow cylinder with uncertainty1446

14. Approach a small yellow cylinder with trepidation1447

15. Walk towards a small yellow cylinder with reservation1448

16. Take hesitant strides towards a small yellow cylinder1449

17. Walk to a small yellow cylinder with caution1450

18. Move towards a small yellow cylinder with unease1451

19. Walk towards a small yellow cylinder with doubt1452

20. Approach a small yellow cylinder with timidity1453

21. Walk towards a small yellow cylinder with hesitance1454

22. Take slow steps towards a small yellow cylinder1455

23. Walk towards a small yellow cylinder with wariness1456

24. Move towards a small yellow cylinder with hesitancy1457

25. Walk towards a small yellow cylinder with reluctance and caution.1458

Original pull a circle hesitantly1459

1. Hesitantly pull a circle1460

2. Pull a circle with hesitation1461

3. Gently pull a circle1462

4. Pull a circle slowly and cautiously1463

5. Approach the circle and pull it hesitantly1464

6. Pull the circle with care1465

7. Pull the circle slowly and carefully1466

8. Take your time and pull the circle hesitantly1467

9. Pull the circle with a bit of hesitation1468

10. Approach the circle and pull it gently1469

11. Pull the circle with caution1470

12. Pull the circle carefully and hesitantly1471

13. Slowly pull the circle with hesitation1472

14. Pull the circle with a sense of caution1473

15. Pull the circle with a bit of reluctance1474

16. Pull the circle slowly and with care1475

17. Hesitate before pulling the circle1476

18. Pull the circle with a gentle touch1477

19. Pull the circle with a bit of apprehension1478

20. Pull the circle with a sense of uncertainty1479

21. Pull the circle with a bit of nervousness1480

22. Pull the circle with a bit of trepidation1481

23. Pull the circle with a sense of hesitation1482
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24. Pull the circle with a bit of doubt 1483

25. Pull the circle with a bit of reservation 1484

Original pull a circle while zigzagging 1485

1. Zigzag while pulling a circle 1486

2. Pull a circle in a zigzag pattern 1487

3. Carefully pull a circle while zigzagging 1488

4. Zigzag and pull a circle simultaneously 1489

5. Pull a circle while moving in a zigzag motion 1490

6. With caution, pull a circle while zigzagging 1491

7. Zigzag your way to the circle and pull it 1492

8. Pull a circle while making zigzag movements 1493

9. Zigzag and pull the circle with care 1494

10. Pull a circle while navigating in a zigzag direction 1495

11. Move in a zigzag pattern while pulling a circle 1496

12. Pull a circle while making a zigzag path 1497

13. Zigzag towards the circle and pull it 1498

14. Pull a circle while making zigzag turns 1499

15. Carefully zigzag and pull the circle 1500

16. Zigzag and carefully pull the circle 1501

17. Pull a circle while making sharp zigzag movements 1502

18. Zigzag and pull the circle with caution 1503

19. Pull a circle while making quick zigzag motions 1504

20. Zigzag and pull the circle slowly 1505

21. Pull a circle while zigzagging in a controlled manner 1506

22. Zigzag and pull the circle with precision 1507

23. Pull a circle while making small zigzag movements 1508

24. Zigzag and pull the circle with care and attention 1509

25. Pull a circle while zigzagging smoothly. 1510

L Properties of Natural-ish Language gSCAN Dataset 1511

parses words zipf a rmse

gSCAN 18 18 1.99 0.11
NL-gSCAN 1550 859 1.29 0.01
GSRR 234 20 1.90 0.10
NL-GSRR 9785 126 1.40 0.03
ReaSCAN 1400 35 1.26 0.04
NL-ReaSCAN 42759 631 1.22 0.01

Figure 4: Linguistic properties of each dataset
and its corresponding paraphrased (denoted NL-
) dataset

.

Size Color Object

gSCAN 100% 99.98% 98.63%
SR 100% 100% 100%
ReaSCAN 100% 99.99% 99.93%

Figure 5: Percentage of examples in each train-
ing set whether the object mentioned in the
synthetic dataset was also found in exactly the
same way the corresponding paraphrased exam-
ple.
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Figure 6: Word frequency distribution of NL-gSCAN and gSCAN, each compared to the best fitting Zipf
distribution probability density function. gSCAN words are in orange and NL-gSCAN words are in blue
(comprising of the larger vocabulary).

