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Abstract— While the workspace of traditional ground vehi-
cles is usually assumed to be in a 2D plane, i.e., SE(2), such
an assumption may not hold when they drive at high speeds
on unstructured off-road terrain: High-speed sharp turns on
high-friction surfaces may lead to vehicle rollover; Turning
aggressively on loose gravel or grass may violate the non-
holonomic constraint and cause significant lateral sliding; Driv-
ing quickly on rugged terrain will produce extensive vibration
along the vertical axis. Therefore, most offroad vehicles are
currently limited to drive only at low speeds to assure vehicle
stability and safety. In this work, we aim at empowering high-
speed off-road vehicles with competence awareness in SE(3)
so that they can reason about the consequences of taking
aggressive maneuvers on different terrain with a 6-DoF forward
kinodynamic model. The model is learned from visual and
inertial Terrain Representation for Off-road Navigation (TRON)
using multimodal, self-supervised vehicle-terrain interactions.
We demonstrate the efficacy of our Competence-Aware High-
Speed Off-Road (CAHSOR) navigation approach on a physical
ground robot in both an autonomous navigation and a human
shared-control setup and show that CAHSOR can efficiently
reduce vehicle instability by 62% while only compromising
8.6% average speed with the help of TRON.

I. INTRODUCTION

Autonomous mobile robot navigation has been a research
topic in the robotics community for decades. Being equipped
with perception, planning, and control techniques, different
types of ground robots, e.g., differential-drive or Ackermann-
steering, are able to efficiently move toward their goals in
their 2D workspaces considering their 3-DoF motion models
(x, y, and yaw) without colliding with obstacles, mostly in
structured and homogeneous environments.

Bringing those robots into the unstructured real world,
researchers have also investigated off-road navigation. Most
off-road robots drive at slow speeds to assure vehicle stability
and safety. Even when aiming at driving fast, they still
assume a simplified 2D workspace and 3-DoF model in
SE(2) despite the highly likely disturbances from the off-
road terrain on other dimensions of the state space (e.g., drift
along y, roll around x, or bumpiness along z). These realistic
kinodynamic effects may be tolerable in some cases, but may
lead to catastrophic consequences in others with increasing
speed on unstructured terrain (Fig. 1).

To enable safe and robust off-road navigation, high-speed
ground robots need to be competence-aware, i.e., knowing
what is the consequence of taking an aggressive maneuver
on different off-road terrain. For example, a sharp turn on
high-friction pavement may lead to vehicle rollover (Fig. 1

All authors are with the Department of Computer Science, George Mason
University {apokhre, mnazerir, adatar, xiao}@gmu.edu

Fig. 1: Challenges of High-Speed Off-Road Ground Naviga-
tion in SE(3).

top); Blasting through rugged surfaces can generate extensive
vertical vibrations and damage onboard components (Fig. 1
bottom left); Aggressive swerving on loose grass or gravel
will cause the vehicle to slide sideways and risk collision or
falling off a cliff (Fig. 1 bottom right).

To this end, we propose a Competence-Aware High-Speed
Off-Road (CAHSOR) ground navigation approach based on a
6-DoF forward kinodynamic model in SE(3). The model is
learned as a downstream task of a new Terrain Representation
for Off-road Navigation (TRON) approach with multimodal,
self-supervised learning using viewpoint-invariant visual ter-
rain patches and underlying Inertia Measurement Unit (IMU)
responses during vehicle-terrain interactions. CAHSOR learns
to predict potential next states according to different can-
didate actions and the current visual and/or inertial terrain
representation to make competence-aware decisions in order
to maximize speed while satisfying 6-DoF vehicle stability
constraints in SE(3), e.g., without excessive sliding and
rolling motions or bumpy vibrations. Our contributions can
be summarized as:

• a TRON approach with multimodal self supervision
that allows onboard visual and inertial observations
to augment each other and maximizes the informa-
tion embedded in the representation of each perceptual
modality;

• a comprehensive study of various end-to-end and repre-
sentation learning techniques with different modalities
for different off-road kinodynamic modeling tasks;



• a CAHSOR framework for high-speed off-road vehicles
to take aggressive maneuvers with stability and safety;
and

• a set of real-world, off-road robot experiments to
demonstrate the effectiveness of CAHSOR based on
TRON in both an autonomous navigation and a human
shared-control setup, exhibiting 62% vehicle instabil-
ity reduction while only compromising 8.6% average
speed.

II. APPROACH

We formulate the problem of forward kinodynamics mod-
eling in SE(3) for ground robots driving on unstructured
off-road terrain at high speeds, present a multimodal self-
supervised learning approach to represent off-road conditions
using onboard visual and inertial observations, introduce
a data-driven approach to learn the forward kinodynamic
model from past vehicle-terrain interactions, and develop a
competence-aware navigation framework that allows robots
to drive at the maximum possible speed while maintaining
vehicle stability in SE(3).