L.1 Linguistic Properties1512

In this section we examine the linguistic properties of the dataset. The main research question is whether1513
the instructions as paraphrased by GPT3.5 look more like natural language. Clearly, the paraphrased1514
data has greater vocabulary complexity. But merely substituting words for synonyms would not make1515
synthetic data appear any more natural, nor does it pose any real challenges to a learning algorithm that1516
would need to act on the instructions. We examine two other indicia, unique parses and fit to a Zipf1517
distribution of word frequency.1518

Parses We compute the number of unique parses among all the instructions in each training set. A1519
parse is an assignment of word-role labels, indicating the linguistic role of the token in the instruction.1520
For example, a token may be an adjective, an adverb or some sort of connector. The parses are computed1521
over every instruction in the training data using the spaCy package. As shown in Table 4, the number of1522
unique parses in the paraphrased datasets are an order of magnitude larger than the number of unique1523
parses in the synthetic datasets. This reflects the diversity of instruction structures that exist in the1524
paraphrased datasets.1525

Zipfian Distribution Fit Natural language is hypothesized to fit a Zipfian power-law distribution,1526
where the probability of drawing a word from a corpus is inversely proportional to its frequency p(w) ∝ 1

fa
w

,1527

where a is a parameter of the distribution which varies for different corpii. We estimate a using maximum1528
likelihood estimation using the method in (Clauset et al., 2009) and compute the root-mean-squared error1529
(RMSE) between the estimated probability of a word according to the estimated Zipf distribution and the1530
empirical probability that word measured by counting word frequencies. A corpus that resembles natural1531
language more closely will have a low RMSE to its correpsonding Zipf distribution. We find that the1532
paraphrased datasets better fit their Zipf distribution. We also visualize in both Figure 6 the ordered1533
frequency distribution of the paraphrased gSCAN dataset and its corresponding Zip probability density1534
function.1535
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L.2 Compositional Properties 1536

We also examine whether the datasets maintained their compositional properties. Recall that the datasets 1537
are stratified into different splits to test different compositional generalization cases. We want to test 1538
whether these cases still hold. Clearly, in the output space, the compositional stratification still holds 1539
because we do not change the output actions. In the input space, we can only measure whether the same 1540
object is mentioned in each synthetic instruction and its corresponding paraphrased instruction, because 1541
the verbs and adverbs may be changed to a synonym or a sequence of words having a similar meaning. 1542

In all three datasets, the retainment of target objects is very high, never going under 98%. We can be 1543
confident that the correct target object is mentioned in the same way in the paraphrased examples. 1544
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M Evaluation of baselines on Natural-ish gSCAN, GSRR and ReaSCAN1545

We evaluate current published state-of-the-art models with openly available code on the new datasets1546
using our own re-implementation. We calculate the exact-match performance using seeds 0-9 using the1547
same hyperparameters for each model, the details of which are specified in Appendix B. The models are1548
briefly described below:1549

ViLBERT with Cross-Attention The ViLBERT model proposed in (Qiu et al., 2021), with only cross-1550
attention between visual and text input streams, then decoding the target action sequence autoregressively.1551
As in (Sikarwar et al., 2022), the multi-level CNN on the grid world is replaced by adding learnable1552
position encodings.1553

Encoder-Decoder Transformer A standard encoder-decoder Transformer, where the transformer1554
input sequence is the position-encoded and embedded visual stream concatenated with the instruction,1555
and the target output sequence are the actions, decoded autoregressively.1556

Transformer ViLBERT ViLBERT(PP)
gSCAN

A 1.0 ± .00 1.0 ± .00 1.0 ± .00
B 0.86 ± .28 0.94 ± .11 0.93 ± .09
C 0.89 ± .16 0.89 ± .13 0.82 ± .26
D 0.01 ± .02 0.0 ± .01 0.0 ± .00
E 0.99 ± .02 0.93 ± .12 0.71 ± .24
F 1.0 ± .00 1.0 ± .00 1.0 ± .00
G 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.19 ± .06 0.23 ± .01 0.17 ± .06