A. Forward Ground Kinodynamics in SE(3)
We adopt a forward kinodynamics formulation where we

denote vehicle state as s, which includes 6-DoF vehicle pose
in SE(3) (x, y, z, roll r, pitch p, and yaw ϕ, expressed in
the global or robot frame) and their corresponding velocity
components. For brevity, only the pose components are
included in the following derivation. The vehicle control
u = [v, ω]T contains linear velocity and angular velocity
(for differential-driven vehicles, or steering curvature for
Ackermann-steering vehicles). We use a world state w to
denote all necessary effects from the environment that will
affect kinodynamics, in our case, from unstructured off-road
terrain. Therefore, in a discrete setting, we have

st+1 = f(st,ut,wt), ot = g(st,wt),

st = [xt, yt, zt, rt, pt, ϕt]
T ∈ SE(3), ut = [vt, ωt]

T ∈ R2,

where f(·) is a forward kinodynamic function in SE(3),
while g(·) is an observation function. For off-road driving,
the forward kinodynamic function f(·) also takes in the
world state w as input, which aids the robot to navigate the
complexities of unstructured terrain. However, world state
w is usually not directly observable and cannot be easily
modeled.

B. Visual and Inertial Representation of World State

We use a multimodal self-supervised learning approach to
represent the world state w and approximate the observation
function g(·) with onboard visual and inertial sensors. A
camera is used to provide the visual signature of the terrain
patch λt. An IMU is used to sense the underlying kinody-
namic responses it and GPS is used to observe the vehicle
speed. For navigation, the vehicle may need to reason about
future kinodynamic responses, for which only the visual
observations from forward-facing camera are available. So
in this work, we use multimodal self-supervised learning to

allow both visual and inertial observations to augment each
other by correlating them in effective representation spaces,
thus either (or both) can be used to enable competence
awareness when available (e.g., manual shared-control using
current underlying inertia and autonomous planning with
vision of future terrain).

We posit that the visual and inertial observations can
provide multimodal self-supervised learning signals to rep-
resent different terrain kinodynamics. To achieve such self-
supervision, we use a non-contrastive approach to maxi-
mize the correlation between visual and inertial embeddings.
However, a key difference of high-speed off-road naviga-
tion compared to existing terrain representation learning
approaches is that the correlation between vision and inertia
is also dependent on the (high) vehicle speed: different
speeds on grass vs. gravel may coincidentally lead to similar
IMU readings. Therefore, CAHSOR extends the vision–inertia
correlation to vision & speed–inertia correlation to account
for the effect caused by various speeds during high-speed
off-road navigation.

We design a viewpoint-invariant visual patch extraction
technique to tackle the problem of visual perception being
sensitive to changes in viewpoints, and lighting and also
the problem of extracting the visual signature of terrain
underneath the current robot state st

We denote the camera image captured h time steps ahead
as ct−h and the transformation from time step t − h to t
extracted from vehicle odometry as dtt−h. By projecting ct−h
to an overhead Bird-Eye View (BEV) using the camera ho-
mography ht−h = H(it−h), we can extract the terrain patch
currently underneath the robot, λt = P (ct−h, ht−h, d

t
t−h).

λt is designed to be slightly larger than the vehicle footprint
to consider actuation latency.

C. Terrain Representation for Off-road Navigation
The set of viewpoint-invariant visual terrain patches Λt =

{λjt}Jj=1, the IMU readings it, and the current vehicle speed
st correspond to multimodal perception of the robot at time
t and provide self-supervised learning signals for our vision
& speed–inertia correlation (Fig. 2 left). To be specific, a
vision, speed, and inertia encoder embeds any terrain patch
λt ∈ Λt, current vehicle speed st, and underlying inertial
readings it into a visual, speed, and inertial representation,
ψV
t , ψS

t , and ψI
t, respectively. Considering the causal relation

from driving at a particular speed on a certain visual terrain
patch to corresponding IMU readings, we concatenate the
visual and speed representations, ψV

t and ψS
t , and further

encode them into a joint vision & speed embedding ψVS
t .

To correlate ψVS
t and ψIt , we project them independently

into a higher dimensional feature space, ρVS
t and ρIt . We

then maximize the correlation between ρVS
t and ρIt while

considering viewpoint invariance using Barlow Twins:

LTRON = BLV(ρ
V1S
t , ρV2S

t )+

(0.5× BLV1I(ρ
V1S
t , ρIt ) + 0.5× BLV2I(ρ

V2S
t , ρIt )),

(1)

where V1 and V2 correspond to two views of the same terrain
patch to encourage viewpoint invariance, i.e., λ1t , λ

2
t ∼ Λt.
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Fig. 2: TRON (Left) and Downstream Kinodynamics Learning (Right) Architecture: Flame and temperature denote training
and frozen parameters respectively.

BL is defined as:

BL =
∑
i

(1− Cii)2 + γ
∑
i

∑
j ̸=i

C2
ij , (2)

where γ is a weight term to trade off the importance
between invariance and redundancy reduction. C is the cross-
correlation matrix computed between ρ1 and ρ2:

Cij =
∑
b ρ

1
b,iρ

2
b,j√∑

b(ρ
1
b,i)

2
√∑

b(ρ
2
b,j)

2
,

where ρ1(2)b,i denotes the ith dimension of the bth sample in
a data batch of ρ1(2), which can be one of ρV1S

t , ρV2S
t , or ρIt .

Trained with multimodal self-supervision, the visual,
speed, and inertial representation, ψV

t , ψS
t , and ψI

t, can be
used to enable downstream kinodynamic modeling tasks.
Depending on the scenario, either ψV

t (predicting multiple
future states without terrain interactions to induce inertial
responses) or ψI

t (directly predicting the immediate next state
from the induced inertial responses from the underlying ter-
rain), or both, may be available. For simplicity, we denote our
visual-speed, inertial, or visual-speed-inertial representation
as ψV, S, I

t .

D. Downstream Kinodynamic Model Learning
After learning the terrain representation and freezing the

learned parameters, we also adopt a self-supervised approach
to learn the forward kinodynamics due to the difficulty in
analytically modeling f(·). We represent the unknown world
state wt using ψV, S, I

t and learn an approximate forward
kinodynamic function fθ(·) as a downstream task of TRON:

st+1 = fθ(st,ut, ψ
V, S, I
t ). (3)

With a self-supervised vehicle-terrain interaction dataset,

D = {sj+1, sj ,uj , ψ
V, S, I
j }N−1

j=0 ,

of N data points, the optimal parameters θ∗ can then be
learned by minimizing a supervised loss function (Fig. 2
right),

θ∗ = argmin
θ

∑
(sj+1,sj ,uj ,ψ

V, S, I
j )

∈D

||sj+1 − fθ(sj ,uj , ψ
V, S, I
j )||.

(4)

E. Competence-Aware High-Speed Off-Road Navigation

The approximate forward kinodynamic function (Eqn. (3))
learned with the self-supervised loss (Eqn. (4)) can be
combined with subsequent planners to enable competence-
awareness.

By rolling out the forward kinodynamic model, the robot
can pick the optimal control command(s) that produces
minimal cost or is most similar to human control, without
violating vehicle stability constraints. While a motion plan-
ner or a human controller needs to consider a variety of
costs including obstacle avoidance, goal distance, execution
accuracy, etc., for simplicity, we combine all these costs
into one general cost term C(st, st+1) and use only one
time-step rollout in our presentation in order to explicitly
showcase the high speed and competence awareness aspect
of the navigation problem. Otherwise, the robot is solely
maximizing navigation speed or following human control.
Notice that it is easy to combine it with any other costs when
necessary and extend to multiple time steps. Expressing the
robot SE(3) state in the current robot frame (i.e., x forward,
y left, and z up), the competence-aware navigation can be
formulated as a constrained optimization problem:

u∗
t = argmax

ut

[||xt+1 − xt|| − C(st, st+1)] ,

s.t. all SE(3) constraints are satisfied,

st+1 = fθ(st,ut, ψ
V, S, I
t ).

(5)

Notice that the objective function in Eqn. (5) can be formu-
lated in other ways when necessary. For example, maximiz-
ing the displacement along x can be replaced by minimizing
the difference between the control u and a desired manual
command. The navigation planner then finds the best control
u∗
t to maximize speed along x (and considers other costs in
C(·, ·)), while in a human shared-control setup u∗

t aims to
minimize the difference compared to human command, both
without violating SE(3) vehicle kinodynamic constraints.

III. IMPLEMENTATION

We implement CAHSOR ground navigation on a 1/6-
scale autonomous vehicle, an AgileX Hunter SE, with a
top speed of 4.8m/s on different off-road terrain at high
speeds to demonstrate the proposed competence awareness.



We collect a dataset of 30-minute vehicle-terrain interactions.
The collected GPS-RTK, onboard IMU, front-facing camera,
and vehicle control data are synchronized and processed into
training data. We integrate the learned TRON and downstream
kinodynamic models and the CAHSOR framework with an
autonomous navigation planner and a human shared-control
setup.

A. CAHSOR Implementations

1) TRON: The terrain vision encoder is a 4-layer Convolu-
tional Neural Network (CNN) to produce a 512-dimensional
viewpoint-invariant visual representation. The speed encoder
is a 2-layer neural network, whose 512-dimensional output
is combined with the visual representation to construct
our vision-speed representation ψVS

t . The last 2-second ac-
celerometer and gyroscope data are converted into the fre-
quency domain using Power-Spectral Density (PSD) repre-
sentation before being fed into the 2-layer inertia encoder
and producing a 512-dimensional inertial representation ψI

t.
All encoders are trained to minimize LTRON (Eqn. (1)).