GSRR
I 1.0 ± .00 1.0 ± .00 1.0 ± .00
II 0.95 ± .04 0.93 ± .04 0.96 ± .02
III 0.99 ± .01 0.96 ± .03 1.0 ± .00
IV 1.0 ± .00 1.0 ± .00 1.0 ± .00
V 0.46 ± .26 0.72 ± .1 0.9 ± .04
VI 0.17 ± .18 0.61 ± .23 0.89 ± .06

ReaSCAN
IID 0.99 ± .00 0.98 ± .02 0.97 ± .01
A1 0.94 ± .02 0.95 ± .04 0.95 ± .01
A2 0.61 ± .05 0.52 ± .13 0.46 ± .07
B1 0.75 ± .02 0.79 ± .05 0.75 ± .03
B2 0.54 ± .02 0.6 ± .09 0.53 ± .05
C1 0.37 ± .02 0.32 ± .02 0.64 ± .03
C2 0.27 ± .05 0.22 ± .05 0.22 ± .03

Figure 7: The evaluation results for gSCAN, GSRR
and ReaSCAN at 300,000 iterations, where perfor-
mance for splits B-H is measured at the point where
the model performed best on split A during training.
ViLBERT is the model in (Qiu et al., 2021) and
Transformer is an Encoder-Decoder Transformer.
Tformer(PP) the same Transformer architecture
evaluated on the paraphrased dataset.

N Image-Based gSCAN1557

We also created an Image-Based gSCAN where the state inputs are images and encoded with a vision1558
transformer with patch size 12. The results are reported in Table 8. We observed a similar boost on Split1559
H for the NL + Img dataset as well. However, we note that the model for NL + Img appeared to be1560
underfitting, so it is possible that with a larger model that the results could have been even better.1561
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Transformer DemoGen
NL +Img NL +Img

A 1.0 ± .00 1.0 ± .00 0.99 ± .00 0.84 ± .01
B 0.99 ± .00 0.93 ± .08 0.96 ± .00 0.53 ± .01
C 0.99 ± .03 0.89 ± .16 0.97 ± .00 0.54 ± .01
D 0.08 ± .16 0.0 ± .00 0.01 ± .01 0.11 ± .02
E 0.98 ± .03 0.83 ± .22 0.98 ± .00 0.67 ± .00
F 1.0 ± .00 1.0 ± .00 0.98 ± .00 0.88 ± .01
G 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.19 ± .03 0.06 ± .05 0.59 ± .06 0.48 ± .02

Figure 8: Evaluation on natural language and image
data. NL refers to natural language instructions,
NL + Img refers to natural language instructions
and patch-encoded images

O Evaluating on LLMs 1562

We also fine-tuned LLaMA3-Instruct using LoRA on data from gSCAN, GSRR and ReaSCAN. Because 1563
LLaMA3 is a langauge model and gSCAN uses symbolic inputs for the state, we "encode" the state as text, 1564
by giving it as a description. We found that fine-tuning was necessary - few-shot evaluation using the both 1565
the generated and retrieved examples on ChatGPT was very poor, with the model often hallucinating 1566
actions. We compare both the ICL and non-ICL problem formulations after fine-tuning the model on 1567
both ICL datasets and non-ICL datasets. 1568

Examples of encoded inputs are provided in Table 9. The results of the evaluation (exact match 1569
performance) are provided in Table 10. We do not use the symbol-index permutation as a means to 1570
support meta-learning, but instead rely on the previously demonstrated capability of large language models 1571
to do in-context few-shot learning. While the results are not as good as using the meta-ICL transformer 1572
with symbol-index permutation in Table 2, the ICL cases clearly outperform the baseline where we only 1573
finetuned LoRA on the original dataset reformatted as text. In these cases, DemoGen is very competitive, 1574
again getting superior performance on gSCAN split H, NL-gSCAN split H and performing competitively 1575
on both GSRR and ReaSCAN. 1576

P Performance and similarity of generated examples 1577

Relevance Split Match % ± std. (N) Diversity Split Match % ± std. (N)
0.49 c 0.67 ± 0.48 (24) 0.65 c 0.48 ± 0.50 (163)
0.53 c 0.55 ± 0.50 (209) 0.69 c 0.57 ± 0.49 (1381)
0.56 c 0.41 ± 0.49 (749) 0.72 c 0.60 ± 0.49 (3606)
0.60 c 0.51 ± 0.50 (1524) 0.75 c 0.71 ± 0.46 (7857)
0.63 c 0.53 ± 0.50 (2674) 0.79 c 0.78 ± 0.42 (9342)
0.66 c 0.52 ± 0.50 (4093) 0.82 c 0.67 ± 0.47 (5855)
0.70 c 0.61 ± 0.49 (6931) 0.86 c 0.53 ± 0.50 (4777)
0.73 c 0.66 ± 0.47 (8906) 0.89 c 0.53 ± 0.50 (3049)
0.76 c 0.79 ± 0.41 (11385) 0.92 c 0.56 ± 0.50 (1261)
0.80 c 0.89 ± 0.31 (925) 0.95 c 0.63 ± 0.49 (129)
0.61 h 0.57 ± 0.50 (60) 0.61 h 0.86 ± 0.34 (266)
0.64 h 0.59 ± 0.49 (743) 0.65 h 0.87 ± 0.33 (2655)
0.68 h 0.59 ± 0.49 (2907) 0.69 h 0.88 ± 0.32 (8144)
0.71 h 0.63 ± 0.48 (4412) 0.73 h 0.86 ± 0.35 (7480)
0.74 h 0.80 ± 0.40 (6025) 0.77 h 0.78 ± 0.41 (7283)
0.78 h 0.81 ± 0.39 (10824) 0.81 h 0.76 ± 0.43 (5358)
0.81 h 0.86 ± 0.35 (10530) 0.85 h 0.61 ± 0.49 (3910)
0.84 h 0.87 ± 0.33 (3071) 0.89 h 0.60 ± 0.49 (1738)

Table 14: Diversity Relevance score bin lower bounds and exact match performance on the gSCAN
DemoGen dataset, split C and H.

In Table 14 we examine the relationship between the relevance of the supports instructions to the query 1578
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Dataset Example
gSCAN State: agent d: 1 x: 3 y: 5, blue box s: 1 x: 5 y: 5, blue box s: 3 x: 3 y: 4, yellow

cylinder s: 1 x: 5 y: 4, yellow cylinder s: 3 x: 5 y: 2, yellow box s: 3 x: 2 y: 3, yellow
box s: 4 x: 0 y: 3, green cylinder s: 4 x: 3 y: 2, green cylinder s: 1 x: 2 y: 1, red
circle s: 2 x: 3 y: 3, red circle s: 3 x: 2 y: 5, green box s: 2 x: 0 y: 4, green box s: 1 x:
4 y: 2 Query Input: walk to a yellow small square hesitantly Output: lturn lturn
walk stay walk stay walk stay walk stay rturn walk stay walk stay walk
stay walk stay walk stay [eos]

ICL gSCAN Complete based on the following. Base the answer on Inputs Output pairs that are
relevant to the Query Input: Input: walk to a small circle Output: lturn walk walk
walk walk walk [eos] Input: pull a small circle Output: lturn walk walk walk walk
walk [eos] Input: push a small square hesitantly Output: lturn walk stay walk stay
push stay [eos] Input: push a small circle while spinning Output: lturn lturn lturn
lturn lturn walk lturn lturn lturn lturn walk lturn lturn lturn lturn walk lturn lturn
lturn lturn walk lturn lturn lturn lturn walk [eos] Input: push a small circle while
zigzagging Output: lturn walk walk walk walk walk [eos] Input: push a yellow small
circle Output: lturn lturn walk walk walk rturn walk walk walk walk walk [eos] Input:
push a yellow small circle hesitantly Output: lturn lturn walk stay walk stay walk
stay rturn walk stay walk stay walk stay walk stay walk stay [eos] Input: push a small
circle Output: lturn walk walk walk walk walk [eos] Query Input: push a small circle
hesitantly Output: lturn walk stay walk stay walk stay walk stay walk stay
[eos]