2) Kinodynamics: Our SE(3) vehicle state is instantiated
in the current robot frame, i.e., [xt, yt, zt, rt, pt, ϕt]T = 0,
and therefore omitted from the input of our forward kinody-
namic model (Eqn. 3). To explicitly showcase the efficacy of
the learned kinodynamic model on state dimensions beyond
SE(2), we limit the model output to three metrics to reflect
sliding along y, roll around x, and bumpiness along z,
i.e., [slidingt+1,rollt+1,bumpinesst+1]

T . While it
is not necessary for the human shared-control setting, for
autonomous navigation planning, other state dimensions are
produced using a simple Ackermann-steering model, whose
predicted 3-DoF trajectories are evaluated for competence
awareness with the learned kinodynamic model. Such a
practice also avoids the computation overhead of sequentially
rolling out a large set of multi-step, 6-DoF candidate trajec-
tories, which cannot be efficiently parallelized on GPUs. To
be specific, slidingt+1 is captured by the ground speed
sensed by GPS-RTK projected onto the robot y axis (left);
We compute the absolute angular acceleration around the
x axis (front) from the gyroscope averaged over 0.1s as
rollt+1; bumpinesst+1 is computed as the absolute jerk
along the z axis (up) from the accelerometer averaged over
0.1s. As a downstream task of TRON, the kinodynamic model
(Eqn. 3) is learned with three 256-64-1 neural network heads,
which take as input the pretrained visual, speed, and/or
inertial representation ψV, S, I

t and candidate control actions
ut = (v, ω) (omitted in Fig. 2 right for simplicity), to
produce slidingt+1, rollt+1, and bumpinesst+1.

B. Autonomous Navigation Planning with CAHSOR

We integrate our CAHSOR model with a Model Predictive
Path Integral (MPPI) planner. Our MPPI planner rolls out
a set of candidate 3-DoF state trajectories using sampled
action sequences and then combines those samples based on
a predefined cost function. The cost function is informed
by the prediction of the learned 6-DoF kinodynamic model,
assigning infinitely large costs to candidate trajectories that

involve sliding, roll, and bumpiness. MPPI then updates the
sampling distribution to sample actions that are more likely
to lead to low cost trajectories, i.e., moving the robot toward
a goal at the fastest possible speed. MPPI rolls out 550
trajectories, each with 8 vehicle states. We select six goals in
an outdoor off-road environment for the robot to drive to in
a loop. For MPPI rollouts, future terrain inertial responses are
not available to the TRON model. Therefore, we only use the
visual and speed representation ψVS

t as ψV, S, I
t to represent

the world state wt associated with each future vehicle state
st on the candidate trajectories. For computation efficiency,
we divide the current BEV into a 15×51 grid and pick the
terrain patch that is closest to st on the candidate trajectories
for parallelized model query on GPU during one MPPI cycle.

C. Human-Autonomy Shared-Control with CAHSOR

We also demonstrate the use case of CAHSOR in a human-
autonomy shared-control setup, in which a human driver
aims at driving the robot as fast as possible, while CAHSOR
takes care of satisfying all vehicle SE(3) constraints with
the closet possible vehicle control to the human command.
In this case, the objective function in Eqn. (5) becomes

u∗
t = argmin

ut

||ut − uHt ||. (6)

uHt is the desired human control input, which will poten-
tially violate the SE(3) constraints. In this shared-control
setup, both inertia and vision (from past camera images)
are available, so TRON takes in visual, speed, and inertial
representation as ψV, S, I

t to represent the current world state
wt.

IV. EXPERIMENTS

We deploy CAHSOR navigation with human-autonomy
shared-control setup and autonomous navigation planning us-
ing MPPI. Please see our video https://www.youtube.
com/watch?v=vqhIKjabTF4 for the experimental re-
sults and more information.

V. CONCLUSIONS

Our CAHSOR ground navigation approach is able to uti-
lize multimodal, self-supervised terrain representation, i.e.,
TRON, to reason about the consequences of taking ag-
gressive maneuvers on different off-road terrain, i.e., being
competence-aware. inertial observations contain the most
information to enable efficient kinodynamics learning, but
may not be available during planning. augmenting easily
available vision combined with speed using inertia with
TRON, similar kinodynamics learning performance can be
achieved. extensive physical experiments in both an au-
tonomous navigation planning and human shared-control
setup demonstrate CAHSOR’s superior competence awareness
during high-speed off-road navigation.

https://www.youtube.com/watch?v=vqhIKjabTF4
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