ICL ReaSCAN Complete based on the following. Base the answer on Inputs Output pairs that are
relevant to the Query Input: State: agent d: 1 x: 4 y: 0, yellow cylinder s: 3 x: 0 y:
2, blue circle s: 1 x: 0 y: 0, yellow square s: 4 x: 1 y: 2, blue cylinder s: 3 x: 1 y:
3, green square s: 4 x: 0 y: 3, red cylinder s: 3 x: 0 y: 4, blue circle s: 1 x: 0 y: 1,
yellow cylinder s: 1 x: 2 y: 5, yellow circle s: 3 x: 2 y: 0, green square s: 4 x: 0 y: 5,
blue circle s: 4 x: 5 y: 1, green square s: 1 x: 4 y: 3, yellow cylinder s: 2 x: 3 y: 1,
yellow circle s: 2 x: 3 y: 0, blue square s: 4 x: 1 y: 1 Input: pull the cylinder that
is in the same row as a small yellow square and in the same column as a big green
circle while zigzagging Output: walk lturn walk rturn walk lturn walk rturn walk lturn
walk pull pull pull pull [eos] Input: pull the object that is in the same row as a small
yellow square and in the same column as a big green circle while zigzagging Output:
walk lturn walk rturn walk lturn walk rturn walk lturn walk walk pull pull pull pull
[eos] Input: pull the object that is in the same row as a small yellow circle and in the
same column as a big green circle while zigzagging Output: walk lturn walk rturn
walk lturn walk rturn walk lturn walk pull pull pull pull [eos] Input: pull the small
red object that is in the same row as a small yellow square and in the same column
as a big green circle while zigzagging Output: walk lturn walk rturn walk lturn walk
rturn walk lturn walk rturn walk lturn walk rturn walk pull pull pull pull pull pull
pull pull [eos] Input: pull the big red cylinder that is in the same row as a small yellow
square and in the same column as a big green circle while zigzagging Output: walk
lturn walk rturn walk lturn walk rturn walk lturn walk rturn walk lturn walk rturn
walk pull pull pull pull pull pull [eos] Input: pull the big red cylinder that is in the
same row as a small yellow circle and in the same column as a big green circle while
zigzagging Output: walk lturn walk rturn walk lturn walk rturn walk lturn walk rturn
walk walk pull pull pull pull pull pull pull pull [eos] Input: pull the cylinder that is in
the same row as a small yellow circle and in the same column as a big green circle
while zigzagging Output: walk lturn walk rturn walk lturn walk rturn walk lturn walk
pull pull pull pull [eos] Input: pull the Output: walk walk walk pull pull pull [eos]
Query Input: pull the cylinder that is in the same row as a small yellow square and in
the same column as a big circle while zigzagging Output: walk lturn walk rturn
walk lturn walk rturn walk lturn walk rturn walk lturn walk rturn walk
lturn walk rturn walk [eos]

GSRR State: agent d: 1 x: 1 y: 1, green cylinder s: 3 x: 4 y: 5, red square s: 2 x: 5 y: 4,
green cylinder s: 3 x: 1 y: 2, green cylinder s: 3 x: 4 y: 2, yellow square s: 2 x: 0 y: 1,
green cylinder s: 2 x: 5 y: 1, yellow cylinder s: 4 x: 2 y: 1, yellow cylinder s: 2 x: 5 y:
0, green square s: 3 x: 3 y: 3, green square s: 3 x: 3 y: 1, yellow square s: 2 x: 3 y: 2,
yellow square s: 4 x: 4 y: 0, green circle s: 1 x: 3 y: 0, green circle s: 2 x: 0 y: 3, blue
circle s: 4 x: 2 y: 2, blue circle s: 4 x: 5 y: 2 Query Input: push a green big cylinder
north east of a blue circle, Output: walk walk walk walk walk rturn walk walk
[eos]

Figure 9: Examples of inputs to language-model
for evaluation on an LLM. Bolded text is generated
from the LLM autoregressively.

gSCAN Baseline CR GR DG
A 0.00 0.32 0.75 0.73
B 0.01 0.51 0.88 0.97
C 0.02 0.34 0.87 0.97
D 0.00 0.00 0.0 0.17
E 0.03 0.55 0.81 0.97
F 0.01 0.30 0.69 0.84
G 0.00 0.0 0.00 0.0
H 0.00 0.06 0.15 0.60
NL-gSCAN Baseline CR GR DG
A 0.00 0.08 0.54 0.62
B 0.01 0.17 0.45 0.48
C 0.02 0.10 0.45 0.44
D 0.00 0.00 0.0 0.27
E 0.02 0.20 0.56 0.71
F 0.02 0.12 0.51 0.72
G 0.00 0.0 0.00 0.0
H 0.00 0.04 0.13 0.30
GSRR
I 0.01 0.35 0.36 0.38
II 0.02 0.15 0.41 0.04
III 0.02 0.10 0.38 0.09
IV 0.01 0.32 0.43 0.43
V 0.01 0.45 0.37 0.04
VI 0.02 0.45 0.40 0.04
ReaSCAN
A1 0.0 0.0 0.22 0.28
A2 0.0 0.0 0.25 0.29
B1 0.0 0.0 0.21 0.20
B2 0.0 0.0 0.18 0.10
C1 0.0 0.0 0.07 0.07
C2 0.0 0.0 0.03 0.08

Figure 10: Performance LoRA fine-tuned LLaMA-
3-Instruct 7B model.

instruction and performance and also the diversity within the support instructions and performance. The1579
relevance of a support instruction to the query is measured as the inner product of the normalized embed-1580
dings of instructions as produced by the sentence-transformers package using the all-mpnet-base-v21581
model. The diversity of support is measured as the mean value of the upper triangle of the all-pairs1582
normalized euclidean distances (normalized to be between 0 and 1), as given by:1583

∑ triu(||Ê − ÊT )||22
N(N − 1)/2

(1)1584

where E is the matrix of sentence-transformer embedded support inputs. This value will be 1 where all1585
supports are completely different from each other and 0 where they are completely the same.1586

gSCAN splits c and h are shown as these are the splits where the performance was not either very close to1587
100% or very close to 0. We found that there was a weak correlation between relevance and exact match1588
performance. This is reflected in the histogram of support relevance bins and their corresponding exact1589
match performance value, where it can be seen that mean exact match performance roughly increases1590
alongside the relevance. With intra-support diversity, the story is a bit different. The overall correlation1591
is negative, however there is a curve where increased diversity between the supports from 0.6 to 0.731592
comes with marginally improved performance, but then that performance drops off once diversity starts to1593
increase from 0.7 to 0.89 (performance dropping from 88% exact match performance to 60% exact match1594
performance).1595
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Q Examples of generated demonstrations 1596

We provide one-example-per-method of each support generation method on Split H in Figure 11. Examples 1597
in green are valid in the environment, relevant to the target object and correctly executed. Examples in 1598
yellow are considered "not relevant" since they concern an object with different properties than the one 1599
mentioned in the query. Examples in red are not correctly executed. Examples in grey are not valid in 1600
the environment. Note that for retrieval-based methods like GandR and Retrieval, the instruction is 1601
being solved in a different state to the query one, which is the reason why the action trajectories are both 1602
valid and correct, but look very different from each other. Up to 9 of the 16 possible supports are shown. 1603

Notice that GandR does not demonstrate the desired adverb “while spinning" (WALK(4)), because it is 1604
only finding near neighbours of “pull", which happen only with WALK and PUSH. 1605

29



Query

Iq = “pull a red small circle while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “pull a red small circle hesitantly"

I2 = “push a red big circle while spinning"

I3 = “walk to a small circle hesitantly"

I4 = “pull a circle hesitantly"

I5 = “walk to a red circle hesitantly"

I6 = “push a red big circle hesitantly"

I7 = “pull a circle hesitantly"

I8 = “pull a red small cylinder hesitantly"

I9 = “walk to a small circle while spinning"

T
ra

ns
fo

rm
er

A1 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(4)"

A2 = “LTURN(6) WALK LTURN(4) RTURN WALK (LTURN(4) WALK)(4)"

A3 = “LTURN(2) WALK STAY RTURN (WALK STAY)(3)"

A4 = “LTURN(2) WALK STAY RTURN (WALK STAY)(3) (PULL STAY)(3)"

A5 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(3)"

A6 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(3) (PUSH STAY)(4)"

A7 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(3) (PULL STAY)(6)"

A8 = “LTURN(2) (WALK STAY)(4) RTURN (WALK STAY)(4)"

A9 = “LTURN(6) (WALK LTURN(4))(3) RTURN WALK (LTURN(4) WALK)(4)"

(a) Support set generated by Coverage Retrieval
Query

IQ = “pull a yellow cylinder while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “pull a small cylinder"

I4 = “pull a yellow small cylinder while zigzagging"

I14 = “pull a small circle"

I15 = “pull a big cylinder"

I16 = “pull a big cylinder"

T
ra

ns
fo

rm
er

A1 = “LTURN(2) WALK PULL"

A4 = “LTURN(2) WALK RTURN WALK LTURN WALK PULL(2)

A14 = “LTURN(2) WALK PULL

A15 = “LTURN(2) WALK PULL

A16 = “LTURN(2) WALK PULL

(b) Support set generated by GandR
Query

Iq = “pull a green small circle while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “walk to a green small circle while spinning"

I2 = “push a green small circle while spinning

I3 = “pull a green small circle while zigzagging

I4 = “pull a green small circle hesitantly

I5 = “pull a green small circle

T
ra

ns
fo

rm
er

A1 = “LTURN(6) (WALK LTURN(4))(5) RTURN (WALK LTURN(4))(3) WALK"

A2 = “LTURN(6) (WALK LTURN(4))(5) RTURN (WALK LTURN(4))(3) PUSH LTURN(4) PUSH

A3 = “LTURN(2) (WALK RTURN WALK LTURN)(4) WALK PULL(2)

A4 = “LTURN(2) (WALK STAY)(5) RTURN (WALK STAY)(4)

A5 = “LTURN(2) WALK(5) RTURN WALK(4)

(c) Support set generated by Heuristic
Query

Iq = “pull a blue small circle while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “walk to a blue small circle while spinning"

I2 = “push a blue small circle while spinning

I3 = “pull a blue small circle while zigzagging

I4 = “pull a blue small circle hesitantly

I5 = “pull a blue small circle

T
ra

ns
fo

rm
er

A1 = “LTURN(4) (WALK LTURN(4))(4) RTURN (WALK LTURN(4))(3) WALK"

A2 = “LTURN(6) (WALK LTURN(4))(4) RTURN (WALK LTURN(4))(3) PUSH LTURN(4) PUSH

A3 = “LTURN WALK PULL(2)

A4 = “LTURN(2) (WALK STAY)(2) RTURN (WALK STAY)(4) (PULL STAY)(5)

A5 = “LTURN(2) WALK(4) RTURN WALK(4) PULL(10)

(d) Support set generated by Other States
Query

Iq = “pull a blue small square while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “push a big blue square while zigzagging"

I2 = “push a big blue square while spinning

I3 = “push a small yellow circle

I4 = “push a big blue cylinder

I5 = “walk to a small green cylinder while zigzagging

I6 = “pull a big blue circle while spinning

I7 = “push a big blue cylinder while spinning

I8 = “pull a big blue cylinder

I9 = “push a small yellow circle while zigzagging

T
ra

ns
fo

rm
er

A1 = “LTURN(2) WALK RTURN WALK LTURN WALK RTURN WALK(2) PUSH(2)"

A2 = “LTURN(6) (WALK LTURN(4))(2) RTURN (WALK LTURN(4))(3) PUSH LTURN(4) PUSH

A3 = “LTURN(2) WALK RTURN WALK(4)

A4 = “WALK(2) LTURN WALK(2) PUSH(2)

A5 = “LTURN(2) WALK RTURN WALK(2)

A6 = “LTURN(4) RTURN WALK (LTURN(4) PULL)(6) PULL

A7 = “(LTURN(4) WALK)(2) LTURN(5) (WALK LTURN(4))(2) PUSH LTURN(4) PUSH

A8 = “WALK(2) LTURN WALK(2) PULL

A9 = “LTURN(2) WALK RTURN WALK(4)

(e) Support set generated by Random Instructions

Figure 11: Demonstrations generated on Split H for different kinds of demonstration strategies.
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